Learning A* underestimates :
Using inference to guide inference

Gregory Druck
University of Massachusetts
Amherst MA
gdruck@cs.umass.edu

Abstract

We present a technique for speeding up infer-
ence of structured variables using a priority-
driven search algorithm rather than the
more conventional dynamic programing. A
priority-driven search algorithm is guaran-
teed to return the optimal answer if the pri-
ority function is an underestimate of the true
cost function. We introduce the notion of
a probable approximate underestimate, and
show that it can be used to compute a prob-
able approximate solution to the inference
problem when used as a priority function. We
show that we can learn probable approximate
underestimate functions which have the func-
tional form of simpler, easy to decode models.
These models can be learned from unlabeled
data by solving a linear/quadratic optimiza-
tion problem. As a result, we get a priority
function that can be computed quickly, and
results in solutions that are (provably) almost
optimal most of the time.

Using these ideas, discriminative classifiers
such as semi-Markov CRFs and discrimina-
tive parsers can be sped up using a gener-
alization of the A* algorithm. Further, this
technique resolves one of the biggest obsta-
cles to the use of A* as a general decoding
procedure, namely that of coming up with a
admissible priority function. Applying this
technique results in a algorithm that is more
than 3 times as fast as the Viterbi algo-
rithm for decoding semi-Markov Conditional
Markov Models.

1 Introduction

Dynamic programming is a widely used technique for
decoding probabistic models with structured outputs

97

Mukund Narasimhan
Live Labs, Microsoft Corp.
Redmond WA
mukundn@microsoft.com

Paul Viola
Live Labs, Microsoft Corp.
Redmond WA
viola@microsoft.com

such as Hidden Markov Models (HMMs), Conditional
Random Fields (CRFs), semi-Markov CRFS, and
Stochastic Context Free Grammars (SCFGs). While
dynamic programming does yield a polynomial time al-
gorithm for decoding these models, it may still be too
slow (Charniak et al. 1998). For example, finding the
optimal parse in a SCFG requires O(n?) time, where n
is the number of tokens in the input. When SCFGs are
used for decoding extremely large inputs (such as in
information extraction applications (Viola et al. 2005)
or bioinformatics applications (Durbin et al. 1999), an
O(n?) algorithm may be excessively expensive. Even
for simpler models like HMMs, for which decoding is
O(n), the hidden constants (a quadratic dependence
on the number of states) can make dynamic program-
ming unusable when there are many states. As a re-
sult, a number of alternatives to dynamic program-
ming have been proposed such as Beam search (Rat-
naparkhi 1999, Roark 2001, Collins 2004) best-first de-
coding (Charniak et al. 1998, Caraballo et al. 1997)
and A* (Klein et al. 2003, Goel et al. 1999). Neither
beam search nor best first decoding are guaranteed to
find the optimal solution. While A* is guaranteed to
find the optimal solution, using it requires finding ad-
missible underestimates (defined in Section 2).

Both A* and best first search fall into the class of al-
gorithms we call priority-based search techniques. A
priority queue of partial solutions is maintained and
at each step, the partial solution with the lowest value
of the priority function is taken off the queue. This
partial solution is expanded to generate other par-
tial/complete solutions which are added to the queue.
This process continues until a complete solution is
taken off the priority queue, at which point the search
stops. Best first search uses the cost of the current so-
lution as the priority function guiding its search, while
A* uses the sum of the cost of the current solution and
an optimistic estimate (underestimate) of the cost of
completing the solution.

Since these priority-based schemes have to perform ad-

ditional work at each step as compared to dynamic
programming, the priority function has to prune away
a substantial part of the search space in order to
be effective. Further, since the priority function has
to be computed for each step, for each partial solu-
tion, we need to able to compute the priority function
quickly. Therefore, for A* to be effective (i.e., faster
than Viterbi), the underestimate needs to be “tight”,
and fast to compute. This is one of the main obstacles
to the general use of A* because coming up with tight
inexpensive underestimates can be difficult.

So, we have algorithms which are fast, but offer no
optimality guarantees (best-first decoding and beam
search), and algorithms which prune the search space
to find the optimal solution, but are often not as fast
as the approximate algorithms. A further obstacle in
using A* is that it is not always clear how to generate
an admissible underestimate (especially in a discrimi-
native setting), and hence A* cannot always be used.

In this paper we try to get the best of all worlds, by giv-
ing a general technique which can be used to produce
solutions which are close to optimal, by allowing trade
offs between computational requirements and the de-
gree of approximation.

2 Notation and Preliminaries

The prediction/inference problem is to find a mapping
f: X —)Y, where X is the input space and) is the
output space such that
f(x) = argmin cost(y|x)
yey

When there is an underlying probablistic model, the
scoring function cost(y|x) is typically the negative log
likelihood — log p(y|x). However, there are other mod-
els where the cost function is not derived from a purely
probablistic model (such as margin based models, vot-
ing based models, and loss based models).

In many problems, the input and output spaces have
associated structure. For example, the space X might
be the space of sequences of observations, (such as
words or nucleic/amino acids), and the output space
Y might be the space of sequences of labels (such as
part-of-speech tags or coding/non-coding binary la-
bels). In these problems, the size of the input/output
domains is exponential in the length of the sequences,
and hence exhaustive search cannot be used to find
argming, ¢y, cost(y|x). In some cases the cost function
also has associated structure, such as the Markov prop-
erty, which allows for computing argmin, ., cost(y|x)
in time polynomial in the length of the sequence.

We start with a concrete example, that of labeling
sequences of observations where the input space is

98

X = Om", the output space is Y = L", and O and
L are the set of observations and labels respectively.
Note however, that the techniques presented in this
paper apply equally to a number of other structured
prediction problems.

Each element 1 = (I4,13,...,1l,) € L™ =), represents
an assignment of a label to every observation in the
input. We will call lj3.q = (l1,l2,...,lx) a partial
output; it is an assignment of labels to a prefix of the
input sequence. We say that the cost function satisfies
the Markov property if it assigns a cost to each partial
output satisfying

cost(lj1x41)[x) = cost(lj1.(x) + @r (L, lit1[x)

Once ¢y (lg, lk+1]x) and cost(ly|x) are specified, the
value of cost(l|x) can be computed for every label se-
quence 1 € L™ .

We can formulate the search for the optimal solution
as a shortest path problem in a graph G = (V, E)
constructed as follows. The node set V consists of
all pairs {(t,0)},;<,, ;.. where ¢ is the time step of
the node, and [is the label of the node. There are
edges from node (t,1,) to node (t + 1,1;) for every
1<t<mnandlgl, € L. Theedge ((¢,1a), (t +1,1))
is given weight ¢:(lp,l4|x). Finally, we add a start
node start and a goal node goal, and for every [€ L,
we add edges (start, (1,1)) with weight cost(l|x), and
edges ((n, 1), goal) with weight 0.

Observe that the label sequence 1 =
(I, oy oy ly) corresponds to the path
start, (1,11), (2,12),...,(n,l,,),goal, and that the

weight of this path (sum of edges on this path) is
exactly cost(l|x). Therefore, the least cost path (of
length n) from start to goal corresponds to the desired
optimal label sequence. Because there is one-to-one
correspondence between label sequences in)Y and
path in G from start to goal, we will use the two
interchangably. The label sequence 1 corresponds to
the path start, (1,11), (2,13),...,(n,1,),goal. We use
(k,1) €1 to denote the fact that the node (k,!) is on
the path 1€ Y (in other words, the 15 =1).

We let a((k,1)|x) be the cost of the least weight path
from start to (k,l). The cost of completion of a node
(k,1) is the cost of the least weight path from (k, 1) to
goal, and we denote this by B({k,)|x). Observe that
a((k,l)|x) + B((k,1)|x) is the cost of the least weight
path from start to goal going through (k,l). In other
words,

a((k, 1)x) + B((k, I)|x) = min {cost(l|x)}
kel
Definition 1. A function lower : V — R is an admis-
sible underestimate if for every (k,l) we have

1. lower((k,1)|x) < B((k,1)|x).
2. lower({n,l)|x) =0 for alll € L.

Condition (1) requires the function lower to be an op-
timistic estimate of the cost function, while Condition
(2) requires the estimate to be 0 for the last states
of the path. A well known result (Russel et al. 1995)
states that if lower is an admissible underestimate, and
we use

prio({k,1)|x) = cost((k,)|x) + lower({k, [}|x)

as a priority function for priority driven search, then
we are guaranteed to find the optimal solution. In
principle, the admissible underestimates allow for
pruning of parts of the search space, possibly enabling
the algorithm to find the optimal solution faster than
the dynamic programming approach. However, main-
taining the priority queue adds completity to the al-
gorithm, and hence for the procedure to outperform
the dynamic programming approach in practice, the
estimate has to be reasonable sharp. For many cases,
even when we can find admissible underestimates, the
estimates tend to be loose, and hence do not result in
a substantial speedup.

We now consider some relaxed notions of admissible
underestimates, and examine the effect of their use on
priority driven search.

Definition 2. A function lower : V — R is probably
an (e, d)-approzimate underestimate if

lower((k, [)|x) < B((k, 1)|x) + &

for every (k,l) and for a randomly drawn (x,y) € X X
Y with probability at least 1 —e¢, and lower({n,l)|x) =
foralll e L.

—~—

This definition essentially requires lower to be very
close to being an underestimate most of the time. The

hope would be that if we use lower to guide our priority
driven search, then we would get a solution which is
almost optimal most of the time. The following result
shows that this is indeed the case.

Lemma 3. If lower is probably an (e, d)-approzimate
underestimate, and we use

prio((k, 1)|x) = cost({k, 1)|x) + lower((k, 1)|x)

to guide a priority driven search, then with probability
at least 1 — €, we find a solution within & of optimal.

Proof. We will show that if lower satisfies the condition
for x, then we find a solution within ¢ of the optimal.

From this, the result will follow. So assume that lower
99

satisfies the condition for x and that ¢ = cost(1™"|x)
is the cost of an optimal solution 1™".

Suppose that 1 is the first complete solution that
comes off the priority queue, and let us assume that
cost(ljx) > ¢+ 4. Since lower is an approximate un-
derestimate, we must have IEVVe/r(Hx) = 0. Therefore,
prio(1|x) = cost(l|x)+ I?)_v;e/r(l|x) > c+4. Since 1™" has
not yet been pulled off the priority queue, either 1™"
or some node (k,1) € I™" must still be on the priority
queue. Since there is a path from (k,[) to I™", we must
have prio({(k,[)|x) < cost(I™"|x) + 6§ = ¢ + §. Hence
prio({k,l)|x) < ¢+ ¢ < prio(l]x), which means that
(k,1) should have been pulled off the priority queue
before 1, a contradiction. O

A probabilistic approximate underestimate makes
more sense in a statistical learning context than in
a classical Al context. When the state graph is gener-
ated from a model with no uncertanty, then the opti-
mal solution is clearly the most desirable solution. In
contrast for machine learning applications the models
are statistical in nature, and even the optimal solutions
are “incorrect” some percentage of the time. There-
fore, if the decoding algorithm fails to come up with
the optimal answer for a fraction e of the cases, then
the error rate goes up by at most €; the fundamen-
tal stastical nature of the algorithm does not change.
Therefore, it certainly makes sense to consider relax-
ing the requirements on correctness on the decoding
algorithm for machine learning algorithms.

Note also that when the model parameters are esti-
mated from small data sets, the difference between
two solutions whose costs are very close may not be
statistically significant. In these cases, it may make
sense to settle for an approximately optimal algorithm,
especially if it will result in a large saving in computa-
tion. Therefore, by going in for probable approximate
underestimates, we allow ourselves to choose priority
functions from a much richer set, and hence there is
the potential for much faster inference.

Another important consequence of allowing probably
approximate underestimates is that we can now con-
sider learning these underestimates. Guaranteed un-
derestimates are often loose, and the effectiveness of a
model using these estimates must be verified through
experiments. A tighter bound may be obtained by
choosing a function that is the “best” underestimate
on a finite training set. However, such a function is
not guaranteed to be an underestimate on a different
data set. We can, however, use generalization bounds
from statistical learning theory to show that as long as
the class of underestimate functions is not too large,
and the training data set is not too small, we will get

an approximate underestimate with high probability.
Learned underestimates can be much tighter (albeit
with some probability of error).

Finally, learned probable approximate underestimates
can be applied effectively to a much wider set of sta-
tistical models. A common technique for generative
models is to estimate completion costs based on a sum-
mary of the context (Corazza et al. 1994) or grammar
summarization (Klein et al. 2003). In a discrimina-
tive setting, where the costs take on a functional form,
an estimate based on any meaningful summary of the
context will be very loose. This is especially true in
cases where the features are deterministically related.
In the next section we will show that a learned proba-
bly approximate underestimate can be directly applied
to a descriminative model.

3 Speeding up semi-Markov Models

As mentioned before, using a priority driven search
algorithm can speed up computation because it can
prune away large parts of the search space. However,
each individual step is now more expensive because
priorities have to be computed, and because the prior-
ity order has to be maintained. A very good priority
function that is very expensive to compute can well
result in an overall decrease in speed. Therefore, it is
important to consider both how quickly lower can be
computed and how sharp it is (i.e., how well it esti-
mates the actual cost).

If jower has a similar structure to the cost function,
then it is likely that lower will be a sharp estimate. On
the other hand, the more similar lower and cost are,
the more similar their computational complexity is,
negating the benefit of the the priority driven search.
In this section, we show how the cost function of a
linear-chain semi-Markov model (defined below) can
be approximated using the cost function of a linear-
chain markov model.

Linear-chain Conditional Markov Models (CMMs) and
semi-Markov CMMs are discriminative models used
for labeling sequence data. The input to these mod-
els are sequences of observations x = (x1,xa,...,T,),
and the model produces a sequence of labels drawn
from the label sequence £. Both models assign costs
(probabilities) to label sequences conditional on the
input (observation) sequence. A widely used example
of a CMM is a Conditional Random Field. However,
while a CRF assigns a probability to a label sequence
(1,12, ..., 1) (conditional on the input observation se-
quence x), a CMM can be more general, and assign a
score which can be based on a general loss function,
the margin to a seperating surface or on the number of

100

votes from an ensemble. The cost that a CMM assigns
to the label sequence (l,la, ..., 1,) (conditional on the
input observation x) is given by

Z > Aty x)

t=2 f€Fcmm

cost™™(1x) =

Note that this cost could have been derived from
the log-probability assigned by a linear-chain CRF
whose underlying linear graphical model has (maxi-
mal) cliques with potential functions of the form

¢ (1,1, %) = > =Apf (8l 11, %)

jefcmm

A semi-Markov model (Sarawagi et al. 2004) is one
where each hidden state is associated with a set of
observations. These models provide a richer mecha-
nism for modeling dependenies between observations
associated with a single state. While the most natural
language for describing such models is generative, the
framework below applied to descriminative models as
well.

In a semi-Markov model, a sequence of m-labels (for
m < n) are generated, and for each label, one or more
observations are generated. We denote by the seg-

ment/label sequence (l[s:s;)s l[so,55) 5 Usm_1,5m11))
the fact that label I, ,,) generates the observations
Os;>0s; 415+ +,0s;.,—1. Here 1 = 51 < 53 < -+ <
Sm+1 = n denote the segment boundaries.

The cost that the semi-Markov CMM
assigns to the segment /label sequence
<l[51:52), 1{52)53), e 7l[sm71;5m+1)> is given by

cost>™™ (<l[51:52), 1{52)53), c. 7l[sm)5m+1)>|x)

m—1
§ :¢ (8t+1,5¢4+2) l[Sr>St+1) l[$r+1>8t+2) X)
t=1

where the potentials i; are given by

w(5t=5t+l) (l[St—l,St)7 l[5t>5t+1)7 X)

Z)\j,f (St7st+1)Z[St,1,81)5l[stst+1)7x)
FE€Fscmm

Each semi-Markov CMM feature f € Fsemm can
be a function of the observations, the current seg-
ment [Sty1,5t42), and the current and previous la-
bels 5, s,) and lj,s,.,)- Note that Fsmm, is
richer than Fcnwm, the set of features available
to the CMM, because the semi-Markov features
f (st,3t+1,l[st)stﬂ),l[st+lst+2),x) can also depend on
the entire segments [st,$:;+1). As a result, semi-
Markov CMMs typically yield higher accuracies than
CMDMs. However, the decoding time for these models

\()

>([5,8)

I1,a)

Figure 1: A graphical model for a semi-Markov model. The green circles represent observations, while the yellow

circles represent the (hidden) labels/states.

is O(n?). In (Sarawagi 2006), a techniques for improv-
ing the efficiency of inference in semi-Markov CMMs
is presented by reorganizing the clique potential com-
putation is presented. This technique is completely
orthogonal to our technique, and both can be applied
to yield greater speedups. In this section, we discuss
how we can use costemm as a probable approximate
underestimate for costsemm-

We start by describing the graph Gg =
(Vs,Es) corresponding to the search prob-
lem for semi-Markov Models. The node set
Vs = {(s,m,1) : 1 <s<r<n,l €L} U {start,goal}.
So, now each node corresponds to the time range
[s,r) and label I. There are edges between nodes
(s,r,l1) and (r,q,l3) for 1 < s < r < ¢ < n, and
this edge has cost Z.fe]:scmm Apf(s,rtl,la,x). A
common pruning step is to place a limit W on the
length of the largest segment, only allowing nodes
(s,r,1) which satisfy r — s < W. In this case, the
decoding time required for the dynamic programming
solution reduces to O(n - W). However, it is often the
case that W € O(n), and hence this may not result in

substantial savings.

The cost of completion (cost to goal) is the cost of the
least cost path to the goal and any function which is
less than this can serve to be an optimistic estimate
to the goal. Let us denote by Bsemm({Sk, Sk+1, k) |X)
the cost of the least cost path from (s, Sk+1,k)
to goal. A completion path is of the form
(Sky Skt15Uk)s (Sk1s Skt2, et 1) - -5 (S Smt15 bn)
where s,,,4+1 = n, and its cost is given by

3
L

w(5t75t+175t+2) (l[5t75t+1)7 l[5t+175t+2) |X)
t

I
>

S0 Bsemm ({Sk, Sk+1,1x)) is the least value of all costs of
the above form (this can be computed by dynamic pro-
gramming in polynomial time). Now, we want to esti-
mate a function that will serve as an probabilistic ap-
proximate underestimate for 8. Given the similarity in
the forms of the cost functions of CMMs, costemm, and
the cost functions of the semi-Markov Model, costscmm,

101

it makes sense to see if we can use costemm to generate
the desired probabilistic approximate underestimate.

Given a CMM search graph with nodes (¢,1) and a
semi-Markov Model with nodes (s,r,l), we can map
(s,r,1y — (s,1) (this is a many-to-one mapping). It
is then natural to try to estimate Bsemm((s,7,1)) using
Bemm((s,1)). For this, we want

Bemm ({5, 1)[%) < Bsemm ({8, 7, 1)[x) +6

for every node (s,r,l) € Vg for all but an e frac-
tion of the input/output pairs. Therefore, we seek
(the parameters of) a CMM, which satisfies this con-
dition. Observe that is a circularity in the require-
ments here. The optimal path used for comple-
tion in the CMM depends on the costemm. But we
want to pick costemm based on the optimal comple-
tion path. We use the following trick to resolve this
circularity. Let F = (z1,22,...,2,) be the label se-
quence generated by a computationally cheap clas-
sifier (for our experiments, we used a classifier ob-
tained by boosting small-depth decision trees). For
any node, (s,l) € V, we can generate a completion
path P(z,(s,1)) = (s,0), (s + 1,2541),- -, (Sn, 2n). We
pick costemm to satisfy

coStemm (P (2, (5,1))) < Bsemm ({s, 7, 1)|x) + J (1)

Since the cost of the optimal path is less than the cost
of any fixed path, we must have

Bemm ({3, 1)|x) < costemm (P(z, (s,1))
< Bsemm ({8, 7, D)%) + &

Therefore, if we can find costemm probably satisfying
this condtition, we can use it as an probabilistic ap-
proximate underestimate. This condition translates to

n

Z Z /\ff(t,Zt_l,Zt|x):Z¢t(t,£t_1,€t|x)

t=s fej:cmm t=s
= Costcmm(P(Zv <57 l>)|X)
< 6scmm(<57 T, l>|X) +4

where
ifs<t<r

oo st
z; otherwise

The parameters (variables) that we can pick are

{Ar} ez, In the next section, we show how these

values can be estimated from data as the solution to

an optimization problem.

4 Optimizing CMM estimates

Suppose that we are given a collection of unlabeled se-

quences {x(i) }ij\il, and a trained semi-Markov model.
We wish to estimate the parameters of a CMM
{Ar} ez, so that the resulting cost function satisfies
Equation (1) given in the previous section. For each se-
quence x| let z() be the output label sequence from
a computationally cheap classifier. For each example
1 <4 < N, and for each state (s,r,1), we let

Siwsry = D Af(t oy lafx)

t=s fEJ:cmm
- 65cmm(<55 T, l>|X(Z))

By taking

6(i,s,r,l) < d— H (2)

(where p > 0 is analogous to a margin) we satisfy
Equation (1). We omit the details due lack of space,
but generalization bounds, much like those obtained
for SVMs can be obtained for the underestimate as
well. The reason for introducing the “margin” p is to
enable us to prove generalization bounds (so that the
resulting solution which is an approximate underesti-
mate on the test set is also an approximate underesti-
mate on the training set). Larger values of y and N
makes it more likely that the generated CMM will also
be an underestimate on the test set. However, smaller
values of p are desirable because this allows for tighter
bounds.

The value of Beerr((s,7,1)[x?) can be computed for
all values of (s,r,l) by simply running the dynamic
programmming algorithm and then reading the values
off the table used to store the partial results. While
the premise of this paper has been that this is an
expensive operation, it only has to be done offline,
and only once (per example). Similarly, the values of
f(t, 01, 0;]x) can be computed for for all the exam-
ples once offline, and hence the system of inequalities
can be set up.

Observe that ‘5(1-751“) ’ measures the inexactness of the
estimate. The smaller this quantity, the better the
estimate. If d(; ;) is negative (resp. positive), then

102

Do 2 peram Mt b, ¢|x®) is an underestimate
(resp. overestimate) for Bsemm((s,7,1)|x?). Enforcing
the constraint given in Equation (2) will ensure that
an overestimate (if any) can never be more than than
0 — p. Since we seek to make the estimate as sharp as
possible, we want to minimize |5(i7s)r7l)‘ and therefore,
the objective function that is used for the constrained
optimization is

A NE1 -+ 186,00

The term A - ||f|| acts as a regularizer. Both the ¢y
and the ¢ norms can be used (both yield (different)
generalization bounds because for a finite dimensional
space, all norms differ by at most a constant). The ad-
vantage of using the /1 norm is that it often yields more
sparse solutions, yielding added speedups by discard-
ing features whose coefficients are zero. When using
the £1 norm, the resulting problem is a linear program-
ming problem. When using the ¢» norm, the resulting
problem is a quadratic programming problem (similar
to the standard SVM problem).

Therefore, in this formulation, there are at most
| Femm| + n? - N |L] variables, and at most n? - N |£]
inequalities (plus the box constraints). Since the pro-
cedure only requires unlabeled examples, we can po-
tentially feed it a tremendous amount of data. Since
the size of the optimization problem (both the number
of variables and the number of constraints) grows lin-
early with the number of examples N, the problem as
formulated above very rapidly exhausts the capacity
of most optimization procedures. We now discuss two
tricks which can be used to extend the range of these
procedures.

4.1 Generating sparse problem formulations

Representing n; equations/inequalities in ng vari-
ables using a dense matrix requires O(nj - ng) stor-
age when using a dense matrix representation. When
the problem can be formulated so that the equa-
tions/inequalities are sparse (so each inequality in-
volves only a small number of variables), and if the
optimization solver is able to exploit the sparsity of
the formulation, we can get both efficient representa-
tions and efficient solution procedures. This allows us
to store larger problems in memory, and solve them
more quickly. A slight modification of the formulation
we presented allows to reduce the number of non-zero
entries significantly. For a fixed example x(¥), consider
the set of equations:

5(i,s,r,l)zz Z Apf(t, by, £ xD)

t=s fe]:cmm
- 6scmm(<sa r, l>|X(Z))

Let

Vet = Z Apf(t, zem1, zexD)
fej:cmm

Then we may write

Oi,srl) = ZW(H) — Bsemm({s, 1, l>|x(i))

t=s

Observe that these two systems of equations are equiv-
alent, except the second formulation has substantially
fewer non-zero entries even though we have added a
few extra variables (n - N extra variables).

4.2 Discarding inessential inequalities

Another way of reducing the memory footprint, and
speeding up the solution is to discard several of the
inequalities completely. To see why we might be able
to get away with doing this, let y() be the optimal
label sequence for the input sequence z(¥. Then as
long as Equation (1) holds for all the nodes on the
optimal label sequence, then the result of Lemma 3
still holds. In fact, we would prefer that nodes that are
not part of the optimal sequence get very pessimestic
estimates, as this ensures that they are not explored
further, increasing the speed of the search algorithm.
Therefore, if we discard the inequalities corresponding
to the nodes which are not part of the optimal label
sequence, then while the CMM so generated will no
longer be an approximate probabilistic underestimate,
it is still guaranteed to produce approximately optimal
solutions on the training data. In practice this seems
to work quite well, producing very little deterioration
on the test sets. We are currently working to prove
generalization bounds for this case.

5 Experiments

For our experiments, we chose the problem of au-
tomatically labeling contact fragments. The data
was collected from web pages and email, and was
hand-labeled with 24 labels (FIRSTNAME, MIDDLE-
NAME, LASTNAME, NICKNAME, SUFFIX, TITLE,
JOBTITLE, COMPANYNAME, DEPARTMENT, AD-
DRESSLINE, CITY, STATE, COUNTRY, POSTALCODE,
HoMEPHONE, FAX, COMPANYPHONE, DIRECTCOM-
PANYPHONE, MOBILEPHONE, PAGER, EMAIL, IN-
STANTMESSAGE, WEBPAGE). We used 3100 contact
records to train the semi-Markov CMM and the CMM
underestimate. We used a different set of 1487 contact
records to evaluate the quality (accuracy and speed) of
the various decoding algorithms. The features for the
CMM included various simple regular expressions ex-
pressing concepts like ISCAPITALIZED, ALLCAPS, Is-
Dicit, NUMERIC, CONTAINSDASH, ENDSINPERIOD,

103

35 —a—
1
at , 1
1
1
25} I 1
=%]
3
g 2
Q. 2l B
T = .
©
o acl
15F I:JI:II:I d oooog 1
1
1t o R
v I
v
0s ‘ ‘ ‘ ‘ ‘
04 5 10 15 20 25 30

Record Length

Figure 2: Variation of the A*-decoding speedup over
Viterbi with the number of tokens in the sequence

CONSTAINSATSIGN, etc. In addition there are 9
lexicon lists including: LASTNAMES, FIRSTNAMES,
STATES, CITIES, COUNTRIES, JOBTITLES, COMPA-
NYNAMECOMPONENTS, TITLES, STREETNAMECOM-
PONENTS. The semi-Markov model used several ad-
ditional features including segment TFIDF features,
segment length features, and segment boundary fea-
tures (such as ALLONSAMELINE, ENDSONNEWLINE
etc.).

Our baseline is the the voted perceptron conditional
Markov model described in (Collins 2002). The form
of the Collins model is very similar to the more well
known CRF (the decoding algorithms are identical).
While experiments show that the two systems are quite
competitive, the implementation of the learning algo-
rithm for the Collins model is much simpler. Our re-
sults using the Collins model are very similar to earlier
results obtained by Kristjansson et. al on a similar
problem (Kristjansson et. al 2004).

The computationally cheap classifier that is used for
generating the path along which the CMM estimate is
computed is obtained by boosting decision trees. This
classifier uses the same regular expression and lexicon
features that the CMM uses. The final classifier had
a total of 46 decision trees of depth 3, and the token
accuracy of this classifier is 0.861.

Table 1 compares the various decoding algorithms on
our test set. As can be seen, the priority based search
procedure achieves practically the same accuracy as
the Viterbi decoding algorithm, but takes about one
third the time to parse our data set. Figure 2 shows
how the speedup varies with the length of the se-

CMM Viterbi-SCMM A*-SCMM
TER 0.896 0.927 0.923
RER 0.487 0.642 0.638
Decode Time 1 7.17 2.26

Table 1: Relative performance of CMM and Semi-
Markov Model with Viterbi and A* Decoding with re-
spect to accuracy (TER = Token Error Rate, RER =
Record Error Rate) and speed. The decoding speeds
have been normalized so that CMM time = 1.

quence. It can be seen that when the sequence length
is small, the priority based search procedure offers no
significant advantage over the Viterbi decoding algo-
rithm. In fact, for very small sequence length, the pri-
ority based search procedure can actually take more
time (due to the overhead of maintaning the prior-
ity queue). However, for larger values of sequence
length, the priority based search algorithm can reduce
the computation time by a factor of 3.5. For the data
sets that we used to train the underestimate, the LP
that is used to compute the underestimate takes a few
hours to solve when we use the speedup techniques
described in Subsections 4.1 and 4.2.

6 Conclusions and Future Work

We introduced the notion of a probable approxi-
mate underestimate, which we show can be used in
a priority-driven search algorithm to produce an A*-
like algorithm which is guaranteed to produce a near-
optimal algorithm with high probability. We show
that this probable approximate underestimate can be
learned from from unlabeled data, and show that this
results in substantial speedups for semi-Markov Mod-
els. This technique results in greater speedups on in-
puts for which the Viterbi algorithm takes more time,
and hence we expect that this will be very effective
for decoding more complicated models. We are cur-
rently experimenting with alternative optimization al-
gorithms and extensions to more general discrimina-
tive grammars.

References

A. Corazza, R. De Mori, R. Gretter and G. Satta
(1994) Optimal Probabilistic Evaluation Functions for
Search Controlled by Stochastic Context-Free Gram-
mars. IEEE Transactions on Pattern Analysis and
Machine Intelligence (16-4).

S. J. Russel and P. Norvig (1995) Artificial Intelli-
gence: A Modern Approach. Prentice Hall, Englewood
Cliffs, NJ.

S. A. Caraballo and E. Charniak (1997) Figures of
104

merit for best-first probabilistic chart parsing. Com-
putational Linguistics, 24, pp. 275-298.

J. Goodman (1997) Global thresholding and multiple-
pass parsing. In Proceedings of Empirical Methods in
Natural Language Processing, pp. 11-25.

E. Charniak, S. Goldwater and M. Johnson (1998)
Edge-based best-first chart parsing. In Proceedings of
the sixzth workshop on very large corpora, pp. 127-133.

R. Durbin, S. R. Eddy, A. Krogh and G. Mitchi-
son (1999) Biological Sequence Analysis: Probabilis-
tic Models of Proteins and Nucleic Acids. Cambridge
University Press.

V. Goel and W. J. Bryne (1999) Taks dependent loss
functions in speech recognition: A-start search over
recognition lattices. In Eurospeech, pp. 1243—-1246.

A. Ratnaparkhi (1999) Learning to parse natural
language with maximum entropy models. Machine
Learning, 34. pp. 151-175

B. Roark (2001) Probabilistic top-down parsing and
language modeling. Computational Linguistics, 27,
pp. 249-276.

M. Collins (2002) Discriminative training methods for
hidden Markov models : Theory and experiments with
perceptron algorithms In Proceedings of Empirical
Methods in Natural Language Processing (EMNLP02).

D. Klein and C. Manning (2003) A* parsing: Fast Ex-
act Viterbi Parse Selection. In Proceedings of HLT-
NAACL.

T. Kristjansson, A. Culotta, P. Viola and A. McCal-
lum (2004) Interactive Information Extraction with
Constrained Conditional Random Fields. In Proceed-

ings of the 19th International Conference on Artificial
intelligence (AAAI).

S. Sarawagi and W. W. Cohen (2004) Semi-Markov
conditional random fields for information extraction.
In Proceedings of Neural Information Processing Sys-
tems.

P. Viola and M. Narasimhan (2005) Discriminative
grammars for information extraction, In Proceedings
of Annual ACM SIGIR Conference

S. Sarawagi (2006) Efficient inference on sequence seg-
mentation models. In Proceedings of International
Conference on Machine Learning.

