
Solving Simple Planning Problems with More Inference and No Search

Vincent Vidal and Héctor Geffner

Abstract

Many problems used in AI planning including Blocks,
Logistics, Gripper, Satellite, and others lack the interac-
tions that characterize puzzles and can be solved non-
optimally in low polynomial time. They are indeed easy
problems for people, although as with many other prob-
lems in AI, not always easy for machines. In this work,
we study the type of inferences that are required in a
domain-independent planner for solving simple prob-
lems such as these in a backtrack-free manner by per-
forming polynomial node operations. For this, we make
use of the optimal temporal planner CPT which com-
bines a POCL branching scheme with strong inference
mechanisms, and show that a few simple and general
additional inference mechanisms suffice to render the
search over various domains backtrack free. This is an
interesting empirical finding, we believe, that may con-
tribute to the development of more robust automated
planners, and to a better understanding of human plan-
ning. Significant performance gains in relation to CPT
are also reported.

Introduction
Many problems used in AI planning including Blocks, Lo-
gistics, and others lack the interactions that characterize puz-
zles and can be solved non-optimally in low polynomial
time. They are indeed easy problems for people, although
as with many other problems in AI, not always easy for
machines. In this work, we want to study the type of infer-
ences that are required in a domain-independent planner for
solving simple problems such as these in a backtrack-free
manner by performing polynomial operations in every node.
For this, we make use of the optimal temporal planner CPT
which combines a POCL branching scheme with strong in-
ference mechanisms (Vidal and Geffner 2004a), and show
that a few simple and general additional inference mech-
anisms suffice to render the search over various domains
backtrack free.

We will refer to domain-independent planners that aim to
solve simple problems in a backtrack-free manner by per-
forming low polynomial operations in every node, aseasy
planners.The development of easy planners, we believe, is

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a crisp and meaningful goal which may contribute not only
to the development of more robust automated planners, but
also to a better understanding of human planning. Humans
indeed are quite good at solving these simple problems, and
while it is often assumed that this ability is the result of
domain-dependent strategies, our results suggest that they
may also result from simple but general inference mecha-
nisms.

Easy planners are suboptimal planners, but while sub-
optimal planners aim to solve problems, and optimal plan-
ners aim to solve problems optimally, easy planners aim to
solve simple problems with low polynomial computations
per node andno search.By itself, CPT like other SAT and
constraint-based optimal planners (Kautz and Selman 1999;
Rintanen 1998; Do and Kambhampati 2000), does not make
for a good suboptimal planner and much less for an easy
planner. Indeed, while SAT and constraint-based planners
can be used with large, non-optimal planning horizons, they
face two problems:

1. SAT and CSP encodings based on one variable per time
point, as normally used, become too large to handle for
large planning horizons,

2. the constraint that requires the goals to be true at the plan-
ning horizon becomes ineffective when the horizon is set
too high.

In CPT the first is not a problem because, being a temporal
planner,CPT uses temporal rather than boolean encodings.
Thus, the use of a large bound on the admissible makespan
of plans has a direct effect on thedomainof the temporal
variables but not in theirnumber.

CPT, on the other hand, does not escape from Problem 2:
with a large bound on the makespan, the search becomes less
constrained and focused, and even problems that are solved
backtrack free with the optimal bound are not solved at all
after thousands of backtracks when a larger bound is used
instead. In this work, we tackle this problem by extending
the inferential capabilities ofCPT so that it relies less on
inferences drawn from the bounding constraint and more on
domain-independent inferences not captured byCPT.

The paper is organized as follows. We first review the
CPT planner, discuss its strength as an optimal planner and
its weakness as a suboptimal planner, and introduce exten-
sions of the inferential machinery ofCPT that render a search

backtrack free over wide range of domains. We then evalu-
ate the resulting planner, eCPT, and discuss implications and
open ends.

CPT
CPT is a domain-independent temporal planner that com-
bines a branching scheme based on Partial Order Causal
Link (POCL) Planning with powerful and sound pruning
rules implemented as constraints (Vidal and Geffner 2004a).
The key novelty inCPT in relation to other formulations
(McAllester and Rosenblitt 1991; Kambhampatiet al.1995;
Weld 1994) is the ability to reason about supports, prece-
dences, and causal links involving actions that are not in the
plan. In this way,CPT can prune the start time and supports
of actions that are not yet in the plan, rule out actions from
the plan, detect failures early on, etc.

CPT uses a simple extension of the Strips language that
accommodates concurrent actions with integer durations. A
temporal planning problem is a tupleP = 〈A, I, O, G〉
whereA is a set of ground atoms,I ⊆ A and G ⊆ A
represent the initial and goal situations, andO is the set of
ground Strips operators, each with precondition, add, and
delete listpre(a), add(a), anddel(a), anddurationdur(a).
As is common in POCL Planning, there are also the dummy
actionsStart andEnd with zero durations, the first with
an empty precondition and effectI; the latter with precon-
dition G and empty effects. As inGRAPHPLAN (Blum and
Furst 1995), two actionsa anda′ interfere when one deletes
a precondition or positive effect of the other.CPT follows the
simple model of time in (Smith and Weld 1999) where in-
terfering actions cannot overlap in time, and produces valid
plans with minimummakespan.

The basic formulation of theCPT planner can be de-
scribed in four parts:preprocessing, variables, constraints,
and branching.For simplicity, we follow (Vidal and Geffner
2004a) and assume that no action in the domain can be done
more than once in the plan. This restriction is removed in the
last version ofCPT, which is the one that we use, that intro-
duces a distinction between action types and tokens. Such
details, however, reported in (Vidal and Geffner 2004b), are
not needed here and are omitted.

Preprocessing
In the preprocessing phase,CPT computes the heuristic val-
uesh2

T (a) andh2
T ({p, q}) for each actiona ∈ O and each

atom pair{p, q} as in (Haslum and Geffner 2001). The val-
ues provide lower bounds on the times to achieve the pre-
conditions ofa and the pair of atomsp, q, from the initial
situationI. The (structural) mutexesare then identified as
the pairs of atomsp, q for which h2

T ({p, q}) = ∞. An ac-
tion a is said toe-deletean atomp when eithera deletesp,
a adds an atomq such thatq andp are mutex, or a precon-
dition r of a is mutex withp anda does not addp. In all
cases, ifa e-deletesp, p is false after doinga; (Nguyen and
Kambhampati 2001).

In addition, the simpler heuristich1
T is used for defining

distancesbetween actions (Van Beek and Chen 1999). For
each actiona ∈ O, the h1

T heuristic is computed from an

initial situation Ia that includes all factsexcept those that
are e-deleted bya. The distancesdist(a, a′) are then set to
the resultingh1

T (a′) values. These distances encode lower
bounds on theslack that can be inserted between the com-
pletion ofa and the start ofa′ in any legal plan in whicha′

followsa. They are not symmetric in general and their calcu-
lation, which remains polynomial, involves the computation
of theh1

T heuristic|O| times.

Variables and Domains
The state of the planner is given by a collection of variables,
domains, and constraints. As emphasized above, the vari-
ables are defined for each actiona ∈ O and not only for the
actions in the current plan. Moreover, variables are created
for each preconditionp of each actiona as indicated below.
The domain of variableX is indicated byD[X] or simply
as X :: [Xmin, Xmax] if X is a numerical variable. The
variables, their initial domains, and their meanings are:

• T (a) :: [0,∞] encodes the starting time of each actiona,
with T (Start) = 0

• S(p, a) encodes the support of preconditionp of actiona
with initial domainD[S(p, a)] = O(p) whereO(p) is the
set of actions inO that addp

• T (p, a) :: [0,∞] encodes the starting time ofS(p, a)
• InP lan(a) :: [0, 1] indicates the presence ofa in plan;

InP lan(Start) = InP lan(End) = 1 (true)

VariablesT (a), S(p, a), andT (p, a) associated with actions
a which are not either in or out of the current plan (i.e., ac-
tions for which theInP lan(a) variable is not set to either0
or 1 yet) areconditional in the following sense: these vari-
ables and their domains are meaningful only under the as-
sumption that they will be part of the plan. In order to ensure
this interpretation, some care needs to be taken in the prop-
agation of constraints as explained in (Vidal and Geffner
2004a).

Constraints
The constraints correspond basically to disjunctions, rules,
and precedences, or their combination. Temporal constraints
are propagated by bounds consistency (Marriot and Stuckey
1999). The constraints apply to all actionsa ∈ O and all
p ∈ pre(a); we useδ(a, a′) to stand fordur(a)+dist(a, a′).

• Bounds: For all a ∈ O, T (Start) + dist(Start, a) ≤
T (a) andT (a) + dist(a,End) ≤ T (End)

• Preconditions: Supportera′ of preconditionp of a must
precedea by an amount that depends onδ(a′, a):

T (a) ≥ min
a′∈[D(S(p,a)]

(T (a′) + δ(a′, a))

T (a′) + δ(a′, a) > T (a) → S(p, a) 6= a′

• Causal Link Constraints: for all a ∈ O, p ∈ pre(a) and
a′ that e-deletesp, a′ precedesS(p, a) or followsa

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a)

∨ T (a) + δ(a, a′) ≤ T (a′)

• Mutex Constraints: For effect-interferinga anda′1

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)

• Support Constraints: T (p, a) andS(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

T (p, a) 6= T (a′) → S(p, a) 6= a′

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

Branching
As in POCL planning, branching inCPT proceeds by it-
eratively selecting and fixing flaws in non-terminal states
σ, backtracking upon inconsistencies. A stateσ is given
by the variables, their domains, and the constraints involv-
ing them. The initial stateσ0 contains the variables, do-
mains, and constraints above, along with thebounding con-
straint T (End) = B whereB is the current bound on the
makespan, which in the optimal setting is set to a lower
bound, and is then increased until a plan is found. A state is
inconsistent when a non-conditional variable has an empty
domain, while a consistent stateσ with no flaws is agoal
statefrom which a valid planP with boundB can be ex-
tracted by scheduling the in-plan variables at their earliest
starting times.

The definition of ‘flaws’ parallels the one in POCL plan-
ning expressed in terms of the temporal and support vari-
ables, with the addition of ‘mutex threats’:

• Support Threats: a′ threatens a supportS(p, a) when
both actionsa anda′ are in the current plan,a′ e-deletes
p, and neitherTmin(a′) + dur(a′) ≤ Tmin(p, a) nor
Tmin(a) + dur(a) ≤ Tmin(a′) hold,

• Open Conditions: S(p, a) is an open condition when
|D[S(p, a)]| > 1 holds for an actiona in the plan,

• Mutex Threats: a anda′ constitute amutex threatwhen
both actions are in the plan, they are effect-interfering,
and neitherTmin(a)+dur(a) ≤ Tmin(a′) norTmin(a′)+
dur(a′) ≤ Tmin(a) hold.

Flaws are selected for repair in the following order: first Sup-
port Threats (ST’s), then Open Conditions (OC’s), and fi-
nally Mutex Threats (MT’s). ST’s and MT’s are repaired by
posting precedence constraints, while OC’s are repaired by
choosing a supporter, as usual in POCL planning.

eCPT
CPT is an optimal temporal planner with good performance
which is competitive with the best SAT parallel planners
when actions have uniform durations. At the same time,
for non-optimal planning,CPT has the advantage that the
size of the encodings does not grow with the bound; in-
deed the bound inCPT enters only through the constraint
T (End) = B, which affects the domains of the variables
but not their number. In spite of this, however,CPT does

1Two actions are effect-interfering inCPT when one deletes a
positive effect of the other, and neither onee-deletesa precondition
of the other.

not make for a good suboptimal planner, because like SAT
and CSP planners it still relies heavily on the bounding con-
straint which becomes ineffective for large values ofB.

Figure 1 shows the performance ofCPT for the Tower-
n problem for several values ofn and several horizonsB.
Tower-n is the problem of assembling a specific tower ofn
blocks which are initially on the table. This is a trivial prob-
lem for people, but as shown in (Vidal and Geffner 2004a), it
is not trivial for most optimal planners.CPT, however, solves
this problem optimallybacktrack freefor any value ofn. As
the figure shows, however, the times and the number of back-
tracks increase when the horizonB is increased above the
optimal bound, and for large values ofB, CPT cannot solve
these problems after thousands of seconds and backtracks.

The figure also shows the performance of eCPT, the plan-
ner that it can be seen, while the performance ofCPT de-
grades with the increase of the boundB, the performance of
eCPT remains stable, and actuallybacktrack freefor the dif-
ferent values ofB. eCPT exploits the flexibility afforded by
the Constraint-Programming formulation underlyingCPT,
extending it with inferences that do not rely as much on the
bound, and which produce a backtrack-free behavior across
a wide range of simple domains. In this section we focus on
such inferences.

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

T
im

e
(s

ec
on

ds
)

Bound

n=5, eCPT
n=5, CPT
n=10, eCPT
n=10, CPT
n=15, eCPT
n=15, CPT
n=20, eCPT
n=20, CPT

Figure 1: Performance ofCPT and eCPT over Tower-n for
various numbers of blocksn and boundsB. Curves that di-
verge correspond toCPT; curves that remain stable to eCPT.

Impossible Supports
Many supports can be eliminated at preprocessing avoiding
some dead-ends during the search. For example, the action
a′ = putdown(b1) can never support the preconditionp =
handempty of an action likea = unstack(b1, b3). This is
because actiona has another preconditionp′ = on(b1, b3)
which is e-deleted bya′ (false aftera′) and which then
would have to be reestablished by another actionb before
a. Yet it can be shown that in this domain, any such action
b e-deletesp and is thus incompatible with the causal link
a′[p]a.

More generally, letdist(a′, p, a) refer to a lower bound
on the slack between actionsa′ anda in any valid plan in
which a′ is a supporter of preconditionp of a. We show
that for some cases, at preprocessing time, it can be shown
that dist(a′, p, a) = ∞, and hence, thata′ can be safely
removed from the domain of the variableS(p, a) encoding
the support of preconditionp of a.

This actually happens when some preconditionp′ of a is
not reachablefrom the initial situation that includes all the
facts except those e-deleted bya′ and wherethe actions that
either add or deletep are excluded.The reason for this ex-
clusion is that ifa′ supports the preconditionp of a then it
can be assumed that no action adding or deletingp can occur
betweena′ anda (the first part is the systematicity require-
ment (McAllester and Rosenblitt 1991)). By a proposition
being reachable we mean that it makes it into the so-called
relaxed planning graph; the planning graph with the delete
lists excluded (Hoffmann and Nebel 2001).

This simple test prunes the actionputdown(b1) as a
possible support of the preconditionhandempty of action
unstack(b1, b3), the actionstack(b1, b3) as a possible sup-
port of preconditionclear(b1) of pickup(b1), etc.

Unique Supports
We say that an actionconsumesan atomp when it requires
and deletesp. For example, the actionsunstack(b3, b1) and
pickup(b2) both consume the atomhandempty. In such
cases, if the actions make it into the plan, it can be shown
that their common preconditionp must have different sup-
ports. Indeed, if an actiona deletes a precondition ofa′,
anda′ deletes a precondition ofa, a anda′ are incompat-
ible and cannot overlap in time according to the semantics.
Then eithera must precedea′ or a′ must precedea, and
in either case, the preconditionp needs to be established at
least twice: one for the first action, and one for the second.
The constraintS(p, a) 6= S(p, a′) for pairs of actionsa and
a′ that consumep, ensures this, and when one of the support
variablesS(p, a) or S(p, a′) is instantiated to a valueb, b is
immediately removed from the domain of the other variable.

Distance Boosting
The distancesdist(a, a′) precomputed for all pairs of ac-
tionsa anda′ provide a lower bound on the slack between
the end ofa and the beginning ofa′. In some cases, this
lower bound can be easily improved, leading to stronger
inferences. For example, the distance between the actions
putdown(b1) andpickup(b1) is 0, as it is actually possible
to do one action after the other. Yet the actionputdown(b1)
followed bypickup(b1) makes sense only if some other ac-
tion using the effects of the first, occurs between these two,
as when blockb1 is on blockb2 but needs to be moved on
top of the block beneathb2.

Let us say that can actiona cancelsan actiona′ when
1) every atom added bya′ is e-deleted bya, and 2) every
atom added bya is a precondition ofa′. Thus, whena can-
celsa′, the sequencea′, a does not add anything that was
not already true beforea′. For example,pickup(b1) cancels
the actionputdown(b1).

When an actiona cancelsa′, and there is a preconditionp
of a that is made true bya′ (i.e.,p is added bya′ and is mu-
tex with some precondition ofa′), the distancedist(a′, p, a)
introduced above becomes∞ if all the actions that use an
effect of a′ e-deletep. In such case, as before, the action
a′ can be excluded from the domain of theS(p, a) vari-
able. Otherwise, the distancedist(a′, a) can be increased to
minb[dist(a′, b)+dist(b, a)] with b ranging over the actions

different thana anda′ that either use an effect ofa′ but do
not e-deletep or do not use necessarily an effect ofa′ but
addp (becausea′ may be followed by an actionc beforea
that e-deletesp but only if there is another actionb between
c anda that re-establishesp).

In this way, the distance between the actionsputdown(a)
andpickup(a) in Blocks is increased by2, the distance be-
tweensail(a, b) and sail(b, a) in Ferry is increased by1,
etc. The net effect is similar to pruning cycles of size two
in standard heuristic search. Pruning cycles of larger sizes,
however, appears to be more difficult in the POCL setting,
although similar ideas can potentially be used for pruning
certain sequences of commutative actions.

Qualitative Precedences
Unlike traditional POCL planners,CPT reasons withtempo-
ral precedencesof the formT (a) + δ(a, a′) ≤ T (a′) rather
than withqualitative precedences.CPT is a CP-based tem-
poral planner and such a choice arises naturally from the
representation used. Yet, the constraint propagation mecha-
nism, bounds consistency, is incomplete, and in a planning
context, it is often too weak. In particular, bounds consis-
tency does not capturetransitivity: namely from the con-
straintsA < B and B < C, it does not entailA < C.
Indeed if the initial domains of the variablesA, B, andC
is [1, . . . , 100], bounds consistency reduces the domains to
[1, . . . , 98], [2, . . . , 99], and[3, . . . , 100] respectively, which
do not makeA < C true for all value combinations. Tran-
sitivities, however, are important in planning, and thus eCPT
incorporates, in addition to temporal precedences, qualita-
tive precedences of the forma ≺ a′ not limited to the ac-
tionsa anda′ in the plan. Such qualitative precedences are
obtained every time a temporal precedence is asserted or en-
tailed, and are kept closed under transitivity.2 When a new
qualitative precedencea ≺ a′ is found, the transitive clo-
sure is computed as follows: ifa belongs to the current par-
tial plan, then for alla′′ such thata′′ ≺ a, a′′ ≺ a′ is
recorded; and ifa′ belongs to the plan, then for alla′′ such
thata′ ≺ a′′, a ≺ a′′ is recorded. The same updates are in-
crementally performed for an existing relationa ≺ a′ with a
or a′ not in the plan, as soon asa or a′ make it into the plan.

Then two inference rules make use of these qualitative
precedences for pruning further the domains of the support
variables:

• for an actiona′ in the plan that adds a preconditionp of
an actiona: if a ≺ a′ thenS(p, a) 6= a′

• for an actiona′ that adds a preconditionp of an actiona
and an actionb in the plan that e-deletesp: if a′ ≺ b and
b ≺ a, thenS(p, a) 6= a′

Action Landmarks
Like all POCL planners,CPT starts with a partial plan with
two actions only:Start andEnd. In many cases, however, it

2Temporal precedences are asserted as a result of the branching
decisions corresponding to support and mutex threats, and are in-
ferred when either supports are asserted or inferred, or when one
of the disjuncts in a causal link or mutex constraint becomes false.

is possible to infer easily that certain other actions must be in
the plan as well. For example, if a blockb1 must be moved
but is beneath two blocksb3 andb2 in that order, then the
actionsunstack(b3, b2) andunstack(b2, b1) will have to be
taken at some point, and moreover, the first must precede
the second. In eCPT we identify such necessary actions and
a partial order on them in a preprocessing step, following
the idea oflandmarksintroduced in (Porteouset al. 2001),
in the form presented in (Zhu and Givan 2004). An actiona
is a landmarkif the actionEnd is not reachablewhen the
actiona is excluded from the domain (as mentioned above,
an actiona is reachable when it makes it into the relaxed
planning graph). Also, a landmark actiona precedesa land-
mark actionb, whenb is not reachable when the actiona is
excluded. Action landmarks and the partial order on them
are computed in the preprocessing step and are included in
the initial state of the planner along with the actionsStart
andEnd. This involves the calculation of|O| relaxed plan-
ning graphs, one for each action in the domain.

Branching and Heuristics
eCPT retains the same branching scheme asCPT and the
same ordering: it first branches on support threats (ST’s),
then on open conditions (OC’s), and finally on mutex threats
(MT’s). The heuristic for selecting the support threats and
open conditions however, are slightly different, although we
have found that eCPT, working with large bounds, is much
less sensitive thanCPT to the various heuristics. Often, the
difference is that some heuristics yield few backtracks in
some of the domains, while others yield none.

Support threats〈a′, S(p, a)〉 are selected in eCPT
minimizing Tmin(a), breaking ties by first minimizing
Tmax(p, a), and then with the slack based criterion used
in CPT. Open supportsS(p, a) are selected minimizing
Tmax(p, a), breaking ties minimizingslack(a′, a) wherea′

is the producer ofa in D[S(p, a)] with min Tmin(a′). Also
the constraint posted in the second case isS(p, a) = a′, and
if that fails,S(p, a) 6= a′.

Experimental Results
We report results for assessing eCPTalong three dimensions:
as an ‘easy planner’ able to solve problems backtrack free, as
a suboptimal planner in comparison to state-of-the-art plan-
ners likeFF (Hoffmann and Nebel 2001), and as an optimal
temporal planner in comparison withCPT. The instances and
domains are all from the 2nd and 3rd Int. Planning Compe-
titions (Bacchus 2001; Fox and Long 2003), and the results
have been obtained using a Pentium IV machine running at
2.8Ghz, with 1Gb of RAM, under Linux. The time limit for
each problem is 30 minutes, and all times include prepro-
cessing. The boundB on the makespan for suboptimal eCPT
is fixed to 200, and all actions are assumed to have unit du-
ration.

Table 1 shows for each domain, the total number of in-
stances, the number of instances solved by eCPT, the num-
ber of instances solved backtrack free (and in parenthesis,
the max number of backtracks over problems solved with
backtracks), and the max number of nodes generated (in

POCL planning, this number is different than the number
of actions in the plan). For illustration purposes, the number
of instances solved and the corresponding max number of
nodes generated are reported also forFF. As it can be seen,
eCPTsolves 339 out of 350 instances, 336 of them backtrack
free, including all the instances of Blocks, Ferry, Logistics,
Gripper, Miconic, Rovers and Satellite (the 11 unsolved in-
stances are actually all caused by memory limitations in the
Claire language rather than time). This is quite remarkable,
we think; these are instances that were challenging until very
recently. eCPT solves actually 3 instances more thanFF over
this set of problems, eCPT having best relative coverage in
Blocks and DriverLog, andFF in Depots and Zeno.

In the last domain from IPC-3, Freecell,FF solves more
instances than eCPT, which no longer exhibits a backtrack-
free behavior. This domain, however, causes difficulties to
FF as well due to the presence of dead-ends (Hoffmann
2001).

eCPT FF
#pbs solved b.-free (max b.) max nd solved max nd

blocks 50 50 50(0) 275 42 146624
depots 20 18 16(4) 285 19 166141
driver 20 17 16(5) 176 15 4657
ferry 50 50 50(0) 1176 50 201
gripper 50 50 50(0) 201 50 200
logistics 50 50 50(0) 273 50 2088
miconic 50 50 50(0) 131 50 76
rovers 20 20 20(0) 207 20 3072
satellite 20 20 20(0) 249 20 5889
zeno 20 14 14(0) 70 20 933

Table 1: eCPT vs. FF: Coverage over various ‘simple’ do-
mains, showing # problems solved, backtrack free (max #
backtracks), and max # of nodes generated

Table 2 provides further details on a few instances. As
it can be seen, the runtimes for eCPT tend to scale well al-
though they do not compete with the runtimes ofFF (except a
few instances in Depots), even ifFF often generates orders-
of-magnitude many more nodes. Plan quality measured in
the number of actions in the plan is better forFF in domains
like Logistics or DriverLog, which may have to do with the
fact that eCPT computes concurrent plans.

Finally, Figure 2 compares eCPT vs. CPT asoptimalplan-
ners over all the instances. eCPT solves more instances than
CPT generating many fewer nodes and often running orders-
of-magnitude faster (although not always so as the additional
overhead sometimes does not pay off). Assuboptimal plan-
ners,eCPT solves 339 out of the 350 instances, whileCPT
solves only 65 instances, with runtimes often above 1000
seconds, resulting usually in poor plans.

Discussion
We think that the task of solving simple planning problems
in a domain-independent way with no search, by perform-
ing low polynomial operations in every node, is a crisp and
meaningful goal, which may contribute to the development
of more robust planners, and to a better understanding of
human planning. In this work we have shown that this goal
can be achieved in the temporal plannerCPT, over a wide

CPU time (sec.) Actions Nodes
eCPT FF eCPT FF eCPT (bkts) FF

bw-ipc48 59.51 - 74 - 281 (0) -
bw-ipc49 78.37 - 80 - 282 (0) -
bw-ipc50 85.09 0.02 88 86 235 (0) 195

log-ipc48 50.56 0.20 164 142 261 (0) 515
log-ipc49 51.54 0.50 176 171 273 (0) 1252
log-ipc50 50.39 0.43 161 154 245 (0) 1147

depots06 66.23 - 68 - 160 (0) -
depots07 1.27 0.01 28 25 68 (0) 142
depots08 13.13 579.89 75 43 206 (0) 172478

driver14 5.40 0.09 48 45 75 (0) 1209
driver15 39.91 0.03 69 44 130 (0) 161
driver16 147.15 - 107 - 163 (5) -

Table 2: eCPT vs. FF: further details on a few instances

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

C
P

T
 r

un
ni

ng
 ti

m
e

(s
ec

on
ds

)

eCPT running time (seconds)

blocks
ferry
gripper
logistics
miconic
rovers
satellite
zeno

Figure 2: eCPT vs. CPT for optimal planning. Area above di-
agonal is where eCPT is faster, area below diagonal is where
CPT is faster. Problems on the top border are unsolved by
CPT, on the right border are unsolved by eCPT.

range of domains, by the addition of a few simple and gen-
eral inference mechanisms. The inferences are tuned up for
rendering the search backtrack free rather than fast, and have
been obtained from observing the behavior ofCPT over var-
ious domains, and accounting for inferences that were miss-
ing and thought to be responsible of unnecessary backtracks.
The fact that this fine grain analysis is possible, and that the
results can be easily incorporated into the planner, is a clear
benefit of the CP formulation, which thus provides a way for
making use of (human)domain-specificanalysis for improv-
ing the performance of adomain-independentplanner. We
have also empirically evaluated the resulting planner eCPT,
as a suboptimal and optimal planner, and have shown signif-
icant gains overCPT.

The finding that a fewinference rulesis all that it takes
to render the search backtrack free in domains which un-
til recently were considered challenging for planners, bears
some similarity with theempirical observationin (Bonetet
al. 1997) that a simple domain-independentheuristic func-
tion can effectively guide the search for plans in many do-
mains, an idea exploited in many current planners. The two
devices for taming the search, however, are different: heuris-
tic estimators providenumericinformation to weight alter-
natives, the inference rules providestructural information
to discard alternatives. We believe that it should be possi-
ble to provesome domains backtrack free for eCPT, and in
this way identify new abstract classes of tractable problems.
Current classes, as defined in (Bäckstr̈om and Nebel 1995;

Brafman and Domshlak 2003), remain somewhat narrow,
and do not account for the tractability of existing bench-
marks (Helmert 2003). In the future, we want to investi-
gate minimal sets of rules for rendering the search back-
track free over the domains studied, simple inferences that
are currently not accounted for and which may be causing
backtracks in some domains, and ways for making the im-
plementation more efficient.

References
F. Bacchus. The 2000 AI Planning Systems Competition.AI
Magazine, 22(3):47–56, 2001.

C. Bäckstr̈om and B. Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.
A. Blum and M. Furst. Fast planning through planning graph
analysis. InProc. IJCAI-95, 1636–1642, 1995.

B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action
selection mechanism for planning. InProc. AAAI-97, pages 714–
719, 1997.

R. Brafman and C. Domshlak. Structure and complexity of plan-
ning with unary operators.JAIR, 18:315–349, 2003.

M. B. Do and S. Kambhampati. Solving the planning-graph by
compiling it into CSP. InProc. AIPS-00, pages 82–91, 2000.

M. Fox and D. Long. The 3rd international planning competition:
Results and analysis.JAIR, 20:1–59, 2003.

P. Haslum and H. Geffner. Heuristic planning with time and re-
sources. InProc. ECP-01, 121–132, 2001.

M. Helmert. Complexity results for standard benchmark domains
in planning.Art. Int., 143(2):219–262, 2003.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic search.JAIR, 14:253–302, 2001.

J. Hoffmann. Local search topology in planning benchmarks: An
empirical analysis. InProc. IJCAI-01, pages 453–458, 2001.

S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refine-
ment search.Artificial Intelligence, 76(1-2):167–238, 1995.

H. Kautz and B. Selman. Unifying SAT-based and Graph-based
planning. InProc. IJCAI-99, 318–327, 1999.

K. Marriot and P. Stuckey.Programming with Constraints. MIT
Press, 1999.

D. McAllester and D. Rosenblitt. Systematic nonlinear planning.
In Proc. AAAI-91, 1991.

X. L. Nguyen and S. Kambhampati. Reviving partial order plan-
ning. InProc. IJCAI-01.

J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, or-
dering, and usage of landmarks in planning. InProc. ECP-01,
2001.

J. Rintanen. A planning algorithm not based on directional search.
In Proc. KR-98, pages 617–624, 1998.

D. Smith and D. Weld. Temporal planning with mutual exclusion
reasoning. InProc. IJCAI-99, 326–337.

P. Van Beek and X. Chen. CPlan: a constraint programming ap-
proach to planning. InProc. AAAI-99, pages 585–590, 1999.

V. Vidal and H. Geffner. Branching and pruning: An optimal tem-
poral POCL planner based on constraint programming. InProc.
AAAI-04, pages 570–577, 2004.

V. Vidal and H. Geffner. Branching and pruning: An optimal tem-
poral POCL planner based on constraint programming (long ver-
sion). Technical report, 2004.

D. S. Weld. An introduction to least commitment planning.AI
Magazine, 15(4):27–61, 1994.

L. Zhu and R. Givan. Heuristic planning via roadmap deduction.
In 4th. Int. Planning Competition Booklet (ICAPS-04), 2004.

