
Chapter 7

Combining Search and Inference;

Trading space for time

As we noted at the introduction, search and inference have complementary properties.

Inference exploit the graph structure and therefore allows structure-based time guarantees

but require substantial memory. Brute-force Search, does not posses good complexity time

bounds but as AND/OR search does, as we will show in the forthcoming last two cahpters.

The main virtue of search is that it can operate in linear space. Therefore, using a hybrid

of search and inference allows a structure-driven tradeoff of space and time. Two such

hybrids are presented next. We demonstrate the principles of the hybrids in the context

of tree-search. However, all these ideas can be extended later when the cutset is traversed

as an AND/OR search tree or a graph, as we will discuss.

7.1 The cycle-cutset and w-cutset schemes

The algorithms presented in this section exploit the fact that variable instantiation changes

the effective connectivity of the primal graph. Consider a constraint problem whose graph

is given in Figure 7.1a. For this problem, instantiatingX2 to some value, say a, renders the

choices of values to X1 and X5 independent, as if the pathway X1−X2−X5 were blocked

at X2. Similarly, this instantiation blocks dependency in the pathway X1 − X2 − X4,

leaving only one path between any two variables. In other words, given that X2 was
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Figure 7.1: An instantiated variable cuts its own cycles.

assigned a specific value, the “effective” constraint graph for the rest of the variables is

shown in Figure 7.1b. Here, the instantiated variable X2 and its incident arcs are first

deleted from the graph, and X2 subsequently is duplicated for each of its neighbors. The

constraint problem having the graph shown in Figure 7.1(a) when X2 = a is identical

to the constraint problem having the graph in Figure 7.1(b) with the same assignment

X2 = a.

In general, when the group of instantiated variables constitutes a cycle-cutset; a set of

nodes that, once removed, would render the constraint graph cycle-free. The remaining

network is a tree (as shown in Figure 7.1b), and can be solved by tree-solving algorithm

like belief propagation, or its constraint version or arc-consistency. In most practical

cases it would take more than a single variable to cut all the cycles in the graph. Thus, a

general way of solving a problem whose constraint graph contains cycles is to identify a

subset of variables that cut all cycles in the graph, find a consistent instantiation of the

variables in the cycle-cutset, and then solve the remaining problem by the tree algorithm.

If a solution to this restricted problem (conditioned on the cycle-cutset values) is found,

then a solution to the entire problem is at hand. If not, another instantiation of the

cycle-cutset variables should be considered until a solution is found. If the task is to solve

a constraint problem whose constraint graph is presented in Figure 7.1a, (assume X2 has

two values {a, b} in its domain), first X2 = a must be assumed, and the remaining tree

problem relative to this instantiation, is solved. If no solution is found, it is assumed that
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X2 = b and another attempt is made.

The number of times the tree-solving algorithm needs to be invoked is bounded by the

number of partial solutions to the cycle-cutset variables. A small cycle-cutset is therefore

desirable. However, since finding a minimal-size cycle-cutset is computationally hard, it

will be more practical to settle for heuristic compromises. One approach is to incorporate

this scheme within depth-first search, which is called backtracking search in the context of

constraint satisfaction problems. Because backtracking works by progressively instantiat-

ing sets of variables, we only need to keep track of the connectivity status of the constraint

graph. As soon as the set of instantiated variables constitutes a cycle-cutset, the search

algorithm is switched to the tree-solving algorithm on the restricted problem, i.e., either

finding a consistent extension for the remaining variables (thus finding a solution to the

entire problem) or concluding that no such extension exists (in which case backtracking

takes place and another instantiation tried).

Example 7.1.1 Assume that backtracking instantiates the variables of the CSP rep-

resented in Figure 7.2a in the order C,B,A,E,D, F (Figure 7.2b). Backtracking will

instantiate variables C, B and A, and then, realizing that these variables cut all cycles,

will invoke a tree-solving routine on the rest of the problem: the tree-problem in Figure

7.2c with variables C, B and A assigned, should then be attempted. If no solution is

found, control returns to backtracking which will go back to variable A.

The idea of cutset-conditioning generalized to all graphical models. Indeed we already

observed in Chapter 4 in Section ?? that when variable are assigned connectivity of the

graph reduces thus yielding saving in computation. This yield algorithm that combines

bucket-elimination algorithm with conditioning called V EC, trading space for time.

As noted in Chapter 4, the cycle-cutset scheme can be generalized. Rather than

insisting on conditioning on a subset (cutset) that cuts all cycles and yields subproblems

having induced-width 1, we can allow cutsets that create subproblems whose induced-

width is higher than 1 but still bounded. This suggests a framework of hybrid algorithms

parameterized by a bound w on the induced-width of subproblems solved by inference.

Definition 7.1.2 (w-cutset) Given a graph G, a subset of nodes is called a w-cutset iff

when the subset is removed the resulting graph has an induced-width less than or equal to
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Figure 7.2: (a) a constraint graph (b) its ordered graph (c) The constraint graph of the

cutset variable and the conditioned variable, where the assigned variables are darkened.

w. A minimal w-cutset of a graph has a smallest size among all w-cutsets of the graph.

A cycle-cutset is a 1-cutset of a graph.

Finding a minimal w-cutset is a hard task. However, like in the special case of a

cycle-cutset we can settle for a w-cutset relative to the given variable ordering. We can

look for an initial set of the ordering that is a w-cutset. Then a DFS search algorithm

can traverse the search space over the w-cutset and for each of its consistent assignment

solve the rest of the problem by adpative-consistency if it is a constraint problem or

by BE, or CTE, in the general case.

Algorithm cutset-decomposition(w) is described in Figure 7.3. The algorithm is pre-

sented in the context of constraint networks and for finding a single solution but it can

be easily extended to any query over graphical models (exercise: Extend the algorithm

to find the probability of evidence given a Bayesian network) It applies DFS (backtrack-

ing) search on the w-cutset and adaptive-consistency on the remaining variables. The

constraint problem R = (X,D,C) conditioned on an assignment Y = ȳ and denoted

by Rȳ is R augmented with the unary constraints dictated by the assignment ȳ. In the

worst-case, all possible assignments to the w-cutset variables need to be enumerated. If

c is the w-cutset size, kc is the number of subproblems of induced-width bounded by w
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Algorithm cutset-decomposition(w)

Input: A Graphical model such as a constraint network

R = (X,D,C), Y ⊆ X which is a w-cutset. d is an ordering that

starts with Y such that the induced-width when Y is removed,

along d, is bounded by w, Z = X − Y .

Output: A consistent assignment, if there is one.

1. while ȳ ← next partial solution of Y found by backtracking,

do

(a) z̄ ← adaptive− consistency(RY=ȳ).

(b) if z̄ is not false, return solution (ȳ, z̄).

2. endwhile.

3. return: the problem has no solutions.

Figure 7.3: Algorithm cutset-decomposition(w)

needed to be solved, each requiring O(nkw+1) steps.

Theorem 7.1.3 [27] Algorithm cutset-decomposition(w) has time complexity of O(n ·
kc+w+1) where n is the number of variables, c is the w-cutset size and k is the domain

size. The space complexity of the algorithm is O(kw). 2

The special case of w = 1 yield the cycle-cutset decomposition algorithm whose time

complexity is O(nkc+2) and it operates in linear space. Thus, the constant w can control

the balance between search and inference (e.g., variable-elimination), and can affect the

tradeoff between time and space.

Another approach that uses the w-cutset principle is to alternate between conditioning-

search and variable-elimination. Given a variable ordering we can apply BE as long as the

induced-width of the variables does not exceed w. If a variable has induced-width higher
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than w, it will be conditioned upon. The algorithm alternates between conditioning and

elimination. Clearly, a cutset uncovered via the alternating algorithm is also a w-cutset

and therefore can be used within the cutset-decomposition scheme.

Both cutset-decomposition and the alternating cutset-elimination algorithm call for a

new optimization task on graphs:

Definition 7.1.4 (finding a minimal w-cutset) Given a graph G = (V,E) and a con-

stant w, find a smallest subset of nodes U , such that when removed the resulting graph

has induced-width less than or equal w.

Finding a minimal w-cutset is hard, but various greedy heuristic algorithms were

investigated empirically. Several greedy and approximation algorithms for the special case

of cycle-cutset can be found in the literature [2]. The general task of finding a minimal

w-cutset was addressed in recent papers [44, 12] both for the cutset-decomposition version

and for the alternating version. Note that verifying that a given subset of nodes is a

w-cutset can be accomplished in polynomial time (linear in the number of nodes), by

deleting the candidate cutset from the graph and verifying that the remaining graph has

an induced width bounded by w [5].

In summary, the parameter w can be used within the cutset-decomposition scheme to

control the trade-off between search and inference. If d is the ordering used by cutset-

decomposition(w) and if w ≥ w∗(d), the algorithm coincides with a pure inference algo-

rithm such as bucket-elimination . As w decreases, the algorithm requires less space

and more time. It can be shown that the size of the smallest cycle-cutset (1-cutset), c∗1 and

the smallest induced width, w∗, obey the inequality c∗1 ≥ w∗ − 1. Therefore, 1 + c∗1 ≥ w∗,

where the left side of this inequality is the exponent that determines the time complexity

of cutset-decomposition(w=1), while w∗ governs the complexity of bucket-elimination.

In general,

Theorem 7.1.5 Given graph G, and denoting by c∗w its minimal w-cutset then,

1 + c∗1 ≥ 2 + c∗2 ≥ ...b+ c∗b , ... ≥ w∗ + c∗w∗ = w∗

(Prove as an exercise.)

We get a hybrid scheme controlled by w, whose time complexity decreases and its space

increases as w changes from w∗ to 1.
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Figure 7.4: a primal constraint graph

7.2 The super-bucket and super-cluster schemes

We now present an orthogonal approach for combining search and inference. The inference

algorithm CTE that process a tree-decomposition already contains a hidden combination

of variable elimination and search. It computes functions on the separators using variable

elimination and is space exponential in the separator’s size. The clusters themselves can

be processed by search in time exponential in the cluster size. Thus, one can trade even

more space for time by allowing larger cliques but smaller separators.

Assume a problem whose tree-decomposition has tree-width r and maximum separator

size s. Assume further that our space restrictions do not allow the necessaryO(ks) memory

required when applying CTE on such a tree. One way to overcome this problem is to

combine the nodes in the tree that are connected by large separators into a single cluster.

The resulting tree-decomposition has larger subproblems but smaller separators. This idea

suggests a sequence of tree-decompositions parameterized by the sizes of their separators

as follows.

Let T be a tree-decomposition of hypergraph H. Let s0, s1, ..., sn be the sizes of

the separators in T , listed in strictly descending order. With each separator size si we

associate a secondary tree decomposition Ti, generated by combining adjacent nodes whose

separator sizes are strictly greater than si. We denote by ri the largest set of variables

in any cluster of Ti, and by hwi the largest number of constraints in Ti. Note that as si

decreases, both ri and hwi increase. Clearly, from Theorem 6.3.3 it follows that,

Theorem 7.2.1 Given a tree-decomposition T of graphical model having n variables and
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Figure 7.5: A tree-decomposition with separators equal to (a) 3, (b) 2, and (c) 1

m functions, separator sizes s0, s1, ..., st and secondary tree-decompositions having a cor-

responding maximal number of nodes in any cluster, r0, r1, ..., rt. The complexity of CTE

when applied to each secondary tree-decompositions Ti is O(m · deg · exp(ri)) time, and

O(n · exp(si)) space (i ranges over all the secondary tree-decomposition).

We will call the resulting algorithm super-cluster tree elimination(s), or SCTE(s).

It takes a primary tree-decomposition and generates a tree-decomposition whose separa-

tor’s size is bounded by s, which is subsequently processed by CTE. In the following

example we assume that a naive depth-first search processes each cluster.

Example 7.2.2 Consider the constraint problem having the constraint graph in Figure

7.4. The graph can be decomposed into the join-tree in Figure 7.5(a). If we allow only

separators of size 2, we get the join tree T1 in Figure 7.5(b). This structure suggests

that applying CTE takes time exponential in the largest cluster, 5, while requiring space

exponential in 2. If space considerations allow only singleton separators, we can use the

secondary tree T2 in Figure 7.5(c). We conclude that the problem can be solved either in

O(k4) time (k being the maximum domain size) and O(k3) space using T0, or in O(k5)

time and O(k2) space using T1, or in O(k
7) time and O(k) space using T2.

7.2.1 Superbuckets

Since, as we saw in Chapter 4, bucket-elimination algorithms can be extended to bucket-

trees and since a bucket-tree is a tree-decomposition, by merging adjacent buckets we
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generate a super-bucket-tree in a similar way to generating super clusters. This implies

that in the top-down phase of bucket-elimination several variables are eliminated at once

(see [29]). Algorithm SCTE suggests a new graph parameter.

Definition 7.2.3 Given a graph G and a constant s find a tree-decomposition of G having

the smallest induced-width, w∗
s when the separator size is bounded by s.

A related problem of finding a tree-decomposition with a bounded tree-width w having

the smallest separator, was shown to be polynomial [41]. Finding w∗
s is hard. However,

it is easy for the special case of s = 1 as we show next.

7.2.2 Decomposition into non-separable Ccomponents

A special tree-decomposition occurs when all the separators are singleton variables. This

type of tree-decomposition is attractive because it requires only linear space. While we

generally cannot find the best tree-decompositions having a bounded separators’ size in

polynomial time, this is a feasible task when the separators are singletons. To this end,

we use the graph notion of non-separable components [38].

Definition 7.2.4 (non-separable components) A connected graph G = (V,E) is

said to have a separation node v if there exist nodes a and b such that all paths connecting

a and b pass through v. A graph that has a separation node is called separable, and one

that has none is called non-separable. A subgraph with no separation nodes is called a

non-separable component or a bi-connected component.

An O(| E |) algorithm exists for finding all the non-separable components and the

separation nodes. It is based on a depth-first search traversal of the graph. An important

property of non-separable components is that that they are interconnected in a tree-

structured manner [38]. Namely, for every graph G there is a tree SG, whose nodes are

the non-separable components C1, C2, . . . , Cr of G. The separating nodes of these trees

are V1, V2, . . . , Vt and any two component nodes are connected through a separating node

vertex in SG.

Clearly the tree of non-separable components suggests a tree-decomposition where each

node corresponds to a component, the variables of the nodes are those appearing in each
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component, and the constraints can be freely placed into a component that contains their

scopes. Applying CTE to such a tree requires only linear space, but is time exponential

in the components’ sizes (see also [29]).

Example 7.2.5 Assume that the graph in Figure 7.6(a) represents a graphical model

having unary, binary and ternary functions. Assume the functions are constraints as fol-

lows: R = {RAD, RAB, RDC , RBC , RGF , DG, DF , REHI , RCFE}. The non-separable com-

ponents and their tree-structure are given in Figure 7.6(b,c). The ordering of components

d = (C1, C2, C3, C4) dictates super-clusters associated with variables {G, J, F}, {E,H, I},
{C,F,E} and {A,B,C,D}. The initial partition into super-clusters and a schematic

execution of CTE are displayed in Figure 7.6d.

Theorem 7.2.6 (non-separable components) [47] If R = (X,D,C), |X| = n, is a

constraint network whose constraint graph has non-separable components of at most size

r, then the super-cluster-tree elimination algorithm, whose buckets are the non-separable

components, is time exponential O(n · kr) but requires only linear in space. k bounds the

domain size.

7.3 Bibliographical Notes

The loop-cutset conditioning for Bayesian networks was introduced by Pearl [74]. The

cycle-cutset conditioning for constraint networks was introduced in [35]. Extensions to

higher levels of w-cutsets appeared first in the context of satisfiability in [80] and were

subsequently addressed for constraint processing by Javiere and Dechter [60]. The cutset-

conditioning scheme was used both for solving SAT problems and for optimization tasks

[79, 59] and is currently used for Bayesian networks applications [43, 42].

The problem of findingthe smallest cycle-cutset, or as is most commonly known, the

feedback set problem was widely addressed[cite...]. Algorithms for finding a small cycle-

cutsets also called the feedback set problems were proposed by [2]. An algorithm for

finiding good w-cutset is given in [12]. [to complete...]
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Chapter 8

Search Algorithms over Graphical

Models

In this chapter we start the discussion of the second type of reasoning algorithms, those

that are based on the conditioning step. Namely, on assigning a single value to a variable.

To recap, algorithms for processing graphical models fall into two general types: inference-

based and search-based. Inference-based algorithms (e.g., Variable-Elimination, Tree-

Clustering discussed already) are good at exploiting the independencies displayed by the

underlying graphical model and in avoiding redundant computation. They have worst

case time guarantee which is exponential in the treewidth of the graph. Unfortunately,

any method that is time-exponential in the treewidth is also space exponential in the

treewidth or in the related separator-width parameter and, therefore, not feasible for

models having large treewidth.

Traditional search-based algorithms (e.g., depth-first branch-and-bound, best-first search)

traverse the model’s search space where each path represents a partial or a full solution.

Such search trees were discussed briefly towards the end of Chapter 4 when we discussed

hybrids of conditioning and inference. Notice that the inherent linear structure of search

spaces does not retain the independencies represented in the underlying graphical models

and, therefore, algorithms exploring such traditional search spaces may be inferior.

The memory requirements of search algorithms, on the other hand, may be less severe

than those of inference-based algorithms. In addition, search requires only an implicit,
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generative, specification of the functional relationship (given in a procedural or functional

form) while inference schemes often rely on an explicit tabular representation over the

(discrete) variables. For these reasons search algorithms are the only choice available for

models with large treewidth and with implicit representation.

In this chapter we will show that AND/OR search spaces, originally introduced in the

context of heuristic search [73], can be used to encode some of the structural information in

the graphical models. In particular, they can capture the independencies in the graphical

model to yield AND/OR search trees that are exponentially smaller than the standard

OR tree. We will provide analysis of the size of the AND/OR search tree and show that

it is bounded exponentially by the depth of a spanning pseudo-tree over the graphical

model. Subsequently, we show that the search tree may contain significant redundancy

that when identified, can be avoided by moving from AND/OR search tree to AND/OR

search graph. This additional savings can reduce the size of the AND/OR search space

which can then be bounded exponentially by the treewidth,

8.1 AND/OR Search Trees

We will present the concept of AND/OR search space of a graphical model starting with

an example of a constraint network.

Example 8.1.1 Consider the simple tree graphical model (i.e., the primal graph is a

tree) in Figure 8.1(a), over domains {1, 2, 3}, which represents a graph-coloring problem.

Namely, each node should be assigned a value such that adjacent nodes have different

values. Once variable X is assigned the value 1, the search space it roots can be decom-

posed into two independent subproblems, one that is rooted at Y and one that is rooted

at Z, both of which need to be solved independently. Indeed, given X = 1, the two search

subspaces do not interact. The same decomposition can be associated with the other

assignments to X, (X = 2) and (X = 3). Applying the decomposition along the tree (in

Figure 8.1(a) yields the AND/OR search tree in Figure 8.1(c).

In the AND/OR space, a full assignment to all the variables is not a path but a

subtree. For comparison, the traditional OR search tree is depicted in Figure 8.1(b).

Clearly, the size of the AND/OR search tree is smaller than that of the regular OR
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Figure 8.1: OR vs. AND/OR search trees; note the connector for AND arcs.

space. The OR search space has 3 · 27 nodes while the AND/OR one has 3 · 25 (compare

8.1(b) with 8.1(c)). If k is the domain size, a balanced binary tree graphical model

(e.g., a map coloring problem) with n nodes has an OR search tree of size O(kn). The

AND/OR search tree, whose underlying tree graphical model has depth O(log2 n), has

size O((2k)log2 n) = O(n · klog2 n) = O(n1+log2 k). When k = 2, this becomes O(n2).

The AND/OR space is not restricted to tree graphical models. It only has to be guided

by a tree which spans the original primal graph of the graphical model in a particular

way. We will define the AND/OR search space relative to a spanning tree of the primal

graph that is generated by depth-first search (DFS tree) first, and will generalize to a

broader class of spanning trees, called pseudo-trees, subsequently.

Definition 8.1.2 (DFS spanning tree of a graph) Given a graph G = (V,E) and

given a node X1, a DFS tree T of G is generated by applying a depth-first-search traversal

over the graph, yielding an ordering d = (X1, . . . , Xn). The DFS spanning tree T of G is

defined as the tree rooted at the first node, X1, which includes only the traversed (by DFS)

arcs of G. Namely, T = (V,E ′), where E ′ = {(Xi, Xj) | Xj traversed from Xi by DFS traversal}.
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Definition 8.1.3 (AND/OR search tree) Given a graphical modelM = ⟨X,D,F,
⊗
⟩,

its primal graph G and a spanning DFS tree T of G, the associated AND/OR search tree,

denoted ST (M), has alternating levels of AND and OR nodes. The OR nodes are labeled

Xi and correspond to the variables. The AND nodes are labeled ⟨Xi, xi⟩ (or simply xi)

and correspond to the value assignments of the variables. The structure of the AND/OR

search tree is based on the underlying spanning tree T . The root of the AND/OR search

tree is an OR node labeled by the root of T .
A path from the root of the search tree ST (M) to a node n is denoted by πn. If n is

labeled Xi or xi the path will be denoted πn(Xi) or πn(xi), respectively. The assignment

sequence along path πn, denoted asgn(πn) is the set of value assignments to the variables

along the path. Namely to the sequence of AND nodes along πn:

asgn(πn(Xi)) = {⟨X1, x1⟩, ⟨X2, x2⟩, . . . , ⟨Xi−1, xi−1⟩},

asgn(πn(xi)) = {⟨X1, x1⟩, ⟨X2, x2⟩, . . . , ⟨Xi, xi⟩}.

The set of variables associated with OR nodes along path πn is denoted by var(πn):
var(πn(Xi)) = {X1, . . . , Xi−1}, var(πn(xi)) = {X1, . . . , Xi} . The parent-child relation-

ship between nodes in the search space are defined as follows:

1. An OR node, n, labeled by Xi has a child AND node, m, labeled ⟨Xi, xi⟩ iff ⟨Xi, xi⟩
is consistent with the assignment asgn(πn). Consistency is defined relative to the

constraints when we have a constraint problem, or relative to the flat constraints

(see ??), otherwise.

2. An AND node m, labeled ⟨Xi, xi⟩ has a child OR node r labeled Y , iff Y is child

of X in the guiding spanning tree T . Each OR arc, emanating from an OR to an

AND node is associated with a weight to be defined shortly (see Definition 8.1.8).

Clearly, if a node n is labeled Xi (OR node) or xi (AND node), var(πn) is the set of

variables mentioned on the path from the root to Xi in the guiding spanning tree, denoted

also by pathT (Xi).

A solution subtree is defined in the usual way:

Definition 8.1.4 (solution subtree) A solution subtree of an AND/OR search tree

contains the root node. For every OR node it contains one of its child nodes and for each

of its AND nodes it contains all its child nodes, and all its leaf nodes are consistent.
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Example 8.1.5 In the example of Figure 8.1(a), T is the DFS tree which is the tree

rooted at X, and accordingly the root OR node of the AND/OR tree in 8.1(c) is X. Its

child nodes which are AND nodes, are labeled ⟨X, 1⟩, ⟨X, 2⟩, ⟨X, 3⟩ (only the values are

noted in the Figure). From each of these AND nodes emanate two OR nodes, Y and Z,

since these are the child nodes ofX in the DFS tree of Figure 8.1(a). The descendants of Y

along the path from the root, ⟨X, 1⟩, are ⟨Y, 2⟩ and ⟨Y, 3⟩ only, since ⟨Y, 1⟩ is inconsistent
with ⟨X, 1⟩. In the next level, from each node ⟨Y, y⟩ emanate OR nodes labeled T and R

and from ⟨Z, z⟩ emanate nodes labeled L and M as dictated by the DFS tree. In 8.1(c)

a solution tree is highlighted.

8.1.1 Weights of OR-AND Arcs

The arcs in AND/OR trees are associated with weights w defined based on the graphical

model’s functions and the combination operator. The simplest case is that of constraint

networks.

Definition 8.1.6 (arc weights for constraint networks) Given an AND/OR search

tree ST (R) of a constraint network R, each terminal node is assumed to have a single,

dummy, outgoing arc. The outgoing arc of a terminal AND node always has the weight

“1” (namely it is consistent and thus solved). An outgoing arc of a terminal OR node has

weight “0”, (there is no consistent value assignments). The weight of any internal OR to

AND arc is “1”. The arcs from AND to OR nodes have no weight.

We next define arc weights for any general graphical model using the notion of buckets

of functions. The concept is simple even if the formal definition may look involved. When

considering an arc (n,m) having labels (Xi, xi) (Xi labels n and xi labels m), we identify

all the functions over variable Xi that became fully instantiated now. We assign each such

function a numerical weight based on the assignment along the path to n. The products

of all these function values is the weight of the arc. The following definition identify those

functions of Xi we want to consider in the product.

Definition 8.1.7 (buckets relative to a guiding tree) Given a graphical modelM =

⟨X,D,F,
⊗
⟩ and a guiding tree T , the bucket of Xi relative to T , denoted BT (Xi), is
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Figure 8.2: Arc weights for probabilistic networks

the set of functions whose scopes contain Xi and are included in pathT (Xi). Namely,

BT (Xi) = {f ∈ F |Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}.

Weights are assigned only on arcs connecting an OR node to an AND node.

Definition 8.1.8 (OR-to-AND weights) Given an AND/OR tree ST (M), of a graph-

ical model M, the weight w(n,m)(Xi, xi) of arc (n,m) where Xi labels n and xi labels m,

is the combination of all the functions in BT (Xi) which are assigned by their values along

πm. Formally, w(n,m)(Xi, xi) =
⊗

f∈BT (Xi)
f(asgn(πm)). If the set of functions is empty

the weight is the constant 1 (or the identity relative to the combination operator).

The weight of a solution-tree is the product of weights on all its arcs.

Definition 8.1.9 (weight of a solution subtree) Given a weighted AND/OR tree ST (M),

of a graphical model M, and given a solution subtree t, the weight of t is w(t) =⊗
e∈arcs(t)w(e), where arcs(t) is the set of arcs in subtree t.

Example 8.1.10 Figure 8.2 shows a Bayesian network, a DFS tree that guides its AND/OR

search tree, and a portion of the AND/OR search tree with the appropriate weights on

the arcs expressed symbolically. In this case the bucket of variable E contains the func-

tion P (E|A,B), and the bucket of C contains two functions, P (C|A) and P (D|B,C).
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Figure 8.3: Arc weights for constraint networks

Note that P (D|B,C) belongs neither to the bucket of B nor to the bucket of D, but it

is contained in the bucket of C, which is the last variable in its scope to be instantiated

in a path from the root of the tree. We see indeed that the weights on the arcs from the

OR node E and any of its AND value assignments include only the instantiated function

P (E|A,B), while the weights on the arcs connecting C to its AND child nodes are the

products of the two functions in its bucket instantiated appropriately.

Figure 8.3 shows a constraint network with four relations, a guiding DFS tree and a

portion of the AND/OR search tree with weights on the arcs. Note that the complex

weights would reduce to “0”s and “1”s in this case. However, since we use the convention

that arcs appear in the search tree only if they represent a consistent extension of a partial

solution, we will not see arcs having zero weights.

In Figure 8.4(b) we show the numerical values of the weights on the weighted AND/OR

tree for the same belief network whose conditional probability tables are shown in 8.4(a).

(Exercise: generate the AND/OR weighted tree for a DFS-tree ordering d= (C,B, D, A,

E))

8.1.2 Properties of AND/OR Search Tree

Any DFS tree T of a graph G has the property that the arcs of G which are not in T
are backarcs. Namely, they connect a node to one of its ancestors in the guiding tree.

This ensures that each scope of a function in F will be fully assigned on some path in
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Figure 8.4: Labeled AND/OR search tree for belief networks

T , a property that is essential for the validity of the AND/OR search space. Indeed, the

AND/OR search tree is an alternative equivalent representation of the graphical model.

Theorem 8.1.11 (correctness) Given a graphical modelM = ⟨X,D, F = {f1, ..., fr},
⊗
⟩

having a primal graph G and a DFS spanning tree T of G and its associated weighted

AND/OR search tree ST (M) then 1) there is a one-to-one correspondence between solu-

tion subtrees of ST (M) and solutions ofM; 2) the weight of any solution tree equals the

cost of the full solution assignment it denotes; namely, if t is a solution tree of ST (M)

then F (assn(t)) = w(t), where assn(t) is the full solution defined by tree t. (Prove as an

exercise.)

The virtue of an AND/OR search tree representation is that its size can be far smaller

than the traditional OR search tree. The size of an AND/OR search tree depends on the

depth, also called height, of its DFS spanning tree T . Therefore, DFS trees of smaller
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Table 8.1: OR vs. AND/OR search size, 20 nodes

OR space AND/OR space

treewidth height nodes AND nodes OR nodes

5 10 2,097,151 10,494 5,247

4 9 2,097,151 5,102 2,551

5 10 2,097,151 8,926 4,463

5 10 2,097,151 7,806 3,903

6 9 2,097,151 6,318 3,159

depth should be preferred. An AND/OR search tree becomes an OR search tree when its

DFS tree is a chain.

Theorem 8.1.12 (size bounds of AND/OR search tree) Given a graphical model

M, with domains size bounded by k, having a DFS spanning tree T whose height is h and

having l leaves, the size of its AND/OR search tree ST (M) is O(l ·kh) (and therefore also

O(nkh) and O((bk)h) when b bounds the branching degree of T and n bounds the number

of nodes). The size of its OR search tree along any ordering is O(kn) and these bounds

are tight.

Proof: Let p be an arbitrary directed path in the DFS tree T that starts with the root

and ends with a leaf. This path induces an OR search subtree which is included in the

AND/OR search tree ST , and its size is O(kh) when h bounds the path length. The DFS

tree T is covered by l such directed paths, whose lengths are bounded by h. The union

of their individual search trees covers the whole AND/OR search tree ST , where every

distinct full path in the AND/OR tree appears exactly once, and therefore, the size of

the AND/OR search tree is bounded by O(l · kh). Since l ≤ n and l ≤ bm, it concludes

the proof. The bounds are tight because they are realizable for graphical models whose

all full assignments are consistent.

Table 8.1 illustrates the size of AND/OR vs. OR search spaces for 5 random networks

having 20 bi-valued variables, 18 CPTs with 2 parents per child and 2 root nodes, when

all the assignments are consistent (remember that this is the case when the probability
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distribution is strictly positive). The size of the OR space is the full binary tree of depth

20. The size of the full AND/OR space varies based on the guiding DFS tree.

We can give a more refined bound on the search space size by spelling out the depth

hi of each leaf Li in T as follows. Given a guiding spanningT having L = {L1, . . . , Ll}
leaves of a model M, where the depth of leaf Li is hi and k bounds the domain sizes,

the size of its full AND/OR search tree ST (M) is O(
∑l

k=1 k
hi+1). Using also the domain

sizes for each variable yields an even more accurate expression of the search tree size:

|ST (M)| = O(
∑

Lk∈L
∏

{Xj |Xj∈pathT (Lk)} |D(Xj)|).

8.1.3 From DFS Trees to Pseudo Trees

You may have wondered whether DFS trees are the only type of trees that can guide the

AND/OR decomposition. You were right! there is a larger class of spanning trees that

can be appropriate to guide a decomposition for a graphical model called pseudo trees

[47]. Such trees only need to obey the back-arc property mentioned earlier.

Definition 8.1.13 (pseudo tree, extended graph) Given an undirected graph G =

(V,E), a directed rooted tree T = (V,E ′) defined on all its nodes is a pseudo tree if any

arc of G which is not included in E ′ is a back-arc in T , namely it connects a node in T
to an ancestor in T . The arcs in E ′ may not all be included in E. Given a pseudo tree

T of G, the extended graph of G relative to T includes also the arcs in E ′ that are not

in E. Namely the extended graph is defined as GT = (V,E ∪ E ′).

Example 8.1.14 Consider the graph G displayed in Figure 8.5(a). Ordering d1 =

(1, 2, 3, 4, 7, 5, 6) is a DFS ordering of a DFS tree T1 having the smallest DFS tree depth

of 3 (Figure 8.5(b)). The tree T2 in Figure 8.5(c) is a pseudo tree and has a tree depth

of 2 only. The two tree-arcs (1,3) and (1,5) are not in G. The tree T3 in Figure 8.5(d),

is a chain. The extended graphs GT1 , GT2 and GT3 are presented in Figure 8.5(b),(c),(d)

when we ignore directionality and include the dotted arcs.

It is easy to see that the weighted AND/OR search tree is well defined when the

guiding tree is a pseudo tree which is not necessarily a DFS-tree. Namely, the correctness

properties (proposition 8.1.11) hold and the size complexity bounds are also extendible.
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Figure 8.5: (a) A graph; (b) a DFS tree T1; (c) a pseudo tree T2; (d) a chain pseudo tree

T3

Theorem 8.1.15 (properties of AND/OR search trees) Given a graphical modelM
and a guiding pseudo tree T , its weighted AND/OR search tree ST (M) obeys the correct-

ness properties (1) and (2) of Proposition 8.1.11 and its size is O(l · kh) where h is the

depth of the pseudo tree, l bounds its number of leaves, and k bounds the domain size.

Proof: All the arguments in the proof for Theorem 8.1.11 carry over to AND/OR search

spaces that are guided by a pseudo tree. Likewise, the bound size argument in the proof

of Theorem 8.1.12 holds relative to the height of a pseudo tree.

Figure 8.6 shows the AND/OR search trees along the pseudo trees T1 and T2 from

Figure 8.5. The domains of the variables are {a, b, c} and the constraints are universal,

namely they can represent a positive probabilistic graphical model. We see that the

AND/OR search tree based on T2 is smaller, because T2 has a smaller height than T1.
The weights are not specified here.

To illustrate, Table 8.2 shows the effect of DFS spanning trees against pseudo trees,

both generated using brute-force heuristics over randomly generated graphs.

8.2 AND/OR Search Graphs

It is often the case that a search space that is a tree can become a graph if nodes that root

identical search subspaces, or correspond to identical subproblems, are identified. Any
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Figure 8.6: AND/OR search tree along pseudo trees T1 and T2

Table 8.2: Average depth of pseudo trees vs. DFS trees; 100 instances of each random

model. N is the number of variables, P is the number of variables in the scope of a

function and C is the number of functions.
Model (DAG) width Pseudo tree depth DFS tree depth

(N=50, P=2, C=48) 9.5 16.82 36.03

(N=50, P=3, C=47) 16.1 23.34 40.60

(N=50, P=4, C=46) 20.9 28.31 43.19

(N=100, P=2, C=98) 18.3 27.59 72.36

(N=100, P=3, C=97) 31.0 41.12 80.47

(N=100, P=4, C=96) 40.3 50.53 86.54

two such nodes can be merged, reducing the size of the search space (which will yields a

graph).

Example 8.2.1 Consider again the graph in Figure 8.1(a) and its AND/OR search tree

in Figure 8.1(c) representing a constraint network. Observe that at level 3, node ⟨Y, 1⟩
appears twice, (and so are ⟨Y, 2⟩ and ⟨Y, 3⟩) (not shown explicitly in the Figure). Clearly

however, the subtrees rooted at each of these two AND nodes are identical and they can
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be merged because any specific assignment to Y uniquely determines its rooted subtree.

Indeed, the resulting merged AND/OR search graph depicted in Figure 8.11 is equivalent

to the AND/OR search tree in Figure 8.1(c).

It may also occur that two nodes that do not root identical subtrees still correspond

to equivalent subproblems. Such nodes can also be unified, even if their explicit weighted

subtrees do not look identical. In general two graphical models are equivalent if they

have the same set of solutions, and if each is associated with the same cost. We will use

the notion of universal graphical model to explain what we mean. A universal graphical

model represents the solutions of a graphical model, through a single global function over

all the variables.

Definition 8.2.2 (universal equivalent graphical model) Given a graphical model

M = ⟨X,D,F,
⊗
⟩ the universal equivalent model ofM is u(M) = ⟨X,D, F = {

⊗r
i=1 fi},

⊗
⟩.

We also need to define the cost of a partial solution and the notion of a graphical

model conditioned on a partial assignment. Informally, a conditioned graphical model on

a particular partial assignment is obtained by assigning the appropriate values to all the

relevant variables and modifying the costs appropriately.

Definition 8.2.3 (cost of an assignment, conditional model) Given a graphical model

M,

1. The cost of a full assignment x = (x1, ..., xn) is defined by c(x) =
⊗

f∈F f(xscope(f)).

The cost of a partial assignment y, over Y ⊆ X is the combination of all the

functions whose scopes are included in Y ( denoted FY ) evaluated at the assigned

values. Namely, c(y) =
⊗

f∈FY
f(yscope(f)).

2. The conditional graphical model on Y = y isM|y = ⟨X,D|y, F |y,
⊗
⟩, where D|y =

{Di ∈ D,Xi /∈ Y } and F |y = {f |Y=y, f ∈ F }.
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Figure 8.7: Merge vs. unify operators

8.2.1 Generating Compact AND/OR Search Spaces

We will next define merge and unify operations that transform AND/OR search trees into

graphs. By construction, a graphical modelM is equivalent to its AND/OR search tree,

ST (M) if u(M) coincides with the weighted solution substrees of ST (M), (see Definition

8.1.4).

Definition 8.2.4 (merge,unify) Assume a given weighted AND/OR search graph S ′
T

of a graphical model M and assume two paths π1 = πn1(xi) and π2 = πn2(xi) ending by

AND nodes at level i having the same label xi.

1. Nodes n1 and n2 can be merged iff the weighted search subgraphs rooted at n1 and n2

are identical. The merge operator, merge(n1, n2), redirects all the arcs going into

n2 into n1 and removes n2 and its subgraph. It thus transforms S ′
T into a smaller

graph. When we merge AND nodes only we call the operation AND-merge. The

same reasoning can be applied to OR nodes, and we call the operation OR-merge.

2. Nodes n1 and n2 are unifiable, iff they root equivalent conditioned subproblems (Def-

inition 2). Namely, ifM|asgn(π1) =M|asgn(π2).
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Example 8.2.5 Let’s follow the example in Figure 8.7 to clarify the difference between

merge and unify. We have a graphical model defined by two functions (e.g. local cost

functions) over three variables. The OR search tree given in Figure 8.7(c) cannot be

reduced to a graph by merge, because the weights on the corresponding arcs are different.

However, the two OR nodes labeled A root equivalent conditioned subproblems (the cost

of each individual solution is given at the leaves). Therefore, the nodes labeled A can be

unified, but they cannot be recognized as identical by the merge operator. In other words,

the two nodes, one conditioned on C = 0 and one conditioned on C = 1 have exactly the

same cost for each of the partial solutions.

Proposition 8.2.6 (minimal AND/OR graphs) Given a weighted AND/OR search

graph GT guided by a pseudo tree T :

1. The merge operator has a unique fix point, called the merge-minimal AND/OR

search graph.

2. The unify operator has a unique fix point, called the unify-minimal AND/OR

search graph.

3. Any two nodes n1 and n2 of G that can be merged can also be unified.

The unify-minimal AND/OR search graph ofM relative to T is called the minimal

AND/OR search graph and denoted by MT (R). When T is a chain pseudo tree, the

above definitions are applicable to the traditional OR search tree as well. However, we

may not be able to reach the same compression as in some AND/OR cases, because of

the linear structure imposed by the OR search tree.

Example 8.2.7 The smallest OR search graph of the graph-coloring problem in Figure

8.1(a) (same as Figure 8.8 ) is given in Figure 8.9 along the DFS order X, Y, T,R, Z, L,M .

The smallest AND/OR graph of the same problem along the DFS tree is given in Figure

8.11. We see that some variable-value pairs (AND nodes) must be repeated in Figure 8.9

while in the AND/OR case they appear just once. In particular, the subgraph below the

paths (⟨X, 1⟩, ⟨Y, 2⟩) and (⟨X, 3⟩, ⟨Y, 2⟩) in the OR tree cannot be merged at ⟨Y, 2⟩. You
can now compare all the four search space representations side by side in Figures 8.8-8.11

You should compare only by the AND nodes denoted by boxes in the figure.
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8.2.2 Building Context-minimal AND/OR Search Graphs

The merging rule seems to be quite operational; we can generate the AND/OR search tree

and then recursively merge identical subtrees going from leaves to root. This however,

requires generating the whole search tree first, which is quite costly.

It turns out that for some nodes it is possible to recognize that they can be uni-

fied based on their contexts. The context is a set of ancestors variables pseudo tree T
that completely determine the conditioned subproblems below a given variable. We will

demonstrate the notion of context for graphical models that are trees, first.

We have already seen in Figure 8.1(a) that at level 3, node ⟨Y, 1⟩ appears twice, (and
so are ⟨Y, 2⟩ and ⟨Y, 3⟩). Clearly we see that Y uniquely determines its rooted subtree.

We can say that Y is its own context. Indeed, as already observed, the AND/OR search

graph in Figure 8.11 is equivalent to the AND/OR search tree in Figure 8.8 (same as

Figure 8.1(c)).

In general, an AND/OR search graph of a constraint graph having no cycles along a

pseudo-tree T can be obtained by merging all AND nodes having the same label ⟨X, x⟩.
This rule can be extended to any general weighted graphical model that is a tree, namely,

that has no cycles. The resulting AND/OR graph is equivalent to the input ST and its

search space is O(nk). The general idea of a context is to identify a minimal set of
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Figure 8.11: The minimal AND/OR search graph

of the tree graphical model in Figure 8.1(a)

variables along the path from the root to the node such that when they are assigned

the same assignments they yield the same conditioned subproblem, regardless of value

assigned to the other variables. To derive a general and effective merging we would the

following definition of induced-width of a pseudo-tree.

Definition 8.2.8 (induced width of a pseudo tree) The induced width of G relative

to a pseudo tree T , is the maximum width of its induced pseudo-tree obtained by recur-

sively connecting the parents of each node, going from leaves to root along each branch.

In that process we consider both the extended arcs in the pseudo-tree and those in the

graphical model.

Definition 8.2.9 (parents) Given a primal graph G and a pseudo tree T of a reasoning

problem P, the parents of an OR node Xi, denoted by pai or paXi
, are the ancestors of

Xi that have connections in G to Xi or to descendants of Xi.

Definition 8.2.10 (parent-separators) Given a primal graph G and a pseudo tree T
of a reasoning problem P, the parent-separators of Xi (or of ⟨Xi, xi⟩), denoted by pasi or

pasXi
, are formed by Xi and its ancestors that have connections in G to descendants of

Xi.
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It follows from these definitions that the parents of Xi, pai separate in the primal

graph G the ancestors of Xi in T , from Xi and its descendants. Similarly, the parents

separators of Xi, pasi, separate the ancestors of Xi from its descendants. It is also easy to

see that each variable Xi and its parents pai form a clique in the induced pseudo-graph.

The following proposition establishes the relationship between pai and pasi. These two

terms are clearly related. We use both in order to characterize two types of merging in the

AND/OR search graph: AND merge and OR merge. The following claim follows directly

from Definitions 8.2.9 and 8.2.10.

Proposition 8.2.11 1. If Y is the single child of X in T , then pasX = paY .

2. If X has children Y1, . . . , Yk in T , then pasX = ∪ki=1paYi.

Theorem 8.2.12 (context based merge operators) Let GT ∗
be the induced pseudo-

tree of T and let πn1 and πn2 be any two partial paths in an AND/OR search graph, ending

with two nodes, n1 and n2.

1. If n1 and n2 are AND nodes annotated by ⟨Xi, xi⟩ and

asgn(πn1)[pasXi
] = asgn(πn2)[pasXi

] (8.1)

then the AND/OR search subtrees rooted by n1 and n2 are identical and n1 and n2

can be merged. The asgn(πni
)[pasXi

] is called the AND context of ni.

2. If n1 and n2 are OR nodes annotated by Xi and

asgn(πn1)[paXi
] = asgn(πn2)[paXi

] (8.2)

then the AND/OR search subtrees rooted by n1 and n2 are identical and n1 and n2

can be merged. The asgn(πni
)[paXi

] is called the OR context of ni.

Definition 8.2.13 (context minimal AND/OR search graph) The AND/OR search

graph ofM guided by a pseudo-tree T that is closed under context-based merge operator,

is called the context minimal AND/OR search graph and is denoted by CT (R).
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We should note that we can in general merge nodes based both on AND and OR

contexts. However, Proposition 8.2.2 shows that doing just one of them renders the other

unnecessary (up to some small constant factor). In practice, we would recommend just

the OR context based merging, because it has a slight (albeit by a small constant factor)

space advantage. In the examples that we give in this paper, CT (R) refers to an AND/OR

search graph for which either the AND context based or OR context based merging was

performed exhaustively.

Example 8.2.14 For the balanced tree in Figure 8.1 consider the chain pseudo tree d =

(X, Y, T,R, Z, L,M). Namely the chain has arcs {(X,Y ), (Y, T ), (T,R), (R,Z), (Z,L), (L,M)}
and the extended graph includes also the arcs (Z,X), (M,Z). The context of T along d

is XY T (since the induced graph has the arc (T,X)), of R it is XR, for Z it is Z and for

M it is M . Indeed in the first 3 levels of the OR search graph in Figure 8.9 there are no

merged nodes. In contrast, if we consider the AND/OR ordering along the dfs tree, the

context of every node is itself yielding a single appearance of each AND node having the

same assignment annotation in the minimal AND/OR graph.

Since the number of nodes in the context minimal AND/OR search graph cannot

exceed the number of different contexts, and since, as we will show, the context size is

bounded by the induced-width of the pseudo-tree that guides it, the size of the context

minimal graph can be bounded as exponentially by the induced-width along the pseudo-

tree. So, we first extend the definition of induced-width to pseudo-trees as follows. We

connect parents recursively going from leaves to root along each branch of the pseudo-

tree. The induced-width is then the maximal width of a node in the resulting induced

pseudo-tree.

Proposition 8.2.15 Given a graphical model M, and a pseudo tree T having induced

width w, then the size of the context minimal AND/OR search graph based on T , CMT (R),
is O(n · kw), when k bounds the domain size.

Proof:

For any variable, the number of its contexts is bounded by the number of possible

instantiations to the variables in it context. Since, it can be shown that the context size
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of each variable is bounded by its induced-width along the pseudo-tree (see exercises), we

get the bound of O(kw). Since we have n variables, the total bound is O(n · kw).

Therefore context-based merge (AND and/or OR) offers a powerful way of trimming

the size of the AND/OR search space, and therefore bounding the truly minimal AND/OR

search graph. We can generate CMT using depth-first or breadth first traversals while

figuring the converging arcs into nodes via their contexts. This way we avoid generating

duplicate searches for the same contexts. All in all, the generation of the search graph is

linear in its size, which is exponential in w and linear in n. Based on Proposition 8.2.15

we can conclude that

Theorem 8.2.16 The context minimal AND/OR search graph CMT of a graphical model

having a pseudo tree with treewidth w can be generated in time and space O(nkw). The

size of the generated context-minimal graph is bounded by O(nkw).

8.3 Finding Good Pseudo Trees

Since the AND/OR search space, be it a tree or a graph, depends on a guiding pseudo-

tree we should spend some time discussing the issue of finding good pseudo-tress. We will

discuss two schemes for generating pseudo-trees. One which is based on an induced graph

along an ordering of the variables, while the other is based on hypergraph-decomposition.

Pseudo Trees created from induced-ordered graphs

We saw that the complexity of a AND/OR search trees is controlled by the height of the

pseudo-tree. It is desirable therefore to find pseudo-trees having minimal height. This

is yet another graph problem (in addition to finding minimal induced-width) which is

known to be NP-complete but greedy algorithms and polynomial time heuristic scheme

are available.

A general scheme for generating pseudo trees is by considering induced graphs along

some ordering d first. Subsequently, a pseudo-tree can be obtained via a depth-first

traversal of the induced-ordered graph starting from the first node in d and breaking ties

in favor of earlier variables in d. The algorithm is described in Figure 8.12. An alternative
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way for generating a pseudo-tree from an induced ordered graph is via its bucket-tree as

presented in Definition 6.1.2. Namely, going from the the last variable to the first we

connect each variable to its closest earliest neighbor in the induced ordered graph. Indeed

a bucket tree is a pseudo tree. In summary:

generate-pseudo-tree

input: a graph G = (V,E) an ordering d, V = {v1, ..., vn}.
output: A rooted tree T = (V,E ′) which is a pseudo-tree of G.

1. Gd = (V,E”)← generate the induced graph of G along d

2. E ′ ← generated as the forward arcs in a dfs search of Gd, starting at v1.

Figure 8.12: The generate pseudo-tree procedure

Proposition 8.3.1 Given a graphical modelM =< X,D, F,
⊗

> and an ordering d,

1. The bucket-tree derived from the induced ordered graph along d of M, T = (X,E)

with E = {(Xi, Xj)|(BXi
, BXj

) ∈ bucket− tree}, is a pseudo tree ofM.

2. The DFS-tree generated by Algorithm Generate-Pseudo-tree in Figure 8.12 is a

pseudo-tree.

3. Given an induced-graph of G, its bucket-tree is also a DFS-based spanning tree of

the induced-graph along the given ordering. of G.

Proof: All one need to show is that all the arcs in the primal graph ofM which are not

in T are back-arcs and this is easy to verify based on the construction of a bucket-tree.

(Exercise: complete the proof).

It is interesting to note that a chain graphical model has a pseduo-tree of depth logn,

when n is the number of variables. On the other hand the induced-width of a chain is 1.

Therefore, on the one hand a chain can be solved in constant space and in O(klogn) time

along its height logn pseudo-tree, and on the other hand it can also be solved in O(nk2)
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time with O(nk) memory using bucket elimination along its chain order having induced

width of 1 and height of n/2. This special case generalizes into relationship between

treewidth and pseudo-tree height:

Proposition 8.3.2 [6, 51] The minimal height, h∗, over all pseudo trees of a given graph

G satisfies h∗ ≤ w∗ · log n, where w∗ is the treewidth of G.

Proof: If there is a tree-decomposition of G having a treewidth w, then it is possible

to show that we can create a pseudo-tree whose height h satisfies h ≤ w · log n (do as

exercise). From this it clearly follows that h∗ ≤ w∗ · log n.

The above relationship suggests a bound on the size of the AND/OR search tree of a

graphical model in terms of its treewidth.

Theorem 8.3.3 A graphical model that has a treewidth w∗ has an AND/OR search tree

whose size is O(k(w
∗·logn)), where k bounds the domain size and n is the number of vari-

ables.

Since, as noted, an induced ordered graph determine a pseudo-tree the question now

is if the min-fill ordering heuristic which is so good for finding small induced-width is

also good for finding pseudo-trees with small heights. Another question is what is the

relative impact of the width and the height on the actual complexity. The AND/OR

search graph is bounded exponentially by the induced-width while the AND/OR search

tree is bounded exponentially by the height. We will have a glimpse into this question by

comparing with an alternative scheme for generating pseudo-trees which is based on the

hypergraph decompositions scheme.

Definition 8.3.4 (hypergraph separators) Given a dual hypergraph H = (V,E) of a

graphical model, a hypergraph separator decomposition of size k by nodes S is obtained if

removing S yields a hypergaph having k disconnected components. S is called a separator.

It is well known that the problem of finding the minimal size hypergraph separator is

hard. However heuristic approaches were developed over the years. 1. Generating a pseudo

1A good package hMeTiS is Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
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Network hypergraph min-fill Network hypergraph min-fill

width depth width depth width depth width depth

barley 7 13 7 23 spot 5 47 152 39 204

diabetes 7 16 4 77 spot 28 108 138 79 199

link 21 40 15 53 spot 29 16 23 14 42

mildew 5 9 4 13 spot 42 36 48 33 87

munin1 12 17 12 29 spot 54 12 16 11 33

munin2 9 16 9 32 spot 404 19 26 19 42

munin3 9 15 9 30 spot 408 47 52 35 97

munin4 9 18 9 30 spot 503 11 20 9 39

water 11 16 10 15 spot 505 29 42 23 74

pigs 11 20 11 26 spot 507 70 122 59 160

Table 8.3: Bayesian Networks Repository (left); SPOT5 benchmarks (right).

tree T forM using hypergraph decomposition is fairly straightforward. The vertices of

the hypergraph are partitioned into two balanced (roughly equal-sized) parts, denoted

by Hleft and Hright respectively, while minimizing the number of hyperedges across. A

small number of crossing edges translates into a small number of variables shared between

the two sets of functions. Hleft and Hright are then each recursively partitioned in the

same fashion, until they contain a single vertex. The result of this process is a tree of

hypergraph separators which can be shown to also be a pseudo tree of the original model

where each separator corresponds to a subset of variables connected by a chain.

Table 8.3 illustrates the induced width and height of the pseudo tree obtained with the

hypergraph and min-fill heuristics for 10 Bayesian networks from the Bayesian Networks

Repository2 and 10 constraint networks derived from the SPOT5 benchmarks [10]. It is

generally observed that the min-fill heuristic generates lower induced width pseudo trees,

while the hypergraph heuristic produces much smaller depth pseudo trees. Note that it

is not possible to generate a pseudo-tree that is both optimal w.r.t. the treewidth and

the height (remember our earlier example of a chain). Therefore, for graphical models

2Available at: http://www.cs.huji.ac.il/labs/compbio/Repository
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having a bounded treewidth w, the minimal AND/OR graph is bounded by O(nkw) while

the minimal OR graph is bounded by O(nkw·logn).

Example 8.3.5 Let’s consider the graph of a graphical model given in Figure 8.13(a).

We see the pseudo tree in part (b) having w=4 and h=8 and the corresponding context-

minimal search graph in (c). The second pseudo-tred in part (d) has w=5, h=6 and the

context-minimal graph appears in part (e).

8.3.1 Using Dynamic Variable Ordering

It is known that exploring the search space in a dynamic variable ordering is highly

beneficial. AND/OR search trees for graphical models can also be modified to allow

dynamic variable ordering. We will touch only briefly on this issue here even though the

ramification of dynamic variable ordering can be substantial (see for example [65, 40]. A

dynamic AND/OR tree that allows varied variable ordering has to satisfy that for every

subtree rooted by the current path π, any arc of the primal graph that appears as a

cross-arc (not a back-arc) in the subtree must be “inactive” conditioned on π.

Example 8.3.6 Consider the propositional formula X → A ∨ C and X → B ∨ C. The

constraint graph is given in Figure 8.14(a) and a DFS tree in 8.14(b). However, the

constraint subproblem conditioned on ⟨X, 0⟩, has no real constraint between A,B,C, so

the effective spanning tree below ⟨X, 0⟩ is {⟨X, 0⟩ → A, ⟨X, 0⟩ → B, ⟨X, 0⟩ → C}, yielding
the AND/OR search tree in Figure 8.14(c). Note that while there is an arc between A

and C in the constraint graph, the arc is not active when X is assigned the value 0.

Clearly, the primal graph conditioned on any partial assignment can only be sparser

than the original graph and therefore may yield a smaller AND/OR search tree than with

fixed ordering. In practice, after each new value assignment, the conditional constraint

graph can be assessed as follows. For any constraint over the current variable X, if the

current assignment ⟨X, x⟩ does not make the constraint active then the corresponding arcs

can be removed from the graph. Then, a pseudo tree of the resulting graph is generated,

its first variable is selected, and search continues. A full investigation of dynamic orderings

is outside the scope of the current chapter.
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8.4 Appendix: Proofs

Proof of Theorem 8.2.6

(1) All we need to show is that the merge operator is not dependant on the order of

applying the operator. Mergeable nodes can only appear at the same level in the AND/OR

graph. Looking at the initial AND/OR graph, before the merge operator is applied, we

can identify all the mergeable nodes per level. We prove the proposition by showing that

if two nodes are initially mergeable, then they must end up merged after the operator is

applied exhaustively to the graph. This can be shown by induction over the level where

the nodes appear.

Base case: If the two nodes appear at the leaf level (level 0), then it is obvious that the

exhaustive merge has to merge them at some point.

Inductive step: Suppose our claim is true for nodes up to level k and two nodes n1

and n2 at level k + 1 are initially identified as mergeable. This implies that, initially,

their corresponding children are identified as mergeable. These children are at level k,

so it follows from the inductive hypothesis that the exhaustive merge has to merge the

corresponding children. This in fact implies that nodes n1 and n2 will root the same

subgraph when the exhaustive merge ends, so they have to end up merged. Since the

graph only becomes smaller by merging, based on the above the process, merging has to

stop at a fix point.

(2) Analogous to (1). (3) If the nodes can be merged, it follows that the subgraphs are

identical, which implies that they define the same conditioned subproblems, and therefore

the nodes can also be unified.
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Figure 8.13: a graphical model; (a) one pseudo-tree; (b) Its context-minimal search graph

; (c) a second pseudo-tree; (d) Its corresponding context-minimal AND/OR search graph;
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Chapter 9

Solving Reasoning problems by

AND/OR Search

In this chapter we show how queries of likelihood and optimization can be answered by

computing the value of the root node over the AND/OR search space discussed in the

previous chapter. The value of a node in the search space is determined by the query we

wish to answer. We will also show the impact of constraints and deterministic information

on pruning the search space.

9.1 Value Functions of Reasoning Problems

As we described earlier, there are a variety of reasoning problems over weighted graphical

models. For constraint networks, the most popular tasks are to decide if the problem is

consistent, to find a single solution or to count solutions. If a cost function is defined

by the graphical model we may also seek an optimal solution. The primary tasks over

probabilistic networks are computing beliefs (i.e., the posterior marginals), finding the

probability of the evidence and finding the most likely tuple given the evidence. Each

of these reasoning problems can be expressed as finding the value of some nodes in the

weighted AND/OR search space where different tasks call for different value definitions.

For example, for the task of finding a solution to a constraint network, the value of

every node is either “1” or “0”. The value “1” means that the subtree rooted at the node
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is consistent and “0” otherwise. Therefore, the value of the root node determines the

consistency query. For solutions-counting the value function of each node is the number

of solutions of the subproblem rooted at that node.

Definition 9.1.1 (value function for consistency and counting) Given a weighted

AND/OR tree ST (R) of a constraint network. The value of a node (AND or OR) for

deciding consistency is “1” if it roots a consistent subproblem and “0” otherwise. The

value of a node (AND or OR) for counting solutions is the number of solutions in its

subtree.

We will next show that the value of nodes in the search graph can be expressed as a

function of the values of their child nodes, thus allowing a recursive computation from

leaves to root, to decide the relevant constraint query.

Proposition 9.1.2 (Recursive value computation for constraint queries) 1. For

the consistency task the value of AND leaves is ”1” and the value of OR leaves is “0”

(they are inconsistent). An internal OR node is labeled “1” if one of its successor

nodes is “1” and an internal AND node has value “1” iff all its child OR nodes have

value “1”.

2. The counting values of leaf AND nodes are “1” and of leaf OR nodes are “0”. The

counting value of an internal OR node is the sum of the counting-values of all its

child nodes. The counting-value of an internal AND node is the product of the

counting-values of all its child nodes. (prove as an exercise).

We now move to probabilistic queries. Remember that the label of an arc (Xi, ⟨Xi, xi⟩)
along path π(xi) is defined as w((Xi, ⟨Xi, xi⟩)) =

∏
f∈B(Xi)

f(π(xi)scop(f)), where B(Xi)

are the functions in its bucket.

Definition 9.1.3 (value for probabilistic queries) Given a labeled AND/OR tree ST (R)
of a Bayesian network, for the probability of evidence query, the value of a node (AND or

OR) is the probability of evidence restricted to its subtree variables and conditioned on the

assigned variables along the path to the node. For the MPE task, the value of each node

is the probability of the most likely extension of its branch in the pseudo-tree conditioned

on the evidence and on the assignment along the path to the node.
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Proposition 9.1.4 (Recursive value computation for probabilistic queries) 1.

For the probability of the evidence, the value of AND leaf nodes are ”1” and the value

of leaf OR nodes are ”0”. The value of an internal OR node is the weighted sum

values of its child AND-nodes, each multiplied by the arc-label. The value of an

internal AND node is the product of child nodes’ values.

2. For the MPE, the value of an internal OR node is the maximum among the values

of its child nodes’s each multiplied by the label of its OR-AND arc. The value of an

AND node is the product of child values. (Prove as an exercise)

We can now generalize to any graphical model and queries. We define the recursive

definition of values and then prove that it had the intended meaning of values.

Definition 9.1.5 (Recursive value computation for general reasoning problems)

The value function of a reasoning problem P = ⟨M,⇓Y , Z⟩, where M = ⟨X,D, F,
⊗
⟩

and Z = ∅, is defined as follows: the value of leaf AND nodes is “1” and of leaf OR

nodes is “0”. The value of an internal OR node is obtained by combining the value of

each AND child node with the weight (see Definition 8.1.8) on its incoming arc and then

marginalizing over all AND children. The value of an AND node is the combination of

the values of its OR children. Formally, if children(n) denotes the children of node n in

the AND/OR search graph, then1:

v(n) =
⊗

n′∈children(n) v(n
′), if n = ⟨X, x⟩ is an AND node,

v(n) =⇓n′∈children(n) (w(n,n′)

⊗
v(n′)), if n = X is an OR node.

Given a reasoning task, the value of the root node is the answer to the problem as

stated next (the formal proof can be found in [37]).

Proposition 9.1.6 Let P = ⟨M,⇓Y , Z⟩, where M = ⟨X,D, F,
⊗
⟩ and let X1 be the

root node in any AND/OR search graph S ′
T (M). Then v(X1) =⇓X

⊗r
i=1 fi when v is as

defined in Definition 9.1.5.

Search algorithms that traverse the AND/OR search space can compute the value of

the root node yielding the answer to the problem. The next subsection presents typical

1we abuse notations here as
⊗

is defined between matrices or tables and here we have scalars

c⃝Rina Dechter 197



depth-first algorithms that search AND/OR trees and graphs. We use solution counting

as an example for a constraint query and the probability of evidence as an example for

a probabilistic query. For application of these ideas for combinatorial optimization tasks,

such as MPE see [64].

9.1.1 Algorithm AND/OR Tree Search and Graph Search

Algorithm 2 presents the basic depth-first traversal of the AND/OR search tree or search

graph, if caching is used, for counting the number of solutions of a constraint network,AO-

counting, (or for probability of evidence for belief networks, AO-belief-updating).

The context based caching is done using tables. For each variable Xi, a table is reserved

in memory for each possible assignment to its parent set pai which is its context. Initially

each entry has a predefined value, in our case “-1”. The fringe of the search is maintained

on a stack called OPEN. The current node is denoted by n, its parent by p, and the current

path by πn. The children of the current node are denoted by successors(n).If caching is

set to ”false” the algorithm searches the AND/OR tree and we will refer to it as AOT .

The algorithm is based on two mutually recursive steps: EXPAND and PROPAGATE,

which call each other (or themselves) until the search terminates. Before expanding an

OR node, its cache table is checked (line 5). If the same context was encountered before,

it is retrieved from cache, and successors(n) is set to the empty set, which will trigger

the PROPAGATE step. If a node is not found in cache, it is expanded in the usual way,

depending on whether it is an AND or OR node (lines 9-16). The only difference between

counting and belief updating is line 11 vs. line 12. For counting, the value of a consistent

AND node is initialized to 1 (line 11), while for belief updating, it is initialized to the

bucket value for the current assignment (line 12). As long as the current node is not a

dead-end and still has unevaluated successors, one of its successors is chosen (which is

also the top node on OPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a node has an empty set of

successors (note that as each successor is evaluated, it is removed from the set of successors

in line 30). This means that all its children have been evaluated, and its final value can

now be computed. If the current node is the root, then the search terminates with its

value (line 19). If it is an OR node, its value is saved in cache before propagating it up
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(line 21). If n is OR, then its parent p is AND and p updates its value by multiplication

with the value of n (line 23). If the newly updated value of p is 0 (line 24), then p is

a dead-end, and none of its other successors needs to be evaluated. An AND node n

propagates its value to its parent p in a similar way, only by summation (line 29). Finally,

the current node n is set to its parent p (line 31), because n was completely evaluated.

The search continues either with a propagation step (if conditions are met) or with an

expansion step.

We can easily modify the algorithm to find a single solution. The main difference

is that the 0/1 v values of internal nodes are propagated using Boolean summation and

product instead of regular operators. If there is a solution, the algorithm terminates as

soon as the value of the root node is updated to 1. The solution subtree can be generated

by following the pointers of the latest solution subtree.

To find posterior marginal query of the root variable, we only need to keep the com-

putation at the root of the search graph and normalize the results. However, if we want

to find the belief for all variables we would need to make a more significant adaptation of

the search scheme.

General AND/OR algorithms for evaluating the value of a root node for any reasoning

problem using tree or graph AND/OR search spaces are identical to the above algorithms

when product is replaced by the appropriate combination operator and summation is

replaced by the appropriate marginalization operator.

Complexity

From Theorems 8.1.15 and 8.3.3 we can clearly conclude that:

Theorem 9.1.7 For any reasoning problem, algorithm AOT runs in linear space and

time O(nkm), when m is the depth of the guiding pseudo tree of its graphical model and k

is the maximum domain size. If the primal graph has a tree decomposition with treewidth

w∗, there exists a pseudo tree T for which AOT is O(nkw
∗·logn).

Obviously, for constraint satisfaction that would terminate early with first solution,

the algorithm would potentially be much faster than the rest of the AOT algorithms.
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Based on Theorem 8.2.15 we can also derive a complexity bounds when caching,

namely when searching the AND/OR context-minimal search graph.

Theorem 9.1.8 For any reasoning problem, the complexity of algorithm AOG (i.e., the

algorithm when caching is true) is time and space O(nkw) where w is the induced width

of the guiding pseudo tree and k is the maximum domain size.

Thus the complexity of AOG can be time and space exponential in the treewidth,

while the complexity of any algorithm searching the OR space can be time and space

exponential in its pathwidth (prove as an exercise).

The space complexity of AOG can often be less than exponential in the treewidth.

This is related to the space complexity of tree decomposition schemes which, as we know,

can operate in space exponential in the size of the cluster separators only, rather than

exponential in the cluster size.

We will use the term dead caches to address this issue. Intuitively, a node that has only

one incoming arc in the search tree will be traversed only once by search, and therefore

its value does not need to be cached, because it will never be used again. For context

based caching, such nodes can be recognized based only based on their context.

Definition 9.1.9 (dead cache) If X is the parent of Y in pseudo-tree T , and context(X) ⊂
context(Y ), then context(Y ) represents a dead cache.

We know that a pseudo-tree is also a bucket-tree. So given a pseudo-tree we can

generate a bucket tree by having a cluster for each variable Xi and its parents pai in the

induced-graph. Following the structure of the pseudo tree T , some of the clusters may

not be maximal. These are the ones that correspond to dead caches. The parents pai that

are not dead caches are actually the separators between maximal clusters in the bucket

tree.

Example 9.1.10 Consider the graphical models and the pseudo-tree in Figure 8.13. The

context in the left branch (C, CK, CKL, CKLN) are all dead-caches. The only one

which is not is CKO of P . As you can see, there are converging arcs into P only along this

branch. Indeed if we describe the clusters of the corresponding bucket-tree. we would
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have just two maximal clusters: CKLNO and PCKO whose separator is CKO, the

context of P .

We can conclude,

Proposition 9.1.11 The space complexity of graph-caching algorithms can be reduced to

being exponential in the separator’s size only, while still being time exponential in the

treewidth, if dead caches are recorded.

We can view the AND/OR tree algorithm (which we will denote AOT) and the

AND/OR graph algorithm (denoted AOG) as two extreme cases in a parameterized col-

lection of algorithms that trade space for time via a controlling parameter i. We denote

this class of algorithms as AO(i) where i determines the size of contexts that the algo-

rithm caches. Algorithm AO(i) records nodes whose context size is i or smaller (the test

in line 21 needs to be a bit more elaborate and check if the context size is smaller than

i). Thus AO(0) is identical to AOT, while AO(w) is identical to AOG, where w is the

induced width of the used pseudo tree. For any intermediate i we get an intermediate

level of caching, which is space exponential in i and whose execution time will increase

as i decreases. A more refined characterization of the time and space complexity of the

algorithm can be obtained (see [36]).

9.2 AND/OR Search Algorithms For Mixed Networks

All the advanced constraint processing algorithms, either incorporating no-good learning

and constraint propagation during search, or using variable elimination algorithms such

as adaptive-consistency and directional resolution generating all relevant no-goods prior

to search, can be incorporated over the AND/OR search space as well. We next define

formally the backtrack-free AND/OR search tree.

Definition 9.2.1 (backtrack-free AND/OR search tree) Given graphical modelM
and given an AND/OR search tree ST (M), the backtrack-free AND/OR search tree of
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(c) Backtrack-free search tree

Figure 9.1: AND/OR search tree and backtrack-free tree

M based on T , denoted BFT (M), is obtained by pruning from ST (M) all inconsistent

subtrees, namely all nodes that root no consistent partial solution.

Example 9.2.2 Consider 5 variables X, Y, Z, T,R over domains {2, 3, 5}, where the con-
straints are: X divides Y and Z, and Y divides T and R. The constraint graph and the

AND/OR search tree relative to the guiding DFS tree rooted at X, are given in Figure

9.1(a,b). In 9.1(b) we present the ST (R) search space whose nodes’ consistency status are

already evaluated having value “1” if consistent and “0” otherwise. We also highlight two

solutions subtrees; one depicted by solid lines and one by dotted lines. Part (c) presents

BFT (R), where all nodes that do not root a consistent solution are pruned.

If we traverse the backtrack-free AND/OR search tree we can find a solution sub-

tree without encountering any dead-ends. Some constraint networks specifications yield a

backtrack-free search space. Others can be made backtrack-free by massaging their repre-

sentation using constraint propagation algorithms. In particular, the variable-elimination

algorithms described in Chapter 3, such as adaptive-consistency and directional resolution,

compile a constraint specification (resp., a Boolean CNF formula) that has a backtrack-

free search space, if applied from leaves to root of the pseudo-tree. We remind now the

edfinition of directional extension (see also chapter 3).
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Definition 9.2.3 (directional extension [31, 79]) Let R be a constraint problem and

let d be a DFS ordering of a guiding pseudo tree, then Ed(R) denotes the constraint

network (resp., the CNF formula) compiled by Adaptive-consistency (resp., directional

resolution) in reversed order of d.

It is possible to show that the backtrack-free portion of an AND/OR tree can be

obtained by generating a tighter representation along d using a variable elimination algo-

rithm, first and then creating the AND/OR tree. In summary,

Proposition 9.2.4 Given a Constraint network R, and a pseudo-tree T , the AND/OR

search tree of the directional extension Ed(R) when d is a DFS ordering of T , coincides
with the backtrack-free AND/OR search tree of R based on T . Namely ST (Ed(R)) =

BFT (R).

Proof: Note that if T is a pseudo tree of R and if d is a DFS ordering of T , then
T is also a pseudo tree of Ed(R) and therefore ST (Ed(R)) is a faithful representation

of Ed(R). Ed(R) is equivalent to R, therefore ST (Ed(R)) is a supergraph of BFT (R).
We only need to show that ST (Ed(R)) does not contain any dead-ends, in other words

any consistent partial assignment must be extendable to a solution of R, This however is
obvious, because Adaptive consistency makes Ed(R) strongly directional w∗(d) consistent,

where w∗(d) is the induced width of R along ordering d [31], a notion that is synonym

with backtrack-freeness.

Example 9.2.5 In Example 9.2.2, if we apply adaptive-consistency in reverse order of

X,Y, T,R, Z, the algorithm will remove the values 3, 5 from the domains of both X and

Z yielding a tighter constraint network R′. The AND/OR search tree in Figure 9.1(c) is

both ST (R′) and BFT (R).

Proposition 9.2.4 emphasizes the significance of no-good learning for deciding incon-

sistency or for finding a single solution. These techniques are known as clause learning

in SAT solvers [55] and are currently used in most advanced solvers [66]. Namely, when

we apply no-good learning we explore a pruned search space whose many inconsistent
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Figure 9.2: Mixed network defined by the query φ = (A ∨ C) ∧ (B ∨ ¬E) ∧ (B ∨D)

subtrees are removed. Since search algorithms accommodate a host of constraint pro-

cessing techniques, we will now give more details on applying constraint techniques while

searching and AND/OR search space for processing queries over mixed networks.

The mixed network can be transformed into an equivalent representation by tightening

the constraint network only. Therefore we can process the deterministic information sep-

arately (e.g., by enforcing some consistency level). We now describe these basic principles

of constraint processing in the context of AND/OR search spaces [30].

9.2.1 AND-OR-cpe Algorithm

AlgorithmAND-OR-cpe for the constraint probabilistic evaluation query (CPE) is given

in Algorithm 3. It presents the basic depth-first traversal of the AND/OR search tree (or

graph, if caching is used) for solving the CPE task over a mixed network and it is indeed

quite similar to Algorithm AOT. The input is a mixed network, a pseudo tree T of the

moral mixed graph and the context of each variable. The output is the probability that

a random tuple generated from the belief network distribution is consistent (satisfies the

constraint portion). As usual, AND-OR-cpe traverses the AND/OR search tree or graph

corresponding to T in a DFS manner and each node maintains a value v which accumulates

the computation resulted from its subtree. OR nodes accumulate the summation of

the product between each child’s value and its OR-to-AND weight, while AND nodes

accumulate the product of their children’s values. The context based caching is done

using table data structures as described earlier.
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Example 9.2.6 We refer back to the example in Figure 8.4. Consider a constraint net-

work that is defined by the CNF formula φ = (A ∨ C) ∧ (B ∨ ¬E) ∧ (B ∨ D). The

trace of algorithm AND-OR-cpe without caching is given in Figure 9.2. Notice that the

clause (A ∨ C) is not satisfied if A = 0 and C = 0, therefore the paths that contain this

assignment cannot be part of a solution of the mixed network. The value of each node

is shown to its left (the leaf nodes assume a dummy value of 1, not shown in the figure).

The value of the root node is the probability of φ. Figure 9.2 is similar to Figure 8.4. In

Figure 8.4 the evidence can be modeled as the CNF formula with unit clauses D ∧¬E.

It is clear that the algorithm inherits all the mentioned properties of AND/OR search.

9.2.2 Constraint Propagation in AND-OR-cpe

The virtue of having the mixed network view is that the constraint portion can be pro-

cessed by a wide range of constraint processing techniques, both statically before search

or dynamically during search [29].

We next discuss the use of constraint propagation during the look-ahead part of the

search. This methods are used in any constraint or SAT/CSP (see chapters 5 and 6 in [29]).

In general, constraint propagation helps to discover (using limited computation) what

variable and what value to instantiate in order to avoid dead-ends as much as popssible.

The incorporation of these methods on top of AND/OR search for value computation is

straightforward. For illustration, we will only consider static variable ordering based on

a pseudo tree, and will focus on the impact of constraint propagation on value selection.

In algorithmAND-OR-cpe, line 10 contains a call to the generic ConstraintPropagation

procedure consulting only the constraint subnetworkR, conditioned on the current partial

assignment. The constraint propagation is relative to the current set of constraints, the

given path that defines the current partial assignment, and the newly inferred constraints,

if any, that were learned during search. ConstraintPropagation which requires polyno-

mial time, may discover that some values cannot be extended to a full solution. These

values are marked as dead-ends and removed from the current domain of the variable.

All the remaining values are returned by the procedure as possible candidates to extend

the search frontier. Clearly, not all the values returned by ConstraintPropagation are
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guaranteed to lead to a solution.

We therefore have the freedom to employ any procedure for checking the consistency of

the constraints of the mixed network. The simplest case is when no constraint propagation

is use and only the initial constraints of R are checked for consistency. We denote this

algorithm by AO-C.

For illustration consider two forms of constraint propagation on top of AO-C. The

first algorithm AO-FC, is based on forward checking, which is one of the weakest forms

of propagation. It propagates the effect of a value selection to each future uninstantiated

variable separately, and checks consistency against the constraints whose scope would

become fully instantiated by just one such future variable.

The second algorithm referred to as AO-RFC, performs a variant of relational forward

checking. Rather than checking only constraints whose scope becomes fully assigned, AO-

RFC checks all the existing constraints by looking at their projection on the current path.

If the projection is empty an inconsistency is detected. AO-RFC is computationally more

expensive than AO-FC, but yields a more pruned search space.

SAT solvers. One possibility that was explored with success (e.g., [4]) is to delegate

the constraint processing to a separate off-the-shelf SAT solver. In this case, for each

new variable assignment the constraint portion is packed and fed into the SAT solver.

If no solution is reported, then that value is a dead-end. If a solution is found by the

SAT solver, then the AND/OR search continues (remember that for some tasks we may

have to traverse all the solutions of the graphical model, so the one solution found by the

SAT solver does not finish the task). The worst-case complexity of this level of constraint

processing, at each node, is exponential. One very commonly used technique is unit

propagation, or unit resolution, as a form of bounded resolution (see chapter 3 and [79]).

Such hybrid use of search and a specialized efficient SAT (or constraint) solver can be

very useful, and it underlines further the power that the mixed network representation

has in delimiting the constraint portion from the belief network.

Example 9.2.7 Figure 9.3(a) shows the belief part of a mixed network, and Figure 9.3(b)

the constraint part. All variables have the same domain, {1,2,3,4}, and the constraints

express “less than” relations. Figure 9.3(c) shows the search space of AO-C. Figure 9.3(d)
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Figure 9.3: Traces of AND-OR-cpe with various levels of constraint propagation

shows the space traversed by AO-FC. Figure 9.3(e) shows the space when consistency is

enforced with Maintaining Arc Consistency (which enforces full arc-consistency after each

new instantiation of a variable).

9.2.3 Backjumping

Backjumping algorithms [50, 76, 6, 29] are depth-first search, known as backtracking

search algorithms, applied to the OR space, which use the problem structure to jump

back from a dead-end as far back as possible. Backjumping can be very useful in the
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Figure 9.4: Graph-based backjumping and AND/OR search

context of determinism. In graph-based backjumping (GBJ) each variable maintains a

graph-based induced ancestor set which ensures that no solutions are missed by jumping

back to the deepest variable in this induced-ancestor set.

If the ordering of the OR space is a DFS ordering of the primal graph, it is known

[29] that all the backjumps are from a variable to its DFS parent. It was shown ([67])

that this means that a simple AND/OR search automatically incorporates graph-based

backjumping, when the pseudo tree is a DFS tree of the primal graph. Indeed, when we

search an AND/OR graph, a certain level of backjumping occurs automatically (for more

details see [29]).

9.2.4 Good and Nogood Learning

When a search algorithm encounters a dead-end, it can use different techniques to identify

the ancestor variable assignments that caused the dead-end, called a conflict-set. It is

conceivable that the same assignment of that set of ancestor variables may be encountered

in the future, and they would lead to the same dead-end. Rather than rediscovering it

again, if memory allows, it is useful to record the dead-end conflict-set as a new constraint

(or clause) over the ancestor set that is responsible for it. Recording dead-end conflict-sets

is sometimes called nogood learning.
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One form of nogood learning is graph-based, and it uses the same technique as graph-

based backjumping to identify the ancestor variables that generate the nogood. The

information on conflicts is generated from the primal graph information alone. Similar

to the case of backjumping, it is easy to see that AND/OR search already provides this

information in the context of the nodes. Therefore, if caching is used, just saving the

information about the nogoods encountered amounts to graph-based nogood learning in

the case of OR search.

If deeper types of nogood learning are desirable, they need to be implemented on

top of the AND/OR search. In such a case, a smaller set than the context of a node

may be identified as a culprit assignment, and may help discover future dead-ends much

earlier than when context-based caching alone is used. Needless to say, deep learning is

computationally more expensive and it can be facilitated when focusing on the constraint

portion of the mixed network.

In recent years [19, 94, 30], several schemes propose not only the learning of nogoods,

but also that of their logical counterparts, the goods. This is in fact the well known

technique of caching, or memoization, and in recent years it became appealing due to the

availability of computer memory and when the task to be solved requires the enumeration

of many solutions. Overall traversing the context minimal AND/OR graph and caching

appropriately implements both good and nogood graph-based learning.

9.3 Summary and Bibliographical Notes for

Chapters 8 and 9

Chapters 8 and 9 present search for graphical models in the context of AND/OR search

spaces rather than OR spaces. We introduced the AND/OR search tree, and showed that

its size can be bounded exponentially by the depth of its pseudo tree over the graphical

model. This implies exponential savings for any linear space algorithms traversing the

AND/OR search tree. Specifically, if the graphical model has treewidth w∗, the depth of

the pseudo tree is O(w∗ · log n).
The AND/OR search tree was extended into a graph by merging identical subtrees.

We showed that the size of the minimal AND/OR search graph is exponential in the
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treewidth while the size of the minimal OR search graph is exponential in the pathwidth.

Since for some graphs the difference between treewidth and pathwidth is substantial (e.g.,

balanced pseudo trees) the AND/OR representation implies substantial time and space

savings for memory intensive algorithms traversing the AND/OR graph. Searching the

AND/OR search graph can be implemented by goods caching during search, while no-

good recording is interpreted as pruning portions of the search space independent of it

being a tree or a graph, an OR or an AND/OR. For finding a single solution, pruning

the search space is the most significant action. For counting and probabilistic inference,

using AND/OR graphs can be of much help even on top of no-good recording.

It is possible to show [67] that Variable Elimination can be understood as bottom up

layer by layer traversal of the context minimal AND/OR search graph. If the graphical

model is strictly positive (has no determinism), then context based AND/OR search and

Variable Elimination are essentially identical. When determinism is present, they may

differ, because they traverse the AND/OR graph in different directions and encounter de-

terminism (and can take advantage of it) differently. Therefore, for graphical models with

no determinism, there is no principled difference between memory-intensive AND/OR

search with fixed variable ordering and inference beyond: (1) different direction of explor-

ing a common search space (top down for search vs. bottom up for inference); (2) different

assumption of control strategy (depth-first for search and breadth-first for inference).

The AND/OR search space is inspired by search advances introduced sporadically in

the past three decades for constraint satisfaction and more recently for probabilistic in-

ference and for optimization tasks. Specifically, it resembles pseudo tree rearrangement

[47, 48], briefly introduced two decades ago, which was adapted subsequently for dis-

tributed constraint satisfaction [17, 18] and more recently in [70], and was also shown

to be related to graph-based backjumping [24]. This work was extended in [6] and more

recently applied to optimization tasks [53]. Another version that can be viewed as explor-

ing the AND/OR graphs was presented recently for constraint satisfaction [92] and for

optimization [91]. Similar principles were introduced recently for probabilistic inference

(in algorithm Recursive Conditioning [19] as well as in Value Elimination [40, 39]) and

currently provide the backbones of the most advanced SAT solvers [94].
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Algorithm 2: AO-counting / AO-belief-updating
A constraint networkM = ⟨X,D,C⟩, or a belief network P = ⟨X,D,P ⟩; a pseudo tree T rooted

at X1; parents pai (OR-context) for every variable Xi; caching set to true or false. The number

of solutions, or the updated belief, v(X1).

if caching == true then // Initialize cache tables

Initialize cache tables with entries of “−1”1

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN2

while OPEN ̸= φ do3

n← top(OPEN); remove n from OPEN4

if caching == true and n is OR, labeled Xi and Cache(asgn(πn)[pai]) ̸= −1 then // In5

cache

v(n)← Cache(asgn(πn)[pai]) // Retrieve value6

successors(n)← φ // No need to expand below7

else // EXPAND8

if n is an OR node labeled Xi then // OR-expand9

successors(n)← {⟨Xi, xi⟩ | ⟨Xi, xi⟩ is consistent with πn }10

v(⟨Xi, xi⟩)← 1, for all ⟨Xi, xi⟩ ∈ successors(n)11

v(⟨Xi, xi⟩)←
∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all ⟨Xi, xi⟩ ∈ successors(n) // AO-bu
12

if n is an AND node labeled ⟨Xi, xi⟩ then // AND-expand13

successors(n)← childrenT (Xi)14

v(Xi)← 0 for all Xi ∈ successors(n)15

Add successors(n) to top of OPEN16

while successors(n) == φ do // PROPAGATE17

if n is an OR node labeled Xi then18

if Xi == X1 then // Search is complete19

return v(n)20

if caching == true then21

Cache(asgn(πn)[pai])← v(n) // Save in cache22

v(p)← v(p) ∗ v(c)23

if v(p) == 0 then // Check if p is dead-end24

remove successors(p) from OPEN25

successors(p)← φ26

if n is an AND node labeled ⟨Xi, xi⟩ then27

let p be the parent of n28

v(p)← v(p) + v(n);29

remove n from successors(p)30

n← p31
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Algorithm 3: AND-OR-cpe
A mixed networkM = ⟨X,D,G,P,C⟩; a pseudo tree T of the moral mixed graph, rooted at X1;

parents pai (OR-context) for every variable Xi; caching set to true or false. The probability

P (x̄ ∈ ρ(R)) that a tuple satisfies the constraint query.

if caching == true then // Initialize cache tables

Initialize cache tables with entries of “−1”1

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN2

while OPEN ̸= φ do3

n← top(OPEN); remove n from OPEN4

if caching == true and n is OR, labeled Xi and Cache(asgn(πn)[pai]) ̸= −1 then // If5

in cache

v(n)← Cache(asgn(πn)[pai]) // Retrieve value6

successors(n)← φ // No need to expand below7

else // Expand search (forward)8

if n is an OR node labeled Xi then // OR-expand9

successors(n)← ConstraintPropagation(⟨X,D,C⟩, asgn(πn))10

// CONSTRAINT PROPAGATION

v(⟨Xi, xi⟩)←
∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all ⟨Xi, xi⟩ ∈ successors(n)
11

if n is an AND node labeled ⟨Xi, xi⟩ then // AND-expand12

successors(n)← childrenT (Xi)13

v(Xi)← 0 for all Xi ∈ successors(n)14

Add successors(n) to top of OPEN15

while successors(n) == φ do // Update values (backtrack)16

if n is an OR node labeled Xi then17

if Xi == X1 then // Search is complete18

return v(n)19

if caching == true then20

Cache(asgn(πn)[pai])← v(n) // Save in cache21

let p be the parent of n22

v(p)← v(p) ∗ v(n)23

if v(p) == 0 then // Check if p is dead-end24

remove successors(p) from OPEN25

successors(p)← φ26

if n is an AND node labeled ⟨Xi, xi⟩ then27

let p be the parent of n28

v(p)← v(p) + v(n);29

remove n from successors(p)30

n← p31
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Procedure ConstraintPropagation(R, x̄i)
A constraint network R = ⟨X,D,C⟩; a partial assignment path x̄i to variable Xi. reduced

domain Di of Xi; reduced domains of future variables; newly inferred constraints.

This is a generic procedure that performs the desired level of constraint propagation, for example

forward checking, unit propagation, arc consistency over the the constraint network R and

conditioned on x̄i.

return reduced domain of Xi
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