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Abstract

Decision diagrams are a natural representation of finite functions. The obvious
complexity measures are length and size which correspond to time and space of
computations. Decision diagrams are the right model for considering space lower
bounds and time-space trade-offs. Due to the lack of powerful lower bound tech-
niques, various types of restricted decision diagrams are investigated. They lead to
new lower bound techniques and some of them allow efficient algorithms for a list of
operations on boolean functions. Indeed, restricted decision diagrams like ordered
binary decision diagrams (OBDDs) are the most common data structure for boolean
functions with many applications in verification, model checking, CAD tools, and
graph problems. From a complexity theoretical point of view also randomized and
nondeterministic decision diagrams are of interest.

1 Introduction

Let f : Dn → R be a finite function, i.e., D and R are finite sets. Such a function can
be represented by the table of all (a, f(a)), a ∈ Dn, which always has an exponential size
of |D|n. Therefore, we are interested in representations which for many important func-
tions are much more compact. The best-known representations are circuits and decision
diagrams. Circuits are a hardware model reflecting the sequential and parallel time to
compute f(a) from a (see Chapter ??). Decision diagrams (DDs), also called branching

programs (BPs), are nonuniform programs for computing f(a) from a based on only two
types of instructions represented by nodes in a graph (see also Figure 1):

– decision nodes: depending on the value of some input variable xi the next node is
chosen,

– output nodes (also called sinks): a value from R is presented as output.

A decision diagram is a directed acyclic graph consisting of decision nodes and output
nodes. Each node v represents a function fv defined in the following way. Let a =
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if xi = j goto vj

b

output b
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Figure 1: A decision node for D = {1, 2, 3, 4} and an output node.
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Figure 2: Two DDs for HWB on four boolean variables, dotted lines represent edges
labeled by 0 and solid ones edges labeled by 1.

(a1, . . . , an) ∈ Dn. At decision nodes choose the next node as described above. The value
of fv(a) is defined as the value of the output node which is finally reached when starting
at v. Hence, for each node each input a ∈ Dn activates a unique computation path which
we follow during the computation of fv(a). An edge e = (v, w) of the diagram is called
activated by a if the computation path starting at v runs via e. A graph-theoretical path
is called inconsistent if it is not activated by any input.

The obvious resources consumed by the DD are the size of the DD, defined as the number
of its nodes, and the length of the DD, defined as the length of the longest computation
path of the DD. The size and the length of a function f are defined as the smallest size
and length, resp., of a DD representing f at some node. As an example, we consider the
function hidden weighted bit, HWBn : {0, 1}n → {0, 1}, defined by HWBn(x) = xs where
s is the number of ones in the input and x0 = 0. Figure 2 shows two DDs for HWB4.

It is obvious that each function f : Dn → R can be represented by a DD of length
n implying that DDs are not adequate to prove time lower bounds. In Section 6, we
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investigate the relationship between DD-based complexity measures and other complexity
measures. Then it turns out that the logarithm of the DD size is closely related to the
space complexity. Hence, DDs are adequate for proving space lower bounds and time-
space trade-offs. Such bounds are easier to obtain for large domains D implying that the
boolean case D = {0, 1} and R = {0, 1} is of special interest. In the following we consider
the boolean case (if nothing else is mentioned) and DDs for the boolean case are called
binary decision diagrams (BDDs).

Lower bounds on the BDD complexity of explicitly defined boolean functions are difficult
to prove. In Section 7, we describe the largest-known lower bound whose size is only
Ω(n2/ log2 n). This result has not been improved since more than 35 years which motivates
the investigation of restricted BDDs.

A BDD is called s-oblivious for a sequence s = (s1, . . . , s`) of (not necessarily different)
variables if the node set can be partitioned into ` + 1 levels such that all nodes on level
i ≤ ` are decision nodes for the variable si, all nodes on level ` + 1 are output nodes, and
each edge leaving level i reaches some level j > i. Lower bounds for oblivious BDDs are
presented in Section 8. The special case that s is a permutation (xπ(1), . . . , xπ(n)) of the
input variables is called ordered binary decision diagram (OBDD) and, if the permutation
π is fixed, π-OBDD. Then (xπ(1), . . . , xπ(n)) is the variable order of the π-OBDD. If s
repeats the variable order π for k times, the resulting BDDs are called k-π-OBDDs and
for arbitrary π k-OBDDs. If s is the concatenation of k (perhaps different) variable orders
corresponding to (π1, . . . , πk), the resulting BDDs are called (π1, . . . , πk)-IBDDs or simply
k-IBDDs. Oblivious BDDs and, in particular, π-OBDDs allow the efficient realization of
many important operations on boolean functions. Hence, we may use them not only
as programs for boolean functions but also for the manipulation of boolean functions,
i.e., as a dynamic data structure for boolean functions. Indeed, π-OBDDs are the most-
often applied data structure for boolean functions with many applications in various areas
among them verification, model checking, CAD tools, optimization, and graph algorithms.
In Section 2, the requirements for data structures for boolean functions are discussed and,
in Section 3, the corresponding efficient algorithms for π-OBDDs are presented.

The other type of restrictions are length-restrictions. In the read-k model the access to the
variables is restricted. It is essential to distinguish syntactic from semantic restrictions.
In a syntactic read-k BDD graph theoretical paths contain at most k decision nodes
labeled with xi for each variable xi. In a semantic read-k BDD only computation paths
have to fulfill the read-k restriction. Syntactic restrictions simplify lower bound proofs.
In the case of k = 1, called free binary decision diagrams (FBDDs), the syntactic and
the semantic restriction coincide, since inconsistent paths are impossible. Defining graph
orders as canonical generalization of variable orders one obtains G-FBDDs (generalizing
π-OBDDs) whose algorithmic properties are discussed in Section 4. Only length-restricted
BDDs where the length of all computation paths is bounded allow the proof of general
time-space trade-offs. In Section 9, such results are presented.

Deterministic models of computation like BDDs and their restrictions can be generalized
to randomized and nondeterministic models. This is done by allowing randomized nodes
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with two outgoing edges where one of these edges is activated independently from all other
random decisions with probability 1/2. In the boolean case, this leads to an acceptance
and a rejection probability for each input a. We may distinguish the model of zero error,
the model of one-sided error, and the model of two-sided error. The permitted error prob-
ability is a critical value for certain BDD models, since not all models allow an efficient
probability amplification. The case of unbounded but non-trivial probability for one-sided
errors is the case of existential nondeterminism (OR-nondeterminism) which also can be
described in the usual way. An input a is accepted if it activates at least one accept-
ing computation path. We also investigate universal (AND-) nondeterminism and parity

(EXOR-) nondeterminism. Lower bounds for nondeterministic BDDs are discussed to-
gether with their deterministic counterparts in Section 8. Those restricted OR-π-OBDDs,
which have good algorithmic properties are called partitioned BDDs (PBDDs) and are
discussed in Section 5. Results on randomized BDD variants are presented in Section 10.

This chapter is a brief introduction into the rich world of BDDs and BPs including aspects
of complexity theory, algorithms, data structures, and applications. A comprehensive
monograph is available (Wegener (2000)).

2 Data Structures for Boolean Functions

In many applications, like e.g., symbolic verification, test pattern generation, symbolic
simulation, analysis of circuits and automata, and logical synthesis, representations of
boolean functions are needed which are small for many and, in particular, for important
functions and simultaneously allow the efficient execution of important operations. In
order to look for suitable data structures one first has to clarify which operations have to
be supported. Bryant (1986) has presented a list of problems for which efficient algorithms
should exist.

• Evaluation Problem. Given a representation G for some boolean function f
and an input a. Compute f(a).

• Satisfiability Test. Given a representation G for some boolean function f .
Decide whether f(a) = 1 for some input a.

• Satisfiability Count. Given a representation G for some boolean function f .
Compute |f−1(1)|.

• Satisfiability All. Given a representation G for some boolean function f . Com-
pute a list of all a ∈ f−1(1).

• Minimization (or Reduction). Given a representation G for some boolean func-
tion f . Compute a minimal-size representation G′ for f within the class of represen-
tations described by the chosen data structure. If G′ is unique (up to isomorphism),
the computation of G′ is called reduction of G.
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• Synthesis. Given representations G1 and G2 for some boolean functions g and h
and some binary boolean operation ⊗. Compute a representation G for f := g ⊗ h.

• Equality Test. Given representations G1 and G2 for some boolean functions g
and h. Decide whether g and h are equal.

• Replacement by Constants. Given a representation G for some boolean func-
tion g, some variable xi, and some constant c ∈ {0, 1}. Compute a representation
G′ for f := g|xi=c defined by f(a) = g(a1, . . . , ai−1, c, ai+1, . . . , an).

• Replacement by Functions. Given representations G1 and G2 for some boolean
functions g and h and some variable xi. Compute a representation G′ for f := g|xi=h

defined by f = (h ∧ g|xi=0) ∨ (h ∧ g|xi=1).

• Existential Quantification. Given a representation G for some function g and
some variable xi. Compute a representation G′ for f := g|xi=0 ∨ g|xi=1.

• Universal Quantification. Given a representation G for some function g and
some variable xi. Compute a representation G′ for f := g|xi=0 ∧ g|xi=1.

In order to motivate some of the listed operations, we discuss a typical computer-aided
design application. The physical construction of a new VLSI circuit for a boolean function
f is quite expensive. Hence, it is necessary to verify the correctness of a circuit design.
Verification of combinational circuits is the problem to prove the equality of a specifica-
tion, e.g., an already verified circuit, and a new realization. Let us denote the function
realized by the new design f ′. Verification can be done by transforming the specification
and the realization into the chosen representation type and by an equality test for the
results. If f 6= f ′, we like to analyze the set of inputs a where f(a) 6= f ′(a). For the
equality test, we may design a representation of g = f ⊕ f ′. The equality test for f and
f ′ is equivalent to the satisfiablity test for g. If g−1(1) is not empty, the size of g−1(1)
measures the number of inputs for which f ′ computes the wrong value. If the number of
1-inputs for g is small it may be useful to list g−1(1) in order to correct the new design.

Several representations for boolean functions are known. Many data structures like cir-
cuits, formulas, and branching programs allow succinct representations of many boolean
functions but not all operations can be performed in polynomial time. E.g., the satisfia-
bility test is NP-complete for these models and the circuit minimization problem seems
to be even harder. For other data structures like disjunctive or conjunctive normal forms
or decision trees, simple functions require representations of exponential size.

Ordered binary decision diagrams (OBDDs) introduced by Bryant (1986) are a compro-
mise. If the order of the variables is fixed, efficient algorithms for the operations on
OBDDs have to work only under the assumption that all functions are represented by
OBDDs respecting the same order π of the variables. Efficient polynomial algorithms on
π-OBDDs exist for all operations mentioned above (see Section 3). Although π-OBDDs
are a nice data structure with many advantages there are several functions which only
have OBDDs of exponential size but which appear to be simple enough to be represented
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in small poynomial size. This observation has led to several extensions of the OBDD
model. In Section 4 and Section 5 we discuss graph driven BDDs and partitioned BDDs
which are less restricted than OBDDs but have nevertheless good algorithmic properties.

3 OBDDs and π-OBDDs

The first variant of binary decision diagrams that was suggested as a data structure for
boolean functions are π-OBDDs (Bryant (1986)), and they are still the most popular one.
In this section we discuss the properties of π-OBDDs that make them suitable for this
purpose. We furthermore present some theoretical results on π-OBDDs. For details on
the efficient implementation of algorithms on π-OBDDs we refer to Somenzi (2001).

Examples of functions with small-size π-OBDDs are all symmetric functions, all outputs
of the addition of two numbers or the bitwise equality test of two n-bit strings. In
Figure 3, π-OBDDs for the functions x1 ⊕ x2 ⊕ x3 and for the bitwise equality test of
(x0, . . . , xn−1) and (y0, . . . , yn−1) are shown. On the other hand, there are several functions
which only have OBDDs of exponential size, e.g., the hidden weighted bit function HWB
from Section 1 or the middle bit of the multiplication of two n-bit numbers (Bryant (1991),
see Section 8). As a tool for obtaining the π-OBDD size of some function we may look
at the functions fv represented at the internal nodes v of the π-OBDD. For the examples
in Figure 3 these functions are indicated at the nodes, where [A] takes the value 1 if the
expression A is true and otherwise the value 0. The π-OBDD size can be obtained by the
following lemma due to Sieling and Wegener (1993a). To simplify the presentation the
lemma is only shown for the variable order x1, . . . , xn, i.e., for π = id.

Lemma 3.1: Let Si be the set of subfunctions f|x1=c1,...,xi−1=ci−1
that essentially depend

on xi and where c1, . . . , ci−1 ∈ {0, 1}. A minimal-size id-OBDD for f contains exactly |Si|
nodes labeled by xi.

The proof of the lemma also shows that for each function in Si there is an internal node
computing this function and that the successors of this node are uniquely determined.
This implies the following result, which was first proved by Bryant (1986).

Theorem 3.2: For each function f the minimal-size π-OBDD is unique up to isomor-
phism.

The question arises how to obtain the minimal-size π-OBDD for some function f from
an arbitrary π-OBDD for f . We assume that there are no nodes that are not reachable
from the node representing f , which we therefore may call the source of the π-OBDD
for f . Bryant (1986) observed that the following two simple reduction rules suffice to
minimize π-OBDDs: By the deletion rule nodes where the 0- and 1-successor coincide
are deleted and the incoming edges are redirected to the successor. The merging rule
allows to merge two nodes v and w with the same label, the same 0-successors and the
same 1-successors, i.e., v is deleted and the incoming edges are redirected to w. Similarly,
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Figure 3: Examples of OBDDs for the functions x1⊕x2 ⊕x3 and the bitwise equality test
of (x0, . . . , xn−1) and (y0, . . . , yn−1).
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Figure 4: The reduction rules for OBDDs.

sinks with the same label can be merged. The reduction rules are illustrated in Figure 4.
Bryant proved that independent of the order of the application of these rules we eventually
obtain the minimal-size π-OBDD, which is also called the reduced π-OBDD. In order to
obtain an efficient reduction algorithm it is useful to apply the reduction rules bottom-
up, since each application of a reduction rule may allow new applications of reduction
rules only for preceding nodes. The reduction algorithm of Bryant (1986) has a run time
of O(|G| log |G|) and was later on improved to a linear-time algorithm by Sieling and
Wegener (1993b).

The uniqueness of reduced π-OBDDs and the efficient reduction of π-OBDDs has con-
sequences for the Equality Test of two π-OBDDs: It suffices to reduce the given
π-OBDDs and test them for isomorphy which is possible in linear time due to the labels
of the edges.
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A careful investigation of the bitwise equality test shows that its π-OBDDs are only small
for a variable order π like x0, y0, x1, y1, . . ., i.e., for a variable order where the x- and
y-variables with the same index are arranged near together. For, e.g., the variable order
x0, . . . , xn−1, y0, . . . , yn−1 the π-OBDD size is exponential. This can easily be shown using
Lemma 3.1 since the number of different subfunctions obtained by replacing x0, . . . , xn−1

by constants is 2n. Intuitively the π-OBDD has to store x0, . . . , xn−1 in order to compute
the function, which requires exponential size. A more general approach to describe this
effect is communication complexity theory, see Section 8. Wegener (2000) has even shown
that for almost all choices of the variable order the functions addition and bitwise equality
test have exponential π-OBDD size. This shows that algorithms for choosing a good
variable order are needed in applications.

An algorithm for computing an optimal variable order was presented by Friedman and
Supowit (1990). However, this algorithm works on truth tables and has an exponential
run time. Several heuristics for improving the variable order were presented in the lit-
erature. An example of such a heuristic is the sifting algorithm due to Rudell (1993).
This algorithm successively chooses each variable and searches for the position leading to
minimal OBDD size. This is done by trying all possible positions for the variable. The
sifting algorithm is reported to obtain good results in reasonable time. However, it may
also perform poorly and no efficient algorithm for optimizing the variable order is known.
The problem of computing an optimal variable order was shown to be NP-hard by Bollig
and Wegener (1996). In applications also efficient approximation algorithms for the vari-
able order problem would be helpful. An approximation algorithm with the performance
ratio c is an algorithm that for each function f given by an OBDD computes a variable
order π such that the π-OBDD size for f is larger than the minimum size by a factor
of at most c. However, even the existence of polynomial-time approximation algorithms
for the variable order problem implies P = NP (Sieling (2002a)). Hence, we have to be
satisfied with heuristics for optimizing the variable order.

A satisfying assignment of a function f given by a π-OBDD can be found by searching for
a path from the source to a 1-sink. Satisfiability All can be solved by enumerating
all such paths where we have to take into account that variables not tested on such a path
can take both values 0 and 1. Furthermore, an algorithm for Satisfiability Count

may use a labeling procedure that for each node v stores the number of assignments to the
variables such that the corresponding computation path leads through v. The run time for
Satisfiability and Satisfiability Count is linear with respect to the input size, and
for Satisfiability All the run time is linear with respect to the input and output size.
We remark that these algorithms depend on the property that in π-OBDDs each variable
may be tested at most once on each computation path such that computation paths and
graph-theoretical paths coincide. For many variants of BDDs without this property the
satisfiability operations are NP-hard.

In applications like hardware verification π-OBDDs have to be computed for functions rep-
resented by circuits. We first remark that this problem is NP-hard because Satisfiabil-

ity is NP-hard for circuits but can be done in linear time for π-OBDDs. The general
approach for the transformation of circuits into π-OBDDs works in the following way: We
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run through the circuit in some topological order. For the functions represented at the
inputs, i.e., projections on variables, it is simple to construct π-OBDDs. For a function
represented at the output of a gate it is possible to compute a π-OBDD by combining
the π-OBDDs representing the functions at the input of the gate with Synthesis. In the
following we shortly discuss Synthesis.

Synthesis of π-OBDDs G1 = (V1, E1) and G2 = (V2, E2) is mainly based on computing
a product graph of the given π-OBDDs. The node set of the resulting π-OBDD is some
subset of V1 × V2 and reaching an xi-node (v1, v2) ∈ V1 × V2 for some assignment a to
x1, . . . , xi−1 means that in G1 the computation path for the partial assignment a ends at
the node v1 and in G2 at the node v2. It follows that the number of nodes in the resulting
π-OBDD is bounded above by |V1||V2| and it is even possible to compute this π-OBDD
in time O(|V1||V2|). The resulting π-OBDD is not necessarily reduced. We remark that
in implementations the reduction is integrated into the synthesis algorithm in order to
avoid the construction of large non-reduced OBDDs.

The computation of the product graph is only possible if the given OBDDs G1 and G2

for f1 and f2 have the same variable order. Otherwise the construction of an OBDD for,
e.g., f1 ∧ f2 is even NP-hard (Fortune, Hopcroft and Schmidt (1979)). Nevertheless, it is
a common technique to change the variable order during the computation of an OBDD
from a circuit in order to avoid large intermediate OBDDs (Bryant (1995)).

Replacement by Constants can be performed by redirecting the edges leading to
each xi-node v to the c-successor of v. If the source is labeled by xi, the c-successor is
defined as the new source of the OBDD. The quantification operations are combinations
of Replacement by Constants and Synthesis. Finally, to perform Replacements

by Functions we define the ternary operation ite(a, b, c) = ab ∨ āc (if a then b else c)
and compute a π-OBDD for g|xi=h = ite(h, g|xi=1, g|xi=0) by a generalization of Synthesis

to ternary operators.

Altogether, for many of the important operations on boolean functions there are effi-
cient algorithms working on π-OBDDs, and π-OBDDs are of reasonable size for many
important functions. However, in applications the operations on π-OBDDs, in particular
synthesis, have to be applied successively such that we cannot bound the size of in-
termediate π-OBDDs. Hence, π-OBDDs are a heuristic approach for solving practically
important problems.

4 Graph Driven BDDs

Several important and also quite simple functions have exponential OBDD size. There-
fore, more general representations with good algorithmic behavior are necessary. With a
restricted variant of FBDDs like the restriction of OBDDs to π-OBDDs we obtain a new
data structure for boolean functions. Gergov and Meinel (1994) and Sieling and Wegener
(1995) have generalized independently the concept of variable orders to graph orders.

A graph order is a BDD with a single sink, where on each path from the source to the
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sink all variables appear exactly once. A graph driven FBDD G′ according to a graph
order G, or G-FBDD for short, is an FBDD with the following property: If for an input
a a variable xi appears on the computation path of a in G′ before the variable xj, then
xi also appears on the computation path of a in G before xj.

In graph driven BDDs (according to a fixed order), for each input the variables are tested
in the same order, whereas (different from OBDDs) for different inputs different orders
may be used. It is not difficult to see that any FBDD G′ is a graph driven FBDD for
a suitably chosen graph order: We merge the sinks of G′ to a single sink. Then we run
through G′ top-down. Let Var(v) be the set of all variables tested on some path between
the source and v. Replace each edge (v, w), where v is labeled by xi, with a list of tests
for the variables in Var(w)\ (Var(v) ∪ {xi}) in order to obtain G. It follows that graph
driven BDDs have the same expressive power as FBDDs, i.e., all boolean functions with
polynomial-size FBDDs can be represented by graph driven BDDs of polynomial size.

For the operations Evaluation, Satisfiability, Satisfiability All, and Satisfia-

bility Count, the OBDD algorithms (see Section 3) also work for FBDDs but not for
all operations efficient algorithms are known. Blum, Chandra, and Wegman (1980) have
proved that the Equality Test for FBDDs is contained in co-RP, i.e., the inequality can
be tested probabilistically with one-sided error in polynomial time but no deterministic
polynomial-time algorithm is known. Furthermore, Synthesis may lead to an exponen-
tial blow-up and the problem Replacement by Functions is as hard as the synthesis
problem.

Since efficient algorithms exist for all operations on π-OBDDs and a fixed variable order π,
we hope for efficient algorithms on G-FBDDs and a fixed graph order G. First, we look at
the functions that have to be represented at the internal nodes of a
G-FBDD. Let v be a node in the graph order G and let w.l.o.g. Var(v) = {x1, . . . , xi−1},
and A(v) ⊆ {0, 1}i−1 be the set of partial assignments (a1, . . . , ai−1) to the variables
x1, . . . , xi−1 such that v is reached for all inputs a starting with (a1, . . . , ai−1). We de-
fine Fv = {f|x1=a1,...,xi−1=ai−1

|(a1, . . . , ai−1) ∈ A(v)} and denote the graph order that is
the subgraph of G with source v by G(v). A G-FBDD representing a function f has to
contain a G(v)-driven FBDD for each subfunction fv ∈ Fv.

Sieling and Wegener (1995) have proved that there is (up to isomorphism) a unique
G-FBDD of minimal size for each function f , i.e., G-FBDDs are a canonical representation
of boolean functions and the operation Reduction is well defined. Like π-OBDDs a
G-FBDD is reduced iff neither the deletion rule nor the merging rule is applicable. Sieling
and Wegener (1995) have designed a linear-time reduction algorithm for G-FBDDs. The
difficulty is to decide how to proceed bottom-up. In the case of OBDDs, the variable order
helps to investigate the xi-node before the xj-node if xj precedes xi in the variable order.
A graph order can combine many variable orders. Therefore, the bottom-up application
of the reduction rules has to be guided quite carefully in order to guarantee the linear
runtime.

The representation by reduced G-FBDDs implies a linear-time Equality Test since the
equality check is a simple isomorphism check.
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For the Synthesis of two G-FBDDs, G =(V,E), G1 =(V1, E1) and G2 =(V2, E2) we run
simultaneously through G, G1, and G2. The node set of the resulting G-FBDD is some
subset of V ×V1×V2. Therefore, the size of the resulting G-FBDD can be bounded above
by |V ||V1||V2| and the result can be computed in time O(|V ||V1||V2|). This algorithm does
not create reduced G-FBDDs. Since the application of BDDs in practice is more limited
by restrictions of the available storage space than by restrictions of the available time,
the reduction is integrated into the synthesis process in implementations.

Replacement by Constants and Quantification may cause an exponential blow-
up of the size of G-FBDDs. Since f|xi=c = (c ∧ f|xi=0) ∨ (c ∧ f|xi=1), the same holds for
Replacement by Functions. As a consequence, G-FBDDs cannot be used efficiently if
our application needs one of these operations. But if we know in advance which variables
are used in these operations, we may work with a graph order with some additional
properties. A graph order G is called xi-oblivious if for each xi-node its 0-successor
coincides with its 1-successor. The Replacement and Quantification problems can
be solved efficiently for variables for which the considered graph order is oblivious.

Similarly to the variable ordering problem for OBDDs we are faced with the graph ordering
problem for FBDDs, i.e., the problem of finding a suitable graph order. Sieling (2002b)
has shown that the existence of polynomial-time approximation schemes for optimizing
the graph order implies P=NP. The known heuristics do not lead to satisfactory results.
The only graph ordering algorithm tested in experiments is due to Bern, Meinel, and
Slobodová (1996). Their approach creates graph orders of the following kind. For a
parameter d, the graph order starts with a complete binary tree of depth d. For each leaf
of this tree, a variable order of the remaining n − d variables follows.

5 Partitioned Binary Decision Diagrams

Nondeterminism is a powerful compexity theoretical concept and nondeterministic repre-
sentations of boolean functions can be much smaller than their deterministic counterparts.
E.g., the function HWB (see Section 1) has exponential OBDD size but can be represented
by OR-OBDDs of size O(n3). The output bit xi, 0 ≤ i ≤ n, is guessed, afterwards it is
verified whether x1 + · · ·+xn = i and xi = 1. A disadvantage is that the simple operation
NOT may cause an exponential blow-up of the size. In order to obtain representation
types with good algorithmic behavior we have to consider restrictions where, in particu-
lar, Negation is not difficult. Partitioned binary decision diagrams (PBDDs) introduced
by Jain, Bitner, Fussell, and Abraham (1992) and more intensively studied by Narayan,
Jain, Fujita, and Sangiovanni-Vincentelli (1996) have the desired properties. PBDDs are
a generalized OBDD model allowing a restricted use of nondeterminism and different vari-
able orders. They are restricted enough such that most of the essential operations can be
performed efficiently and they allow polynomial-size representations for more functions
than OBDDs.

We define (k, w, π)-PBDDs where k = k(n) is the number of parts, w = (w1, . . . , wk) is the
vector of so-called window functions, and π = (π1, . . . , πk) is the vector of variable orders.

11



nondeterministic
tree

π1 πi πk

f ∧ wi f ∧ wkf ∧ w1 · · · · · ·

OR

Figure 5: A partitioned (nondeterministic) BDD with k parts representing
f ∧ w1, . . . , f ∧ wk.

A necessary condition for the window functions is that their disjunction is the constant 1.
Figure 5 describes a (k, w, π)-PBDD. One of the k parts is chosen nondeterministically.
The ith part represents f ∧wi by a πi-OBDD. The function represented by the (k, w, π)-
PBDD equals

(f ∧ w1) + · · · + (f ∧ wk) = f ∧ (w1 + · · · + wk) = f

explaining the necessary condition for the window functions. The window functions are
called disjoint if wi ∧ wj = 0 for i 6= j. Then w−1

1 (1), . . . , w−1
k (1) are a partition of the

input space justifying the notion of partitioned BDDs. Then at most one part computes
1 which is known in complexity theory as unique nondeterminism.

The size of a (k, w, π)-PBDD consisting of the πi-OBDDs Gi, 1 ≤ i ≤ k, is the sum of the
sizes of its parts Gi. If only the number k of parts is fixed, we use the notion of k-PBDDs.
Since the algorithms on PBDDs need πi-OBDDs for the corresponding window functions
wi, π and w should be chosen such that the πi-OBDD size of wi is small.

As in the case of OBDDs we look for efficient algorithms only if the number of parts
k, the vector of window functions w, and the vector of variable orders are fixed. The
representation by (k, w, π)-PBDDs is canonical and the Reduction of a (k, w, π)-PBDD
G is possible in time O(|G|) since it can be done individually for all parts. Moreover, there
exists an efficient equality check for two functions f and g since we can use the Equality

test for π-OBDDs (see Section 3) to check pairwise the equality of the corresponding
parts. Synthesis of (k, w, π)-PBDDs Gf and Gg representing the functions f and g
respectively, can be computed in time O(|Gf ||Gg|) for the operations AND, OR, and
EXOR. It is sufficient to apply the πi-OBDD synthesis algorithm to the ith parts of Gf

and Gg, 1 ≤ i ≤ k. Generally, f ∧ wi 6= f ∧ wi but

(f ∧ wi) ∧ wi = (f ∨ wi) ∧ wi = f ∧ wi.

Hence, Negation can be performed as negation of each part followed by an AND-Syn-

thesis with the corresponding window function. A function f is satisfiable iff one of the
functions f ∧wi is satisfiable. Satisfiability Count is difficult if the window functions
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are non-disjoint since many parts may compute 1 for an input. For disjoint window
functions the number of satisfying inputs is the sum of the number of satisfying inputs
for the parts.

The quantification operations are based on Replacement by Constants but this
operation causes problems for (k, w, π)-PBDDs. Let gn test whether a boolean matrix
consists of rows with exactly one 1-entry and let hn be the analogous function for the
columns. The function fn = sgn ∨ shn can be represented by 2-PBDDs and the window
functions s and s. For the first part we use a rowwise variable order and for the second
part a columnwise variable order. For the replacement of s by 1, we obtain the function
gn. Then we have to represent sgn in the second part by a columnwise variable order
which needs exponential size.

The heuristics for the generation of window functions often construct window functions
which are the minterms with respect to a small set V of variables. Then the replacement
of a variable xi ∈ Xn \ V by a constant is easy. This holds more generally if the window
functions do not essentially depend on xi. Then f|xi=c ∧ wj = (f ∧ wj)|xi=c and the
replacement can be done for each part in the usual way (see Section 3). Afterwards,
Quantification is a binary synthesis operation.

Why are the window functions necessary? The model of k-PBDDs in its general form
has several practical drawbacks. Negation may lead to an exponential blow-up. Even
if the k variable orders are fixed, it is difficult to check whether two k-PBDDs G′ and G′′

represent the same function. An input a may lead to 1 in the ith part of G′ but only in
the jth part of G′′, where i 6= j. Furthermore, it is easy to prove that the Equality

Test is co-NP complete already for 2-PBDDs.

Since the number of parts and the window functions have to be fixed if we work with
(k, w, π)-PBDDs one may ask whether the choice of the number of parts and the corre-
sponding window functions is crucial for small size PBDDs. Bollig and Wegener (1999)
have proved that PBDDs of polynomial size form a tight hierarchy with respect to the
number k of their parts. They have shown that k-PBDDs may be exponentially larger
that (k + 1)-PBDDs for the same function if k = o((log n/ log log n)1/2). Sauerhoff (2000)
has improved their result up to k = O((n/ log1+ε n)1/4), where ε > 0 is an arbitrarily
small constant.

Sometimes we find appropriate window functions because of our knowledge of the struc-
tural properties of the functions, e.g., for HWB we use the window functions wi, 0 ≤ i ≤ n,
which compute 1 iff x1+· · ·+xn = i. Good heuristic algorithms for the automatic creation
of appropriate window functions have been developed using methods known as functional
partitioning (Jain, Bitner, Fussell, and Abraham (1992) and Lai, Pedram, and Vrudhula
(1993)). Heuristic algorithms for which experimental results have proved the practical
usefulness have also been presented by Jain, Mohanram, Moundanos, Wegener, and Lu
(2000).
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6 BDD Size versus Other Complexity Measures

Since BDDs are a nonuniform model of computation, we discuss relations between the
size of BDDs and complexity measures for nonuniform models of computation, namely
nonuniform space complexity, circuit size and formula size. We recall that for considering
nonuniform models of computation we decompose the function f : {0, 1}∗ → {0, 1} into a
sequence f = (fn), where fn : {0, 1}n → {0, 1}, and for each function of the sequence we
may design a different algorithm or circuit. A nonuniform Turing machine is a Turing
machine with an advice tape, whose contents are initialized only depending on the input
length such that it may perform different algorithms for different input lengths. For more
details we refer to Johnson (1990).

The first result concerns the relation between BDD size and nonuniform sequential space
complexity. Let BDD(fn) denote the minimum size of a BDD computing fn. Let S(fn)
be the minimum space of a nonuniform Turing machine computing fn. The following
relationship between BDD(fn) and S(fn) was obtained by Cobham (1966) and Pudlák
and Žák (1983).

Theorem 6.1: Let f = (fn) be a sequence of boolean functions. If S(fn) ≥ log n, then
BDD(fn) = 2O(S(fn)). If BDD(fn) ≥ n, then S(fn) = O(log BDD(fn)).

Proof. The theorem follows from simulations between BDDs and nonuniform space-
bounded Turing machines. For the first statement we observe that the number of con-
figurations of a nonuniform S(fn) space-bounded Turing machine on input length n is at
most 2c S(fn) for some constant c. For each such configuration the BDD for input length
n contains a node. Accepting configurations are 1-sinks and rejecting configurations are
0-sinks. In each non-halting configuration C the Turing machine reads one input bit xi

and according to the value d ∈ {0, 1} of xi the successor configuration Cd is reached.
Then C is simulated by a BDD node labeled by xi and with the successors corresponding
to C0 and C1.

For the second statement we construct a nonuniform Turing machine from a given se-
quence of BDDs of size BDD(fn). For input length n, the contents of the advice tape is
a coding of the BDD for input length n. The simulation of the computation of the BDD
for the given input merely requires to store a pointer to the node reached. Such a pointer
can be stored in space O(log BDD(fn)). 2

Now we consider the relationship between BDD size and circuit and formula size. Let
C(fn) and L(fn) denote the minimum size of circuits and formulas over the basis {AND,
OR, NOT} for fn, resp., where it is common to count only the number of AND- and
OR-gates and to neglect the NOT-gates. Let L∗(fn) denote the minimum size of formulas
for fn over the basis consisting of all boolean functions with two inputs.

Theorem 6.2: Let f = (fn) be a sequence of boolean functions. Then

C(fn)

3
≤ BDD(fn) ≤ L(fn) + 3
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and for each ε > 0:
BDD(fn) = O(L∗(fn)1+ε).

Again the first inequalities can be proved by simulations. In order to simulate a BDD
by a circuit we replace each c-sink of the BDD by the constant input c and we replace
each node labeled by xi and with the successors a and b by a multiplexer circuit. This
circuit computes the function ax̄i ∨ bxi. Furthermore, we assume that the edges are now
directed from the constant inputs to the former source of the BDD. Then we obtain a
circuit computing the function represented by the BDD, where the output is the former
source of the BDD. Each internal node is replaced by one OR-gate and two AND-gates.
Hence, the size of the circuit is bounded above by three times the size of the BDD.

The simulation of a formula by a BDD can be performed using the Synthesis operation,
which however is performed in a way different from that for π-OBDDs. Let two BDDs
G1 and G2 for functions f1 and f2 be given, where we may assume that each of the
BDDs only contains one 0-sink and one 1-sink. Then a BDD for f1 ∧ f2 can be obtained
by replacing the 1-sink of G1 by a copy of G2 and merging the 0-sinks of G1 and G2.
Similarly a BDD for f1 ∨ f2 can be obtained by replacing the 0-sink of G1 by a copy of
G2 and merging the 1-sinks of G1 and G2. Obviously the size of the resulting BDD is
bounded by |G1| + |G2| − 2. A BDD for f̄1 can be obtained from G1 by exchanging the
sinks. For f1 ⊕ f2 the situation is different: We replace the 0-sink of G1 by a copy of G2

and the 1-sink of G1 by a BDD for f̄2, which we obtain from G2 by exchanging the sinks.
Alternatively, we may exchange the roles of G1 and G2.

Now we may apply the algorithm given in Section 3 for the transformation of circuits
into BDDs to the given formula. For formulas over the basis {AND, OR, NOT} the size
bound follows by a simple induction. For formulas with arbitrary binary gates we may
first replace each gate in a straightforward way by an AND- or EXOR-gate combined with
some NOT-gates. In the above simulation of an EXOR-gate combining f1 and f2 we need
two copies of G1 or G2. Sauerhoff, Wegener and Werchner (1999) showed how to perform
this simulation in order to obtain a BDD for fn of size bounded by α(L∗(fn) + 1)β, where
α ≤ 1.360 and β = log4(3 +

√
5) < 1.195. The stronger result shown in Theorem 6.2 was

obtained by Giel (2001) using much more involved arguments.

7 Lower Bounds for BDDs

In the last section, we have seen that lower bounds on the BDD size imply lower bounds of
the same size on the {AND, OR, NOT}-formula size and lower bounds of almost the same
size on the formula size for the full binary basis. A method due to Nechiporuk (1966)
still yields the largest lower bounds for BDDs as well as for general binary formulas (see
Chapter ??). The idea is that a BDD for f of limited size can realize only a limited number
of subfunctions of f which are obtained by replacing the variables outside a chosen set
S ⊆ X := {x1, . . . , xn} by constants. Hence, functions with many different subfunctions
need BDDs of not too small size. Before we prove Nechiporuk’s bound we show that
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BDDs of limited size cannot represent too many functions. The bound of the following
lemma can be improved but is sufficient for our purposes.

Lemma 7.1: The number of functions f : {0, 1}n → {0, 1} whose BDD size is bounded
by s is at most ns(s!)2.

Proof. We count the syntactically different BDDs of size s. Each BDD for non-constant
functions has two sinks and can be described by an ordered list of s− 2 instructions. For
each instruction, we have the choice between n variables. For the ith instruction and each
successor we have the choice between s − i nodes, namely the instructions i + 1, . . . , s− 2
and two sinks. Hence, the number of syntactically different BDDs of size s is bounded by
ns−2((s − 1)!)2. Each BDD represents at most s different functions. 2

In the following, an S-subfunction of f is a subfunction obtained by replacing the variables
outside S by constants.

Theorem 7.2: Let f : {0, 1}n → {0, 1} essentially depend on all n variables and let
S1, . . . , Sk be disjoint subsets of the variable set X. Then

BDD(f) = Ω

(

∑

1≤i≤k

(log si)/ log log si

)

where si is the number of Si-subfunctions.

Proof. We fix an optimal BDD G representing f . Let ti be the number of nodes labeled
by Si-variables. This implies BDD(f) ≥ t1 + · · ·+ tk + 2 and it is sufficient to prove that
ti = Ω((log si)/ log log si). Obviously, ti ≥ |Si|, since f essentially depends on all variables.
Moreover, for each Si-subfunction, we obtain a BDD from G whose size is bounded by
ti. It is sufficient to replace the variables outside Si by the appropriate constants. By
Lemma 7.1 and |Si| ≤ ti,

si ≤ |Si|ti(ti!)2 ≤ ttii (ti!)
2 ≤ (ti)

3ti

implying the claimed lower bound on ti. 2

What is the largest possible size of Nechiporuk’s lower bound? There are 2n−|Si| different
assignments to the variables outside Si and 22|Si| functions on Si. Hence,

(log si)/ log log si ≤ min{(n − |Si|)/ log(n − |Si|), 2|Si|/|Si|}.

This implies that each set Si contributes not more than n/ log n to the lower bound.
However, a large contribution is only possible for a large set Si. By elementary calculus,
it follows that Nechiporuk’s lower bound is bounded above by O(n2/ log2 n).

There is a simple function called ISA modeling indirect storage access where Nechiporuk’s
bound is of size Ω(n2/ log2 n). ISA is defined on n + k variables x0, . . . , xn−1, y0, . . . , yk−1

where n = 2m and k = m − blog mc. The vector y = (yk−1, . . . , y0) is interpreted
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as a binary number |y|. If |y| ≥ bn/mc, ISA(x, y) := 0. Otherwise, the x-block
x(y) := (x|y|·m, . . . , x|y|·m+m−1) is considered as an address. Then ISA(x, y) := x|x(y)|

is the contents of the storage cell addressed by x(y). It is easy to see that even the
FBDD size of ISA is bounded above by O(n2/ log n). We read y, then x(y) and, if not
already done, x|x(y)|. These are at most 2m − blog mc + 1 variables leading to an upper
bound of 22m−blog mc+1 = O(n2/ log n). We apply Nechiporuk’s bound to ISA and define
Si := {xim, . . . , xim+m−1}, 0 ≤ i ≤ bn/mc − 1. The number of Si-subfunctions of ISA is
bounded below by 2n−m, since for |y| = i all 2n−m assignments to the x-variables outside
Si lead to different Si-subfunctions. Nechiporuk’s bound consists of bn/mc terms of size
(n − m)/ log(n − m) implying the lower bound Ω(n2/ log2 n).

8 Lower Bounds for Oblivious BDDs

Each BDD with s decision nodes is an oblivious BDD with s levels, since we can use the
topological order of the decision nodes and can define the ith level as the set containing
only the ith decision node. Hence, this BDD is even an (sn)-π-OBDD for each variable
order π. However, oblivious BDDs with a small number of levels are strongly restricted
BDDs. Nevertheless, there are many important functions which have short representations
by small-size and small-length oblivious BDDs:

• All bits of n-bit-addition can be represented by an OBDD of size 9n − 5.

• The multiplexer or direct storage access function has OBDD size 2n + 1.

• Symmetric functions have quadratic OBDD size.

• The equality test (EQ(x, y) = 1 iff x = y) and the inner product (IP(x, y) = x1y1 ⊕
· · · ⊕ xnyn) have linear OBDD size.

• The test PERM whether an n × n boolean matrix is a permutation matrix can be
represented by a 2-IBDD of linear size (choose a rowwise and a columnwise variable
order).

Furthermore, nondeterminism is a powerful concept for oblivious BDDs.

• HWB (see Section 1) and ISA (see Section 7) can be represented in nondeterministic
OBDDs of polynomial size: Guess the output bit and verify that the guess was
correct and the output bit equals 1. Since we may also check whether the output
bit equals 0 and since we obtain at most one accepting path, these bounds hold for
all three types of nondeterminism.

• The test whether a matrix is a permutation matrix is easy for AND-OBDDs, since
it is sufficient to check whether each row and each column contains exactly one
1-entry.
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These upper bounds motivate the investigation of lower-bound techniques. The most
common approach is based on the theory of communication complexity (see Chapter ??,
Hromkovič (1987), Kushilevitz and Nisan (1997)). The communication game is defined
for a “distributed” function f : {0, 1}n × {0, 1}m → {0, 1}, where Alice holds the first
n variables and Bob the last m variables. Before knowing the specific values of her
and his variables they agree on a protocol how to interpret their communication. The
communication can be stopped if one of the players knows f(a, b). The length of a
protocol is the largest number of bits (with respect to all inputs) exchanged between the
two players. The communication complexity C(f) of f with respect to a given partition of
the variables is the minimal length of all communication protocols for f . In the following
we prove a simple upper bound on the communication complexity of f depending on
parameters of oblivious BDDs representing f . This implies that we can apply lower
bounds on the communication complexity of boolean functions to obtain lower bounds on
the size of oblivious BDDs.

We identify the variables given to Alice with A and the variables given to Bob with B. A
level of an oblivious BDD G is “owned” by the player holding the variable which is the
label of the decision nodes of this level. A layer of G is a maximal block of consecutive
levels owned by the same player. The layer depth ld(G) equals the number of layers of G.

Lemma 8.1: Let G be an oblivious BDD representing f : {0, 1}n × {0, 1}m → {0, 1}.
Then

C(f) ≤ (ld(G) − 1) · dlog |G|e
and the communication protocol works in ld(G) − 1 rounds.

Proof. The player holding the variables of the first layer, w.l.o.g. Alice, starts the com-
munication. She knows the variables tested in the first layer. Hence, she can compute
the first node on the computation path which lies outside her layers. Her first message
equals the number of this node. Then the communication is continued in the same way
by Bob. After at most ld(G)− 1 messages of length dlog |G|e each, the player owning the
last layer can compute f(a, b). 2

The result of this lemma can be restated as a lower bound on the size of oblivious BDDs
G, namely

|G| > 2C(f)/(ld(G)−1)−1.

We have stated and proved the lemma for deterministic BDDs and deterministic com-
munication protocols. We can state and prove it in the same way for nondeterministic
protocols and all considered modes of nondeterminism. Nondeterministic protocols are
defined in the obvious way. E.g., an EXOR-nondeterministic protocol accepts (a, b) if
the number of accepted bit sequences describing possible communications is odd and the
corresponding complexity measure is called CEXOR(f). The theory of communication
complexity provides methods for proving large lower bounds on the deterministic and
even nondeterministic communication complexity of important functions. However, we
only obtain large lower bounds on |G| if ld(G) is not too large.
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First, we discuss the basic lower-bound techniques. The communication matrix M consists
of 2n rows corresponding to the possible inputs of Alice and of 2m columns for the inputs of
Bob. The entry at position (a, b) equals f(a, b). A rectangle R is defined as the submatrix
consisting of all entries of M which belong to a certain subset of the rows and a certain
subset of the columns. It is called monochromatic if all entries have the same color (or
value). Let t, t0, and t1 denote the minimal number of monochromatic, 0-colored, and
1-colored rectangles, resp., which are a disjoint cover of M , the zeros of M , and the ones
of M , resp. Let t∗, t∗0, and t∗1 be the corresponding numbers of not necessarily disjoint
covers. Then

C(f) ≥ log t, COR(f) ≥ log t∗1, and CAND(f) ≥ log t∗0.

The fooling set method is a method to get lower bounds on t∗, t∗0, and t∗1. A c-fooling

set is a set Sc of entries (a, b) such that f(a, b) = c for all (a, b) ∈ Sc and f(a, b′) 6= c
or f(a′, b) 6= c for all distinct (a, b), (a′, b′) ∈ Sc. Then t∗c ≥ |Sc|, since no c-rectangle
can cover two elements of Sc. Moreover, let R1, . . . , Rk be disjoint rectangles covering
all 1-entries of M . Let Mi be the 2n × 2m-matrix where all entries of Ri equal 1 and
all other entries equal 0. Then M is the sum of all Mi and, by the sub-additivity of the
rank operator and the fact that all Mi have rank 1, we get the lower bound rank(M)
on C(f). This does not hold for non-disjoint covers with the exception of the case of
EXOR-nondeterminism and the field

�
2. This leads to the lower bound rank �

2
(M) on

CEXOR(f).

The next step is to investigate the layer depth. For a k-π-OBDD we can give the first
r, 1 ≤ r ≤ n, variables according to the variable order to Alice and the remaining variables
to Bob. Then the layer depth equals 2k and it is sufficient to prove lower bounds on the
length of protocols with 2k−1 rounds. For lower bounds for k-OBDDs we have to consider
all variable orders and the corresponding partitions of the variables between Alice and
Bob.

For k-IBDDs and general oblivious BDDs the situation is more difficult. The idea is to
find not too small disjoint subsets A and B of the variable set such that the layer depth
with respect to A and B is small. Then we have the freedom to choose “good” assignments
to the variables outside A ∪ B such that the communication complexity of the resulting
subfunction is large. Alon and Maass (1988) have used a Ramsey-type argument to prove
that, for oblivious BDDs with kn levels, A and B can be chosen such that they contain
at least n/24k+1 variables each and such that the layer depth is bounded by 4k + 1. This
approach works only if k = o(log n). We have no complete control which variables survive.
Hence, we obtain lower bounds only for functions where subfunctions on many subsets of
variables and arbitrary partitions of the variables between Alice and Bob are difficult.

An example is the middle bit of integer multiplication where we are interested in the
bit at position n − 1 of the product of two n-bit numbers x and y. We decide that
no y-variable survives and we assign constants to the y-bits such that only two y-bits
equal 1. This implies that x · y = x2i + x2j for some i, j ∈ {0, . . . , n − 1}, i 6= j. By the
pigeonhole principle, there exist i and j such that x2i and x2j have many bit positions
k ≤ n − 1 such that Alice owns bit k of one of the terms and Bob owns bit k of the
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other term. All other positions ` ≤ n − 1 are fixed such that one term contains 1 and
the other 0. Then we are basically in the situation of the addition of two numbers a and
b such that Alice owns a and Bob owns b and we are interested in the carry bit. The
communication matrix is of size 2r × 2r for some r and contains ones at positions (i, j)
such that i + j ≥ 2r, 0 ≤ i, j ≤ 2r − 1. The matrix has rank 2r − 1 over � as well as over

�
2. It contains a 0-fooling set of size 2r (all (i, j) where i + j = 2r) and a 1-fooling set of

size 2r − 1 (all (i, j) where i+ j = 2r +1). Choosing the right parameters (Bryant (1991),
Gergov (1994)) this leads to the bound 2Ω(n/k324k) for oblivious BDDs of length 2kn and
all types of nondeterminism.

In order to separate the different modes of nondeterminism we again apply results from
communication complexity:

• The equality test EQ(x, y) (Alice owns x and Bob owns y) has linear communication
complexity for OR- and EXOR-nondeterminism but only logarithmic communica-
tion complexity for AND-nondeterminism, for the negation EQ the roles of OR and
AND are interchanged.

• The inner product function IP(x, y) has linear communication complexity for OR-
and AND-nondeterminism but only logarithmic communication complexity for
EXOR-nondeterminism.

However, these results only hold for the bad partition of the input where Alice gets x and
Bob gets y. All these functions have linear OBDD size for the interleaved variable order
x1, y1, . . . , xn, yn. A general technique working with so-called bit masks a and b generalizes
the lower bounds on communication complexity to all balanced partitions of the input.
For fn : {0, 1}n×{0, 1}n → {0, 1} we define the generalized function f ∗

n : {0, 1}4n → {0, 1}.
The input is (a, b, x, y). We obtain x′ as vector of all xi where ai = 1, similarly y′ based on y
and b. If x′ and y′ have different length, f ∗

n(a, b, x, y) = 0. If they have the same length m,
then f ∗

n(a, b, x, y) = fm(x′, y′). Then we obtain for each type of nondeterminism a function
(EQ

∗
for OR, EQ∗ for AND, IP∗ for EXOR) such that the function has polynomial-size

OBDDs for all variable orders and the chosen type of nondeterminism but exponential
size for oblivious BDDs of linear length and the other two types of nondeterminism.

Finally, we compare k-OBDDs and k-IBDDs. The permutation matrix test PERM can
be represented by linear-size 2-IBDDs but needs size 2Ω(n/k) for k-OBDDs. The lower
bound method for k-OBDDs works, since we can argue about all variables, and it breaks
down for 2-IBDDs, since, as shown above, we have to fix too many variables. Moreover,
the number k is of importance. The pointer jumping function is defined as follows. The
function describes a graph on 2n + 1 vertices u, v0, . . . , vn−1, w0, . . . , wn−1, n = 2k, and for
each vertex v∗ there are k boolean variables describing a number j ∈ {0, . . . , n − 1}. If
v∗ ∈ {u,w0, . . . , wn−1}, the pointer from v∗ leads to vj, for v∗ ∈ {v0, . . . , vn−1} the pointer
from v∗ leads to wj . Moreover, there are n boolean variables describing the colors of
v0, . . . , vn−1. The function PJn,k outputs the color of the vertex reached by the unique
path of length 2k + 1 starting at u. Obviously, the k-OBDD size of PJn,k is bounded
by O(kn2). Based on lower bounds on the length of communication protocols with a
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fixed number of rounds due to Nisan and Widgerson (1993), Bollig, Sauerhoff, Sieling,
and Wegener (1998) have proved that PJn,k has exponential (k − 1)-IBDD size if k is a
constant.

Altogether, oblivious BDDs allow a much more compact representation than OBDDs and
powerful lower-bound techniques based on communication complexity are available.

9 Lower Bounds for Length-Restricted DDs

In this section, we consider general DDs, not just BDDs. Presently available methods
allow to prove exponential size lower bounds for DDs whose length is bounded above
by a function of order O(n log n). These results have the nice feature that they can
be interpreted as length-size trade-offs for unrestricted DDs or also as time-space trade-
offs for general sequential models of computation such as register machines. The proof
methods for length-restricted DDs, of which we will give only a brief outline here due to
the highly technical nature of the subject, have been developed in a succession of papers
by Beame, Jayram, and Saks (2001), Ajtai (1999a, 1999b), and Beame, Saks, Sun, and
Vee (2000, 2002). These are in turn based on a long history of methods for much more
restricted BDDs, e. g., oblivious BDDs (see Section 8), read-once BDDs (Wegener (1988),
Žák (1984)) and syntactic read-k BDDs for k > 1 (Borodin, Razborov, and Smolensky
(1993), Okol’nishnikova (1993)).

A good starting point for the proof methods is again communication complexity theory.
In Section 8, we have seen that the minimum number t∗1 of 1-colored rectangles required
to cover the ones in the communication matrix of f provides a lower bound on the non-
deterministic communication complexity of f and in turn on the size of nondeterministic
oblivious BDDs. Here it is more appropriate to regard rectangles as sets of the form
R = RA × RB, where RA and RB are sets of partial assignments to the variables in the
sets A and B given to Alice and Bob, resp. Then t∗1 can be characterised as the mini-
mum number of rectangles R ⊆ f−1(1) required to cover f−1(1). Lower bounds on the
number t∗1 can be proved by the rectangle size method from communication complexity:

1. Choose a probability distribution µ on the inputs.

2. Prove a lower bound on µ(f−1(1)) and an upper bound on the measure (density) µ(R)
of each rectangle R ⊆ f−1(1), say µ(R) ≤ β for each such R.

Then, obviously, t∗1 ≥ µ(f−1(1))/β. The fooling set method is the special case where µ is
the uniform distribution and β = 2−n for f : {0, 1}n → {0, 1}.
Essentially, an extension of the rectangle size method is also behind the proof method for
length-restricted DDs. We develop a simple version of that method (based on the paper
of Beame, Jayram, and Saks (2001)) and comment on further developments later on. The
main work is to show how a BDD can be translated into a rectangle cover of f−1(1). We
first generate a cover of f−1(1) by functions that can be represented by DDs with a simple
structure, so-called decision forests. Then we further partition the sets of inputs accepted
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by each of these decision forests into rectangles. In the following, we consider functions
f : Dn → {0, 1}, D any finite set, that are defined on the variable set X = {x1, . . . , xn}.

Definition 9.1: A decision tree is a DD where each node has indegree at most 1. The
function of a decision tree T is also denoted by T . An (r, k)-decision forest is a set
of decision trees F = {T1, . . . , Tr} where for each input a and for each Ti, the number
of variable accesses on the path activated by a in Ti is at most dkn/re. The function
computed by F is F =

∧

1≤i≤r Ti.

Lemma 9.2: Let r, k be positive integers with r ≤ kn. Let G be a DD of length at
most kn for any function f : Dn → {0, 1}. Then there are at most |G|r−1 (r, k)-decision
forests whose sets of accepted inputs form a partition of f−1(1).

Proof. Modify the given DD G of length ` ≤ kn as follows: First, use ` + 1 copies
G0, . . . , G` of G and redirect each edge originating in copy Gi to the copy of its successor
node in Gi+1. Then replace the sinks in Gi with nodes testing an arbitrary variable and
having the respective sinks in Gi+1 as successors. The new graph G′ still computes f ,
edges lead only from the nodes of Gi to the nodes of Gi+1, and each path in G′ has
length exactly `. For different nodes v and w in G′, let fv,w(a) = 1 if there is a path
in G′ activated by a leading from v to w. For i = 1, . . . , r − 1, let Ci be the set of nodes
of Gid`/re. Let v0 be the source of G′ and vr the 1-sink. Then f is the disjunction of
the functions Fv1,...,vr−1

=
∧

0≤i≤r−1 fvi,vi+1
over all (v1, . . . , vr−1) ∈ C1 × · · · × Cr−1, the

sets of inputs accepted by these functions are pairwise disjoint, and there are at most
|C1| · · · |Cr−1| ≤ |G|r−1 terms in this disjunction. Furthermore, since each of the functions
fvi,vi+1

can obviously be computed by a decision tree where at most dkn/re variables are
read during each computation, each Fv1,...,vr−1

is an (r, k)-decision forest. This proves the
claim. 2

The idea behind the decomposition into decision trees is that we can now observe the
behavior of the DD in a sufficiently coarse way by just looking at the points in time where
the computations have been cut (after reading roughly i · kn/r variables, i = 0, . . . , r).
Next, we want to find rectangles in a decision forest. For that, we assign each of the
decision trees to Alice and Bob randomly with probability 1/2 for both of them. Typically,
many variables read during a computation will occur in both Alice’s and Bob’s trees. But
we can nevertheless hope that there will be some variables that occur exclusively in Alice’s
trees and some that will be only in Bob’s trees, resp. This is because each of the trees
reads only kn/r variables during a computation, and thus there are not too many pairs
of variables that occur together in one of the trees. We make this precise now.

Definition 9.3: For a decision forest F and a subforest F ′ ⊆ F , let coreF (a, F ′) be the
set of variables read exclusively in the trees in F ′ during the computation for a, called
F ′-core of a (in F ).

We usually omit the index F since we only consider one decision forest at a time. The
random assignment of decision trees in a decision forest F to Alice and Bob yields a
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random partition (FA, FB) of F . We show that core(a, FA) and core(a, FB) will be not
too small with high probability.

Lemma 9.4: Let F be an (r, k)-decision forest with r ≤ n and let a ∈ {0, 1}n be an
input. Let (FA, FB) be a random partition of F as described above. Then core(a, FA)
and core(a, FB) have the same expected size µ(a) ≥ n/2k+1 and

∣

∣|core(a, FA)| −µ(a)
∣

∣ ≥
µ(a)/2 with probability at most 4(k + 1)222(k+1)/r, analogously for FB.

Proof. By symmetry, it suffices to consider FA. Let t(i) be the number of trees in F that
access variable xi during the computation for a. Let Zi be the indicator variable for the
event xi ∈ core(a, FA) and let Z = Z1 + · · · + Zn. We have
Pr{Zi = 1} = 2−t(i) for all i and µ(a) = E(Z) =

∑

1≤i≤n 2−t(i). Since F is an (r, k)-
decision tree, t(1) + · · · + t(n) ≤ rdkn/re ≤ (k + 1)n. It is easy to see that the min-
imum of the convex function

∑

1≤i≤n 2−t(i) of the t(i) as variables under the constraint

t(1) + · · · + t(n) ≤ (k + 1)n is n/2k+1. This proves the first part of the claim. For the
second part, we first upper bound the variance of Z,

V (Z) =
∑

1≤i,j≤n

(Pr{Zi = 1 ∧ Zj = 1} − Pr{Zi = 1} · Pr{Zj = 1}).

If there is no tree that reads both the variables xi and xj, then Zi and Zj are independent
and the respective term in the above sum is zero. We crudely estimate all other terms
with 1 and count their number. For a fixed i, there are at most t(i) · dkn/re variables
xj that are read together with xi in one of the trees. Thus, altogether, there are at most
∑

1≤i≤n t(i)dkn/re ≤ (k+1)2n2/r non-zero terms in the sum which is also an upper bound
for V (Z). By Chebyshev’s inequality, we obtain

Pr
{

|Z − E(Z)| ≥ E(Z)/2
}

≤ 4V (Z)/E(Z)2 ≤ 4(k + 1)222(k+1)/r.

2

Let F be a fixed decision forest. Set r = 16(k + 1)222(k+1). Then for each input a, the
above lemma yields a fixed partition (FA, FB) of F such that for A := core(a, FA) and
B := core(a, FB), we have |A|, |B| ≥ m with m = n/2k+2. We are now essentially in the
same situation as for oblivious BDDs in Section 8 where we had obtained suitably large
subsets A and B of the variables for the two players.

As for oblivious BDDs, we want to fix the variables outside A and B. We first group
together inputs for which the same sets A and B are suitable (there is no longer one fixed
choice for all inputs here). For two disjoint sets of variables A,B, let Q = Q(A,B, FA, FB)
be the set of inputs a ∈ F−1(1) with A ⊆ core(a, FA) and B ⊆ core(a, FB). Each input
a ∈ F−1(1) is contained in such a set with |A| = |B| = m by Lemma 9.4. Notice that
usually there will be more than one such set covering a given input. Let c be any partial
assignment to all variables in X − (A∪B), and let Qc be the set of all partial assignments
to A ∪ B that together with c form an assignment in Q. We show that Qc is a (possibly
empty) rectangle. For assignments u and v to disjoint sets of variables let uv denote the

23



joint assignment to the union of these sets. Let Qc,A be the set of all assignments a to A
such that, for all assignments b0 to B, FA(ab0c) = 1 and core(ab0c, FA) ⊇ A, and let Qc,B

be the set of all assignments b to B such that, for all assignments a0 to A, FB(a0bc) = 1
and core(a0bc, FB) ⊇ B. Then Qc = Qc,A × Qc,B. Thus, we can first cover all inputs in
F−1(1) by the sets Q(A,B, FA, FB) and then partition each of these sets into rectangles.
It remains to quantify this approach.

We first extend our notion of rectangles to include fixed input parts that do not belong
to any of the two players and introduce a name for sets like Q(A,B, FA, FB).

Definition 9.5: Let A,B ⊆ X be disjoint sets with |A| = |B| = m. A set of inputs R is
called m-rectangle with respect to (A,B) if there is an assignment c to X − (A ∪ B) and
there are sets of assignments RA and RB to A and B, resp., such that R = RA×RB ×{c}.
A set of inputs Q is called m-pseudo-rectangle with respect to (A,B) if for each assignment
c to X − (A ∪ B), Qc × {c} is an m-rectangle with respect to (A,B).

Lemma 9.6: Let k ≤ n, r = 16(k + 1)222(k+1) ≤ n, and m = n/2k+2. Let F be an
(r, k)-decision forest. Then there is a family of at most 24(k+2)m+r m-pseudo-rectangles
that cover F−1(1).

Proof. It only remains to prove the upper bound on the number of pseudo-rectangles.
Each input a ∈ F−1(1) is contained in a set Q(A,B, F1, F2) with |A| = |B| = m due

to Lemma 9.4, and there are at most 2r
(

n
m

)2
such sets. Using that

(

n
m

)

≤ 2H(m/n)n

with H(x) = −(x log x + (1 − x) log(1 − x)) and the Taylor series approximation H(x) ≤
−2x log x for x ≤ 1/2, we get 2r

(

n
m

)2 ≤ 24(k+2)m+r. 2

Analogously to the rectangle size method for the uniform distribution, we obtain the
following connection between the density of 1-colored rectangles and the size of DDs:

Theorem 9.7: Let 2 ≤ k ≤ n, r = 16(k + 1)222(k+1) ≤ n, and m = n/2k+2. Let G be a
DD for f : Dn → {0, 1} of length at most kn. Then there is an m-rectangle R ⊆ f−1(1)
such that |R|/|D|2m ≥ 2−4(k+2)m−r · (1/|G|)r · |f−1(1)|/|D|n.

Proof. Applying Lemma 9.2 and Lemma 9.6, we obtain a cover of f−1(1) by at most
24(k+2)m+r · |G|r m-pseudo-rectangles. Each of these pseudo-rectangles can be partitioned
into m-rectangles as described above. By averaging, it follows that there is at least one
such rectangle with the required density. 2

Beame, Jayram, and Saks (2001) have applied this theorem to quadratic form functions.
We consider one concrete example. Let n = 2d and let S be the n × n-Sylvester matrix
defined by Sa,b = (−1)a>b for a, b ∈ {0, 1}d. Let S∗ be the matrix obtained from S by
replacing the diagonal with zeros. For any odd prime power q and x ∈ � n

q , let SQFq,n(x) =
1 if x>S∗x ≡ 0 mod q.

The matrix S has the remarkable property that each of its submatrices has large rank
compared to its size. In Beame, Jayram, and Saks (2001), a bound for the submatrix
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rank of S and elementary algebra have been used to prove that, for any m-rectangle
R ⊆ SQF−1

q,n(1), |R|/|D|2m ≤ |D|−m2/n. Furthermore, it is easy to see that even after
fixing n − 2 variables of x, the function x>S∗x can still attain any value in

�
q. Thus,

| SQF−1
q,n(1)| ≥ qn−2. Plugging these facts into Theorem 9.7, we get:

Theorem 9.8: For any constant ε > 0 there is a constant c > 0 such that for k, n, q with
log log q ≥ ck and n ≥ 8(k + 1)222(k+1), any DD for SQFq,n of length kn requires size at

least 2n log1−ε q.

To illustrate this result further, we choose q as the smallest prime greater than or equal
to n and set k to roughly log log n. Furthermore, we use the well-known correspondence
between length and size of DDs and time and space for register machines (see, e. g.,
Borodin and Cook (1982)).

Corollary 9.9: For any constant ε > 0 there is a constant c′ > 0 such that each deter-
ministic algorithm for SQFq,n on a register machine with space n log1−ε n requires time at
least c′n log log n.

Theorem 9.7 only makes sense for large domains D that grow with the input length. In the
boolean case D = {0, 1}, the number of pseudo-rectangles eats up even the best possible
upper bound of 2−2m on the rectangle density. By a further, even more sophisticated vari-
ant of the rectangle method, Ajtai (1999a, 1999b) and Beame, Saks, Sun, and Vee (2000),
have managed to overcome this problem. They have been able to show the existence of
a rectangle R = RA × RB × {c} ⊆ f−1(1), where RA and RB are sets of assignments to
disjoint sets A and B, with the following properties:

(i) |A|, |B| ≥ m for some large m.

(ii) There is a constant ε with 0 < ε < 1 such that both densities |RA|/|D||A| and
|RB|/|D||B| satisfy the lower bound 2−εm · (1/|G|r) · |f−1(1)|/|D|n.

Being able to bound the densities of both parts of the rectangle separately makes the
approach applicable to a larger class of functions. Actually, Beame, Saks, Sun, and Vee
(2000) have even managed to show that all but a small fraction of the accepted inputs
of f can be covered by rectangles with the properties (i) and (ii), and, furthermore, that
these rectangles do not overlap too much. Although one only needs a single rectangle for
the deterministic case, the stronger result also allows the method to be used for proving
exponential lower bounds on the size of randomized length-restricted BDDs (see next
section).

The first result for deterministic BDDs (and, therefore, boolean inputs) of linear length
has been achieved by Ajtai (1999b) for a quadratic form function similar to SQF but based
on modified Hankel matrices, for which Ajtai has obtained an especially strong bound on
the rank of submatrices. Furthermore, he has proved (1999a) deterministic lower bounds
for the practically interesting functions element distinctness (check whether there are two
identical numbers in a list) and Hamming closeness (check whether there are two vectors
in a list that have small Hamming distance). The latter two results are again for the large
domain case.
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10 Randomized BDDs

Many practically relevant complexity theoretical questions regarding randomized algo-
rithms are still open up today, e. g., we even do not know whether randomization helps
at all to solve more problems in polynomial time compared to deterministic algorithms.
BDDs allow to study such questions in the scenario where space is the primary resource.
We look at examples of upper and lower bounds for randomized oblivious BDDs and dis-
cuss a proof method and results for randomized length-restricted BDDs, the so-far most
general restricted type of BDDs that can be handled by lower bound methods.

For OBDDs, it is easy to prove that allowing randomization can indeed lead to exponential
savings in size (Ablayev and Karpinski (1996)). As a simple example, we consider the bit
mask version of the equality function, EQ∗

n, from Section 8. Recall that nondeterministic
oblivious OBDDs of linear length for EQ∗

n require exponential size.

Theorem 10.1: The complement of EQ∗
n can be computed by a randomized OBDD of

polynomial size with one-sided error probability 1/n.

Proof. The construction is based on the so-called fingerprinting technique. To compare
objects from a large universe we map these objects to “fingerprints” or “hash codes” from
a small universe that are efficiently comparable. Using randomization, we can ensure that
the probability of different objects having the same fingerprint is small.

The function EQ∗
n is defined on vectors a, b, x, y ∈ {0, 1}n. Recall that EQ∗

n(a, b, x, y) = 1 if
the sub-vectors of x′ of x and y′ of y chosen by a and b, resp., are equal. The randomized
OBDD G for EQ∗

n uses the variable order a1, x1, b1, y1, . . . , an, xn, bn, yn and works as
follows. By a tree of randomized nodes at the top of the OBDD, a prime from the set
of the first n2 primes is chosen. For a prime p, a subprogram computes the fingerprints
hx′,p =

(
∑

1≤i≤n x′
i2

i−1
)

mod p and hy′,p =
(
∑

1≤i≤n y′
i2

i−1
)

mod p. This can be done by
storing the intermediate results with p2 nodes per level in the OBDD. The OBDD accepts
an input if hx′,p 6= hy′,p.

If x′ = y′, hx′,p = hy′,p for each p and the OBDD G correctly rejects the input. Let
x′ 6= y′. Since

∣

∣

∑

1≤i≤n x′
i2

i−1 −∑1≤i≤n y′
i2

i−1
∣

∣ ≤ 2n − 1, there are fewer than n primes p
with hx′,p = hy′,p. Hence, Pr{G(a, b, x, y) = 1} < n/n2 = 1/n. Using that each of the first
n2 primes is at most of size O(n2 log n) by the prime number theorem, it is easy to prove
that the OBDD is of polynomial size. 2

By the same technique, the complement of the permutation matrix test PERM can be
shown to have randomized OBDDs of polynomial size with small one-sided error (Sauer-
hoff (1998)), while we know that PERM requires exponential size even for nondetermin-
istic FBDDs (Jukna (1988) and Krause, Meinel, and Waack (1991)).

The indirect storage access function ISA is a typical example for a function that is hard
for deterministic OBDDs (recall the definition from Section 7). Since variables may be
read only once in a fixed order and since each x-variable may occur as a bit in x(y) as
well as the output bit, a deterministic OBDD has to store a large number of bits and thus
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requires exponential size. The function can be easily computed by a nondeterministic
OBDD of polynomial size (see Section 8). Nevertheless, randomization does not help here
(Sauerhoff (2001)).

Theorem 10.2: Each randomized OBDD with arbitrary two-sided error ε, 0 < ε < 1/2,
for ISAn has exponential size.

Proof. Consider a randomized OBDD for ISAn with an arbitrary variable order given as a
list. Cut the list in two parts such that the first part contains ` = b−1 of the x-variables,
where b = Θ(n/ log n) is the number of blocks x(y). Then there is at least one block x(y0)
that lies completely in the second part. Give the first and last part of the list to Alice and
Bob, resp., and set the y-variables to y0 in the randomized OBDD. Then the two players
can solve the following direct storage access problem: Alice has an `-bit “memory” vector
(her x-variables), Bob has an “address” in this memory (encoded in x(y)), and Bob has
to output the addressed bit after receiving only a single message from Alice (encoded
as the number of an OBDD node). In communication complexity theory, it is proved
that Alice essentially has to tell Bob her complete memory contents for solving this task,
i. e., Ω(`) = Ω(n/ log n) bits of communication are required even in the randomized case.
This amount of information has to be encoded by nodes in the OBDD, leading to size
2Ω(n/ log n). 2

Applying suitable lower bounds for one-round communication protocols as in the proof
of Theorem 10.2, several other functions have been shown to require exponentially large
randomized OBDDs. For general oblivious BDDs, lower bounds for randomized com-
munication protocols with several rounds are required. As one practical example, we
consider the multiplication function from Section 8. By the same ideas as in Section 8,
each randomized oblivious BDD of length 2kn for the multiplication of n-bit numbers
yields a randomized k-round communication protocol for the carry bit problem of input
length r = Θ(n/((k+1)224k)) described in Section 8. Smirnov (1988) has shown that each
randomized k-round communication protocol for the latter problem with error bounded
by a constant smaller than 1/2 requires Ω(r1/k log r) bits of communication. This implies
an exponential lower bound on the size of randomized oblivious BDDs of linear length for
the multiplication function.

Upper and lower bound results have also been proved for randomized variants of FBDDs
and syntactic read-k BDDs for k > 1. We skip these results and devote the rest of the
section to randomized length-restricted DDs.

We sketch a variant of the proof method from Section 9 that also works for the randomized
case. We again consider a function f : Dn → {0, 1}. We say that a deterministic DD G
approximates f with error ε if the output of G agrees with f on at least a (1−ε)-fraction of
all inputs with respect to the uniform distribution on the inputs. By a generally applicable
counting argument, we may consider approximating DDs rather than randomized DDs.

Lemma 10.3: Let G be a randomized DD that computes f with two-sided error ε. Then
there is a deterministic DD G′ with |G′| ≤ |G| that approximates f with error at most ε.
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Proof. Let G1, . . . , GN be the different deterministic DDs obtained by selecting one out-
going edge of each randomized node in G and removing the other one. Let Gi also denote
the function represented by Gi. For each input a ∈ Dn, let d(i, a) = 1 if Gi(a) 6= f(a)
and 0 otherwise. Then 1

N

∑

1≤i≤N d(i, a) ≤ ε for each a due to the error bound of G, and
thus

|D|−n
∑

a∈Dn

1

N

∑

1≤i≤N

d(i, a) =
1

N

∑

1≤i≤N

|D|−n
∑

a∈Dn

d(i, a) ≤ ε.

This implies that there is an i0 with |D|−n
∑

a∈Dn d(i0, a) ≤ ε. 2

In Section 9, we have considered a deterministic DD for f and have obtained a cover of the
accepted inputs of f by pseudo-rectangles. We have shown that the number of pseudo-
rectangles is not too large and have argued that this implies the existence of one dense
pseudo-rectangle that contains only accepted inputs. Here we consider a deterministic
DD G approximating the given function f with error ε and our aim is to produce a
rectangle that is dense and contains only few inputs that are not accepted by f . Let G
also denote the function represented by G.

Since G is deterministic, Lemma 9.2 yields a decomposition of G−1(1) into disjoint sets
of inputs accepted by decision forests. Instead of covering the inputs accepted by each
decision forest by overlapping pseudo-rectangles as in Section 9, we directly partition these
sets into rectangles (we omit the details how this can be done). This yields a partition of
the whole set G−1(1) into rectangles. By averaging arguments, it can then be shown that
at least half of all accepted inputs of G can be partitioned into dense rectangles (again
we omit the details). Due to the error bound of G, f is 0 for at most ε|D|n inputs in
the obtained rectangle partition. On the other hand, these rectangles contain at least
(|f−1(1)| − ε|D|n)/2 accepted inputs altogether. Hence, again by averaging, there is at
least one dense rectangle R such that f is 0 for at most a 2ε/(|f−1(1)| · |D|−n−ε)-fraction
of the inputs in R. Altogether, we arrive at the following analog of the method from
Section 9 for approximating DDs.

Theorem 10.4: Let k, n, r be suitable integer parameters. Let G be a deterministic DD
of length at most kn that approximates f : Dn → {0, 1} with error ε. Then there is an
m-rectangle R with respect to variable sets A and B such that

(i) |R|/|D||A|, |R|/|D||B| ≥ 2−12(k+1)m · (1/|G|r) · (η − ε), where η = |f−1(1)|/|D|n and

(ii) f equals 0 for at most a 2ε/(η − ε)-fraction of the inputs in R.

We apply this theorem to the following variant of the Sylvester matrix function from
Section 9. Let p be a prime, let M ⊆ �

p with |M | = bp/2c, and let S be the n × n-
Sylvester matrix as in Section 9. Define the function BSQF (balanced SQF) for x ∈ � n

p

by BSQFp,M,n(x) = a if x>Sx ∈ M and 1 − a otherwise, where a ∈ {0, 1} is chosen

such that |BSQF−1
p,M,n(1)| ≥ 1/2. Beame, Saks, Sun, and Vee (2002) have shown that for

each m-rectangle R ⊆ � n
p with |R|/|D|2m ≥ |D|−m2/(2n)+3 and any c ∈ �

p the fraction of
inputs x ∈ R with x>Sx ≡ c mod p is at least 1/(4p). It follows that each dense rectangle
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contains a large fraction of inputs from BSQF−1
p,M,n(0). For p ≥ n, Theorem 10.4 and

simple calculations yield the following result:

Theorem 10.5: For any constant ε > 0, each deterministic DD of size 2n1−ε

that approx-
imates BSQFp,M,n with error at most 1/50 has length Ω(n log log n).

Similar results have been obtained by Beame, Saks, Sun, and Vee (2000, 2002) for
quadratic form functions with other matrices. The best lower bound on the length is
of order Ω(n log n) for DDs of size 2n1−ε

with error 1/100. As a more practically rele-
vant example, we finally mention their particularly nice result for the computation of the
element distinctness function on register machines which is a direct consequence of an
analogous DD result. Let EDn(x1, . . . , xn) = 1 if the numbers x1, . . . , xn ∈ {1, . . . , n2}
are pairwise distinct and 0 otherwise.

Theorem 10.6: For any ε > 0 there is a constant cε > 0 such that any randomized
algorithm that computes EDn with error n−ε and runs on a register machine with space
n1−ε requires time at least cεn

√

log n/ log log n.

All above results are for functions on a large domain D growing with the input length. In
the boolean case D = {0, 1}, Beame, Saks, Sun, and Vee (2000) have used a more sophis-
ticated version of the method described above (see also the end of Section 9) to obtain
time-space trade-offs for randomized and approximating BDDs representing quadratic
form functions based on Hankel matrices.
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