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Probabilistic Reasoning;
Graphical models

• Graphical models:

– Bayesian network, constraint networks, mixed network 

• Queries

• Exact algorithm 

– using  inference, 

– search and hybrids

• Graph parameters: 

– tree-width, cycle-cutset, w-cutset



Queries 

• Probability of evidence (or partition function)

• Posterior marginal (beliefs):

• Most Probable Explanation
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Approximation

• Since inference, search and hybrids are  too expensive when 
graph is dense; (high treewidth) then:

• Bounding inference:
• mini-bucket and mini-clustering
• Belief propagation

• Bounding search:
• Sampling

• Goal: an anytime scheme
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Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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A sample

• Given a set of variables X={X1,...,Xn}, a sample, 
denoted by St is an instantiation of all 
variables:
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How to draw a sample ?
Univariate distribution

• Example: Given random variable X having 
domain {0, 1} and a distribution P(X) = (0.3, 
0.7). 

• Task: Generate samples of X from P.

• How?

– draw random number r  [0, 1]

– If (r < 0.3) then set X=0

– Else set X=1
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How to draw a sample?
Multi-variate distribution

• Let X={X1,..,Xn} be a set of variables

• Express the distribution in product form

• Sample variables one by one from left to right, 
along the ordering dictated by the product 
form.

• Bayesian network literature: Logic sampling
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Sampling for Prob. Inference
Outline

• Logic Sampling

• Importance Sampling

– Likelihood Sampling

– Choosing a Proposal Distribution

• Markov Chain Monte Carlo (MCMC)

– Metropolis-Hastings

– Gibbs sampling

• Variance Reduction



Logic Sampling: 

No Evidence (Henrion 1988)

Input: Bayesian network

X= {X1,…,XN}, N- #nodes, T - # samples

Output: T samples 

Process nodes in topological order – first process the 

ancestors of a node, then the node itself:

1. For t = 0 to T

2. For i = 0 to N

3. Xi  sample xi
t from P(xi | pai)
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Logic sampling (example)
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Logic Sampling w/ Evidence

Input: Bayesian network

X= {X1,…,XN}, N- #nodes

E – evidence, T - # samples

Output: T samples consistent with E

1. For t=1 to T

2. For i=1 to N

3. Xi  sample xi
t from P(xi | pai)

4. If Xi in E and Xi  xi, reject sample:

5. Goto Step 1.
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Logic Sampling (example)
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Expected value: Given a probability distribution P(X) 

and a function g(X) defined over a set of variables X = 

{X1, X2, … Xn}, the expected value of g w.r.t. P is

Variance: The variance of g w.r.t. P is:

Expected value and Variance
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Monte Carlo Estimate

• Estimator: 

– An estimator is a function of the samples.

– It produces an estimate of the unknown 
parameter of the sampling distribution.
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Example: Monte Carlo estimate
• Given: 

– A distribution P(X) = (0.3, 0.7).
– g(X) = 40 if X equals 0  

= 50 if X equals 1.

• Estimate EP[g(x)]=(40x0.3+50x0.7)=47.
• Generate k samples from P: 0,1,1,1,0,1,1,0,1,0
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Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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Importance sampling: Main idea

• Express query as the expected value of a 
random variable w.r.t. to a distribution Q.

• Generate random samples from Q.

• Estimate the expected value from the 
generated samples using a monte carlo
estimator (average).
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Importance sampling for P(e)
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Properties of IS estimate of P(e) 

• Convergence: by law of large numbers

• Unbiased.

• Variance:
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Properties of IS estimate of P(e)

• Mean Squared Error of the estimator
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This quantity enclosed in the brackets is 
zero because the expected value of the 

estimator equals the expected value of g(x)



Estimating P(Xi|e)
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Properties of the IS estimator for 
P(Xi|e)

• Convergence: By Weak law of large numbers

• Asymptotically unbiased

• Variance

– Harder to analyze

– Liu suggests a measure called “Effective sample 
size”
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Generating samples from Q

• No restrictions on “how to”

• Typically, express Q in product form:

– Q(Z)=Q(Z1)xQ(Z2|Z1)x….xQ(Zn|Z1,..Zn-1)

• Sample along the order Z1,..,Zn

• Example:

– Z1Q(Z1)=(0.2,0.8)

– Z2 Q(Z2|Z1)=(0.1,0.9,0.2,0.8)

– Z3 Q(Z3|Z1,Z2)=Q(Z3)=(0.5,0.5)



Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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Likelihood Weighting
(Fung and Chang, 1990; Shachter and Peot, 1990)

28

Works well  for likely evidence!

“Clamping” evidence+
logic sampling+
weighing samples by evidence likelihood

Is an instance of importance sampling!



Likelihood Weighting: Sampling
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Sample in topological order over X !

Clamp evidence, Sample xi P(Xi|pai), P(Xi|pai) is a 
look-up in CPT!



Likelihood Weighting: Proposal Distribution 
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Likelihood Weighting: Estimates 
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Estimate Posterior Marginals:



Likelihood Weighting

• Converges to exact posterior marginals

• Generates Samples Fast

• Sampling distribution is close to prior 
(especially if E  Leaf Nodes)

• Increasing sampling variance

Convergence may be slow

Many samples with P(x(t))=0 rejected

32



Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• Error estimation

• State-of-the-art importance sampling 
techniques
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Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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Proposal selection

• One should try to select a proposal that is as 
close as possible to the posterior distribution.
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Perfect sampling using Bucket 
Elimination

• Algorithm:

– Run Bucket elimination on the problem along an 
ordering o=(XN,..,X1).

– Sample along the reverse ordering: (X1,..,XN)

– At each variable Xi, recover the probability 
P(Xi|x1,...,xi-1) by referring to the bucket.
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Bucket elimination (BE) 
Algorithm elim-bel (Dechter 1996)


b

Elimination operator

P(e)

bucket  B: 

P(a)

P(C|A)

P(B|A)   P(D|B,A)   P(e|B,C)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

B

C

D

E

A

e)(A,hD

(a)hE

e)C,D,(A,hB

e)D,(A,hC
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Sampling from the output of BE
(Dechter 2002)

bucket  B: 

P(A)

P(C|A)

P(B|A)   P(D|B,A)   P(e|B,C)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e)(A,hD

(A)hE

e)C,D,(A,hB

e)D,(A,hC

Q(A)aA:

(A)hP(A)Q(A)
E
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Mini-buckets: “local inference”

• Computation in a bucket is time and space 
exponential in the number of variables 
involved

• Therefore, partition functions in a bucket   into 
“mini-buckets” on smaller number of variables

• Can control the size of each “mini-bucket”, 
yielding polynomial complexity.
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Mini-Bucket Elimination

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

ΣB

P(B|A) P(D|B,A)

hE(A)

hB(A,D)

P(e|B,C)

Mini-buckets

ΣB

P(C|A) hB(C,e)

hD(A)

hC(A,e)

Approximation of P(e)

Space and Time constraints:
Maximum scope size of the new 
function generated should be 
bounded by 2

BE generates a function having scope 
size 3. So it cannot be used.

P(A)
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Sampling from the output of MBE

bucket A:

bucket E:

bucket D:

bucket C:

bucket B: P(B|A) P(D|B,A)

hE(A)

hB(A,D)

P(e|B,C)

P(C|A) hB(C,e)

hD(A)

hC(A,e)
Sampling is same as in BE-sampling 
except that now we construct Q 
from a randomly selected “mini-
bucket”



IJGP-Sampling 
(Gogate and Dechter, 2005)

• Iterative Join Graph Propagation (IJGP)

– A Generalized Belief Propagation scheme (Yedidia
et al., 2002)

• IJGP yields better approximations of P(X|E) 
than MBE

– (Dechter, Kask and Mateescu, 2002)

• Output of IJGP is same as mini-bucket 
“clusters”

• Currently the best performing IS scheme!



Current Research question

• Given a Bayesian network with evidence or a 
Markov network representing function P, 
generate another Bayesian network representing 
a function Q (from a family of distributions, 
restricted by structure) such that Q is closest to P.

• Current approaches
– Mini-buckets
– Ijgp
– Both

• Experimented, but need to be justified 
theoretically.



Algorithm: Approximate Sampling

1) Run IJGP or MBE

2) At each branch point compute the edge 
probabilities by consulting output of IJGP or 
MBE

• Rejection Problem:

– Some assignments generated are non solutions
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Adaptive Importance Sampling



Adaptive Importance Sampling

• General case

• Given k proposal distributions

• Take N samples out of each distribution

• Approximate P(e) 
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Overview
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4. Sampling in presence of Determinism 
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6. AND/OR importance sampling



Markov Chain 

• A Markov chain is a discrete random process with 
the property that the next state depends only on the 

current state (Markov Property):
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• If P(Xt|xt-1) does not depend on t (time 
homogeneous) and state space is finite, then it is 
often expressed as a transition function (aka 
transition matrix) 1)( 

x
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Example: Drunkard’s Walk
• a random walk on the number line where, at 

each step, the position may change by +1 or 
−1 with equal probability
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Example: Weather Model
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Multi-Variable System

• state is an assignment of values to all the 
variables
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Bayesian Network System

• Bayesian Network is a representation of the 
joint probability distribution over 2 or more 
variables

X1
t

X2
t

X3
t

},,{ 321

tttt xxxx 

X1

X2 X3
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Stationary Distribution
Existence

• If the Markov chain is time-homogeneous, 
then the vector (X) is a stationary distribution 
(aka invariant or equilibrium distribution, aka 
“fixed point”), if its entries sum up to 1 and 
satisfy:

• Finite state space Markov chain has a unique 
stationary distribution if and only if:
– The chain is irreducible

– All of its states are positive recurrent
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Irreducible

• A state x is irreducible if under the transition rule 
one has nonzero probability of moving from x to 
any other state and then coming back in a finite 
number of steps

• If one state is irreducible, then all the states 
must be irreducible

(Liu, Ch. 12, pp. 249, Def. 12.1.1)
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Recurrent

• A state x is recurrent if the chain returns to x

with probability 1

• Let M(x ) be the expected number of steps to 
return to state x

• State x is positive recurrent if M(x ) is finite
The recurrent states in a finite state chain are positive recurrent .



Stationary Distribution Convergence

• Consider infinite Markov chain:
nnn PPxxPP 00)( )|( 

• Initial state is not important in the limit

“The most useful feature of a “good” Markov 
chain is its fast forgetfulness of its past…”

(Liu, Ch. 12.1)
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n
P




62

• If the chain is both irreducible and aperiodic, 
then:



Aperiodic

• Define d(i) = g.c.d.{n > 0 | it is possible to go 
from i to i in n steps}. Here, g.c.d. means the 
greatest common divisor of the integers in the 
set.  If d(i)=1 for i, then chain is aperiodic

• Positive recurrent, aperiodic states are ergodic
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Markov Chain Monte Carlo

• How do we estimate P(X), e.g., P(X|e) ?

64

• Generate samples that form Markov Chain 
with stationary distribution =P(X|e)

• Estimate  from samples (observed states):

visited states x0,…,xn can be viewed as “samples” 
from distribution 
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MCMC Summary

• Convergence is guaranteed in the limit

• Samples are dependent, not i.i.d.

• Convergence (mixing rate) may be slow

• The stronger correlation between states, the 
slower convergence!

• Initial state is not important, but… typically, 
we throw away first K samples - “burn-in”
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Gibbs Sampling (Geman&Geman,1984)

• Gibbs sampler is an algorithm to generate a 
sequence of samples from the joint probability 
distribution of two or more random variables

• Sample new variable value one variable at a 
time from the variable’s conditional 
distribution:

• Samples form a Markov chain with stationary 
distribution P(X|e)
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Gibbs Sampling: Illustration

The process of Gibbs sampling can be understood as a random walk 
in the space of all instantiations of X=x (remember drunkard’s walk):

In one step we can reach instantiations 
that differ from current one by value 
assignment to at most one variable 
(assume randomized choice of variables 
Xi).



Ordered Gibbs Sampler

Generate sample xt+1 from xt :

In short, for i=1 to N:
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Transition Probabilities in BN

Markov blanket:
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Xi

Given Markov blanket (parents, 
children, and their parents),
Xi is independent of all other nodes
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Computation is linear in the size of Markov blanket!



Ordered Gibbs Sampling Algorithm
(Pearl,1988) 

Input: X, E=e

Output: T samples {xt }

Fix evidence E=e, initialize x0 at random
1. For t = 1 to T (compute samples)

2. For i = 1 to N (loop through variables)

3. xi
t+1  P(Xi | markovi

t)

4. End For

5. End For



Gibbs Sampling Example - BN
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X1 = x1
0

X6 = x6
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X2 = x2
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X7 = x7
0

X3 = x3
0

X8 = x8
0

X4 = x4
0

X5 = x5
0



Gibbs Sampling Example - BN

72

X1 

X4 

X8 X5 X2 

X3 

X9 
X7 

X6 

),,...,|( 9

0

8

0

21

1

1 xxxXPx 

}{},,...,,{ 9921 XEXXXX 

),,...,|( 9

0

8

1

12

1

2 xxxXPx 





Answering Queries P(xi |e) = ?
• Method 1: count # of samples where Xi = xi (histogram estimator):
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Dirac delta f-n

• Method 2: average probability (mixture estimator):

• Mixture estimator converges faster (consider 
estimates for the unobserved values of Xi; prove via 
Rao-Blackwell theorem)



Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be 
composed of two groups of variables, R and L. Then, 
for the joint distribution (R,L) and function g, the 
following result applies
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)]([}|)({[ RgVarLRgEVar 

for a function of interest g, e.g., the mean or 
covariance (Casella&Robert,1996, Liu et. al. 1995).

• theorem makes a weak promise, but works well in practice!
• improvement depends the choice of R and L



Importance vs. Gibbs
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Gibbs Sampling: Convergence

76

• Sample from `P(X|e)P(X|e)

• Converges iff chain is irreducible and ergodic

• Intuition - must be able to explore all states:
– if Xi and Xj are strongly correlated, Xi=0 Xj=0, 

then, we cannot explore states with Xi=1 and Xj=1

• All conditions are satisfied when all 
probabilities are positive

• Convergence rate can be characterized by the 
second eigen-value of transition matrix



Gibbs: Speeding Convergence

Reduce dependence between samples 
(autocorrelation)

• Skip samples

• Randomize Variable Sampling Order

• Employ blocking (grouping)

• Multiple chains

Reduce variance (cover in the next section)
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Blocking Gibbs Sampler

• Sample several variables together, as a block

• Example: Given three variables X,Y,Z, with domains of 
size 2, group Y and Z together to form a variable 
W={Y,Z} with domain size 4. Then, given sample 
(xt,yt,zt), compute next sample:

+ Can improve convergence greatly when two variables 
are strongly correlated! 

- Domain of the block variable grows exponentially with 
the #variables in a block!

78

)|,(),(

)(),|(

1111

1









tttt

tttt

xZYPwzy

wPzyXPx



Gibbs: Multiple Chains

• Generate M chains of size K

• Each chain produces independent estimate Pm:
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Treat Pm as independent random variables.

• Estimate P(xi|e) as average of  Pm (xi|e) :



Gibbs Sampling Summary

• Markov Chain Monte Carlo method
(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)

• Samples are dependent, form Markov Chain

• Sample from which converges to

• Guaranteed to converge when all P > 0

• Methods to improve convergence:
– Blocking

– Rao-Blackwellised
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Overview

1. Probabilistic Reasoning/Graphical models

2. Importance Sampling

3. Markov Chain Monte Carlo: Gibbs Sampling

4. Sampling in presence of Determinism 

5. Rao-Blackwellisation

6. AND/OR importance sampling



Sampling: Performance

• Gibbs sampling

– Reduce dependence between samples

• Importance sampling

– Reduce variance

• Achieve both by sampling a subset of variables 
and integrating out the rest (reduce 
dimensionality), aka Rao-Blackwellisation

• Exploit graph structure to manage the extra cost
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Smaller Subset State-Space

• Smaller state-space is easier to cover
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Smoother Distribution
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Speeding Up Convergence

• Mean Squared Error of the estimator:

   PVarBIASPMSE QQ  2

  




  2

2

][ˆ]ˆ[]ˆ[ PEPEPVarPMSE QQQQ

• Reduce variance  speed up convergence !

• In case of unbiased estimator, BIAS=0
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Rao-Blackwellisation
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Liu, Ch.2.3



Rao-Blackwellisation

• X=RL

• Importance Sampling:

• Gibbs Sampling: 
– autocovariances are lower (less correlation 

between samples)

– if Xi and Xj are strongly correlated, Xi=0  Xj=0, 
only include one fo them into a sampling set
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Liu, Ch.2.5.5

“Carry out analytical computation as much as possible” - Liu



Blocking Gibbs Sampler vs. Collapsed

• Standard Gibbs:

(1)

• Blocking:

(2)

• Collapsed:

(3)
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Collapsed Gibbs Sampling

Generating Samples

Generate sample ct+1 from ct :
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In short, for i=1 to K:



Collapsed Gibbs Sampler

Input: C X, E=e

Output: T samples {ct }

Fix evidence E=e, initialize c0 at random
1. For t = 1 to T (compute samples)

2. For i = 1 to N (loop through variables)

3. ci
t+1  P(Ci | ct\ci)

4. End For

5. End For



Calculation Time

• Computing P(ci| ct\ci,e) is more expensive 
(requires inference)

• Trading #samples for smaller variance:

– generate more samples with higher covariance

– generate fewer samples with lower covariance

• Must control the time spent computing 
sampling probabilities in order to be time-
effective!
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Exploiting Graph Properties

Recall… computation time is exponential in the 
adjusted induced width of a graph

• w-cutset is a subset of variable s.t. when they 
are observed, induced width of the graph is w

• when sampled variables form a w-cutset , 
inference is exp(w) (e.g., using Bucket Tree 

Elimination)

• cycle-cutset is a special case of w-cutset
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Sampling w-cutset  w-cutset sampling!



What If C=Cycle-Cutset ?
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P(x2,x5,x9) – can compute using Bucket Elimination

P(x2,x5,x9) – computation complexity is O(N)



Computing Transition Probabilities
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Compute joint probabilities:

Normalize:



Cutset Sampling-Answering Queries

• Query: ci C, P(ci |e)=? same as Gibbs:
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computed while generating sample t
using bucket tree elimination

compute after generating sample t
using bucket tree elimination
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• Query: xi X\C, P(xi |e)=? 



Cutset Sampling vs. Cutset Conditioning
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• Cutset Conditioning

• Cutset Sampling
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Cutset Sampling Example 
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Estimating P(x2|e) for sampling node X2 :

Sample 1

Sample 2

Sample 3



Cutset Sampling Example 
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Estimating P(x3 |e) for non-sampled node X3 :
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CPCS54 Test Results
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MSE vs. #samples (left) and time (right) 

Ergodic, |X|=54, D(Xi)=2, |C|=15, |E|=3

Exact Time = 30 sec using Cutset Conditioning

CPCS54, n=54, |C|=15, |E|=3 
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CPCS179 Test Results
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MSE vs. #samples (left) and time (right) 
Non-Ergodic (1 deterministic CPT entry)
|X| = 179, |C| = 8, 2<= D(Xi)<=4, |E| = 35

Exact Time = 122 sec using Cutset Conditioning

CPCS179, n=179, |C|=8, |E|=35
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CPCS360b Test Results
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MSE vs. #samples (left) and time (right) 

Ergodic, |X| = 360, D(Xi)=2, |C| = 21, |E| = 36

Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination

CPCS360b, n=360, |C|=21, |E|=36
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Random Networks
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MSE vs. #samples (left) and time (right)

|X| = 100, D(Xi) =2,|C| = 13, |E| = 15-20

Exact Time = 30 sec using Cutset Conditioning

RANDOM, n=100, |C|=13, |E|=15-20
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Coding Networks
Cutset Transforms Non-Ergodic Chain to Ergodic
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MSE vs. time (right)

Non-Ergodic, |X| = 100, D(Xi)=2, |C| = 13-16, |E| = 50

Sample Ergodic Subspace U={U1, U2,…Uk}

Exact Time = 50 sec using Cutset Conditioning

x1 x2 x3 x4

u1 u2 u3 u4

p1 p2 p3 p4

y4y3y2y1

Coding Networks, n=100, |C|=12-14
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Non-Ergodic Hailfinder
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MSE vs. #samples (left) and time (right)

Non-Ergodic, |X| = 56, |C| = 5, 2 <=D(Xi) <=11, |E| = 0

Exact Time = 2 sec using Loop-Cutset Conditioning

HailFinder, n=56, |C|=5, |E|=1 
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CPCS360b - MSE
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cpcs360b, N=360, |E|=[20-34], w*=20, MSE
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Ergodic, |X| = 360, |C| = 26, D(Xi)=2

Exact Time = 50 min using BTE



Cutset Importance Sampling

• Apply Importance Sampling over cutset C
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where P(ct,e) is computed using Bucket Elimination

(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)



Likelihood Cutset Weighting (LCS)

• Z=Topological Order{C,E}

• Generating sample t+1:
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For End

If End   
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:do For 
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ZZ • computed while generating 
sample t
using bucket tree 
elimination

• can be memoized for some 
number of instances K 
(based on memory available

KL[P(C|e), Q(C)+ ≤ KL*P(X|e), Q(X)]



Pathfinder 1
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Pathfinder 2
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Link
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Summary

• i.i.d. samples

• Unbiased estimator

• Generates samples fast

• Samples from Q

• Reject samples with 
zero-weight

• Improves on cutset

• Dependent samples

• Biased estimator

• Generates samples 
slower

• Samples from `P(X|e)

• Does not converge in 
presence of constraints

• Improves on cutset
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Importance Sampling Gibbs Sampling



CPCS360b
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cpcs360b, N=360, |LC|=26, w*=21, |E|=15
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CPCS422b
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Coding Networks
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coding, N=200, P=3, |LC|=26, w*=21
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