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Abstract

We propose a method for improving Belief
Propagation (BP) that takes into account
the influence of loops in the graphical model.
The method is a variation on and general-
ization of the method recently introduced
by Montanari and Rizzo [1]. It consists of
two steps: (i) standard BP is used to cal-
culate cavity distributions for each variable
(i.e. probability distributions on the Markov
blanket of a variable for a modified graph-
ical model, in which the factors involving
that variable have been removed); (ii) all cav-
ity distributions are combined by a message-
passing algorithm to obtain consistent single
node marginals. The method is exact if the
graphical model contains a single loop. The
complexity of the method is exponential in
the size of the Markov blankets. The results
are very accurate in general: the error is of-
ten several orders of magnitude smaller than
that of standard BP, as illustrated by numer-
ical experiments.

1 INTRODUCTION

Belief Propagation (BP), also known as the Sum-
Product Algorithm and as Loopy Belief Propagation,
is a popular algorithm for approximate inference on
graphical models. It often yields surprisingly accu-
rate results, using little computation time. It has
strong ties with the Bethe approximation [2], which
was developed in statistical physics [3]. Belief Propa-
gation is the simplest case in a family of more sophis-
ticated algorithms such as Generalized Belief Propa-
gation (GBP) [4] (which can be used e.g. for the Clus-
ter Variation Method (CVM) [5, 6]) and Expectation
Propagation (EP) [7].

It is well-known that Belief Propagation yields exact
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results if the graphical model is a tree. However, if
the graphical model contains loops (cycles), the ap-
proximate marginals calculated by BP can have large
errors. Increasing the cluster size of the approxima-
tion (e.g. by using CVM with larger clusters) does not
necessarily solve this problem if long, influential loops
cannot be completely included in one cluster. Using
TreeEP [8] one can correct for the presence of loops to
a certain extent, namely for those loops that consist
of part of the base tree and one additional factor. The
method we propose here effectively takes into account
all the loops in the factor graph, in many cases yielding
more accurate approximate marginals as a result.

In the statistical physics community different meth-
ods for calculating loop corrections to the Bethe ap-
proximation have been proposed recently [1, 9, 10].
The work we present here is a variation on the theme
introduced in [1]. The alternative that we propose
here offers two advantages compared to the original
method proposed in [1]: (i) it is more robust and im-
proves upon BP also for relatively strong interactions;
(ii) it is directly applicable to arbitrary factor graphs,
whereas the original method has only been formulated
for binary variables with pairwise factors.

This article is organised as follows. First we explain
the theory behind the proposed method, discussing dif-
ferences with the original approach in [1] along the
way. Then we report numerical experiments regard-
ing the quality of the approximation and the compu-
tation time, comparing with other approximate infer-
ence methods. Finally, we discuss the results and state
conclusions.

2 THEORY

2.1 GRAPHICAL MODEL CLASS,
NOTATIONS

Let V := {1,...,N} be an index set for N ran-
dom variables {z;};cy, where variable z; takes val-



ues in a discrete domain X;. We will use a multi-
index notation, i.e. for any subset I C V, we write

xry = (.’L‘il,ZEiz, . ,,CCim) lf I = {7;1,7;2, e ,Zm} and
i1 < 42 < ...%yn. We consider probability distribu-
tions over = (x1,...,2x) that can be written as a

product of small factors ¢;:
)= . I I (1) (1)
..y TN 7 ’L/J] xXr).

The factors (or “interactions”) ¢y are indexed by sub-
sets of V, i.e. T € F C P(V). Each factor is a non-
negative function vy : [[;c; & — [0,00). This class
of probability distributions includes Markov Random
Fields as well as Bayesian Networks. In general, the
normalizing constant Z is not known and exact com-
putation of Z is infeasible. One can visualize a proba-
bility distribution of the form (1) with a factor graph
(c.f. Figure 1(a)), a bipartite graph having wvariable
nodes © € V and factor nodes I € F, with an edge
between ¢ and I if and only if i € I.

In the following, we will use uppercase letters for in-
dices of factors (I, J, K, ... € F) and lowercase letters
for indices of variables (i,7,k,... € V). For simplic-
ity we assume that no pair of variables is contained in
more than one factor, i.e. we assume that no loops of
length 4 are present in the factor graph. We slightly
abuse notation by writing \ I instead of V\ I for I C V
and \¢ instead of V' \ {i} for i € V.

2.2 LCBP: A BRIEF OVERVIEW

The main idea of what is known in the statistical
physics community as the “cavity method” is to con-
sider modified graphical models in which a single vari-
able is removed, together with all factors in which that
variable appears, thus forming a “cavity” (c.f. Figure
1). The removed variable is called the cavity variable.
The method proposed in [1] (and our method, which
is a variation and generalization thereof) approximates
for each variable its corresponding cavity distribution,
i.e. the marginal probability distribution of the cavity
network on the neighbourhood (Markov blanket) of
the cavity variable. Subsequently, the removed factors
are multiplied back in, and we demand consistency of
single node marginals. This results in partial cancella-
tion of errors in the approximated cavity distributions,
improving the accuracy of the final result. The Bethe
approximation is obtained as the special case in which
the cavity distributions are assumed to factorize com-
pletely. We will now explain the procedure in more
detail.
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2.3 CAVITIES

Let i € V. We denote by 9i :== {j € V : i,j €
I for some I € F} the set of neighbouring variables
of i, also called the Markov blanket of i. We define
Ai := 0iU{i}. We modify the original graphical model
(1) by removing variable x; and all the factors in which
it appears (c.f. Figure 1); the probability distribution
corresponding to the resulting cavity network is thus
by definition:

H Yr(zr). (2)
Vi reF
i€l
Note that the normalization constant Z\; differs from
the normalization constant Z of the original network
(1). We will call the marginal distribution of (2) on 94
(the Markov blanket of i) the cavity distribution P\*

of i
Z T ¢r@n). (3)

T\ai [EF
igl

P\Z (xo;) =

Z

Writing ¥, for the product of the removed factors:

i(@ai) =[] witen), (4)
IeF
i€l
the following identity is immediate:

P(xa;) o< PN (20;) Wi (xa:), (5)

i.e. the marginal distribution on Ai of the original
probability distribution (1) is proportional to the prod-
uct of the cavity distribution of ¢ and the product of
the factors involving ;.1 The cavity distribution sum-
marizes the rest of the network; it can be seen as an
“effective interaction” on xg;. In particular, it sum-
marizes information about loops in which variable i is
contained. For example, in Figure 1, the cavity distri-
bution P\!(z5;) contains the interaction ¢o between
Ty, and x;, which is part of the loop :KmOIlJi in the
original factor graph.

2.4 CONSISTENCY OF SINGLE NODE
MARGINALS

Consider two variables i,j € V with ¢ € dj; let I be
the common factor involving both x; and x;. The joint

!Note that equation (5) is not one of the DLR
equations [11]. The most similar DLR equation would
be P(z:) = >,  P(xi|zoi)P(xo:), whereas (5) implies
P(xi) o< 32, U, (2a:) P\ (2zg;). Although the equations
may appear identical at first sight, they are not. Consider
e.g. a star-shaped model with a central variable 7 coupled
to its neighbours by pairwise factors. In that case, P\ (zg;)
is completely factorized, whereas P(xs;) is not.



(a) Original graph

(b) Cavity graph of ¢

Figure 1: (a) Original factor graph; (b) cavity graph re-
maining after variable node ¢ and the factor nodes that
contain ¢ (i.e. I,J,K) have been removed. The neighbours
of ¢ are 9i = {j, k,l,m,n} and Ai = {i,j,k,l,m,n}. The
cavity distribution P\ is defined as the marginal on zg; of
the probability distribution corresponding to (b).

marginal on x; and z; in the absence of the factor I is

given by
p\ (@i, xj) Z HwaJ (6)
T\ {i,5} Jgg

We can calculate this joint marginal from the cavity

distribution of 4:
« 3 Pirae

Toi\j

E) (7)

P\ (@i, ;)

where we defined:

U (wai) = [[ vs(as)=— foriel,IeF.

JeF 1/]
i€, J£T
Alternatively, we can calculate (6) from the cavity dis-
tribution of j (interchanging ¢ and j):

3" PV(ag) W) (xay).  (8)

Zaj\i

PM(z;,2;) o

The results are obviously identical if the cavity distri-
butions P\ and P\ are exact.

In practice, the exact cavity distributions are unavail-
able and we can only obtain approximations Qék ~
P\F. Replacing {P\*},cy by their approximations
{Qék}key in equations (7) and (8) will yield incon-
sistent results; the main idea of the method proposed
in [1] is to deform the approximate cavity distributions
{Qék} key in such a way that the single node marginals
of z; and z; in equations (7) and (8) become consis-
tent.? In [1], the single node marginals of the approxi-
mate cavity distributions are varied whereas the higher

’Instead of demanding consistency of single node
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order cumulants are kept fixed.? Instead, we propose
here to deform the approximate cavity distributions
Qéz in the following way:

QV (wai) o Q) (war) T )" (xy)- (9)

jEDI

Thus we change the single variable interactions by mul-
tiplying with single node factors but keep higher order
interactions fixed. The single node factors (b}l(zj) are
chosen such that the single node marginals of z; and
x; are consistent in the absence of factor I, i.e. such
that

Z Q\Z Cﬁaz \Ij\ :CAz

TAi\i

Z Q\J (za;)

TAG\i

j (xAj)-

(10)
This should hold for all pairs of neighbouring variables
i,j € V with ¢ € 9j. In this way, first order errors in
the initial approximate cavity distributions Qék are
cancelled out.

To calculate the values for the corrections gb}z (xj), we
use Algorithm 1, which is a simple fixed-point algo-
rithm based on equations (10). After convergence, we
calculate single node marginals ¢;(x;) =~ P(z;) from
the final deformed approximate cavity distributions

Qéf; using:

Z Q\l Cﬁaz

Zoi

-TAZ)

In our experiments, Algorithm 1 always converged to a
reproducible fixed point, even without damping. Note
that if we would start with the exact cavity distribu-
tions, i.e. Q) = P\ for all 4, the algorithm would ter-
minate immediately because the single node marginals
would already be consistent. Obviously, one can use
other update schemes than the parallel one given in
Algorithm 1; in our experiments, we have used a se-
quential update scheme.

marginals z; and x; in the absence of the factor I con-
necting x; with x;, one could alternatively demand con-
sistency of the single node marginals in the presence of
all factors, i.e. demanding that Z%l\j P\ (29:)Wi(zas) o
Y e PN (2p;)V;(xa;) for all i € V,j € i. This might
appear more natural, but it turns out that the resulting
method is inferior to the one presented here if factors in-
volving more than two variables are present (see also sec-
tion 4).

3Cumulants are called “connected correllations” in [1]
and are defined as certain polynomial combinations of mo-
ments P\i(zg;) [1;c4 2 with A C 9i, where all vari-
ables are assumed to be +1-valued.



2.5 COMPUTING Q'

We have discussed in the previous subsection how to
deform the initial approximate cavity distributions Qsi
to make them consistent; we now discuss how to obtain
the Q(\)i in the first place.

In [1] it is suggested to initialize the second-order cu-
mulants of the approximate cavity distribution using
BP in combination with linear response and to assume
higher order cumulants to be zero (although in prin-
ciple one could use higher order linear response esti-
mates for the higher order cumulants).

Here, instead, we propose to initialize the approxi-
mate cavity distributions by using standard BP on a
“clamped” network. This means that for each cavity
variable ¢, we fix some setting xy; of its Markov blan-
ket, use BP to calculate the corresponding Bethe free
energy Fpetne(zg;) for that particular setting, iterate
over all possible settings, and finally calculate the ap-
proximate cavity distribution

Qéi(xﬁi) o e_FBethe(wai)_ (11)

In this way we capture all effective interactions, also
higher order ones, in the initial cavity distributions.

One can think of many other ways to approximate the
initial cavity distributions. The procedure described
above is exponential in the size of the cavity. An al-
ternative way of initiliazing the cavity distributions
is to estimate the pair marginals P\'(x;,z) for each
pair (j, k) € 9i*>. This can be done by clamping z; to
some value, using BP to approximate P\!(zy, | ;) and
Fpethe(zj). An approximation of P\i(z;,xy) is then
given by

6o’ (x5, mk) 1= PV | aj)e™ pemne (),

The approximate cavity distribution Qéi is then simply
the product of all approximated pair marginals:

QVi(war) o [ a0’ (xs,20) (12)

{4,k}
j,k€Ddi

Algorithm 1 LCBP update algorithm (parallel up-
dates)

1: t <0

2: repeat

3: foralle,j € Vst i,5€l for some I € F do

i I

\j
4: Qt—i—l X @ -
\i g\
ZzAj\i t lI/j
5. end for
6: t—t+1
7: until convergence
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This procedure is quadratic in cavity size. However,
the update equations are still exponential in the cavity
size.

As a side note, one can show that by simply tak-
ing completely factorized initial cavity distributions
(ie. Q) (xas) o [Lcoi q]\z(xj) for arbitrary qj\z), fixed
points of BP are fixed points of Algorithm 1. Thus
LCBP can indeed be regarded as a loop correction
scheme for the Bethe approximation.

2.6 EXACTNESS IN CASE OF ONE LOOP

It was shown in [1] that the method proposed there
is exact if the graphical model contains only one loop,
possibly attached to treelike structures. Using a simi-
lar argument, we can show that a similar result holds
for our alternative method. Suppose the graphical
model contains exactly one loop. Consider first the
case that ¢ is part of the loop; removing ¢ will break
the loop and the remaining cavity graph will be singly
connected, hence the cavity distribution calculated by
BP will be exact. On the other hand, if ¢ is not part of
the loop, removing ¢ will divide the network into sev-
eral connected components, one for each neighbour of
i; this implies that the cavity distribution calculated
by BP contains no higher order interactions, i.e. Qg
is exact modulo single node interactions. Hence, after
running the LCBP update algorithm, all cavity distri-
butions will be exact, which obviously implies that the
final single node marginals will be exact.

3 EXPERIMENTS

We have performed numerical experiments to compare
the quality of the results and the computation time of
the following approximate inference methods:

BP Standard BP, using the recently proposed up-
date scheme [12], which converges also for difficult
problems without damping.

HAK-A A double-loop implementation [13] of CVM
using the sets {Ai};cy as outer clusters.?

HAK-4 A double-loop implementation of CVM using
as outer clusters all factors together with all loops
in the factor graph that consist of up to 4 different
variables.

TreeEP TreeEP [8], without damping.

4We have used a double-loop implementation of CVM
instead of GBP because the former is guaranteed to con-
vergence to a local minimum of the Kikuchi free energy
[13], whereas the latter often only would converge with
strong damping, where the required damping constant is
not known a priori.



LCBP-CUM The original cumulant-based loop cor-
rection scheme described in [1].

LCBP LCBP with cavities initialized as in (11).

LCBP-PAIR LCBP with cavities initialized as in
(12).

To be able to assess the errors of the various approx-
imate methods, we limited ourselves to problems for
which exact inference (using a standard junction tree
method) was still feasible.

For each approximate inference method, we have cal-
culated the maximum error in the approximate single
node marginals ¢; as follows:

max max lqi (i) — pi(i)] (13)

where p;(z;) = P(z;) is the exact marginal.®

The computation time was measured as CPU time in
seconds on a 2.4 GHz AMD Opteron 64bits proces-
sor with 4 GB memory. The timings should be seen
as indicative, as we have only optimized BP. The im-
plementations of the other approximate inference can
still be optimized for speed, which may alter the tim-
ings reported here by some constant depending on the
method.b

We have studied three different model classes: (i) ran-
dom graphs with fixed degree d = 5 and binary vari-
ables; (ii) periodic square grids with binary variables;
(iii) the ALARM network.

3.1 RANDOM REGULAR GRAPHS WITH
BINARY VARIABLES

We have compared various approximate inference
methods on random graphs with fixed degree |0i| =5
with £1-valued variables. Random graphs are spe-
cial in the semse that the number of short loops
is relatively small. As single node factors we took
;i (z;) = exp(f;x;) for ii.d. weights ; drawn from a
N (0, 8). For the pairwise factors we took ;;(z;, xj) =
exp(Jijx;x;) for iid. weights J;;, also drawn from a
N(0,3) distribution. The parameter 3 controls the
strength of the interactions and the difficulty of the
inference problem.

Figure 2 shows the results for 3 = 1. LCBP is the
most accurate method. BP is the fastest method but

®We have considered other error measures as well (av-
erage maximum single node error, maximum and average
Kullback-Leibler divergence). We do not report these re-
sults here because of space constraints and because the
choice of error measure does not affect our conclusions.

SWe plan to release our C++ implementation of the
various algorithms as free software.
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is not very accurate. HAK-A performs remarkably
bad, being the slowest and the least accurate method
of all. This is remarkable, since one would expect
that it should at least improve on BP since it uses
larger clusters. It shows that although both LCBP
and HAK-A use identical clusters, the nature of both
approximations is very different. TreeEP is more ac-
curate than BP but still very efficient in terms of com-
putation time. LCBP almost always significantly im-
proves upon BP, often more than one order of mag-
nitude, except in cases where the BP error itself is of
order 1. For N = 70, the treesize became so large
that exact inference was infeasible. Although LCBP-
CUM and LCBP-PAIR use rather similar initial ap-
proximate cavity distributions, their end results dif-
fer significantly. In this regime of strong interactions,
LCBP-CUM is seen not to improve on BP.

For smaller (3, i.e. weaker interactions, the results be-
come more pronounced; in particular, the relative im-
provement of LCBP over TreeEP and BP increases for
weaker interactions. For stronger interactions (higher
(), performance of the various methods becomes more
instance dependent, but on average the picture re-
mains the same. The only exception is LCBP-CUM,
which performs better for smaller 3, comparable to
LCBP-PAIR (not shown).

3.2 PERIODIC SQUARE GRIDS

The next class of models are periodic square grids
(i.e. square grids on a torus) with binary variables.
These models have many short loops, making them dif-
ficult problems for approximate inference. The special
topology of these graphical models allows for a natu-
ral choice of the outer clusters for CVM, namely 2 x 2
plaquettes. Thus in addition to HAK-A (which in this
case uses +-shaped clusters consisting of 5 variables),
we compare with HAK-4, a double-loop implementa-
tion of CVM using the 2 x 2 plaquettes. We took the
same kind of interactions as for the random graphs.

The results can be found in Figure 3. HAK-A was
so slow that we did not consider it. As for random
graphs, the fastest method is BP. As for the random
graphs, TreeEP improves significantly on BP, using
little computation time. Again LCBP uses more com-
putation time but improves the accuracy even more.
The HAK-4 method shows a surprising behaviour: for
small grids, its accuracy is comparable to that of BP,
whereas for larger grids, the accuracy quickly improves
and it becomes the most accurate of all tested meth-
ods. Note that the treewidth quickly increases with NV
and for large grids computation time for exact infer-
ence is comparable to that of the slowest approximate
inference methods.
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Figure 2: Errors and computation times for random graphs with degree 5 and interaction strength 3 = 1. Left: errors
of single node marginals vs. graph size. Middle: computation time vs. graph size. Right: LCBP error vs. BP error. Each
point in the left and middle plots is an average (in the log-domain) over 10 randomly generated instances.
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Figure 3: Periodic square grids, 3 = 1. Left: errors of single node marginals vs. graph size. Middle: computation time
vs. graph size. Right: LCBP error vs. BP error. Each point in the left and middle plots is an average (in the log-domain)

over 10 randomly generated instances.

3.3 ALARM NETWORK

The ALARM network is a well-known Bayesian net-
work consisting of 37 variables and higher order fac-
tors. In addition to the usual approximate inference
methods, we have compared with GBP, using maximal
factors as outer clusters. The results are reported in
Table 1.

The accuracy of GBP is almost identical to that of
BP on this model. Again we see that improving the
cluster size (HAK-A) does not improve the results,
it even makes them worse. LCBP reduces the error
by a factor of about 400. Unfortunately, computation
time increases even more. An important direction for
future research would be to extend and generalize the
loop correction framework in order to find different
tradeoffs between computation time and accuracy.

4 DISCUSSION AND
CONCLUSIONS

We have proposed a method for improving BP by tak-
ing into account all the loops in the factor graph, which
is a variation of the one proposed in [1]. We have
shown that it can significantly outperform other ap-
proximate inference methods in terms of accuracy. On
the downside, the computation time is rather high and
application is limited to graphical models with small
cavities. Further we have shown that simply increasing
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the cluster size in CVM (GBP) does not guarantee bet-
ter results. In fact, often the results were even worse
than for the simplest cluster choice (i.e. the outer clus-
ters being the maximal factors, which coincides with
BP in case of pairwise factors). Because LCBP and
HAK-A use identical clusters, one might think naively
that both approximation method will behave similarly;
however, as we have shown, this is not the case, and
the nature of both approximations appears to be com-
pletely different.

In almost all cases, the LCBP results had significantly
smaller errors than the BP results, the only exceptions
being the cases where the BP error was of order 1. In
most cases, LCBP results were also significantly more
accurate than TreeEP.

Only for grids we encountered an approximate infer-
ence method that appears to be structurally better
than LCBP. Here, CVM with 2 x 2 plaquettes outper-
forms LCBP. A possible explanation may be that in
this case the shortest and most important loops are
included in an outer cluster each (although this does
not explain why for small grids the error is comparable
to that of BP, which assumes no loops).

For large graphs, exact inference can become in-
tractable and in these cases, LCBP may be a viable
alternative (provided the cavities are small) that in
our experience often gives highly accurate results.

The most important difference between the method



proposed here and the original one in [1] is that
we assume that the cavity distributions contain no
higher order interactions (i.e. interactions involving
more than two cavity variables), whereas the original
proposal is to assume that higher order cumulants van-
ish. Both approaches are identical to first order in the
corrections qb}z(acj). However, the cumulant-based for-
mulation has several disadvantages. First, it is difficult
to work with in practice, because it leads to rather
complicated expressions. Further, it is not obvious
how to generalize it beyond the binary, pairwise case,
although this should be possible in principle. Finally,
the approximation of vanishing higher order cumulants
turns out to break down in the regime of strong inter-
actions, whereas our interaction-based approximation
still works in that regime.

Concluding, the LCBP method proposed in this work
appears to be ideally suited to compute with high
accuracy single node marginals for graphical models
having small cavities, especially when the graph has
“long” loops which cannot easily be taken into account
exactly using CVM or other region-based methods.
On these graphical models, the quality of the results
turned out to be superior to the other approximate
inference methods we compared with.

There still appears to be room for improvement of the
LCBP method as formulated here. In particular, var-
ious alternatives to the LCBP update equations (line
4 of Algorithm 1) are possible and can give even bet-
ter results. As an example, consider altered update
equations in which the connecting factor vy is not di-
vided out (equivalent to demanding consistency of sin-
gle node marginals for the original, unmodified, prob-
ability distribution (1)). This does not significantly al-
ter the results for weak, pairwise factors, but appears
to be more robust if the factors are stronger. On the
other hand, in the presence of factors involving more
than two variables, this alternative approach leads to
significantly worse results. This observation suggests
the possible existence of update equations in the same
spirit as line 4 in Algorithm 1, but which give better

Table 1: Results for the ALARM network. Apart from
the error measure (13) (“Max MAD”), we also report the
average maximum absolute deviation of the single node
marginals (“Avg MAD”).

Method | Time (s) Max MAD Avg MAD
BP 0.01 0.203 0.00814
GBP 0.18 0.203 0.00759
TreeEP 0.04 0.039 0.011
HAK-A | 293.14 0.223 0.0738
LCBP 14.62 0.000544 0.0000151
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results in general. We intend to address this issue in
more detail in a forthcoming publication.
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