Exact Inference Algorithms for Probabilistic Reasoning; BTE and CTE

COMPSCI 276, Spring 2011 Set 6: Rina Dechter

(Reading: Primary: Class Notes (5,6) Secondary: , Darwiche chapters 7,8)

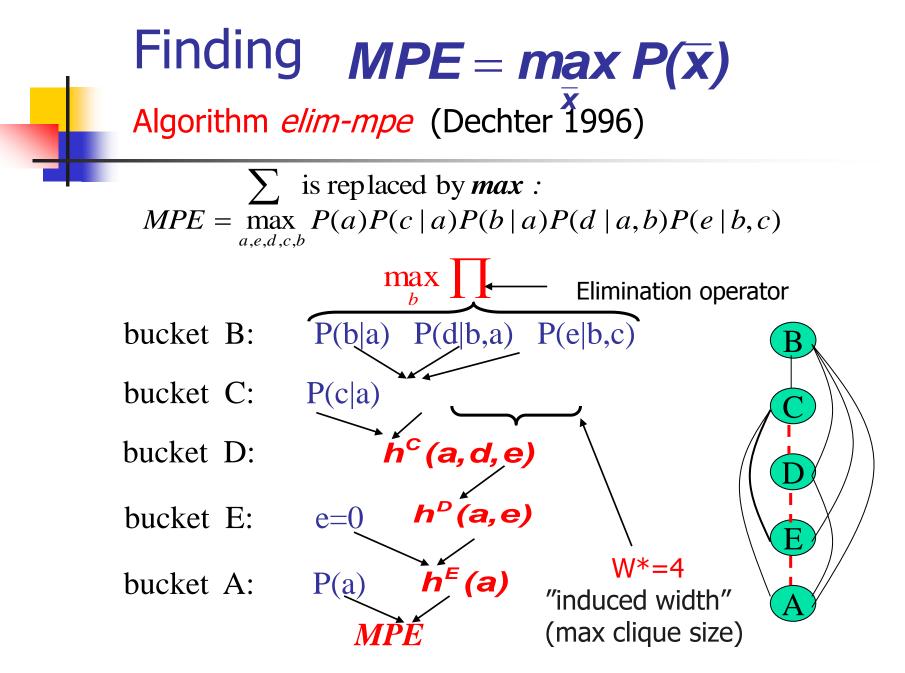
Probabilistic Inference Tasks

Belief updating:

 $BEL(X_i) = P(X_i = x_i | evidence)$

- Finding most probable explanation (MPE)
 x

 x
 = argmax P(x, e)
- Finding maximum a-posteriory hypothesis $(a_1^*,...,a_k^*) = \arg\max_{\overline{a}} \sum_{x/A} P(\overline{x}, e)$ $A \subseteq X:$ hypothesis variables
- Finding maximum-expected-utility (MEU) decision $(d_1^*,...,d_k^*) = \underset{d}{\operatorname{argmax}} \sum_{X/D} P(\overline{x},e) U(\overline{x})$ $D \subseteq X : \operatorname{decision variables} U(\overline{x}) : \operatorname{utility function}$



Generating the MPE-tuple

- 5. b' = arg max P(b | a')× × P(d' | b, a')× P(e' | b, c')
- 4. c' = arg max P(c / a')×
 × h^B(a', d^c, c, e')
- **3.** $d' = \arg \max_{d} h^{c}(a', d, e')$
- **2. e'** = **0**

- B: P(b|a) P(d|b,a) P(e|b,c)
- C: P(c|a) $h^{B}(a, d, c, e)$
- D: *h^c (a, d, e)*
- E: e=0 *h***^D(a,e)**
- 1. $a' = arg \max P(a) \cdot h^{E}(a)$ A: $P(a) = h^{E}(a)$

Return (a',b',c',d',e')

Complexity of Bucket-elimination

Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*)) space, when w* is the induced-width of the moral graph along d when evidence nodes are processed (edges from evidence nodes to earlier variables are removed.)

More accurately: $O(r \exp(w^*(d)))$ where r is the number of cpts. For Bayesian networks r=n. For Markov networks?

Finding small induced-width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality
 - Fill-in (thought as the best)
 - See anytime min-width (Gogate and Dechter)

Min-width ordering

MIN-WIDTH (MW)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. 3. put r in position j and $G \leftarrow G - r$. (Delete from V node r and from E all its adjacent edges)

4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph **Complexity:?** O(e)

Greedy orderings heuristics

min-induced-width (miw)

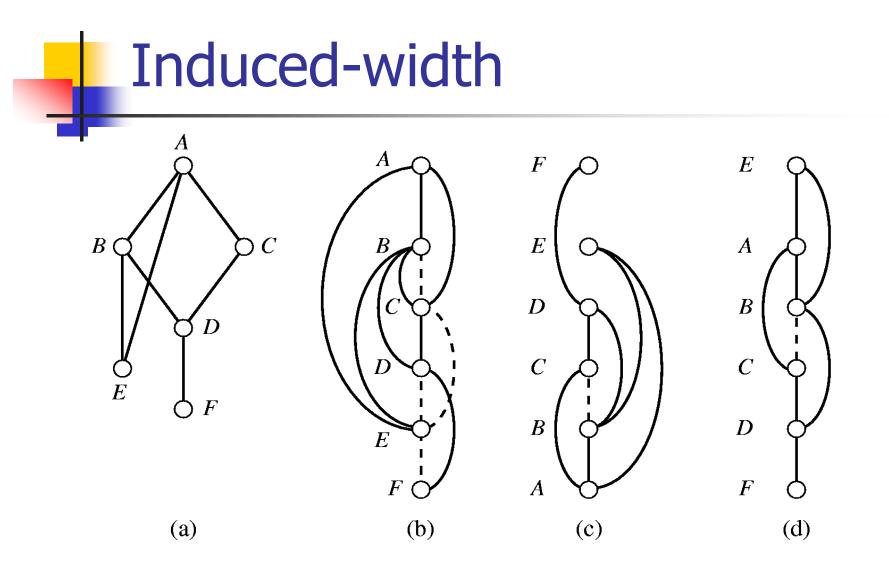
input: a graph G = (V;E), $V = \{v1; ...; vn\}$ output: A miw ordering of the nodes d = (v1; ...; vn). 1. for j = n to 1 by -1 do 2. $r \leftarrow a$ node in V with smallest degree. 3. put r in position j. 4. connect r's neighbors: $E \leftarrow E$ union $\{(vi; vj)| (vi; r) \text{ in } E; (vj; r) 2 \text{ in } E\}$, 5. remove r from the resulting graph: $V \leftarrow V - \{r\}$.

min-fill (min-fill)

input: a graph G = (V;E), $V = \{v1; ...; vn\}$ output: An ordering of the nodes d = (v1; ...; vn). 1. for j = n to 1 by -1 do **Theorem:** A graph is a tree iff it has both width and induced-width of 1.

2. $r \leftarrow a$ node in V with smallest fill edges for his parents.

- 3. put *r in position j.*
- 4. connect *r*'s neighbors: *E* ← *E* union {(vi; vj)| (vi; r) 2 E; (vj ; r) in E},
- 5. remove *r* from the resulting graph: $V \leftarrow V \{r\}$.



© could have been generated by min-fill

Min-induced-width

MIN-INDUCED-WIDTH (MIW) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: An ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow a$ node in V with smallest degree. 3. put r in position j. 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},$ 5. remove r from the resulting graph: $V \leftarrow V - \{r\}.$

Figure 4.3: The min-induced-width (MIW) procedure

Induced-width for chordal graphs

- Definition: A graph is chordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the maxcardinality ordering: order vertices from 1 to n, always assigning the next number to the node connected to a largest set of previously numbered nodes. Lets d be such an ordering
- A graph along max-cardinality order has no fill-in edges iff it is chordal.
- On chordal graphs width=induced-width.

Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ **output:** An ordering of the nodes $d = (v_1, ..., v_n)$.

1. Place an arbitrary node in position 0.

2. for
$$j = 1$$
 to n do

3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j - 1, breaking ties arbitrarily.

4. endfor

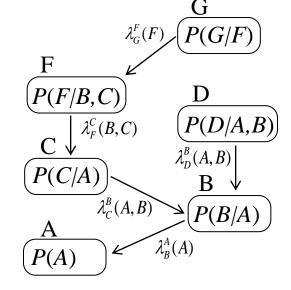
Figure 4.5 The max-cardinality (MC) ordering procedure.

Which greedy algorithm is best?

- MinFill, prefers a node who add the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is O(?), MIW: O(?) MF (?) MC is O(mn)

From Bucket elimination to bucket-tree elimination

Bucket G: P(G/F)Bucket F: P(F/B,C)Bucket D: P(D/A,B)Bucket C: P(C/A)Bucket B: P(B/A)Bucket A: P(A)



Propagation in a Bucket Tree

Definitions:

- Let G be a Bayesian network, d, an ordering and B₁...B_n the final bucket created processing along d = x₁...x_n.
- Let B_i be the set of variables appearing in bucket i when it is processed.

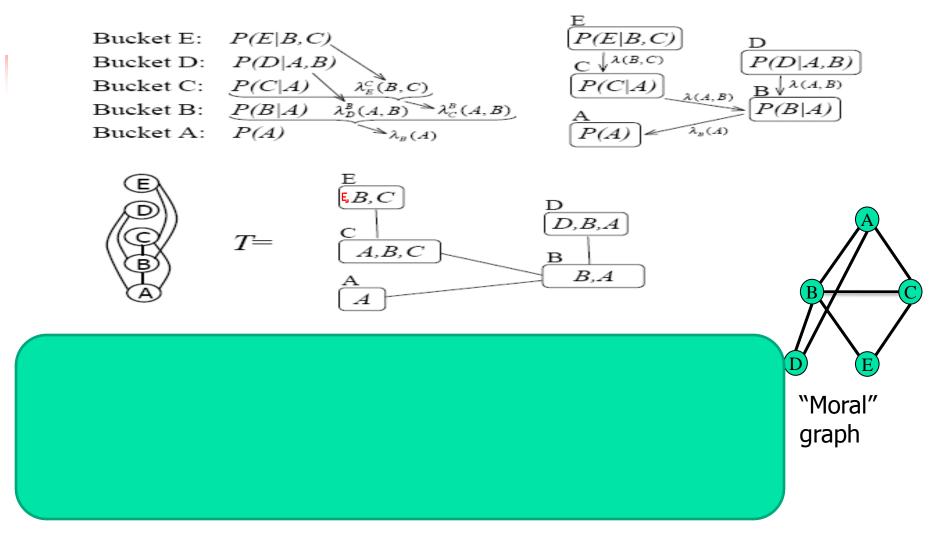
Bucket Tree:

 A bucket tree has each B_i cluster as a node and there is an arc from B_i to B_j if the function created at B_i was placed in B_j

Graph-Based Definition:

Let G_d be the induced graph along d. Each variable x and it's earlier neighbors in a node, B_x. There is an arc from B_x to B_y if y is the closest parent of x.

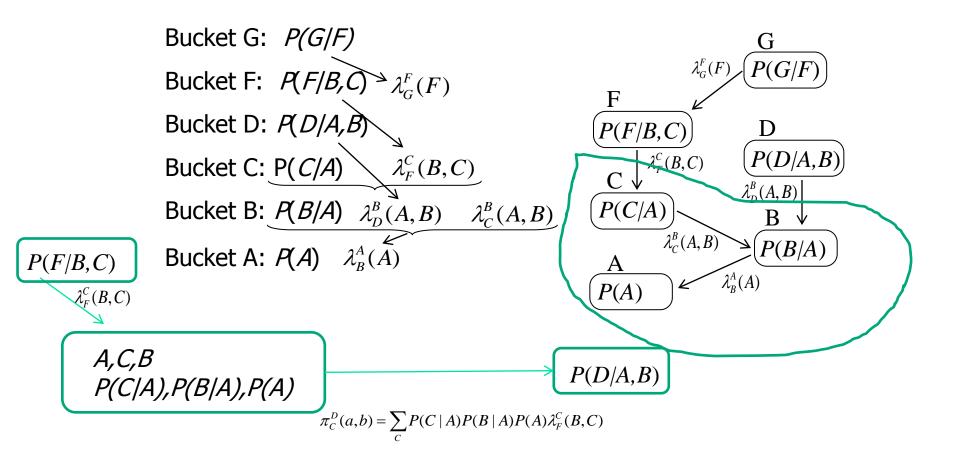
From Bucket-Elimination To Bucket Trees



•The bucket tree is a tree of cliques of a chordal graph: the induced graph •P is decomposable relative to the chordal graph. Therefore the tree of cliques is an i-map of P.

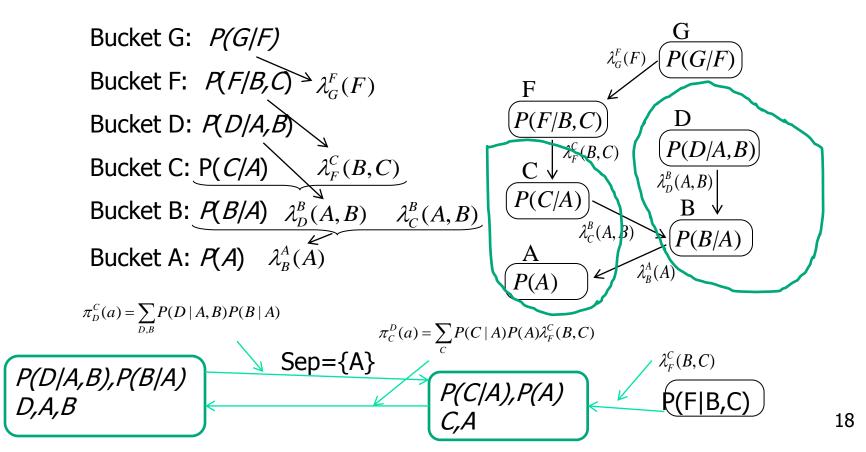
From Bucket elimination to bucket-tree elimination

If we want the marginal on D?

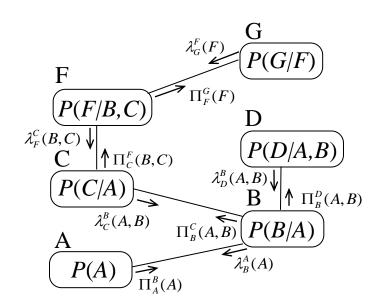


From Bucket elimination to bucket-tree elimination

If we want the marginal on C?



BTE: full Execution Bucket G: P(G/F) $\prod_{F}^{G}(F)$ Bucket F: $P(F/B,C) \xrightarrow{} \lambda_G^F(F)$ $\prod_{C}^{F}(B,C)$ Bucket D: P(D|A,B) $\prod_{B}^{D}(A,B)$ $\lambda_F^C(B,C)$ Bucket C: P(C/A) Each bucket can $\prod_{B}^{C}(A,B)$ Compute its Bucket B: $P(B|A) \quad \lambda_D^B(A, B)$ $\prod_{A}^{B}(A)$ $\lambda_C^B(A,B)$ marginal probability $\lambda^A_B(A) \overset{\swarrow}{\sim}$ Bucket A: P(A)



$$\begin{aligned} \pi^{B}_{A}(a) &= P(a) \\ \pi^{C}_{B}(c,a) &= P(b|a)\lambda^{B}_{D}(a,b)\pi^{B}_{A}(a) \\ \pi^{D}_{B}(a,b) &= P(b|a)\lambda^{C}_{C}(a,b)\pi^{B}_{A}(a,b) \\ \pi^{F}_{C}(c,b) &= \sum_{a} P(c|a)\pi^{C}_{B}(a,b) \\ \pi^{G}_{F}(f) &= \sum_{b,c} P(f|b,c)\pi^{F}_{C}(c,b) \end{aligned}$$

Theorem: When BTE terminates

The product of functions in each bucket is the beliefs of the variables joint with the evidence.

Top-down and bottom-up Messages obey same rule: Lets have one name, lambda Algorithm bucket-tree elimination (BTE)

Input: A problem $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \mathbf{\Pi} \rangle$, ordering d.

Output: Augmented buckets containing the original functions and all the π and λ functions received from neighbors in the bucket-tree.

0. Pre-processing:

Place each function in the latest bucket, along d, that mentions a variable in its scope. Connect two buckets B_i and B_j if variable X_j is the latest earlier neighbor of X_i in the induced graph G_d .

1. Top-down phase: λ messages (BE)

For i = n to 1, process bucket B_i :

Let $\lambda_{i_1}, \dots \lambda_{i_r}$ be all the functions in B_i at the time B_i is processed, including the original functions of F. The message λ_i^j sent from X_i to its child X_j , is computed by

$$\lambda_i^j = \sum_{elim(j,i)} \prod_{k,k \neq j} \lambda_{i_k}$$

2. bottom-up phase: π messages

For j = 1 to n, process bucket B_j :

Let $\lambda_{j_1}, ..., \lambda_{j_r}$ be all the functions in B_j at the time B_j is processed, including the original functions of F. B_j takes the π message received from its child X_k , π_k^j , and computes a message π_j^i for each child bucket X_j by

$$\pi^i_j = \sum_{elim(j,i)} \pi^j_k \cdot (\prod_{r \neq i} \lambda^j_r)$$

3. Answering singleton queries (e.g., deriving beliefs)

The joint functions $F(B_X)$ in bucket B_X is computed by taking the product of all the functions in B_X (the original fs, the λ functions and π function): Namely, given the functions f_1, \ldots, f_t in B_X at termination,

$$F(B_X) = \prod_i f_i$$

and the belief of X is computed by

$$Bel(x) = \sum_{B_X - \{X\}} \prod_j f_j$$

Bucket tree Elimination (BTE) Bucket-tree Propagation (BTP)

Bucket-Tree Propagation (BTP)

Input: For each node X_i , its bucket B_i and its neighboring buckets. Let λ_j^i be the message sent to X_i from its neighbor X_j and $f_{i_1}, ..., f_{i_k}$ the original functions in bucket B_i .

The message X_i sends to a neighbor X_j is, once it received all the messages from its neighbors except from X_j is:

$$\lambda_i^j = \sum_{B_i - S(i,j)} (\prod_i f_i) \cdot (\prod_{k \neq j} \lambda_k^i)$$

Figure 6.5: The Bucket-tree propagation (BTP) for X

$$\lambda_i^j = \sum_{elim(j,i)} \prod_{k,k \neq j} \lambda_{i_k} \qquad \qquad \pi_j^i = \sum_{elim(j,i)} \pi_k^j \cdot (\prod_{r \neq i} \lambda_r^j)$$

Properties of BTE

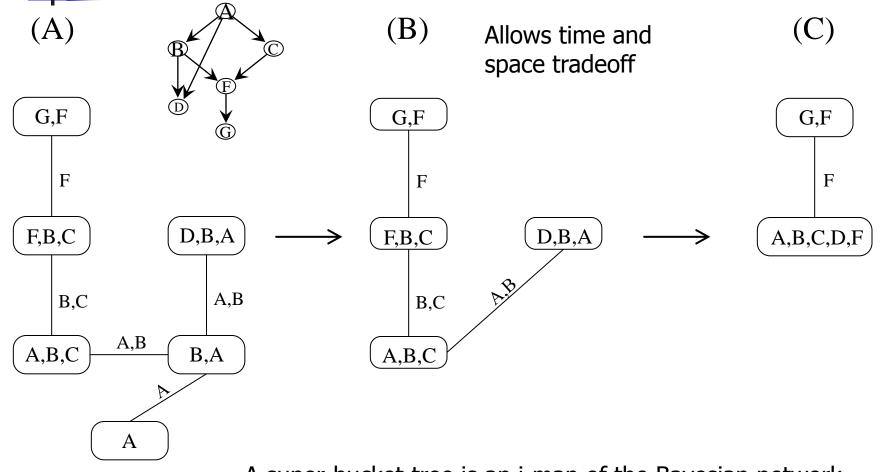
- Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian or Markov network is sound. Namely, in each bucket we can exactly compute the exact joint function of every subset of variables and the evidence.
- (follows from imapness of trees)

•Theorem 6.1.5 (Complexity of BTE) Let w* be the induced width of G along ordering d, let r be the number of functions and k the maximum size of a domain of a variable. The time complexity of BTE is O(r deg k^{w*+1}), where deg is the maximum degree in the bucket-tree. The space complexity of BTE is O(n k^w*.)

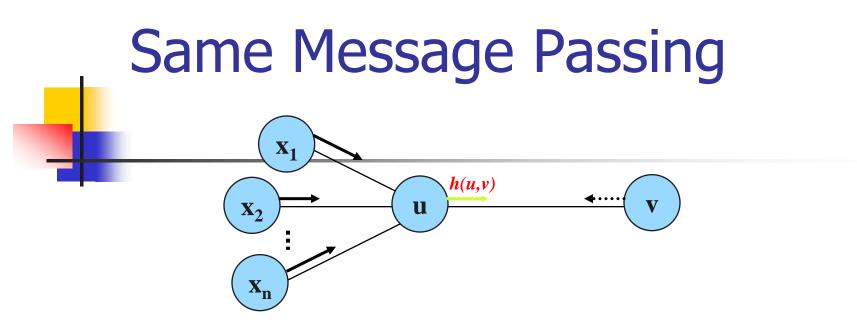
From a bucket-tree to a join-tree

- Merge non-maximal buckets into maximal clusters.
- Connect clusters into a tree: each cluster to one with which it shares a largest subset of variiables.
- Separators are the intersection of variables on the arcs of the tree.
- The cluster tree is an i-map.

From buckets to superbucket to clusters



A super-bucket-tree is an i-map of the Bayesian network 24



cluster(*u*) = $\psi(u) \cup \{h(x_1, u), h(x_2, u), ..., h(x_n, u), h(v, u)\}$

Compute the message : $h(u,v) = \sum_{elim(u,v)} \prod_{f \in cluster(u) - \{h(v,u)\}} f$

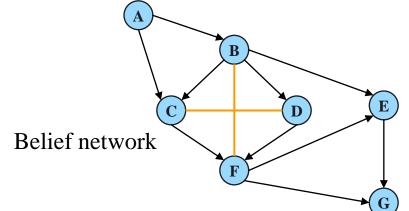
Elim(u,v) = cluster(u)-sep(u,v)

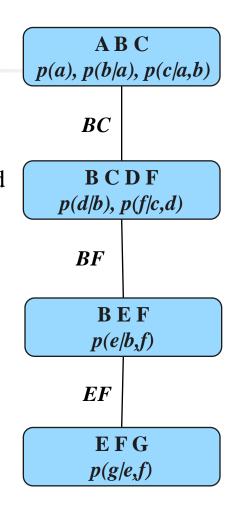
Tree decompositions (more formal)

A *tree decomposition* for a belief network $BN = \langle X, D, G, P \rangle$ is a triple $\langle T, \chi, \psi \rangle$, where T = (V, E) is a tree and χ and ψ are labeling functions, associating with each vertex $v \in V$ two sets, $\chi(v) \subseteq X$ and $\psi(v) \subseteq P$ satisfying :

- 1. For each function $p_i \in P$ there is exactly one vertex such that $p_i \in \psi(v)$ and $scope(p_i) \subseteq \chi(v)$
- 2. For each variable $X_i \in X$ the set $\{v \in V | X_i \in \chi(v)\}$ forms a

connected subtree (running intersection property)





Tree decomposition

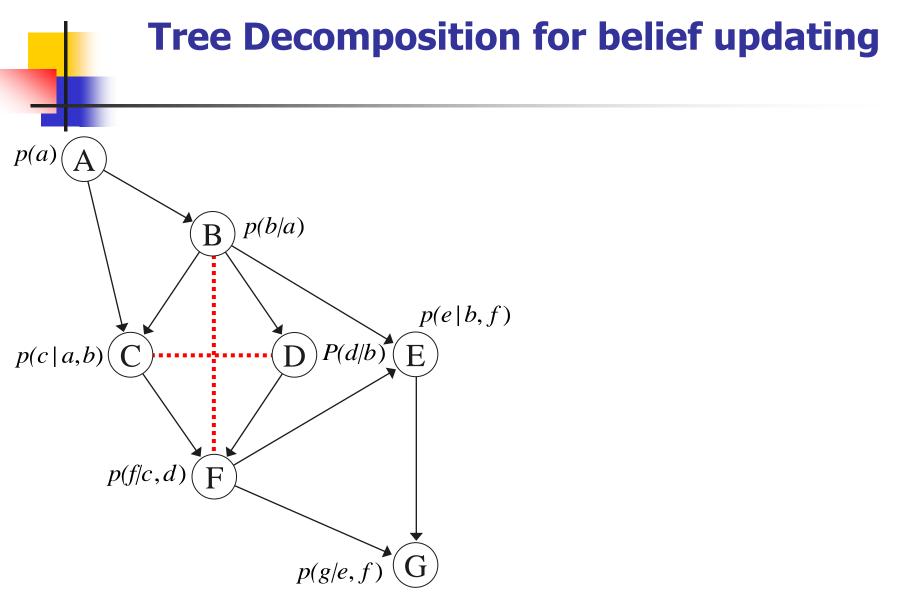
Minimal Tree-Decompositions

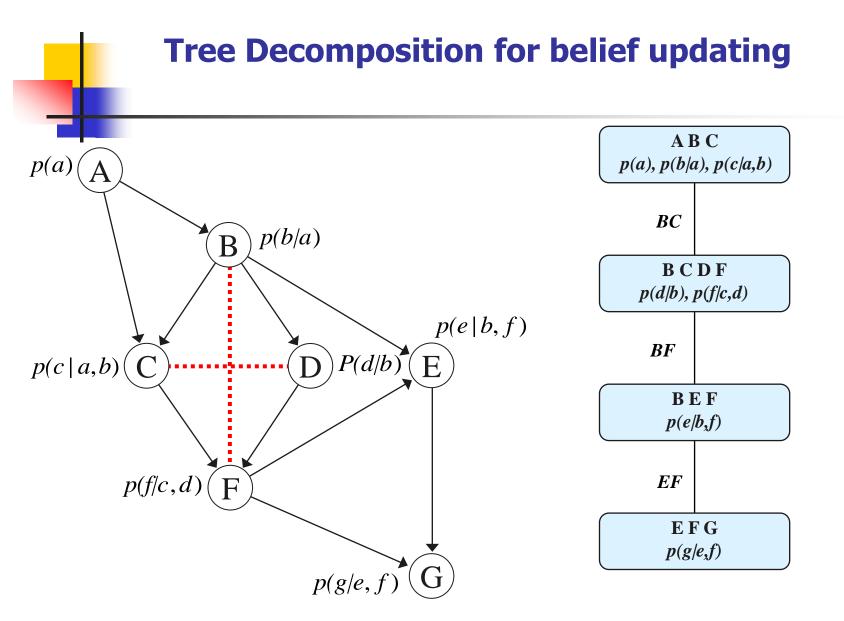
Notice that it may be that $sep(u, v) = \chi(u)$ (that is, all variables in vertex u belong to an adjacent vertex v). In this case the size of the tree-decomposition can be reduced by merging vertex u into v without increasing the tree-width of the tree-decomposition.

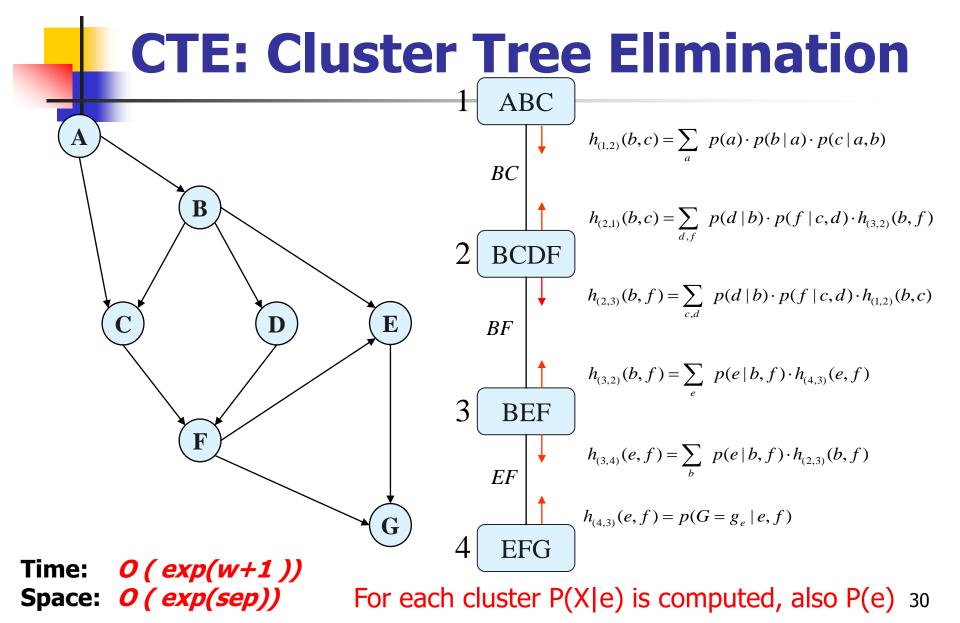
Definition 6.2.7 (minimal tree-decomposition) A tree-decomposition is minimal if $sep(u, v) \subset \chi(u)$ and $sep(u, v) \subset \chi(v)$.

We immediately can observe that the bucket-tree is often not minimal. We can make it minimal however, by having each subsumed bucket be absorbed into its containing bucket, yielding *super-bucket* tree.

Minimal tree-decompositions are called Join-trees or junction-trees







Algorithm cluster-tree elimination (CTE)

Input: A tree decomposition $\langle T, \chi, \psi \rangle$ for a problem $M = \langle X, D, F, \prod \rangle \rangle$, $X = \{X_1, ..., X_n\}, F = \{f_1, ..., f_r\}.$

Output: An augmented tree whose vertices are clusters containing the original functions as well as messages received from neighbors. A solution computed from the augmented clusters.

Compute messages:

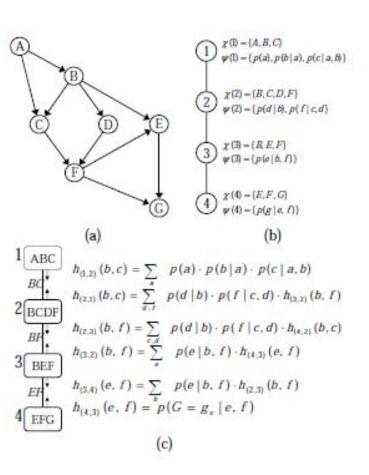
For every edge (u, v) in the tree, do

- Let $m_{(u,v)}$ denote the message sent by vertex u to vertex v.
- Let $cluster(u) = \psi(u) \cup \{m_{(i,u)} | (i, u) \in T\}.$
- If vertex u has received messages from all adjacent vertices other than v, then compute and send to v,

$$m_{(u,v)} = \sum_{sep(u,v)} (\prod_{f \in cluster(u), f \neq m_{(v,u)}} f)$$

Endfor

Note: functions whose scope does not contain elimination variables do not need to be processed, and can instead be directly passed on to the receiving vertex. **Return:** A tree-decomposition augmented with messages, and for every $v \in T$



Let Ci and Cj two adjacent clusters and sep(i,j) be their separator

$$bel(sep) = \sum_{e \mid im(i,j)} \prod_{f \in C_i} f = \sum_{e \mid im(j,i)} \prod_{f \in C_j} f$$

- Correctness and completeness: Algorithm CTE is correct, i.e. it computes the exact joint probability in each cluster and therefore of every single variable and the evidence.
- Time complexity: $O(deg \times (n+N) \times k^{w^{*+1}})$
- Space complexity:

$O(N \times k^{sep})$

where

deg = the maximum degree of a node in the cluster-tree

- *n* = number of variables (= number of CPTs)
- N = number of nodes in the tree decomposition
- k = the maximum domain size of a variable

 w^* = the induced width

sep = the separator size

Treewidth & Separator

The width (also called tree-width) of a tree-decomposition $\langle T, \chi, \psi \rangle$ is $\max_{v \in V} |\chi(v)|$, Given two adjacent vertices u and v of a tree-decomposition, a separator of u and v is defined as $sep(u, v) = \chi(u) \cap \chi(v)$.

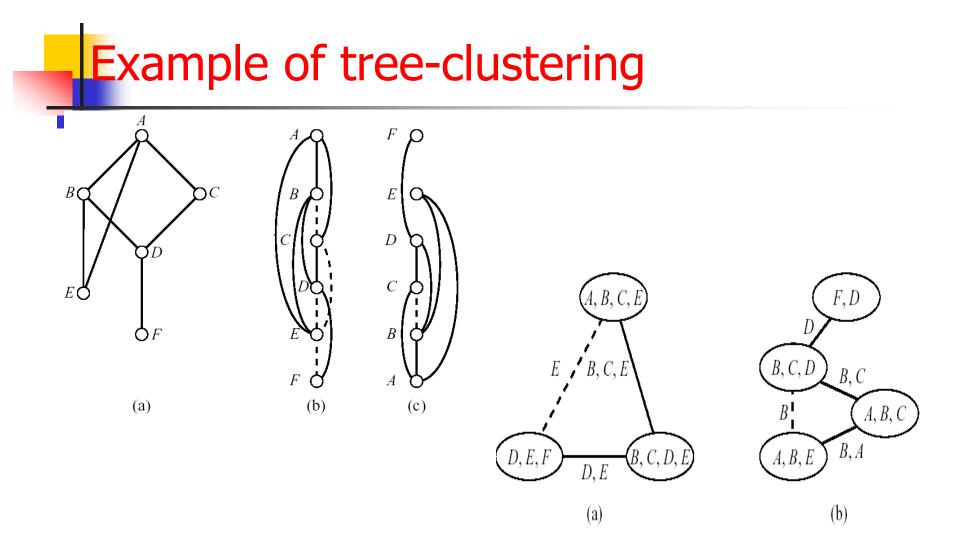
> *Good Tree-width can be generated using good inducedwidth ordering heuristics*

GRAPH TRIANGULATION (FILL-IN) ALGORITHM: Tarjan and Yannakakis [1984]

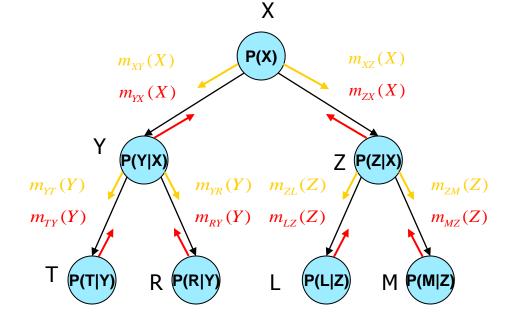
- 1. Compute an ordering for the nodes, using a maximum cardinality search, i.e., number vertices from 1 to |V|, in increasing order, always assigning the next number to the vertex having the largest set of previously numbered neighbors (breaking ties arbitrarily).
- 2. From n = |V| to n = 1, recursively fill in edges between any two nonadjacent parents of n, i.e., neighbors of n having lower ranks than n (including neighbors linked to n in previous steps). If no edges are added the graph is chordal; otherwise, the new filled graph is chordal.
- Given a graph G = (V, E) we can construct a join tree using the following procedure.

ASSEMBLING A JOIN TREE

- 1. Use the fill-in algorithm to generate a chordal graph G' (if G is chordal, G = G').
- 2. Identify all cliques in G'. Since any vertex and its parent set (lower ranked nodes connected to it) form a clique in G', the maximum number of cliques is |V|.
- 3. Order the cliques $C_1, C_2, ..., C_t$ by rank of the highest vertex in each clique.
- 4. Form the join tree by connecting each C_i to a predecessor C_j (j < i) sharing the highest number of vertices with C_i .



Inference on trees is easy and distributed

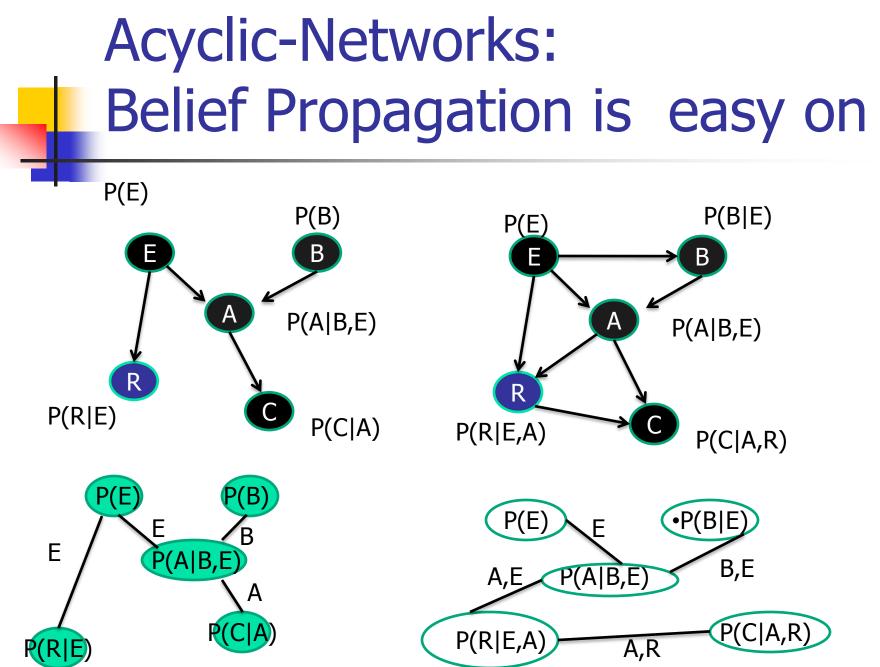


 $m_{MZ}(Z) = \sum_{M} P(M \mid Z)$ $m_{LZ}(Z) = \sum_{L} P(L \mid Z)$ $m_{ZX}(X) = \sum_{Z} P(Z \mid X) \cdot m_{MZ}(Z) \cdot m_{LZ}(Z)$ $m_{XZ}(X) = P(X) \cdot m_{YX}(X)$ $m_{MZ}(Z)$ $m_{ZL}(Z) = \sum_{X} P(Z \mid X) \cdot m_{XZ}(X) \cdot m_{MZ}(Z)$ $m_{ZM}(Z) = \sum_{X} P(Z \mid X) \cdot m_{XZ}(X) \cdot m_{LZ}(Z)$

Belief updating = sum-prod

A tree of binary functions Is a chordal graph with clusters of size 2

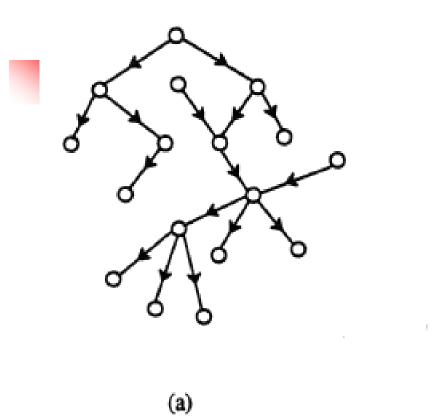
Inference is time and space linear on trees



Polytrees and Acyclic networks

- **Polytree:** a BN whose undirected skeleton is a tree
- Acyclic network: A network is acyclic if it has a tree-decomposition where each node has a single original CPT.
- Dual network: each scope-cpt is a node and each arc is denoted by intersection.
- Acylic network (alternative definition): when the dual graph has a join-tree
- BP is exact on an acyclic network.
- Tree-clustering converts a network into an acyclic one.

A Glimpse into Pearl's BP



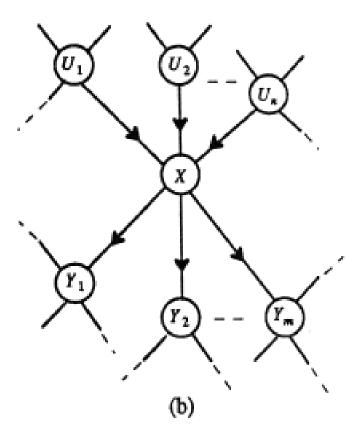


Figure 4.18. (a) A fragment of a polytree and (b) the parents and children of a typical node X.

EVIDENCE DECOMPOSITION

 e_{XY_j} stands for evidence contained in the subnetwork on the *head* side of the link $X \rightarrow Y_j$,

 $e_{U_iX}^+$ stands for evidence contained in the subnetwork on the *tail* side of the link $U_i \rightarrow X$.

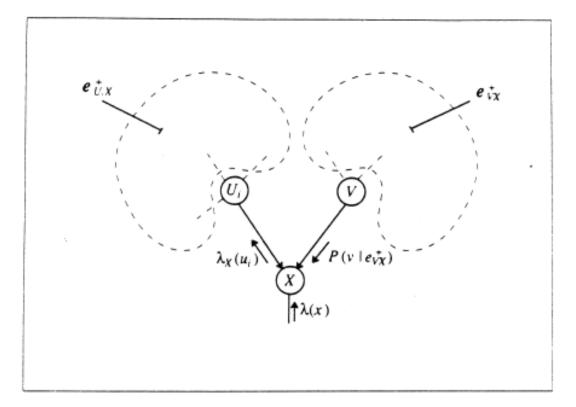


Figure 4.19. Variables, messages, and evidence sets used in the derivation of $\lambda_{\chi}(u_i)$.

Step 1 - Belief updating: When node X is activated, it simultaneously inspects the messages $\pi_X(u_i)$, i = 1,...,n communicated by its parents and the messages $\lambda_{Y_j}(x)$, j = 1,...,m communicated by its children. Using this input, it updates its belief measure to

$$BEL(x) = \alpha \lambda(x) \pi(x), \qquad (4.49)$$

where

$$\lambda(x) = \prod_{j} \lambda_{Y_j}(x) , \qquad (4.50)$$

$$\pi(x) = \sum_{u_1,...,u_n} P(x \mid u_1,...,u_n) \prod_i \pi_X(u_i), \qquad (4.51)$$

and α is a normalizing constant rendering $\sum BEL(x) = 1$.

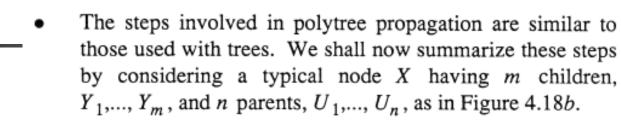
Step 2 - Bottom-up propagation: Using the messages received, node X computes new λ messages to be sent to its parents. For example, the new message $\lambda_X(u_i)$ that X sends to its parents U_i is computed by

$$\lambda_X(u_i) = \beta \sum_x \lambda(x) \sum_{u_k: k \neq i} P(x \mid u_1, \dots, u_n) \prod_{k \neq i} \pi_X(u_k) . \quad (4.52)$$

Step 3 - Top-down propagation: Each node computes new π messages to be sent to its children. For example, the new $\pi_{Y_j}(x)$ message that X sends to its child Y_j is computed by

$$\begin{aligned} \pi_{Y_j}(x) &= \alpha \left[\prod_{k \neq j} \lambda_{Y_k}(x) \right] \sum_{u_1, \dots, u_n} P(x \mid u_1, \dots, u_n) \prod_i \pi_X(u_i)_{4.53} \\ &= \alpha \frac{BEL(x)}{\lambda_{Y_j}(x)} \,. \end{aligned}$$

SUMMARY OF PROPAGATION RULES



- The belief distribution of variable X can be computed if three types of parameters are made available:
- 1. The current strength of the *causal* support π contributed by each incoming link $U_i \rightarrow X$:

$$\pi_X(u_i) = P(u_i \mid e_{U_i X}^+).$$
(4.47)

2. The current strength of the *diagnostic* support, λ , contributed by each outgoing link $X \rightarrow Y_i$:

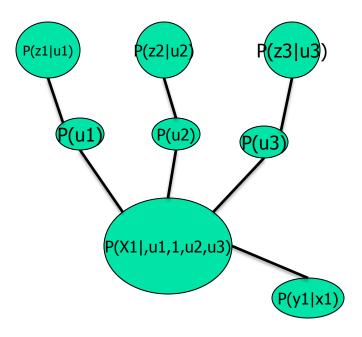
$$\lambda_{Y_j}(x) = P\left(e_{XY_j}^- \mid x\right) \,. \tag{4.48}$$

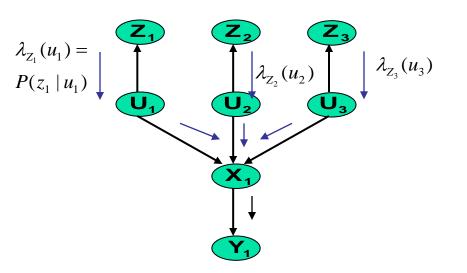
3. The fixed conditional-probability matrix $P(x | u_1, ..., u_n)$ that relates the variable X to its immediate parents.

Belief propagation is easy on polytree: Pearl's Belief Propagation

A polytree: a tree with Larger families

A polytree decomposition



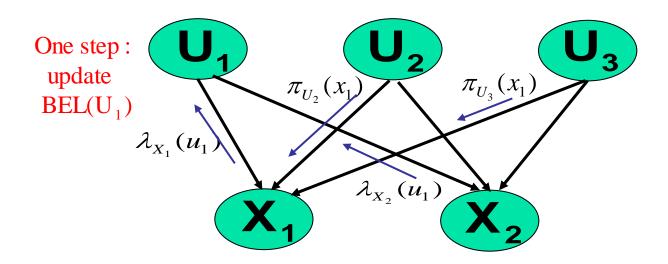


Running CTE = running Pearl's BP over the dual graph Dual-graph: nodes are cpts, arcs connect non-empty intersections.

BP is Time and space linear

From exact to approximate: Iterative Belief Propagation

- Belief propagation is exact for poly-trees
- IBP applying BP iteratively to cyclic networks



- No guarantees for convergence
- Works well for many coding networks

Dual graphs, join-graphs

Definition 6.4.5 (dual graphs, join dual graphs, arc-minimal dual-graphs) Given a graphical model $\mathcal{M} = \langle X, D, F, \prod \rangle$.

- The dual graph D_F of the graphical model M, is an arc-labeled graph defined over the its functions. Namely, it has a node for each function labeled with the function's scope and a labeled arc connecting any two nodes that share a variable in the function's scope. The arcs are labeled by the shared variables.
- A dual join-graph is a labeled arc subgraph of D_F whose arc labels are subsets of the labels of D_F such that the running intersection property, is satisfied.
- An arc-minimal dual join-graph is a dual join-graph for which none of its labels can be further reduced while maintaining the connectedness property.

Dual join-graphs examples

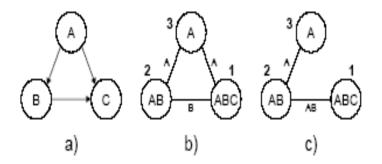


Figure 6.13: a) A belief network; b) A dual join-graph with singleton labels; c) A dual join-graph which is a join-tree

Proposition 6.4.6 The dual graph of any Bayesian network has an arc-minimal dual join-graph where each arc is labeled by a single variable.

Iterative Belief propagation

Algorithm IBP

Input: An arc-labeled dual join-graph DJ = (V, E, L) for a graphical model $M = \langle X, D, F, \prod \rangle$.

Output: An augmented graph whose nodes include the original functions and the messages received from neighbors. Denote by: h_u^v the message from u to v; ne(u) the neighbors of u in V; $ne_v(u) = ne(u) - \{v\}$; l_{uv} the label of $(u, v) \in E$; elim(u, v) = scope(u) - scope(v).

• One iteration of IBP

For every node u in DJ in a topological order and back, do:

1. Process observed variables

Assign evidence variables to the each p_i and remove them from the labeled arcs.

2. Compute and send to v the function:

$$h_u^v = \sum_{elim(u,v)} (p_u \cdot \prod_{\{h_i^u, i \in ne_v(u)\}} h_i^u)$$

Endfor

• Compute approximations of $P(F_i|e)$, $P(X_i|e)$:

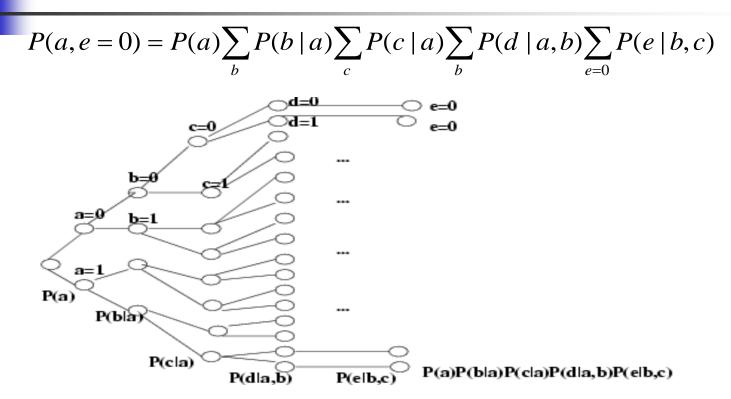
For every $X_i \in X$ let u be the vertex of family F_i in DJ,

$$\begin{aligned} P(F_i|e) &= \alpha(\prod_{h_i^u, u \in ne(i)} h_i^u) \cdot p_u; \\ P(X_i|e) &= \alpha \sum_{scope(u) - \{X_i\}} P(F_i|e). \end{aligned}$$

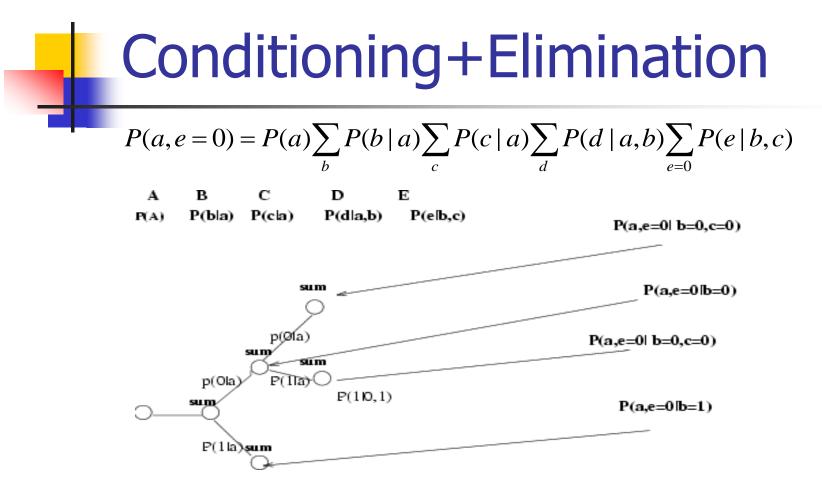
Exact Reasoning by Search

- Why consider search?
- Can we do any better in search?
- Can we combine search and inference?

Conditioning generates the probability tree



Complexity of conditioning: exponential time, linear space

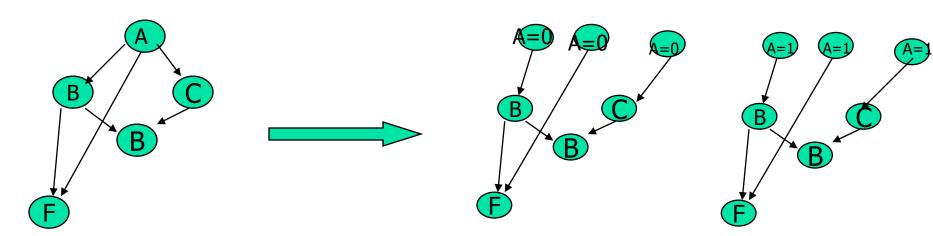


Idea: conditioning until w^* of a (sub)problem gets small

Loop-cutset decomposition

You condition until you get a polytree

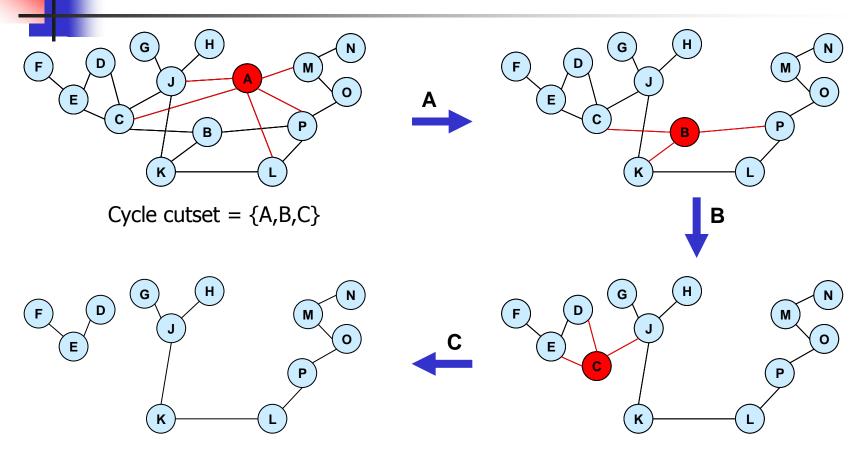
A=0



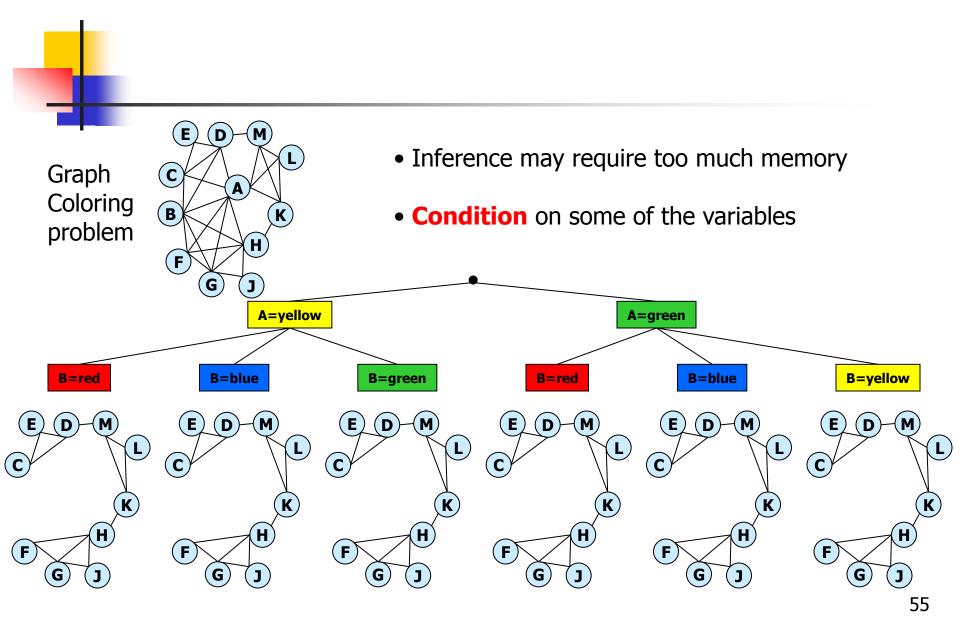
P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

Loop-cutset method is time exp in loop-cutset size and linear space. For each cutset we can do BP A=1

Conditioning and Cycle cutset



Search over the Cutset (cont)



Variable elimination with conditioning; w-cutset algorithms

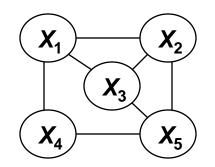
- VEC-bel:
- Identify a w-cutset, c_w, of the network
- For each assignment to the cutset solve by CTE the conditioned sub-problem
- Aggregate the solutions over all cutset assignments.
- Time complexity: exp(|C_w|+w)
- Space complexity: exp(w)

Time vs Space for w-cutset (Dechter and El-Fatah, 2000) (Larrosa and Dechter, 2001) (Rish and Dechter 2000) Random Graphs (50 nodes, 200 edges, average degree 8, w*≈23) 60 **Branch and bound** 50 40 W+c(w)**Bucket** 30 elimination 20 time 10 0 9 δ ծ \checkmark ᠬ ア ~ NA 2 *℃ ℃* 3r space W W-cutset time O(exp(w+cutset-size)) Space O(exp(w))

Hybrid of Variable-elimination and Search

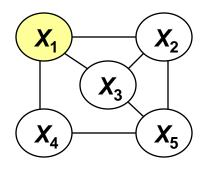
Tradeoff space and time

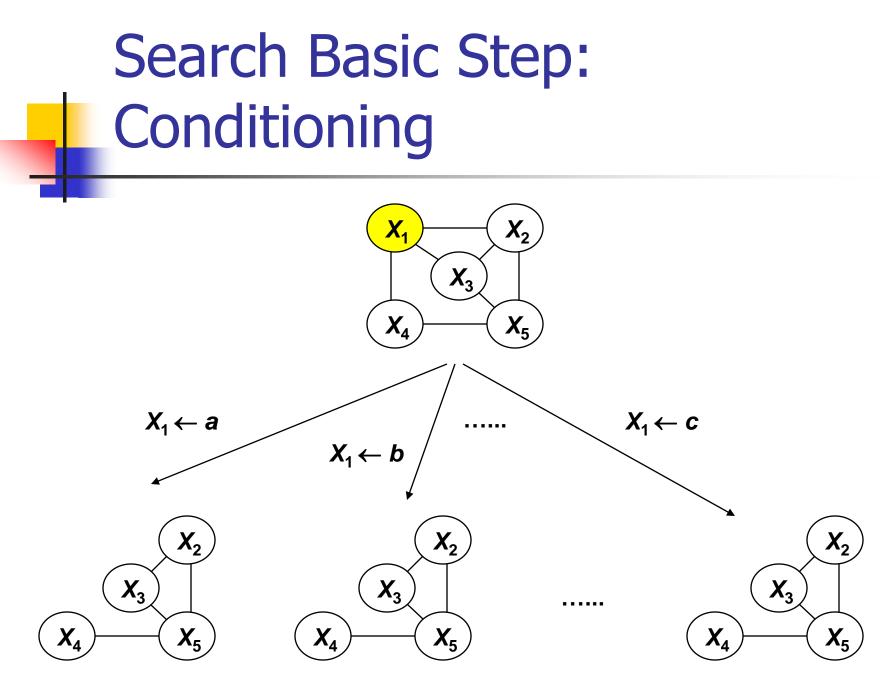
Search Basic Step: Conditioning



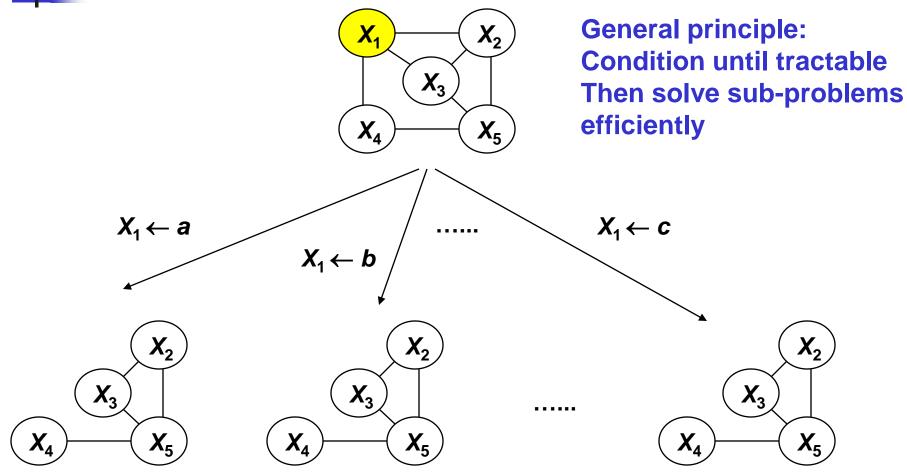
Search Basic Step: Conditioning

Select a variable

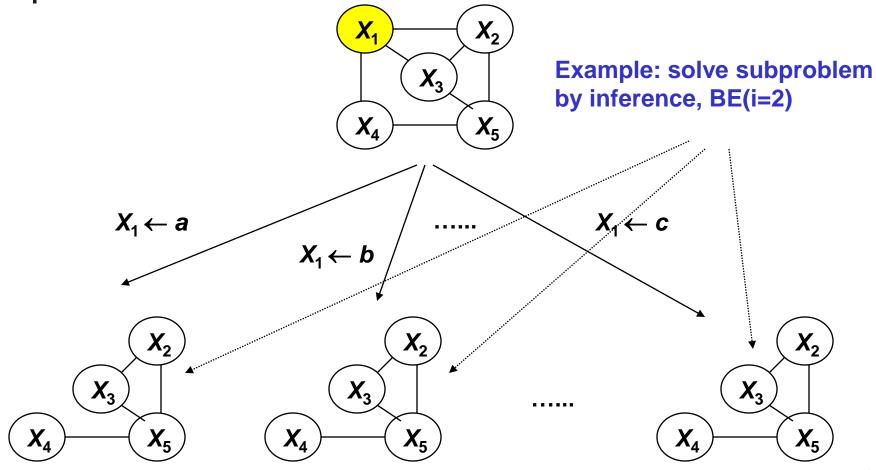




Search Basic Step: Variable Branching by Conditioning

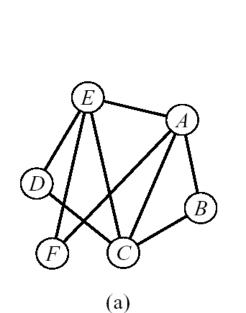


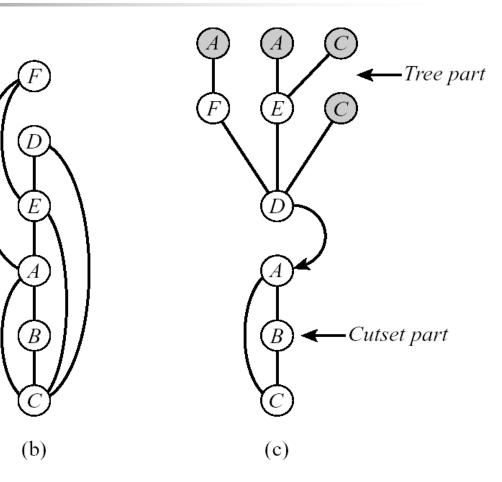
Search Basic Step: Variable Branching by Conditioning



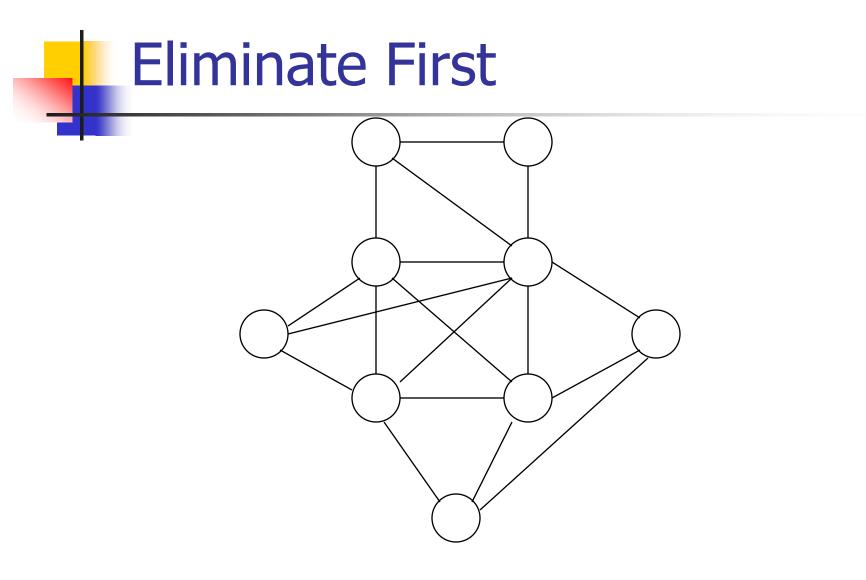
The Cycle-Cutset Scheme: Condition Until Treeness

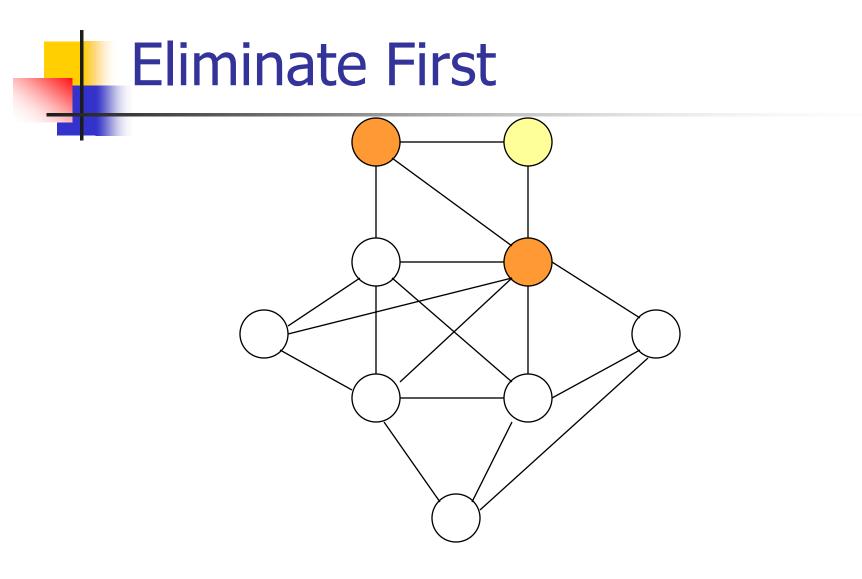
- Cycle-cutset
- i-cutset
- C(i)-size of i-cutset

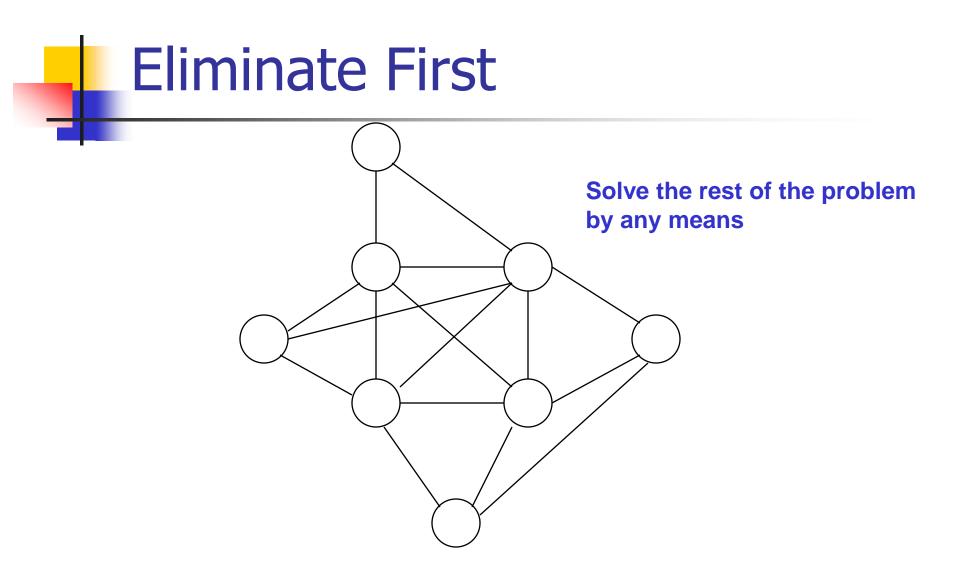




Space: exp(i), Time: O(exp(i+c(i))



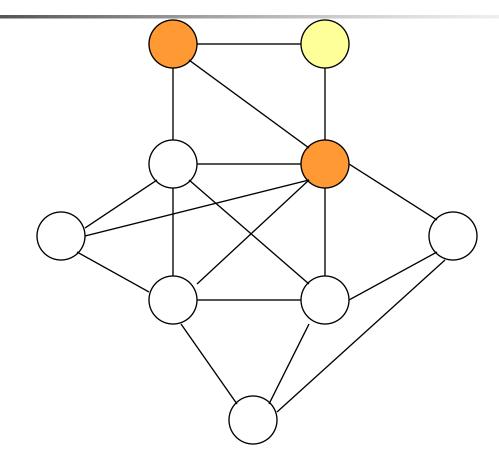


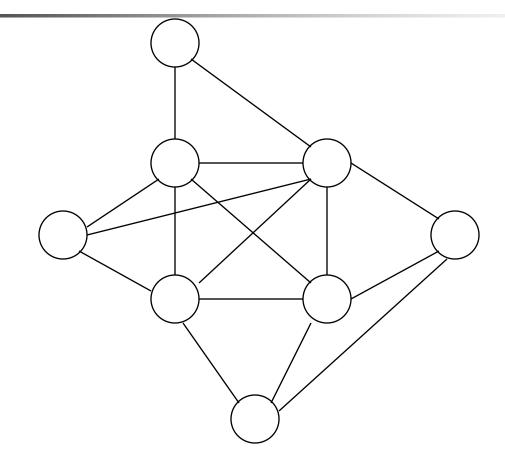


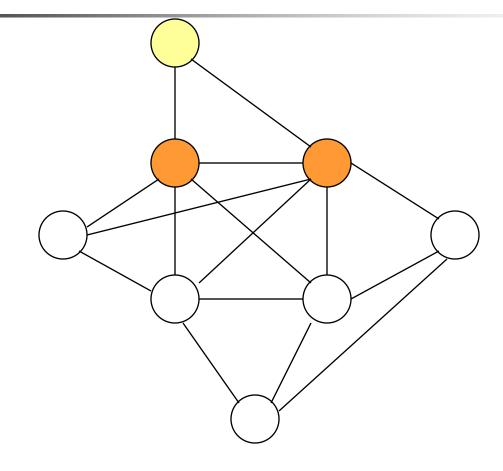
Hybrids Variants

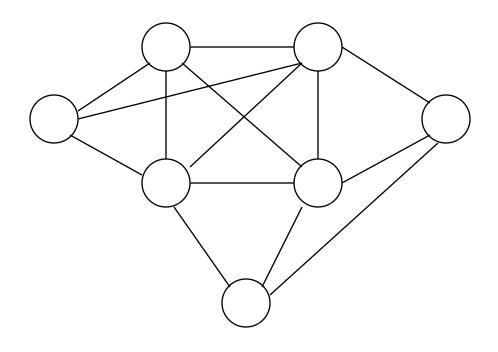
- Condition, condition, condition ... and then only eliminate (w-cutset, cycle-cutset)
- Eliminate, eliminate, eliminate ... and then only search
- Interleave conditioning and elimination (elimcond(i), VE+C)

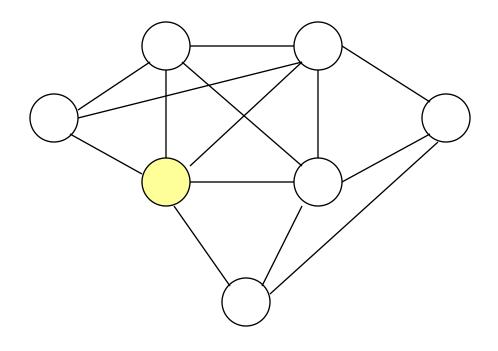
Interleaving Conditioning and Elimination (Larrosa & Dechter, CP'02)

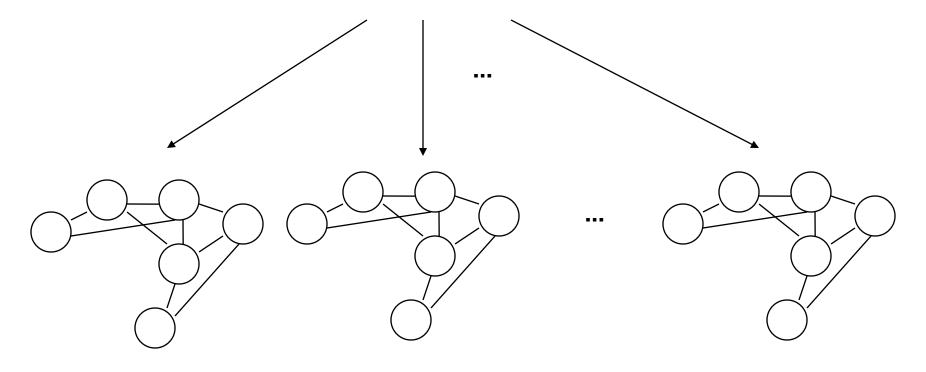












Algorithm VEC (Variableelimination with conditioning)

Algorithm VEC Input: A belief network $BN = \{P_1, ..., P_n\}$; an ordering of the variables, d; a subset C of conditioned variables; observations e. Output: Bel(A). Initialize: $\lambda = 0$.

- 1. For every assignment C = c, do
 - $\lambda_1 \leftarrow$ The output of **BE**-bel with $c \cup e$ as observations.
 - $\lambda \leftarrow \lambda + \lambda_1$. (update the sum).

2. Return λ .

Complexity of w-cutset (VEC)

Theorem 6.5.1 Given a set of conditioning variables, C, the space complexity of algorithm elim-cond-bel is $O(n \cdot exp(w^*(d, c \cup e)))$, while its time complexity is $O(n \cdot exp(w^*(d, e \cup c) + |C|)))$, where the induced width $w^*(d, c \cup e)$, is computed on the ordered moral graph that was adjusted relative to e and c. \Box

Definition 6.5.3 (secondary-optimization task) Given a graph G = (V, E) and a constant r, find a smallest subset of nodes C_r , such that $G' = (V - C_r, E')$, where E' includes all the edgs in E that are not incident to nodes in C_r , has induced-width less or equal r.

What hybrid should we use?

- w=1? (loop-cutset?)
- w=0? (Full search?)
- w=w* (Full inference)?
- w in between?
- depends... on the graph
- What is relation between cycle-cutset and the induced-width?