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Abstract. Multiobjective optimization deals with problems involving
multiple measures of performance that should be optimized simultane-
ously. In this paper we extend bucket elimination (BE), a well known
dynamic programming generic algorithm, from mono-objective to mul-
tiobjetive optimization. We show that the resulting algorithm, MO-BE,
can be applied to true multi-objective problems as well as mono-objective
problems with knapsack (or related) global constraints. We also extend
mini-bucket elimination (MBE), the approximation form of BE, to mul-
tiobjective optimization. The new algorithm MO-MBE can be used to
obtain good quality multi-objective lower bounds or it can be integrated
into multi-objective branch and bound in order to increase its pruning
efficiency. Its accuracy is empirically evaluated in real scheduling prob-
lems, as well as in the MaxSAT-MaxOnes problem.

1 Introduction

In constraint satisfaction problems (CSPs) the task is to find values for a set of
variables such that a set of constraints is satisfied [8]. Such satisfying assignments
are the problem solutions. In soft CSPs the task is to find the best solution
according to some preferences expressed by means of cost functions [3]. Given
their optimization nature, soft CSPs are also known as constraint optimization
problems. Without loss of generality, in the following we will assume optimization
as minimization. Algorithms for CSPs and soft CSPs can be divided into ezact
and approzimate. Exact algorithms are normally based on search (e.g. branch
and bound, BB [13]) or dynamic programming (e.g., bucket elimination, BE
[7]). Approximate algorithm can compute upper bounds (e.g., metaheuristics
[17]) or lower bounds (e.g. relaxation methods [6]). Algorithms that compute
lower bounds (such as mini-bucket elimination, MBE [10]) are a fundamental
component of branch and bound because they can be executed at every search
node in order to detect infeasible nodes [16].

Many real world problems involve multiple measures of performance, or ob-
jectives, which should be optimized simultaneously. The simultaneous optimiza-
tion of multiple, possibly competing, objective functions deviates from single



function optimization in that it seldom admits a single, perfect solution. In-
stead, multiobjective constraint optimization problems tend to be characterized
by a family of alternatives which must be considered equivalent in the absence
of information concerning the relevance of each objective relative to the others.

Algorithms for multiobjective optimization can also be divided into exact
and approximate. During our bibliographic research (see [12]) we observed that
most work has been done in approximate algorithms to compute upper bounds.
In particular, evolutionary approaches seem to be the best option in practice.
Very little is known about approximate algorithms to compute lower bounds.
Regarding exact algorithms, most work focus on specific problems such as the
multiobjective version of: knapsack problem, traveling salesman problem, short-
est path problem, etc.

In this paper we consider generic algorithms for multiobjective optimization.
In particular, we focus on the extension to multiobjective optimization of bucket
elimination (BE), a well known algorithm based on dynamic programming. First,
we define the multiobjective weighted constraint satisfaction framework (MO-
WCSP), where all their objective functions are additive. Then, we extend BE
from WCSP to MO-WCSP, producing MO-BE. Next, we show that MO-BE can
be used not only to solve MO-WCSP problems, but also to deal efficiently with
knapsack-like constraints. Moreover, we show that this approach provides the
same complexity improvement as our previous work [14,15] while avoiding the
introduction of state-variables and other ad-hoc techniques.

We also show how mini-buckets (MBE), the approximation version of BE, can
be extended to multiobjective problems. The new algorithm MO-MBE produces
a set of lower bounds of the exact solutions. The relevance of this algorithm is
two-fold: on the one hand it can be used to bound the optimum of a problem
when computing the exact solutions is too difficult. On the other hand, it can be
used in combination with branch and bound to enhance its pruning power. The
efficiency and accuracy of MO-MBE is empirically demonstrated in randomly
generated problems with two objective functions.

The structure of this paper is as follows: Section 2 provides some preliminaries
on mono-objective optimization, Section 3 introduces multiobjective WCSPs,
Section 4 introduces the extension of BE to multiobjective optimization, Section
5 shows how some global constraints in mono-objective optimization can be
processed more efficiently as multiobjective, Section 6 introduces multiobjective
mini-buckets, Section 7 reports some experimental results and, finally Section 8
gives some conclusions and points out some directions of future work.

2 Preliminaries

Let X = (x1,...,2,) be an ordered set of variables and D = (Dy,...,D,) an
ordered set of domains. Domain D; is a finite set of potential values for z;. We
call d the largest domain size. The assignment (i.e, instantiation) of variable z;
with a € D; is noted (z; « a). A tuple is an ordered set of assignments to
different variables (z;, + a;,,-..,%;, < a;,). The set of variables (z;,,...,z;,)



assigned by a tuple ¢, noted var(t), is called its scope. The size of var(t) is the
arity of t. When the scope is clear by the context, we omit the variables and
express the tuple as a sequence of domain values (a;, ...a;, ). We focus on two
basic operations over tuples: The projection of t over A C var(t), noted t[A], is
a sub-tuple of ¢ containing only the instantiation of variables in A. Let ¢ and
s be two tuples having the same instantiations to the common variables. Their
join, noted t - s, is a new tuple which contains the assignments of both ¢ and s.
Projecting a tuple ¢ over the empty set ¢[(}] produces the empty tuple A. We say
that a tuple ¢ is a complete instantiation when var(t) = X. Sometimes, when we
want to emphasize that a tuple is a complete instantiation we will call it X.

A constraint satisfaction problem (CSP) is a triplet P = (X,D,R), where
R is a set of constraints defining the variables’ simultaneous legal value assign-
ments. We say that a tuple ¢ satisfies a constraint R if var(R) C var(t) and
tlvar(R)] € R. A solution of a CSP is a complete instantiation X that satisfies
all the constraints in R. In a CSP, the usual task of interest is to find a solution
or prove that there is none. Solving a CSP is in general NP-complete.

Ezample 1. Consider a problem with four objects that we must either take or
leave behind. We can represent this by four variables (x1,22,z3,z4) and two
values per domain D; = {0,1} (1 and 0 mean take and discard, respectively).
Suppose the existence of three constraints that must be satisfied: x3Vz4, 4 A 22,
and z1Vzs (V means ezclusive or). The problem is a CSP with four solutions:
0010, 0011, 0110 and 1001.

Weighted CSP (WCSP) [4,20] are CSPs where the set of constraints is re-
placed by a set of cost functions (F) which denote preferences among tuples. A
cost function f over S C X associates costs to tuples ¢ such that var(t) = S. The
set of variables S is the scope of f and is noted var(f). Abusing notation, when
var(f) C var(t), f(t) will mean f(t[var(f)]). In the sequel, we assume costs to
be natural numbers. The set F defines the objective function,

F(X) =) f(X)

fer

A WCSP is a quadruple P = (X,D,F,K), where X and D are variables
and domains. F is the set of cost functions. Value K bounds the maximum
acceptable cost of solutions. A WCSP solution is a complete assignment X such
that F'(X) < K. The task of interest consists on finding a solution with minimum
cost, if there is any. Observe that the existence of K is assumed without loss of
generality, since it can be set to an arbitrarily large value. However, K can be
used to tighten the notion of solution if we want to guarantee a certain degree
of quality. Its importance will become clear in Section 5.

Example 2. Consider the problem of Example 1. Suppose that taking object 4
brings a profit p; = i. Besides, objects 2 and 3 are complementary, meaning
that if both of them are taken we get an additional profit pas = 3. Making the
most profitable selection of objects can be expressed as a minimization WCSP,



where the task is to minimize the profit of discarded objects. Hard constraints
are expressed as 0, oo functions,

0, =z1Vzs3
00, otherwise

hi(z1,z3) = {

0, I3 Vv s
00, otherwise

0, z2Azy4
oo, otherwise

hs(za,24) = {

Soft constraints encoded as unary and binary functions,

Y i, IL',':O _ 0, T2 N\ T3
filw) = {0, Fas(w2, 5) = {3, otherwise

otherwise
The value of K can be trivially set to Z?:l £i(0) + f23(0,0) = 13, without fear
to miss any solution. The optimal solution is 0110 with cost 5. Observe that, if
we set K = 5, the problem has no solution.

A WCSP can be represented by its constraint graph G = (V, E) (also called
interaction graph), which contains one node per variable and one arc connecting
any pair of nodes whose variables are included in the scope of some function.
Let o be an ordering of V. The width of node i subject to o, noted w(o,1) is
the number of adjacents to ¢ which are before i in o. The width of G subject
to o, noted w(o), is the maximum width among the nodes. The induced graph
G*(0) is computed as follows: Nodes are processed in reverse order, according to
0. When processing node ¢, edges are added as needed in order to make a clique
with all its adjacent which are still unprocessed. The width of the induced graph
is called the induced width and is noted w* (o) [8].

2.1 Bucket Elimination

Bucket elimination (BE) [7,2] is a generic algorithm that can be used for WCSP
solving. It uses two operations over functions:

— The sum of two functions f and g denoted (f + g) is a new function with
scope var(f) Uvar(g) which returns for each tuple the sum of costs of f and
9,
(f +9)@) = f(t) +9(t)
— The elimination of variable x; from f, denoted f | z;, is a new function
with scope var(f) — {#;} which returns for each tuple ¢ the minimum cost
extension of ¢ to z;,

(f 4 23)(t) = min{f(t- (@i ¢ @)



where t - (z; + a) means the extension of ¢ to the assignment of a to x;.
Observe that when f is a unary function (i.e., arity one), eliminating the
only variable in its scope produces a constant.

Unfortunately, in general, the result of summing functions or eliminating vari-
ables cannot be expressed intensionally by algebraic expressions. Therefore, we
assume functions to be extensionally stored in tables. Thus, the space complexity
of storing function f is O(dlv*r())).

function BE(X, D, F, K)

1. for each i =n..1 do

2. Bi :={f € F| z; € var(f)}

3. gi = (EfGBi f)~L$la

4. if Vt, gi(t) > K then return NIL;

5. F .= (FU{g}) — B;;

6. endfor

7. t:= X\

8. for eachi=1..n do

9. V= argminaEDi{(EfeBi f)(t ) (187, A a))}

10. t:=t-(z; +v);
11. endfor

12. return(gi, t);
endfunction

Fig. 1. Bucket Elimination. Given a WCSP (X, D, F, K), the algorithm returns a con-
stant function g: (i.e, var(gi) = @) with the optimal cost, along with one optimal
assignment ¢. If there is no solution, the algorithms returns NIL.

BE (Figure 1) uses an arbitrary variable ordering o that we assume, without
loss of generality, lexicographical (i.e, o = (z1,%2,...,%5)). BE works in two
phases. In the first phase (lines 1-6), the algorithm eliminates variables one by
one, from last to first, according to o. The elimination of variable z; is done as
follows: F is the set of current functions. The algorithm computes the so called
bucket of x;, noted B;, which contains all cost functions in F having z; in their
scope (line 2). Next, BE computes a new function g; by summing all functions
in B; and subsequently eliminating x; (line 3). Then, F is updated by removing
the functions in B; and adding g; (line 5). The new F does not contain z; (all
functions mentioning x; were removed) but preserves the value of the optimal
cost. The elimination of the last variable produces an empty-scope function (i.e.,
a constant) which is the optimal cost of the problem. The second phase (lines 7-
11) generates an optimal assignment of variables. It uses the set of buckets that
were computed in the first phase. Starting from an empty assignment ¢ (line
7), variables are assigned from first to last according to o. The optimal value
for z; is the best value regarding the extension of ¢ with respect to the sum of



functions in B; (lines 9,10). We use argmin to denote the argument producing
the minimum valuation. The g;-subproblem is the subproblem formed by all the
original cost functions involved in the computation of g;. Let ¢ be an assignment
of variables 1, ..., z; 1. The correctness of BE is a direct consequence of the fact
that when processing bucket B;, g;(t[var(g;)]) is the cost of the best extension
of ¢t to variables x;, 211, .. .,%, in the g;-subproblem.

Theorem 1. [7] The complexity of BE along ordering o is time O(e x d¥”(9)+1)
and space O(n x d¥ (©)), where e is the number of functions, d is the largest
domain size, n is the number of variables and w* (o) is the induced width under
the corresponding variable ordering.

2.2 A non-standard implementation of Bucket Elimination

In this subsection we provide a non-standard implementation of the second phase
of the BE algorithm (Figure 1, lines 7-11). Although it may look unnecessarily
complex for BE, it will facilitate the comprehension of the new algorithm MO-BE
introduced in Section 4. The idea is to retrieve the optimal solution by keeping
track of the optimal cost of the different subproblems contained in each bucket.

Let B; = {fiy,---, fin, } e the set of cost functions of bucket B;. Each cost
function f;, is either an original function or the result of processing a higher
bucket B; (i-e., fi, = g;)- We define db(f;,) as the departure bucket for function
fi,, that is, the bucket where the function was generated. Therefore, db(f;,) =i
if f;, is an original function, and db(f;,) = j if fi, = g;.

7. t:=X\

8. C[1] :=gy;

9. for eachi=1..n do

10. let B; = {fi1, fiay---» fimi }

1. b:=pop({a € Di| (31" fu,)(t - (wi = a)) = C[il});

12. t:=t-(z; < b);

1B (01, 0mg) i= (i (B (@i D)), .., fi, (B (i < D)));
14. V1 <k <m; if db(f;,) # ¢ then C[db(f,)] := v;

15. endfor

16. return(g,t);

Fig. 2. Second phase of the Bucket Elimination with a non-standard implementation.

As in standard BE, the new second phase of the algorithm (Figure 2) gen-
erates in ¢t an optimal assignment of variables, considering them one at the
time, from first to last. We use an array C[1...n]. Each C[i] will store the cost
contribution of g; to the solution (namely, the optimal contribution of the g;-
subproblem) . Initially, ¢ is an empty assignment A (line 7). Clearly, C[1] is set
to g1 (line 8). The optimal value for z; is any domain value b € D; such that



C[1] = Y32, f1,(t- (#1 < b)). In line 11 one such value is selected and in line
12 added to t. The contribution of each function fi1, € Bi to the cost C[1] is
f1,(t - (z1 < b). Therefore, each contribution f1, (¢ - (z1 + b) is propagated to
the C entry of the corresponding departure bucket C[db(f1,)] (lines 13 and 14).
The same procedure is repeated for each variable z; in increasing order.

2.3 Mini-Bucket Elimination

Mini-Bucket Elimination (MBE) [9] is an approximation designed to avoid the
space and time problem of full bucket elimination by partitioning large buck-
ets into smaller subsets called mini-buckets which are processed independently.
Consider a bucket B;. The mini-bucket algorithm creates a partition Q' =
{Q1,-..,Qm} of the functions in B;. The approximation processes each subset
separately, thus computing a set of functions {g;};”,,

gi=(Y_ Nz

FEQ
Bucket elimination, on the other hand, would compute the function g;,
9i=()_ )l
fEB;

Since,

9gi m gil
OIFNEED O DFIRET
fFEB; =1 fe

the bound computed in each bucket yields a lower bound on the cost of
the solution. The quality of the bound depends on the partitioning procedure.
Given a bounding parameter k, the algorithm creates a k-partition, where each
mini-bucket includes no more than k variables. In general, greater values of &
increment the number of functions included in each mini-bucket. Therefore, the
bound will be presumably closer to the cost of the optimal solution.

Theorem 2. [9] The complezity of MBE(k) is time O(e x d*) and space O(e x
d*~1), where e is the number of functions.

3 Multiojective Weighted Constraint Satisfaction
Problem

A multiobjective WCSP (MO-WCSP) is defined as (X, D, < F;, K; >Y_,), where
X ={z1,...,zn}and D = {Dy,..., D,} are variables and domains. Each F; is a
set of cost functions defining an objective function F;(X) = >~ 5, f(X). Value
K; bounds the maximum acceptable cost for the objective function F;. Thereis a
vector-valued objective function F(X) = (Fi(X),...,Fp(X)). Given a complete
assignment X, we say that F/(X) is consistent iff Vi, F;(X) < K;. A solution is a



complete assignment X such that F'(X) is consistent. Given two solutions X and
X' such that FI(X) # F(X'), we say that X is better than X' (F(X) < F(X"))
if Vi, F(X) < F(X'). If F(X) < F(X'"), we say that F(X) dominates F(X').
A solution X is efficient or pareto optimal if there is no better solution. Let
Xg be the set of efficient solutions, and Z be their set of non-dominated costs,
also called the efficient frontier. The task in a MO-WCSP is to compute Z
(and, possibly, one or all efficient solutions for each of its elements). Observe
that |Z| = O(Hfz_l1 K;). However, Xg can be as large as O(d"), when every
assignment is efficient. Clearly, when there is only one objective function (i.e.,
p = 1), MO-WCSP is equivalent to WCSP, and |Z| = O(1). As in the WCSP
case, each MO-WCSP instance has an associated constraint graph G' computed
in the same way.

Example 3. Consider that we add a weight w; = 5 — i and a volume v; = i to
every object in our running example. We would like to select valuable objects but,
in addition, we do not want to carry a heavy and big container. The original
objective function (profit of discarded objects) is now called F;. We need to
define new cost functions F» and F3 for weight and volume. The new problem
has three solutions: 0010, 0110, and 0011, with non-dominated costs (10,2, 3),
(5,5,5), and (6,3,7), respectively.

If objects must be carried in a container with weight and volume bounded
by Ks = 5 and K3 = 6, respectively, the problem has only one solution 0010
with cost (10,2, 3).

4 Bucket Elimination for MO-WCSP

In this Section we extend BE to the MO-WCSP model. The first step is to extend
cost functions to the new multiobjective nature. A multi-cost function f with
scope var(f) C X associates to each tuple ¢ in var(f) a set of non-dominated
points in the space of consistent multiobjective costs. Thus, f(t) = {v1,...,v,},
with v; = (vi1,...,vip), such that V i,4, v;; < K; and V 4,4, v; £ v;. Observe
that |£(t)| = O(TT}=; Ki) and |f| = O([T7S Ki x xdver/).

The new algorithm will deal with multi-cost functions. Roughly, the elimi-
nation of variable z; from a multi-cost function will produce a new multi-cost
function g; such that g;(t) will contain all the efficient extension of t to the
eliminated variables x;,T;y1, .. .,%Ts, with respect the g;-subproblem. In the fol-
lowing, v + v’ will be the usual component-by-component sum. Operations over
multi-cost functions are extended as follows:

— Let f and g be two multi cost functions. Their sum h = f + g is defined as,
h(t)={v] t=t-t",v=2"+0v",v" € f(t),v" € g(t),
consistent(v),nondominated(v)}

f + g can be trivially computed in time O(Hf;ll K? x dlvar(f)var(g)l),



— Let f be a multi-cost function. The elimination of z;, h = f | z; is defined
as,
h(t) ={v| v € f(t- (x; < a)), nondominated(v)}

h = f | z; can be computed in O([T?_, K; x dv* (D).

Observe that in the p = 1 case, these definitions reduce to the classical ones.

function MO-BE(X, D, < F;, K; >V_))
F:=0
for eachi=1..p, f € F; do

for each t € var(f) do

if f(t) > K; then g(t) :=0
else g(t) := {(v1,-..,vp)} where v; = f(t) and v; = 0,Vj # 1

endfor

F:=FU{g}
endfor
9. for eachi=n...1do
10. Bi:={f € F |z € var(f)};
1. gi:= Qsep, )4 @i
12. if V¢, 9:(t) = 0 then return NIL;
13. F:=(FU {gz}) - B;;
14. endfor
15. let g1 = {v1,v2,...,0,}
16. for each j = 1..r do
17 t; =N
18. C[1] :=v;
19. for eachi=1...ndo
20. let B; = {fi,,--, fim’i }
21. Va € D; So ={(v1,...,0m;) | D1, vk = C[i], Vk, vk € fi, (- (zi < a))}
22. b :=pop({a € D;| Sa # 0})
23. tj :==t; - (x; < b);
24. (v1,-..,Um;) := pop(Ss)
25. V1 < k < m; if db(f;,) # ¢ then C[db(f;, )] := vk;
26. endfor
27. endfor
28. return (g1 = {v1,v2,...,vr}, {t1,t2,...,tx});
endfunction

O NSO WN

Fig. 3. Description of MO-BE. The input is a MO-WCSP instance (X,D,<
Fi, K; >0_1). The output is g1, a zero-arity multi-cost function which contains the
efficient frontier and, for each element v; € g1, an efficient solution ¢;. If there is no
solution, the algorithm returns NIL.

Figure 3 shows MO-BE, the generalization of BE to MO-WCSP. Its structure
is similar to standard BE. In the following, we discuss the main differences. MO-



BE receives a MO-WCSP instance (X, D, < F;, K; >F_). First of all, each cost
function f € F; is transformed into a multi-cost function A (lines 1-8). In the
new function, each h(t) contains a singleton representing the same information as
f(t) but extended to the new vectorial context. This is trivially done as follows:
if f(t) = v, then h(t) = {(vi,v2,...,vp)}, where v; = v and v; = 0,Vj # i. The
new multi-cost functions are stored in the set F.

The first phase of the algorithm (lines 9-14) computes the efficient frontier
Z. It works as BE, the only difference being that multi cost functions are used
instead of standard cost functions. Let v = (v1,...,vp) be an element of the
multi cost relation g;(t) computed during the elimination of z; (i.e, v € g;(¢)).
By construction, tuple ¢ can be consistently extended to the eliminated variables
Tiy Tiyl,---, Ty With cost v; for each objective function F;. Besides, such exten-
sion is non-dominated. After the first phase, g; contains a set of points in the
space of solutions, which is exactly the efficient frontier Z of the problem.

Let g1 contain r vector points {v1, v2, ..., v, }. The second phase (lines 16-27)
computes one efficient solution t; for every element v; € g;. The idea is the same
as in the non-standard implementation given in section 2.2, that is, to retrieve the
efficient solution keeping track of the cost contribution of each g; to the solution.
In this case, the array C[i] will store a non-dominated multi cost attainable from
9;- Initially, t; = X and C[1] = v; is the vector point for which the efficient
solution is searched. For each j, variables are considered in increasing order
Z1,...,Z, (line 19). The optimal domain value a € D; for z; is any one such
that C[1] € >3 f1,(t - (z1 + a)). Since each fi, (- (z1 + a)) contains a set of
non-dominated vectors, there must exist at least one combination of cost vectors
(V1,...,Vm,) where each v € fi,(t- (z1 < a)), such that C[1] = Y[, vk.
Let S, be the set of such combinations for domain value a (line 21). Tuple
t; is extended to variable x; with a domain value b for which exists at least
one combination (line 22-23). One arbitrary combination (v1,...,Um,) € Sp is
selected in line 24. The contribution to the solution of each f;, € B; is vg.
Therefore, it is possible to update the array C of each departure bucket (line
25). The same procedure is repeated for each variable. At the end of the process,
t; is an efficient solution with cost vector v;.

Example 4. Consider the problem instance of example 3 where the weight and
volume are not bounded. The weight and volume cost functions are, respectively:

wi(wi):{o z; =0 1},'(.'13,')={0 z; =0

The objective functions to be minimized are,

Fi :h1+h2+h3+zxiexfi+f23
‘7:2 :Eziexwi
]:3 = ZzieXpl'

The trace of the algorithm under lexicographical ordering is:



— Input: the algorithm receives the seven trivially extended multi cost functions

— (07050) T1VX3 o) (0,0,0) Ir; = 1
hy (a1, 23) = { (00,0,0) otherwise fizi) = (i,0,0) =, =0

_ (0,0,0) T3V 2y _ (0,0,0) 1’2:1/\11}3:1
ho(@s,24) = { (00,0,0) otherwise Foa(@2,23) = (3,0,0) otherwise

_ [(0,0,0) TATL L f©0,5-0,0) mi=1
ha(@2, 24) = { (00,0,0) otherwise wilzi) = (0,0,0) z; =0

— (ana ) i = 1

— Elimination of z4: By = {ha, hs, fa, ws,vs}. Their sum is by(z2, z3,24),

b4(001) = {(0,1,4)} b4(010) = {(4,0,0)} bs(011) = {(0,1,4)} b4(110) = {(4,0,0)}

Note that b4(000) = bs(100) = bs(101) = bs(111) = {} because the sum of
the multi cost functions in B, for those tuples evaluates to (00,0, 0),(c0,0,0),
(0, 00,4),(00, 1,4), respectively, and none of those cost vectors are consistent.
In the sequel, we only indicate consistent evaluations.

Projecting x4 out of by produces g4(z3,4),

94(00) = {(05 174)} 94(01) = {(47070)7 (07 174)} 94(11) = {(47070)}

— Elimination of r3: 33 = {g4,h1,f3, f23,w3,1)3}. Their sum is bg(ml,fllz,l’g),

b3(001) = {(7,2,3),(3,3,7)} bs(011) = {(4,2,3)} b5(100) = {(6,1,4)}

Projecting x3 out of bs produces g3(z1, z2),

— Elimination of z3: By = {93, f2,w2,v2}. Their sum is ba(z1, z2),

b2(00) = {(9,2,3),(5,3,7)} b2(01) ={(4,5,5)} b2(10) = {(8,1,4)}
Projecting x5 out of by produces g»(z1),
92(0) = {(97 2, 3)7 (57 3, 7)7 (45 o, 5)} gl(]-) = {(87 1, 4)}
— Elimination of z1: By = {92, f1,w1,v1}. Their sum is b;(z1),

b1(0) = {(10,2,3),(6,3,7),(5,5,5)} b1(1) ={(8,5,5)}

Projecting z; out of by produces ¢g; = {(10,2,3),(6,3,7),(5,5,5)}
Note that (8,5,5) is not a valid cost vector as it is dominated by (5,5, 5).



Therefore, the problem has three pareto optimal solutions. We show how to
retrieve the one with costs (10, 2, 3):

— Initially, t = A, and C[1] = (10,2, 3).
— Variable z; assignment: There are two values for zy,

t=(z1+0), So=1{(9,2,3),(1,0,0),(0,0,0),(0,0,0))}
t:(wlkl)a Sl:{}

Only value 0 satisfies the sum of multi cost functions in B; because Sy is not
empty. Therefore, ¢ is updated to (z; < 0) and the cost contribution of the
departure bucket of every non original multi cost function in B; is updated
with its corresponding v; € (v1,...,v4). In this case, there is only one non
original function, g». Therefore, C[db(g2)] = C[2] = (9, 2, 3).

— Variable x5 assignment: There are two values for xs,

t= (.’L'1 <~ 07;1:2 «— 0)7 So = {((77273)7 (27070)7 (07070)7 (07070))}
t= (.’171 (—0,2132 (—1), S1 Z{}

Only value 0 satisfies the sum of multi cost functions in B because Sy is not
empty. Therefore, ¢ is updated to (z1 < 0,22 + 0) and C[db(g3)] = C[3] =
(7,2,3).

— Variable z3 assignment: There are two values for z3,

t= (1‘1 — 0,22 « 0,23 « 0); So = {}
t= ('Z'l « OJxQ ~ 071'3 « 1)7 S = {((470a0)7 (01070)1(070;0)7 (3:070):(072:0)7 (0a0:3))}

Only value 1 satisfies the sum of multi cost functions in B3 as S; is not
empty. Therefore, ¢ is updated to (z1 < 0,22 + 0,23 « 1) and C[db(g4)] =
Cl4] = (4,0,0).

— Variable x4 assignment: There are two values for x4,

t=(z1 ¢ 0,22 « 0,23 « 1,24 < 0), So ={((0,0,0),(0,0,0),(4,0,0),(0,0,0),(0,0,0))}
t= (1171 — 0,20 « 0,23 « 1,24 ].), S = {}

Only value 0 satisfies the sum of multi cost functions in By because Sy is
not empty. Therefore, ¢ is updated to (z; < 0,25 + 0,23 + 1,24 + 0). As
there is no original function, the cost contribution vector C' is not updated.
As a result, the pareto optimal solution with objective vector (10,2, 3) is
(1 + 0,20 < 0,23 < 1,24 < 0).

Theorem 3. MO-BE is space O(n x Hf;ll K;xd®") and time O(e x Hf;ll K? x
dv"t1), where n is the number of variables, e is the number of cost functions,
w* is the graph induced width, K; is the bound of each objective function, p is
the number of objective functions, and d is the largest domain size.

Proof. Let f be an arbitrary multi-cost function of arity r. Observe that its space
complexity is O(Hf;l1 K;xd") because: there are O(d") different instantiations of
the problem variables and, for each instantiation, there may be up to O(Hf;ll K;)
undominated instantiations. Since the largest arity among the functions that
MO-BE needs to store is bounded by O(w*) and there are n such functions, the
space and time complexities clearly hold.



Observe that K, does not appear in the complexity of MO-BE. Since the
order of the different objective functions is arbitrary, a straightforward opti-
mization consists on leaving the largest K; for the last position.

Property 1 In a problem with a single objective function (i.e., p=1), the algo-
rithm MO-BE is equivalent to BE.

5 Application of MO-BE to WCSP with Global
Constraints

It has been recently observed that there are some constraints (typically called
global) that appear very frequently in constraint problems. The arity of these
constraints is usually large and not to take into account their semantics during
the solving process yields inefficient algorithms. A well known example is the
enforcement of arc-consistency in the all-diff constraint: if arc-consistency is
enforced with a generic algorithm the complexity is exponential on its arity, but
there is a specialized algorithm that achieves the same result in quadratic time
[19].

A similar situation has been detected when dealing with some constraints in
the context of BE. Large arity constraints produces large cliques in the constraint
graph which, in turn, imply a large induced width. Consequently, the space
and time complexity of BE becomes prohibitive. In our previous work [15,14],
we solved this problem for one important global constraint called knapsack.
The idea was to make BE deal explicitly with knapsack constraints, exploiting
their semantics. The new algorithm introduced so-called state variables to record
useful information during the elimination of the variables. The benefit of such
approach was that the constraint graph does not have to take into account
the knapsack constraints. Therefore, they do not contribute by means of their
(presumably large) scope, but only by their number. As a result, exponentially
expensive problems with classical BE may become polynomial with the new
algorithm.

In this Section we show that we can obtain exactly the same results with
MO-BE. The idea is to reformulate global constraints as objective functions. We
illustrate how to do it with knapsack constraints, global cardinality constraints
and all-diff constraint.

Knapsack constraints (a.k.a. capacity constraints) arise in problems where
some variables represent the potential uses of shared resources [22,21]. A knap-
sack constraint C; = (r;, K;) with scope var(C;) C X bounds the use of a re-
source 4. It is defined by a set of resource consumption functions r; = {r;;|z; €
var(C;)} and the resource availability K;. Let a be a domain value of z; €
var(C;), then r;;(a) is the number of units of the resource ¢ that a consumes
when assigned to z;. An assignment ¢ of all variables in var(C;) satisfies the
constraint if 3, . )¢, 7ij(a) < K.

Consider a WCSP P = (X, D, F = F; U F2, K) where the set of cost func-
tions is formed by general cost functions JF; and knapsack constraints Fo =



{C1,...,Cc}. We can reformulate the problem into an equivalent MO-WCSP
P = (X,D,< Fi,K > U < r;, K; >5,). There is one objective function for
each knapsack constraint C; indicating that the consumption of resource ¢ must
be minimized and it is not acceptable to take more than K; units. Besides, the
set of general constraints in F; define an additional objective function Fii,
subject to upper bound K. Once the efficient frontier Z of P’ is computed, all
vector components associated to knapsack constraints must be removed from
every v € Z leaving in Z a set of scalar values. Its minimum is the problem
optimal solution.

The constraint graph of P will include the knapsack constraints. Thus, solving
P with BE will be exponential in the induced width w* where knapsack con-
straints are included in the constraint graph. On the other hand, the constraint
graph of P’ will not be affected by the knapsack constraints because their corre-
sponding objective functions have unary cost functions only, which do not add
arcs to the graph. Let w'* denote the corresponding induced width. Solving P’
with MO-BE will be time O([];_, K;* x d¥"*!) and space O([];_, K; x d¥"*1),
where e is the number of capacity constraints, and d the largest domain size.

A global cardinality constraint (gec) bounds the number of times values can
be assigned to variables. This type of constraint commonly occurs in rostering,
timetabling, sequencing, and scheduling applications [18].

For simplicity, we consider only one gcc over the whole set of variables X' =
{z1,...,z,} restricting values {ay, ..., ap}. Let Ib; and ub; denote the bounds on
the number of occurrences of value a;. As already suggested in [23], the gee can
be modeled with 2p-knapsack constrains. The first p knapsack constraints are
C; = {rj,ub;} where Vk < n, r;;(a) equals 1 when a = a;, and 0 otherwise. They
enforce the upper bounds, that is, the number of assignments of value a;. The
last p knapsack constraints are C} = (r},n —1b;), where Yk < n, r};(a) equals 0
when a = a;, and 1 otherwise. They enforce the lower bounds, by reformulating
them as upper bounds, that is, the number of assignments of values different
from a;.

Under this formulation, we can solve the problem using the same approach
as in the previous subsection. However, MO-BE becomes more efficient than its
worst-case complexity because in this particular case each knapsack constraint
Cj is related to another constraint C} by the fact that rjx(a) = 1—77,(a). Then,
function g;, computed for each bucket i, satisfies that: if (v1,...,vp,v1,...,0p,...)
9i(t), then ijl,,pvg =n — i —v;. As a consequence, the size of each multi-cost
function entry is g;(t) = O( 5.’:1 min{ub;,n — b;}). The resulting complexity of
MO-BE when solving a WCSP with one gec is time 0(H§:1 min{ub;,n — 1b;}* x
d¥" ) and space O([[}_, min{ubj,n —Ib;} x d*").

A clear consequence of the previous complexity indicates that MO-BE is a
suitable algorithm for WCSPs with one gcc, when the gce restrict the number of
occurrences of a small number of domain values, even if the restriction applies
to a large number of variables.

An all-different constraint (all-diff) [19] is a well-known specialization of a
gee where n variables must take different values among n candidates. In this



case, Ib; = 0 and ub; = 1 for every domain value a;. For simplicity, we consider
a WCSP with only one all-diff constraint among all the variables. Following
the previous ideas of the previous two Subsections, it can be reformulated as a
MO-WCSP.

As the number of bounded domain values is n, the algorithm MO-BE is
time O(22" x d*"*1), which makes it worst than search. This result is hardly a
surprise since it is well known that the traveling salesman problem is not suitable
for dynamic programming techniques due to its implicit all-diff constraint that
cannot be processed efficiently [5].

The approach presented along this Section has a potential source of ineffi-
ciency: an objective function still contributes to the algorithm space and time
complexity even when its scope is totally processed. This problem can be over-
come using the same idea describe in [14]. Namely, objective functions can be
deactivated as soon as their scope is completely processed

6 Mini-Buckets with multi-objective WCSP

The concept of lower bound in mono-objective optimization can be extended to
multi-objective optimization [11]. L is a lower bound set of R if,

1. Vv € R, Jv' € L such that either v = v’ or v' < w.
2.VweR, YW eL,v£v'.

The idea of mini-buckets (MBE) can be adapted to the multiobjective situ-
ation in order to generate lower bound sets. The only difference between MBE
and the new algorithm MO-MBE is that cost functions are replaced by multi
cost functions. In MO-MBE large arity buckets are also split into subsets with
a bounded arity. Each subset is processed separately, with bounded time and
space complexity.

Theorem 4. Ezecuting MO-MBE with a MO-WCSP instance produces a lower
bound set L of its efficient frontier Z.

Proof. Consider bucket B;. MO-MBE creates a partition Q' = {Q1,...,Qm} of
the bucket, where the join scope of each subset Q; contains a bounded number
of variables. MO-MBE processes each mini-bucket separately, thus computing a
set of multi-cost functions g;,,

i :(z f)\lfxz
FEQ:,

MO-BE, on the other hand, would compute the multi cost function g;,

gi=() Niaz

feB;

/ Fizr:st we show(t)hat 2 j=1...m 9i; is a lower bound set of g;. Let v € g;(t) and
vV E) gi.(t):
Jj=1l...m J



1. By definition of the projection of multi cost functions, there exists a do-
main value a € D; such that v € } ¢ p f(t- (z; < a)). Therefore, v €
2i=1..m 2opeq, (- (#i < a)). As in each mini-bucket the value assigned

to x; should be different, either v or a vector v’ that dominates v is an
element of ), _, . 9;(t). As a result, the first condition for a lower bound
set follows.

2. Let v € g;(t). For the first property, either v or a vector v’ that dominates v
is an element of 3 7,_,  g;,(t). By definition, the sum of multi cost functions
contains non-dominated vectors. As a result, if v € 37, g5 (%), there is
no v’ € ) ,_, . g;(t) such that v dominates v'. If v ¢ >,  gi(t),
there is a v’ € }7;_, . 9i,(t) such that v’ dominates v. Therefore, there is
no vector in >, ; . g;(t) dominated by any other vector in g;(t) and the
second condition for a lower bound set also holds.

It is easy to see that the lower bound definition satisfies transitivity. Since
MO-MBE processes buckets where all functions are either original or recursively
processed by MO-MBE (which are lower bounds themselves), all functions com-
puted by MO-MBE in a bucket are lower bound sets of the function that MO-BE
would compute at that bucket.

Theorem 5. MO-MBE, with accuracy parater k is space O(e x [['=] K;xd*~1)
and time O(e X Hf;ll K? x d*), where e is the number of cost functions, K; is
the bound of each objective function, p is the number of objective functions, and
d is the largest domain size.

7 Computational Experiments

In our first experiment we analyze the applicability of MO-MBE in mono-
objective optimization problems with knapsack constraints. To that aim, we
run MO-MBE on instances from the Spot5 benchmark [1]. They are taken from
the daily scheduling of an earth observation satellite. The problem is to sched-
ule a subset of photographs from a set of candidates, which will be effectively
taken by the satellite. The resulting subset of photographs must satisfy a large
number of hard constraints and at the same time maximize the importance of
selected photographs!. Some instances include a capacity constraint expressing
the maximum recording capacity on board of the satellite which cannot be sur-
passed (each photograph has an associated storage requirement). While all the
instances without capacity constraint have been solved, all the instances with
capacity constraint but two remain unsolved. We experiment with unsolved in-
stances with capacity constraint.

All the instances are encoded as WCSPs: Potential photographs are the vari-
ables. The different ways to take a photograph are the different domain values
(an additional value is added to each variable meaning that the photograph is

! Without loss of generality, in the following we will assume a minimization problem
where the objective function is to minimize the importance of discarded photographs



MO-MBE (k) MBE(k)

Instance | nb. vars | nb. constr. k cost time cost time
5 (244433 | 0.31 123174 | 0.16
1506 940 14301 10 [249479| 5.04 |138216| 1.36

15 | 254513 | 124.92 | 167267 | 25.74
5 [327152| 0.25 |[125059| 0.12
1401 488 10476 10 | 333151 5.19 |137060| 0.97
15 | 343145 | 154.66 | 165064 | 21.57
5 (326249 0.3 [121123| 0.15
1403 665 12952 10 |339265| 5.58 |[137131| 1.22
15 | 340267 | 156.51 |169144 | 26.3
5 (322426 | 0.38 (117170| 0.22
1405 855 17404 10 | 334436 | 7.25 |150171| 1.69
15 | 341452 | 153.2 |171195| 35.58
5 [321475| 0.43 (118172 0.28
1407 1057 20730 10 | 342519 | 6.67 |147205| 2.06
15 | 345543 | 281.7 |175250 | 41.23

Fig. 4. Experimental results on Spot) instances. Each problem is solved with MO-
MBE(k) and MBE(k) with different values of k.

not taken). Hard constraints are transformed into cost functions that return cost
oo to infeasible assignments and 0 otherwise. The importance of each photograph
is encoded with a unary cost function which returns 0 if the photograph is taken
and its importance if the photograph is not taken. The scope of the capacity
constraint is the whole set of variables.

One possible way to compute lower bounds consists on removing the capacity
constraint from the instances (the optimum of this relaxation will obviously be
less than or equal to the optimum in the original problem) and then execute
classical MBE. An alternative is to reformulate the problem as bi-objective. The
sum of all cost functions constitute the first objective function F;j. The capacity
constraint is added as a second objective function F5. We can execute MO-MBE.

We compare these two approaches. Figure 4 reports the lower bounds ob-
tained for different values of the accuracy parameter k as well as the CPU time
required for each execution. It can be observed that for all instances MO-MBE
produces much higher lower bounds than MBE. While this is clearly true if we
compare executions with the same value of k, such comparison is not totally fair
because MO-MBE has a higher complexity due to the computation of multi-cost
functions. However, if we look at executions with a similar CPU time we still
observe a clear dominance of MO-MBE.

In our second experiment we evaluate the trade-off between accuracy and
efficiency of MO-MBE. For that goal, we generate random 2-SAT instances with
Allen van Gelder mkenf’s generator?. We consider two simultaneous optimiza-
tion criteria: The first one is to minimize the number of violated clauses (i.e,

% ftp://dimacs.rutgers.edu/pub/challenge/satisfiability /contributed /UCSC /instances



the Max-SAT problem). The second one is to minimize the number of boolean
variables taking value 0 (i.e, the Max-Ones problem)

We generated sets of instances with binary clauses, n = {10,20,25}, and a
total number of different clauses corresponding to the {25%,50%, 75%, 100%}
of the maximum number of combinations. For each parameter configuration
samples of 50 instances were generated. The small size of these problems allowed
solving them exactly with MO-BE.

Observe that the efficient frontier defines a region in the 2 dimensional space.
One usual way to evaluate the accuracy of lower bound sets is to compute the
percentage of area not covered by the lower bound set with respect the efficient
set. Figure 5 shows average results for the area not covered by the lower bound set
of MO-MBE with respect the efficient set (computed with MO-BE) for different
values of k. It also reports the average CPU time in seconds for the different
accuracies of MO-MBE. The first thing to be observed is that low values of
k provide fairly good approximations (15-45% uncovered area) with very little
computational efford. Increasing the value of & to higher values allows MO-MBE
to compute much more accurate lower bound sets.

Observe that when increasing the number of clauses, the accuracy of MO-
MBE with the same value of k also increases (i.e., the proportion of uncovered
area decreases). The reason for that behavior is that a low number of clauses
means that each objective is fairly easy to satisfy and all efficient solutions have
low values for every objective. Since costs are natural numbers, the region covered
by the efficient frontier has a coarse granularity. Thus, even a close sub-optimal
solution will be of bad quality if we measure it as the proportion of uncovered
area.

8 Conclusion and Future Work

Problems involving the optimization of more than one objective are ubiquitous
in real world domains and little considered in the constraint community. In this
paper we have extended the weighted constraint satisfaction problem (WCSP)
to multiobjective optimization (MO-WCSP). Then, we have generalized bucket
elimination (BE) and mini-bucket elimination (MBE) to deal with MO-WCSP.
We have shown that MO-BE can be used to solve true multiobjective problems
with bounded induced width, as well as mono-objective problems with knapsack-
like constrains when the induced width disregarding the knapsack constraints is
bounded. In the latter case, MO-BE may produce exponential savings over the
usual application of BE over the original mono-objective problem where the
knapsack constraints are taken into consideration in the induced graph. MO-
MBE can be used to compute lower bound sets of multiobjective problems. The
accuracy parameter k of the mini-buckets technique allows two potential uses of
MO-MBE. With high values of k, it can be used to obtain good quality lower
bounds of problems that cannot be solved exactly. It can be used in combination
with metaheuristic algorithms in order to bound the actual efficient frontier.



| 2-MaxSat-MaxOnes: mean values on 50 instances |

n =10 n =20 n=2>5
nb. clauses| k %U time %U time %U time
3 32.09 0.0006 42.76 0.0014 45.59 0.0028
6 10.74 0.0008 22.75 0.0062 28.89 0.0086
25% 9 1.31 0.0006 12.36 0.033 18.09 0.061
12 6.40 0.2136 9.19 0.461
15 2.85 1.2234 5.47 3.4168
3 22.47 0.0004 31.06 0.0056 25.12 0.006
6 6.99 0.0002 16.93 0.011 13.79 0.0174
50% 9 0.95 0.0018 8.54 0.062 7.02 0.1322
12 4.49 0.3904 3.50 1.0032
15 2.12 2.4714 2.03 7.746
3 18.47 0.0012 25.02 0.0056 26.12 0.0085
6 4.43 0.0004 13.93 0.0146 16.37 | 0.02375
75% 9 0.78 0.0048 7.57 0.0954 10.42 0.1645
12 3.48 0.6066 4.94 1.38
15 1.93 3.8558 2.75 9.574
3 15.40 0.001 21.21 0.0084 22.60 |0.0138776
6 5.43 0.0006 11.65 0.0212 14.21 |0.0346939
100% 9 0.58 0.0098 6.06 0.133 8.84 |0.218776
12 3.04 0.8154 4.42 1.75633
15 1.48 5.287 2.53 13.489

Fig.5. Trade-off between accuracy and efficiency of MO-MBE(k) on 2-MaxSat-
MaxOnes.

With low values of k, it can be used inside a branch and bound solver to increase
its pruning capability.

In our current research we are considering the extension of MO-BE to the
more general framework of Semiring-based CSPs which allows a much more
general specification of multiobjective optimization. We are also interested in
detecting other global constrains that can be processed with multiobjective al-
gorithms. Finally, we want to evaluate the practical potential of MO-BE for
problems with bounded induced width and branch and bound with MO-MBE
for problems with unbounded induced width.
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