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Abstract. Recent work has shown how to use OBDDs for satisfiability solving. The idea of this ap-
proach, which we call symbolic quantifier elimination, is to view an instance of propositional satisfiabil-
ity as an existentially quantified propositional formula. Satisfiability solving then amounts to quantifier
elimination; once all quantifiers have been eliminated we are left with either 1 or 0. Our goal in this
work is to study the effectiveness of symbolic quantifier elimination as an approach to satisfiability
solving. To that end, we conduct a direct comparison with the DPLL-based ZChaff, as well as evaluate
a variety of optimization techniques for the symbolic approach. In comparing the symbolic approach to
ZChaff, we evaluate scalability across a variety of classes of formulas. We find that no approach domi-
nates across all classes. While ZChaff dominates for many classes of formulas, the symbolic approach
is superior for other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we focus on optimization tech-
niques for this approach. We study techniques from constraint satisfaction for finding a good plan for
performing the symbolic operations of conjunction and of existential quantification. We also study var-
ious variable-ordering heuristics, finding that while no heuristic seems to dominate across all classes of
formulas, the maximum-cardinality search heuristic seems to offer the best overall performance.

1 Introduction

Propositional-satisfiability solving has been an active area of research through out the last 40 years, starting
from the resolution-based algorithm in [19] and the search-based algorithm in [18]. The latter approach,
referred to as the DPLL approach, has since been the method of choice for satisfiability solving. In the last
ten years, much progress have been made in developing highly optimized DPLL solvers, leading to efficient
solvers such as ZChaff [46] and BerkMin [28], all of which use advanced heuristics in choosing variable
splitting order, in performing efficient Boolean constraint propagation, and in conflict-driven learning to
prune unnecessary search branches. These solvers are so effective that they are used as generic problem
solvers, where problems such as bounded model checking [5], planning [32], scheduling [16], and many
others are typically solved by reducing them to satisfiability problems.

Another successful approach to propositional reasoning is that of decision diagrams, which are used to
represent propositional functions. An instance of the approach is that of ordered Boolean decision diagrams
(OBDDs) [8], which are used successfully in model checking [10] and planning [13]. The zero-suppressed
variant (ZDDs) is used in prime implicants enumeration [36]. A decision-diagram representation also en-
ables easy satisfiability checking, which amounts to deciding whether it is different than the empty OBDD
[8]. Since decision diagrams usually represent the set of all satisfying truth assignments, they incur a sig-
nificant overhead over search techniques that focus on finding a single satisfying assignment [15]. Thus, the
only published comparison between search and OBDD techniques [44] used search to enumerate all satis-
fying assignments. The conclusion of that comparison is that no approach dominates; for certain classes of
formulas search is superior, and for other classes of formulas OBDDs are superior.

Recent work has shown how to use OBDDs for satisfiability solving rather for enumeration [39]. The
idea of this approach, which we call symbolic quantifier elimination, is to view an instance of proposi-
tional satisfiability as an existentially quantified propositional formula. Satisfiability solving then amounts
to quantifier elimination; once all quantifiers have been eliminated we are left with either 1 or 0. This en-
ables us to apply ideas about existential quantifier elimination from model checking [38] and constraint
satisfaction [21]. The focus in [39] is on expected behavior on random instances of 3-SAT rather than
on efficiency. In particular, only a minimal effort is made to optimize the approach and no comparison to
search methods is reported. Nevertheless, the results in [39] show that OBDD-based algoithms behave quite
differently than search-based algorithms, which makes them worthy of further investigation. (Other recent
approaches reported using decision diagrams in satisfiability solving [11, 24, 37]. We discuss these works
in our concluding remarks).
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0086264, ANI-0216467, and by BSF grant 9800096.



Our goal in this paper is to study the effectiveness of symbolic quantifier elimination as an approach
to satisfiability solving. To that end, we conduct a direct comparison with the DPLL-based ZChaff, as well
as evaluate a variety of optimization techniques for the symbolic approach. In comparing the symbolic
approach to ZChaff we use a variety of classes of formulas. Unlike, however, the standard practice of
comparing solver performance on benchmark suites [34], we focus here on scalability. That is, we focus
on scalable classes of formulas and evaluate how performance scales with formula size. As in [44] we find
that no approach dominates across all classes. While ZChaff dominates for many classes of formulas, the
symbolic approach is superior for other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we focus on optimization tech-
niques. The key idea underlying [39] is that evaluating an existentially quantified propositional formula in
conjunctive-normal form requires performing several instances of conjunction and of existential quantifica-
tion. The goal is to find a good plan for these operations. We study two approaches to this problem. The first
is Bouquet’s method (BM) of [39] and the second is the bucket-elimination (BE) approach of [21]. BE aims
at reducing the size of the support set of the generated OBDDs through quantifier elimination and it has the
theoretical advantage of being, in principle, able to attain optimal support set size, which is the treewidth of
the input formula [23]. Nevertheless, we find that for certain classes of formulas BM is superior to BE.

The key to good performance in both BM and BE is in choosing a good variable order for quantification
and OBDD order. Finding an optimal order is by itself a difficult problem (computing the treewidth of
a given graph is NP-hard [2]), so one has to resort to various heuristics, cf. [33]. No heuristic seems to
dominate across all classes of formulas, but the maximal-cardinality-search heuristic seems to offer the best
overall performance.

We start the paper with a description of symbolic quantifier elimination as well as the BM approach in
Section 2. We then describe the experimental setup in Section 3. In Section 4 we compare ZChaff with BM
and show that no approach dominates across all classes of formulas. In Section 5 we compare BM with BE
and study the impact of various variable-ordering heuristics. We conclude with a discussion in Section 6.

2 Background

An binary decision diagram (BDD) is a rooted directed acyclic graph that has only two terminal nodes
labeled 0 and 1. Every non-terminal node is labeled with a Boolean variable and has two outgoing edges
labeled 0 and 1. An ordered binary decision diagram (OBDD) is a BDD with the constraint that the input
variables are ordered and every path in the OBDD visits the variables in ascending order. We assume that
all OBDDs are reduced, which means that where every node represents a distinct logic function. OBDDs
constitute an efficient way to represent and manipulate Boolean functions [8], in particular, for a given
variable order, OBDDs offer a canonical representation. Checking whether an OBDD is satisfiable is also
easy; it requires checking that it differs from the predefined constant 0 (the empty OBDD). We used the
CUDD package for managing OBDDs [42]. The support set of an OBDD is the set of variables labeling its
internal nodes.

In [44,15], OBDDs are used to construct a compact representation of the set of all satisfying truth
assignments of CNF formulas. The input formula ¢ is a conjunction ¢ A .. . A ¢, 0f clauses. The algorithm
constructs an OBDD A; for each clause ¢;. (Since a clause excludes only one assignments to its variables,
A; is of linear size.) An OBDD for the set of satisfying truth assignment is then constructed incrementally;
By is A;, while B;y; is the result of APPLY(B;, A;, A), where APPLY (A, B, o) is the result of applying
a Boolean operator o to two OBDDs A and B. Finally, the resulting OBDD B,,, represents all satisfying
assignments of the input formula.

We can apply existential quantification to an OBDD B:

(3z) B = APPLY (B| B| V),

where B|,,__ restricts B to truth assignments that assign the value c to the variable z. Note that quantifying
z existentially eliminates it from the support set of B. The satisfiability problem is to determine whether a
givenformulaci A. .. Ac,y, is satisfiable. In other words, the problem is to determine whether the existential
formula (3z1) ... (3z,)(c1 A ... A ¢y) is true. Since checking whether the final OBDD B,,, is equal to 0
can be done by CUDD in constant time, it makes little sense, however, to apply existential quantification to
B,,. Suppose, however, that a variable =; does not occur in the clauses ¢;41, . . ., ¢m,. Then the existential
formula can be rewritten as

(Fz1) ... (Fzj—1)Fzjgr) .- C2n)(Fz)(ca Ao oA G) A(Cipr Ao A ).

1> z+0°



This means that after constructing the OBDD B;, we can existentially quantify z; before conjuncting B;
with A;4q,..., An.

This motivates the following change in the earlier OBDD-based satisfying-solving algorithm [39]: after
constructing the OBDD B;, quantify existentially variables that do not occur in the clauses ¢;y1, ..., Cm.
In this case we say that the quantifier 3z has been eliminated. The computational advantage of quantifier
elimination stems from the fact that reducing the size of the support set of an OBDD typically (though not
necessarily) results in a reduction of its size; that is, the size of (3z)B is typically smaller than that of B.
In a nutshell, this method, which we describe as symbolic quantifier elimination, eliminates all quantifiers
until we are left with the constant OBDD 1 or 0. Symbolic quantifier elimination was first applied to SAT
solving in [29] (under the name of hiding functions) and tried on random 3-SAT instances. The work in [39]
studied this method further, and considered various optimizations. The main interest there, however, is in
the behavior of the method on random 3-SAT instances, rather in its comparison to DPLL-based methods.*

So far we processed the clauses of the input formula in a linear fashion. Since the main point of quan-
tifier elimination is to eliminate variables as early as possible, reordering the clauses may enable us to do
more aggressive quantification. That is, instead of processing the clauses in the order ¢4, ..., ¢y, We can
apply a permutation 7 and process the clauses in the order ¢ (1), - - -, Cx(m)- The permutation 7 should be
chosen so as to minimize the number of variables in the support sets of the intermediates OBDDs. This ob-
servation was first made in the context of symbolic model checking, cf. [9, 27, 31, 6]. Unfortunately, finding
an optimal permutation 7 is by itself a difficult optimization problem, motivating heuristic approaches.

A particular heuristic that was proposed in the context of symbolic model checking in [38] is that of
clustering. In this approach, the clauses are not processed one at a time, but several clauses are first parti-
tioned into several clusters. For each cluster C' we first apply conjunction to all the OBDDs of the clauses
in the C to obtain an OBDD B. The clusters are then combined, together with quantifier elimination, as
described earlier. Heuristics are required both for clustering the clauses and ordering the clusters. Bouquet
proposed the following heuristic in [7] (the focus there is on enumerating prime implicants). Consider some
order of the variables. Let the rank (from 1 to n) of a variable z be rank(x), let the rank rank(¢) of a literal
£ be the rank of is underlying variable, and let the rank rank(c) of a clause c be the maximum rank of its lit-
erals. The clusters are the equivalence classes of the relation ~ defined by: ¢ ~ ¢’ iff rank(c) = rank(c').
The rank of a cluster is the rank of its clauses. The clusters are then ordered according to increasing rank.
Satisfiability solving using symbolic quantifier elimination combined with Bouquet’s clustering is referred
to in [39] as Bouquet’s Method, which we abbreviate here is as BM.

We still have to chose a variable order. An order that is often used in constraint satisfaction [20] is the
“maximum cardinality search” (MCS) order of [43], which is based on the graph-theoretic structure of the
formula. The graph associated with a CNF formula ¢ = A, ¢; is G, = (V, E), where V is the set of
variables in ¢ and an edge {z;,z;} is in E if there exists a clause ¢, such that z; and z; occur in ¢;. We
refer to G, as the Gaifman graph of ¢. MCS ranks the vertices from 1 to » in the following way: as the
next vertex to number, select the vertex adjacent to the largest number of previously numbered vertices (ties
can be broken in various ways). Our first experiment is a performance comparison of MCS-based BM to
ZChaff.

3 Experimental setup

We compare symbolic quantifier elimination to ZChaff across a variety of classes of formulas. Unlike the
standard practice of comparing solver performance on benchmark suites [34], our focus here is not on
simple time comparison, but rather on scalability. That is, we focus on scalable classes of formulas and
evaluate how performance scales with formula size. We are interested in seeing which method scales better,
i.e., polynomial vs. exponential scalability, or different degrees of exponential scalability. Our test suite
includes both random and nonrandom formulas (for random formulas we took 60 samples per case and
reported median time). For random formulas, experiments were performed using x86 emulation on the Rice
Terascale Cluster?, which is a large Linux cluster of Itanium Il processors with 4GB of memory each.
Non-random formula experiments used a Pentium-4 1.7Ghz desktop.
Our test suite includes the following classes of formulas:

! Note that symbolic quantifier elimination provides pure satisfiability solving; the algorithm returns 0 or 1. To find a
satisfying truth assignment when the formula is satisfiable, the technique of self-reducibility can be used, cf. [3].
Zhttp://ww. citi.rice.edu/rtc/
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Random 3-CNF: We chose uniformly & 3-clauses over n variables. The density of an instance is
defined as k/n. We generate instances at densities 1.5, 6, 10, and 15, with up to 200 variables, to allow
comparison for both under-constrained and over-constrained cases. (It is known that the satisfiability
threshold of such formulas is around 4.25 [41]).

Random affine 3-CNF: Affine 3-CNF formulas are generated in the same way as random 3-CNF
formulas, except that the constraints are not 3-clauses, but parity equations in the form of [; ®lo®l3 = 1.
Each constraint is then converted into four clauses, yielding CNF formulas. The satisfiability threshold
of such formula is found empirically to be around density (number of equations divided by number of
variables) 0.95. We generate instances of density 0.5 and 1.5, with up to 400 variables.

Random biconditionals: Biconditional formulas, also known as Urquhart formulas, form a class of
affine formulas that have provably exponential resolution proofs. A biconditional formula has the form
i & (e (..(lg—1 & Ix)...), where each [; is a positive literal. Such a formula is valid if either
all variables occur an even number of times or all variables occur an odd number of times [45]. We
generate valid formulas with up to 100 variables, where each variable occurs 3 times on average.
Random chains: The classes described so far all have an essentially uniform random Gaifman graph,
with no underlying structure. To extend our comparison to structured formulas, we generate random
chains [22]. In a random chain, we form a long chain of random 3-CNF formulas, called subtheories.
(The chain structure is reminiscent to the structure typically seen in satisfiability instances obtained
from bounded model checking [5] and planning [32].) We use a similar generation parameters as in
[22], where there are 5 variables per sub-theory and 5-23 clauses per sub-theory, but that we generate
instances with a much bigger number of sub-theories, scaling up to > 20000 variables and > 4000
sub-theories.

Nonrandom formulas: As in [44], we considered a variety of formulas with very specific scalable
structure:

The n-Rooks problem (satisfiable).

The n-Queens problem (satisfiable for n > 3).

The pigeon-hole problem with n + 1 pigeons and n holes (unsatisfiable).

The mutilated-checkerboard problem, where an n x n board with two diagonal corner tiles removed
is to be tiled with 1 x 2 tiles (unsatisfiable).

Symbolic vs. search approaches

Our goal in this section is to address the viability of symbolic quantifier elimination. To that end we com-
pare the performance of BM against ZChaff, a leading DPLL-based solver across the classes of formulas
described above, with a focus on scalability. For now, we use the MCS variable order.
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In Figure 1, we can see that BM is not very competitive for random 3-CNF formulas. At density 1.5,

ZChaff scales polynomially, while BM scales exponentially. At density 6.0 and at higher densities, both
methods scale exponentially, but ZChaff scales exponentially better. (Note that above density 6.0 both meth-
ods scale better as the density increases. This is consistent with the experimental results in [15] and [39].) A
similar pattern emerges for random affine formulas, see Figure 2. Again, ZChaff scales exponentially better
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than BM. (Note that both methods scale exponentially at the higher density, while it is known that affine
satisfiability can be determined in polytime using Gaussian elimination [40].)

The picture changes for biconditional formulas, as shown in Figure 3. Again, both methods are expo-
nential, but BM scales exponentially better than ZChaff. (This result is consistent with the finding in [11],
which compares search-based methods to ZDD-based multi-resolution.)

For random chains, see Figure 4, which uses a log-log scale. Both methods scale polynomially on
random chains. (Because density for the most difficult problems change as the size of the chains scales,
we selected here the hardest density for each problem size.) Here BM scales polynomially better than than
ZChaff. Note that for smaller instances ZChaff outperforms BM, which justifies our focus on scalability
rather than on straightforward benchmarking.
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Finally, we compare BM with ZChaff on the non-random formulas of [44]. The n-Rooks problem is a

simpler version of n-Queens problem, where the diagonal constraints are not used. For n-Rooks, the results
are as in Figure 5. This problem have the property of being globally consistent, i.e., any consistent partial
solution can be extended to a solution [20]. Thus, the problem is trivial for search-based solvers, as no



backtracking is need. In contrast BM scales exponentially on this problem. For n-Queens, see Figure 6,
both methods scale exponentially (in fact, they scale exponentially in n2), but ZChaff scales exponentially
better than BM. Again, a different picture emerges when we consider the pigeon-hole problem and the
mutilated-checkerboard problem, see Figure 7 and Figure 8. On both problems both BM and ZChaff scale
exponentially, but BM scales exponentially better than ZChaff.

As in [44], who compared OBDDs and DPLL for solution enumeration, we find that no approach dom-
inates across all classes. While ZChaff dominates for many classes of formulas, the symbolic approach is
superior for other classes of formulas. This suggests that the symbolic quantifier elimination is a viable
approach and deserves further study. In the next section of this work we focus on various optimization
strategies for the symbolic approach.

5 Optimizations

So far we have described one approach to symbolic quantifier elimination. There are, however, many choices
one needs to make to guide an implementation. The order of variables is both used to guide clustering and
quantifier elimination, as well as to order the variables in the underlying OBDDs. Both clustering and
cluster processing can be performed in several ways. In this section, we investigate the impact of choices
in clustering in the implementation of symbolic algorithms. For the impact of variable order and quantifier
elimination, please refer to the appendix.

5.1 Cluster Ordering

As argued earlier, the purpose of quantifier elimination is to reduce support-set size of intermediate OBDDs.
What is the best reduction one can hope for? This question has been studied in the context of constraint
satisfaction. It turns out that the optimal schedule of conjunctions and quantifier eliminations reduces the
support-set size to one plus the treewidth of the Gaifman graph of the input formula [17]. The treewidth of
a graph is a measure of how close this graph is to being a tree [23]. Computing the treewidth of a graph is
known to be NP-hard, which is why heuristic approaches are employed [33]. It turns out that by processing
clusters in a different order we can attain the optimal support-set size. Recall that BM processes the clusters
in order of increasing ranks. Bucket elimination (BE), on the other hand, processes clusters in order of
decreasing ranks [21]. Maximal support-size set of BE with respect to optimal variable order is defined as
the induced width of the input instance, and the induced width is known to be equal to the treewidth [21,
25]. Thus, BE with respect to optimal variable order is guaranteed to have polynomial running time for
input instances of logarithmic treewidth, since this guarantees a polynomial upper bound on OBDD size.
We now compare BM and BE with respect to MCS variable order (MCS is the preferred variable order also
for BE).
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The results for the comparison on random 3-CNF formulas is plotted in Figure 9. We see that the
difference between BM and BE is density dependent, where BE excels in the low-density case, which have
low treewidth, and BM excels in the high-density cases, which has high treewidth. Across our other classes
of random formulas, BM is typically better, except for a slight edge that BE sometimes has for low-density
instances. A similar picture can be seen on most constructed formulas, where BM dominates, except for



mutilated-checkerboard formulas, where BE has a slight edge. We plot the performance comparison for
pigeon-hole formulas in Figure 10.

To understand the difference in performance between BM and BE, we study their effect on intermediate
OBDD size. OBDD size for a random 3-CNF instance depends crucially on both the number of variables
and the density of the instance. Thus, we compare the effect of BM and BE in terms of these measures for
the intermediate OBDDs. We apply BM and BE to random 3-CNF formulas with 50 variables and densities
1.5 and 6.0. We then plot the density vs. the number of variables for the intermediate OBDDs generated
by the two cluster-processing schemes. The results are plotted in in Figure 11 and Figure 12. Each plotted
point corresponds to an intermediate OBDD, which reflects the clusters processed so far.
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As can be noted from the figures, BM increases the density of intermediate results much faster than
BE. This difference is quite dramatic for high-density formulas. The relation between density of random
3-CNF instance and OBDD size has been studied in [15], where it is shown that OBDD size peaks at around
density 2.0, and is lowest when the density is close to 0 or the satisfiability threshold. This enables us to
offer an possible explanation to the superiority of BE for low-density instances and the superiority of BM
for high-density instances. For formulas of density 1.5, the density of intermediate results is smaller than 2.0
and BM’s increased density results in larger OBDDs. For formulas of density 6.0, BM crosses the threshold
density 2.0 using a smaller number of variables, and then BM’s increased density results in smaller OBDDs.

The general superiority of BM over BE suggests that minimizing support-set size ought not to be the
dominant concern. OBDD size is correlated with, but not dependent on, support-set size. More work is
required in order to understand the good performance of BM. Our explanation argues that, as in [1], BM
first deals with the most constrained subproblems, therefore reducing OBDD-size of intermediate results.
While the performance of BE can be understood in terms of treewidth, we still lack, however, a fundamental
theory to explain the performance of BM.

5.2 Variable Ordering

As mentioned earlier, when selecting variables, MCS has to break ties, which happens quite often. One can
break ties by minimizing degree to unselected variables [39] or by maximizing it [4]. (Another choice to to
break ties uniformly at random, but this choice is expensive to implement, since it is difficult to choose an
element uniformly at random from a heap.) We compare these two heuristic with an arbitrary tie-breaking
heuristic, in which we simply select the top variable in the heap. The results are shown in Figure 13 for
random 3-CNF formulas. For high density formulas, tie breaking made no significant difference, but least-
degree tie breaking is markedly better for the low density formulas. This seems to be applicable across a
variety of class of formulas and even for different orders and algorithms.

MCS typically has many choices for the lowest-rank variable. In Koster et. al. [33], it is recommended to
start from every vertex in the graph and choose the variable order that leads to the lowest treewidth. This is
easily done for instances of small size, i.e. random 3-CNF or affine problems; but for structured problems,
which could be much larger, the overhead is too expensive. Since min-degree tie-breaking worked quite
well, we used the same idea for initial variable choice. In Figure 14, we see that our assumption is well-
founded, that is, the benefit of choosing the best initial variable compared to choosing a min-degree variable
is negligible.
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Algorithms for BDD variable ordering in the model checking area are often based on circuit structures,
for example some form of traversal [35, 26] or graph evaluation [12]. Since we only have the graph structure
based on the CNF clauses, we do not have the depth or direction information that circuit structure can
provide. As the circuits in question become more complex, the effectiveness of simple traversals would
also reduce. So, we use the graph-theoretic approaches used in constraint satisfaction instead of those from
model checking.

MCS is just one possible vertex-ordering heuristics. Other heuristics have been studied in the context
of treewidth approximation. In [33] two other vertex-ordering heuristics are studied: LEXP and LEXM.3
Both LEXP and LEXM are based on lexicographic breadth-first search, where candidate variables are
lexicographically ordered with a set of labels, where the labels are either the set of already chosen neighbors
(LEXP), or the set of already chosen vertices reachable through lower-ordered vertices (LEXM). Both
algorithms try to generate vertex orders where a triangulation would add a small amount of edges, thus
reducing treewidth.
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In Figure 15, we compare variable orders constructed from MCS, LEXP, and LEXM for random 3-CNF
formulas. For high-density cases, MCS is clearly superior. For low-density formulas, LEXP has a small
edge, although the difference is quite minimal. Across the other problem classes (for example, pigeon-hole
formulas as in Figure 16), MCS uniformly appears to be the best order, generally being the top performer.
Interestingly, LEXP and LEXM sometimes yield better treewidth, but MCS till yields better runtime per-
formance. This indicates that minimizing treewidth need not be the dominant concern.

5.3 Quantifier Elimination

So far we argued that quantifier elimination is the key to the performance of the symbolic approach. In
general, reducing support-set size does result in smaller OBDDs. It is known, however, that quantifier elim-
ination may incur non-negligible overhead and may not always reduce OBDD size [8]. To understand the
role of quantifier elimination in the symbolic approach, we reimplemented BM and BE without quantifier
elimination. Thus, we do construct an OBDD that represent all satisfying truth assignments, but we do that
according to the clustering and cluster processing order of BM and BE.

% The other heuristic mentioned in [33] is MSV'S, which constructes a tree-decomposition instead of a variable order.
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In Figure 17, we plotted the running time of both BM and BE, with and without quantifier elimination on
random 3-CNF formulas. We see that for BM there is a trade off between the cost and benefit of quantifier
elimination. For low-density instances, where there are many solutions, the improvement from quantifier
elimination is clear, but for high-density instances, quantifier elimination results in slow down (while not
reducing OBDD size). A similar picture holds for BE, though there the overhead of quantifier elimination is
lower, making it a better choice. On the other hand, quantifier elimination is important for the constructed
formulas, for example, for the pigeon-hole formulas in Figure 18.

6 Discussion

Satisfiability solvers have made tremendous progress over the last few years, partly driven by frequent com-
petitions, cf. [34]. At the same time, our understanding of why extant solvers perform so well is lagging. Our
goal in this paper is not to present a new competitive solver, but rather to call for a broader research agenda.
We showed that a symbolic approach can outperform a search-based approach, but much research is needed
before we can have robust implementations of the symbolic approach. Recent works have suggested other
symbolic approaches to satisfiability solving, e.g., ZDD-based multi-resolution in [11], compressed BFS
search in [37], and BDD representation for non-CNF constraint in the framework of DPLL search in [24].
These works bolster our call for a broader research agenda in satisfiability solving. Such an agenda should
build connections with two other successful areas of automated reasoning, namely model checking [14]
and constraint satisfaction [20]. Furthermore, such an agenda should explore hybrid approaches, combining
search and symbolic techniques, cf. [30, 37, 24].
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