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Probabilistic Inference

li MmITasks

|
" Belief updating:
BEL(X,) =P(X. = x. | evidence)

" Finding most probable explanation (MPE)
x* = argmax P(X, e)

" Finding maximum a-posteriory hypothesis
Al X:

(a,...,a,) =arg maax Z P(x,e) hypothesis variables
XTA

" Finding maximum-expected-utility (MEU) decision

x sy _ —, DU X: decision variables
(d,,...,d,) =arg mdaX )%P(X’ e)u(x) U (X) : utility function



FInding MPE = max P(x)
i . Algorithm elim-mpe (Dech)ier 1990)

is replaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

m?X I I‘i Elimination operator

bucket B:  P(bla) P(db,a) P(efb,c)
K.“//
bucket C: P(cla)

J

Y

bucket D: h€ (a,d,e)

bucket E: e=0 h°(a,e)

| \h{ Wk=4
bucket A: P(Qk‘/ (A i duced

MPE width”
(max clique



Generating the MPE-tuple

L
5. b'=arg max P(b|a') x
xP(d'|b,a" ) <xP(e'|b,c" )

4. c¢'=arg maxP(c|a')x
xh®(',d",c,e")

3. d'=arg max h¢(a’',d,e")

2. e =0

1. a' =arg max P(a) (h*- (a)

B: P(bla) P(d|b,a) P(elb,c)

C: P(cla) h°(ad,ce)
D: h¢(a,d,e)
E: e=0 h°(ae)

A: P(a) h'(@@

Return (a',b’',c',d',e')



Bucket Elimination

Query P(ale=0)0P(a,e=0) Elimination Order:

d-ao b

P(a,e=0)=  P(a)P(b|a)P(c| a)P(414,b)P(e|b,c)

c,b,e=0,d

= P(a)z P(c| a)Z P(b| a)Z P(e|b,c)Z P(d|a,b)

Original Message

Functions
'P(d ab) || [fo@b)} > P(d]a,b)

@P(ew,c) | f.(b,c) EP(e=0]|b,c)
\BfPCla || [ fu@af 5 PGIa)f,(@b)f(b.0)

@P(c |a) fe(@)F Y Pcla)fy(a,c)
P(a) P(a,e=0) = p(A) fc(a)

@
A
Time and space exp(w*)

Bucket Tree




;i Approximate Inference

= Metrics of evaluation

= Absolute error: given e>0 and a query
p= P(x|e), an estimate r has absolute

error e iff |p-rl<e
= Relative error: theratior/pin[l-e,1+€].

= Dagum and Luby 1993: approximation up
to a relative error is NP-hard.

= Absolute error is also NP-hard if error is
less than .5




Mini-buckets: “local

| Inference”
;ﬁ_ |

L
= Computation in a bucket is time and space

exponential in the number of variables involved

= Therefore, partition functions in a bucket
Into “mini-buckets” on smaller number of variables



Mini-bucket approximation:

i 2 MPE task

Split a bucket into mini-buckets =>bound complexity

bucket (X) =
i hl seses Ny s hpyg 5eee;, g }

-

; T n
/ hX= max [ | h; \
ff X i=1
¥

{hlﬂ'":rhr} Ih{llr'+1:v-":|'1111)}
. ~— r n e
gX= (max [ Th;) -(max [ Th;)
X =1 X i=r+1

|
HF =g

Exponentia | complexity decrease:O(e") - O(e")+ O(e"")



Mini-Bucket Elimination

Mini-buckets
N i
L NG "BB\L
e ~ e ~
ﬁ bucket B:  F(a,b) F(b,c) F(b,d) F(b,e)

bucket C: h®(a,c) F(c,e) F(a,.c)

' bucket D: F(a,d) h®(d,e)

G G bucketE: e€=0 h¢(e,a) hD(e,a)/

v bucket A: ht(a)

We can
generate a
solution s going
forward as 9
before

L = lower bound



Semantics of Mini-Bucket:
Splitting a Node

Variables in different buckets are renamed and duplicated
k \ Ker et. al., 2001), (Geffner et. al., 2007), (Choi, Chavira, Darwiche , 20

Before Splitting: After Splitting:
Network N Network N'

10



Lﬁ. “‘Approx mpe(i)

wHput i - max number of variables allowed in a mini-bucket
= Qutput: [lower bound (P of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

Mini-buckets Max variables
N in a mini-bucket |—[
mazx, [ _ mox 1
P(elb,c)" P(dla,b)P(bla) 3 P(elb,c) P(dla,b) P(bla)
P(cla) B2 (e.c) 3 P(cla)  #*(ad.c,e)
WE (d.a) 2 k€ (ad.e)

. S E=0 kP (a,e)
E=0 h%e,a) 2
) \//\ o \é
P(a) #E(@) EP(a) 1 P% } (a)
NS wr=2 MPE wr=4

U = Upper bound ( MPE )

11



(I,m) patitionings

‘a1
1

Definition 7.1.1 ((i.n)-partitioning) Let H be a collection of functions hy, ..., he de-
fined on scopes Sy, ..., 8. respectively. We say that a function f is subsumed by a function
h iof any argument of f is also an argument of h. A partitioning of hy, ..., 15 canonical
if any function [ subsumed by another function is placed into the bucket of one of those
subsuming functions. A partitioning (} into mini-buckets is an (i, m)-partitioning f and
only if (1) it is canonical, {2) at most m non-subsumed functions are included in each
mini-bucket, (3) the total number of variables in a mini-bucket does not erceed 1, and ()
the partitioning is refinement-maximal, namely, there is no other (i, m)-partitioning that
it refines.

12



- ||||MBE(i’m)’ (MBE(i) , approx-mpe)

=
= |nput: Belief network (P1,...Pn)

= Qutput: upper and lower bounds
= |nitialize: (put functions in buckets)

" Process each bucket from p=nto1l
= Create (i,m)-mini-buckets
= Process each mini-bucket

= (For mpe): assign values in ordering d

= Return: mpe-tuple, upper and lower
bounds



Algorithm mbe-mpe(i.m)
Input: A belief network BN = (-, P), an ordering o, evidence &.
Output: An upper bound U7 and a lower bound L on the M PE = max; P(Z.8),
and a suboptimal solution #° that provides L = P(z").
1. Imitialize: Partition P ={F., ..., F,} into buckets bucket;. . .., bucket,,
where bucket, contains all CPTs hy, ko, ..., by whose highest-index variable is X .

2. Backward: for p=nto 2 do
o If X, is observed (X, = a), assign X, = a in each h; and put the result
in its highest-variable bucket (put constants in bucket, ).
e Else for hy, hs, ..., b in bucket, do
Cienerate an (i, m2)-mini-bucket-partitioning, ¢ = {01, ..., Q- }.
for each (; € ' containing hy, . ...hy,, do
compute h' = mﬁ:rxpl'[;:lh,gj and place it in the bucket of the highest-index
variable in [ — [“_|;=1 Si; — {Xp}, where 5y, is the scope of Ay,
(put constants in bucket,).
3. Forward: for p=1 to n, given ={,...,r, ;, do
assign a value j to X, that maximizes the product of all funetions in bucket,.
4. Return the assignment 7 = (z{,...,z% ), a lower bound L = P(#"), and
an upper bound U = mazx,, n.&_.,ebuckezi h? on the M PE = max; P(7.2).

Theorem 7.1.3 (mbe-mpe properties) Algorithm mbe-mpe(t, m) computes an upper
bound on the MPE. lts time and space complerity is O(n - exp(i)) where 1 < n.



HIIPartitioning refinements

Clearly, as the mini-buckets get smaller, both complexity and accuracy decrease.

Definition 7.1.4 Given two partitionings () and Q ower the same set of elements, ©Q

is a refinement of Q" if and only if for every set A € @ there erists a set B € Q" such
that A C B.

It 15 easy to see that:

Proposition 7.1.5 If Q is a refinement of Q@ in bucket,, then B < g‘é <

QEH a

Remember that mbe-mpe computes the bounds on M PE = max; P, &), rather than

on M = max; P(x|e) = MPE/P{&). Thus

L L’
< M <
F(e) — — P(g]




¢ MIProperties of approx-mpeli)

.l Complexity: O(exp(i)) time and O(exp(i)) space.

= Accuracy: determined by upper/lower (U/L) bound.
= As i increases, both accuracy and complexity increase.
=  Possible use of mini-bucket approximations:

= As anytime algorithms (Dechter and Rish, 1997)

= As heuristics in best-first search (Kask and Dechter,
1999)

16



i ’ nytime Approximation

a%m‘ - mpe(&)

Initialize: [ =i,
While time and space resources are available
i —i+ig,
U — upper bound computed by approx - mpe(i)
L — lower bound computed by approx - mpe(i)
if U = L, return exact optimal solution (certificate of optimality)

keep the best solution found so far

. U .
if 1< 7 <1+¢&, return solution

end

return the largest L and the smallest U

17



Bounded Inference for Belief
Updating
. for probability of evidence

N
‘a

= |dea mini-bucket is the same:
> f)egx)=y f)e ) g(x)
S f()*g()<Y f(x)+ max, g(X)

= S0 we can apply a sum in each mini-bucket, or better, one
sum and the rest max, or min (for lower-bound)

= MBE-bel-max(i,m), MBE-bel-min(i,m) generating upper and
lower-bound on beliefs approximates BE-bel

= MBE-map(i,m): max buckets will be maximized, sum buckets
will be sum-max. Approximates BE-map.

18



Algorithm mbe-bel-
; Mmax(i,m)

Algorithm mbe-bel-max(i,m)
Input: A belief network BN = (&, P), an ordering o, and evidence &.
Output: an upper bound on P{xq, €) and an upper bound on P(e).
1. Inmitialize: Partition P = {P, ..., P} into buckets buekefy, .. ., bucket,,.
where buckety contains all CPTs hy ha, ... hy whose highest-index variable 1= X3,
2. Backward: for k =n to 2 do
o If X, is observed (X, = a), assign X} — a in each h; and put the result
in the highest-variable bucket of its scope (put constants in buckety ).
s Else for by, hs, ... by in buckety do
Generate an (i, m)-mini-bucket-partitioning, Q' = {Qy...., Q1.
For each @, = (), containing by ,...hy,, do
If | = 1 compute h' = > ox, 1'[;=1h1_1
Else compute bt = mazy, [T _ hy,
Add R to the bucket of the highest-index variable in [ — U;=1 S, — {Xx
{put constant functions in buckefy ).
3. Return PPrime|zibar, e) < —— the product of functions in the bucket
of Xhich is an upper bound on Pz, &).

PPrime(e) < —— % . PPrime(xibar, e}, which upper bound on probability of evidence.

Figure 7.5: Algorithm mbe-bel-maz{i,m).

19



.

Empirical Evaluation
m||(Dechter and Rish, 1997; Rish thesis, 1999)

|
= Randomly generated networks
= Uniform random probabilities
= Random noisy-OR

= CPCS networks
= Probabilistic decoding

Comparing MBE-mpe and anytime-mpe
versus BE-mpe

20



Methodology for Empirical

¢
m

Evaluation (for mpe)

U/L -accuracy
Better (U/mpe) or mpe/L

Benchmarks: Random networks
= Given n,e,v generate a random DAG

"= For xi and parents generate table from uniform [0,1],
Or NOIisy-or

Create k instances. For each, generate random
evidence, likely evidence

Measure averages

21



CPCS networks - medical

diagnosis

¢ MI(noisy—OR model)
LN\ L

Test case: no evidence

Anytime-mpe(0.0001)

U/L error vs time

3.8 |
—a— Cpcs422b
3.4 —o— Cpcs360b
CTJ 3.0 |
2
3 2.6
E 2.2 |
% 18 IR dRs
SO AR
1.0 o 1ol 00-0-0-01
06 Lo iy 1 ,
=1y 10 100 721 1000
Time and parameter i Time (sec)
Algorithm Cpcs360 | cpcs422
elim-mpe 115.8 1697.6
anytime-mpet }¢ =10~ 70.3 505.2
anytime-mpef ) =10~ 70.3 110.5

22



&\i

Frequency

The effect of evidence

1
I

More likely evidence=>higher MPE => higher accuracy

wh (',IPJ) . . . .
( Io\ﬂ L) histogram for i=10 on log(U/L) histogram for i=10 on
1000 instances of likely evidence 1000 instances of random evidence
1000 1000
900 | 900 -
800 | 800 -
700 - 700 -
600 - > 600 |
500 | S 500
=}

400 | o 400
300 | T 390 |
200 - 200 -
100 - 100 |

0 1 2 3 45 6 7 8 9 10 11 12 . , ) ) e 10 D

log(U/L) log(U/L)

Likely evidence versus random (unlikely) evidence
23



1
I

Process max buckets
With max mini-buckets
And sum buckets with su
Mini-bucket and max
mini-buckets

i MBE-map

Algorithm mbe-map(i,m)
Input: A belief network BN = (5. P), a subset of variables 4 = {4, ... Ap}.
an ordering of the variables, o, in which the A's appear first, and evidence &.
Output: An upper bound U7 on the M AP and a suboptimal solution A = ay.
1. Imitialize: Partition P = {F. ..., F,} into buckets buckety, .. ., bucket,
where buckef p contains all CPTs, k. .., hy whose highest index variable is X,
2. Backward: for p=nto 1l do
# If X, is observed (X, = a), assign X, = a in each h; and put the result
in its highest-variable bucket (put constants in bucket; ).
¢ Else for hy, he, . by in buckety, do
Generate an (¢, m)-partitioning, ) of the matrices h; into mini-buckets Q4 ..., Qy.
o If Xp & A /¥ not a hypothesis variable */
for each () = @', containing hy,, ...hy,, do
If | = 1, compute h' = x, I hy,
Else compute h' = mazy,ITt_ hy,
Add K to the bucket of the highest-index variable in Uy — | Ji_, S, — { X, 1.
(put constants in buckefy ).
s Else (X, = A) /* a hypothesis variable */
for each (y = Q' containing hy, , ...k, compute k' = mazy, iy by, and place it
in the bucket of the highest-index variable in Uy — | Ji_, §i, — {Xp 1.
(put constants in buckety ).
3. Forward: for p=1to &, given 4y = af,... . Ap 1 =ay_,,
assign a value aj to A, that maximizes the product of all functions in bucket,.
4. Return An upper bound UV = mazq, []n cpuckes, B o0 MAP, computed in the first bucket.
and the assignment ay = (af. ..., af).

Figure 7.6: Algorithm mbe-map(i.m).




Probabilistic decoding

L |
Error-correcting linear block code

State-of-the-art:
approximate algorithm - iterative belief propagation (IBP)
(Pearl’s poly-tree algorithm applied to loopy networks)

25



N
A

1
I

Figure 7.7: Belief network for a linear block code.

Example 7.3.1 We will next demonstrate the mini-bucket approximation for MAP on
an example of probabilistic decoding (see Chapter 2) Consider a belief network which de-
scribes the decoding of a linear block code, shown in Figure 7.7. In this network, UV, are
information bits and X are code bits, which are funetionally dependent on U7y, The vee-
tar (7, X), called the channel input, is transmitted through a noisy channel which adds
Ganssian noise and results in the channel output vector ¥ = (¥Y* ¥*) . The decoding
task is to assess the most likelv values for the I7's given the observed values ¥V = (%, 7).
which is the MAP task where [T is the set of hypothesis variables, and ¥ = (g%, §*) is the
evidence. After processing the observed buckets we pet the following bucket configura-

tion (lower case y's are observed values):

bucket{ Xo) = Plyf| Xo), P(Xo|[Us. Uy, Us)

bucket(Xy) = P(ui|Xy), PN Uy, U, Us)

bucket{ Xs) = Plyd| Xz), PG|V Us, Uy),

bucket(Xa) = P(y3| Xa), P(Xa|Us, Uy, U) .

buckea‘[Xﬂ = Plyf| Xa), P(X Uy, Ug, Uy - |n|t|a|

bucket(U) = P(Us), Plya|Uo), artitionin
bucket (L 1‘,| = P(l7). Piyﬂi ), p g
l&ﬂfliff‘fli 2] = Iiszl P |[g],

bucket (T 3] = P(l3). P':?Jé*h[a‘.l,

bucket(Ug) = P(Uy). Py |Uy). o

Processing by mbe-map(4, 1) of the first top five buckets by summation and the rest by

maximization, results in the following mini-bucket partitionings and funetion generation:

26



EFHE;TEE‘I:XM = {PI:?_fngD] PI:Xul[Ju [r 14 [ 2]}:

E?HE;TETI:X1]={ 'El'fl.Xf] X1|[J1,{2,[3:I}:

E?HE;TEE‘I:XQ = { |X2:I Xglyz I['-g I['-_q,:l},

EJHE;{'EE‘I:Xﬂ = {Plztl's |X3] P(Xgl[ig {4 EU:I}:

bucket(Xq) = {Piuy | Xq) PG [Uy, Ug U )}

bucket () :[{P[[J Py Uy), k¥ {.D.{.i.{.gyﬂ |{th(£13 Uy, [J.ﬂ}l[fr’“ (U, Un, U 3}}
bucket(Uy) =TPTU L PTUr UL, ﬂ U Ny ) T2 UL T
bucket(1T;) = {P[[J ), P(y|Uh). z({.g.{.g.{.ﬂ h“[i U4},

&uckﬁ‘({ 33 = [P(U3) |; B|Us), hYs (Us, Uy), hY (Us, Uy), A% (U, Uy},

bucket (Uy) = { P(UL), P(yy|Uy). R¥ (Uy). h” (Llg)}.

The first ﬁ'l.e huu::kets are 110t partitioned at all and are processed as full buckets, since in
this case a full bucket is a (4.1)-partitioning. This processing generates five new functions,
three are placed in budket U7y, one in bucket Uy and one in bucket . Then bucket U
is partitioned into three mini-buckets processed by maximization, creating two functions
placed in bucket 7y and one funetion placed in bucket Uz, Bucket [V is partitioned into
two mini-buckets, generating, functions placed in bucket [5 and buecket Uy, Subsequent
buckets are processed as full buckets. Note that the scope of recorded functions is bounded
by 3.

In the bucket of U7y we get an upper bound U7 satisfying 7 = MAP = P(U, g, &)
where g* and ,@" are the observed outputs for the [7's and the X's bits transmitted.
In order to bound P(U7|e), where & = (. &), we need P(&) which is not available.
Yet, again, in most cases we are interested in the ratio P(I7 = wy|e)/P(U = uz|e) for
competing hypotheses 7 = w5y and [V = w5 rather than in the absolute values. Since

P{ll|ley = P(U,e)/P(e) and the probability of the evidence is just a constant factor
independent of 7, the ratio is equal to P(Uy, &) /Pl €). |

27



Complexity and
tractability of MBE(i,m)

Theorem 7.6.1 Algorithm mbe(im) fakes Ofr - exp(i)) fime and space, where v 15 the
number of input functions®, and where |F| is the marimum scope of any input function,
|F| < i< n. Form =1, the algorithm is time and space O(r - exp(|F|)).

28



Belief propagation is easy on
xé goolytree: Pearl’s Belief Propagation

L |
A polytree: a tree with A, () = -
Larger families POs () l |A22(u2) lAZS(uQ
A polytree decomposition T | w2
) !
QO

Running CTE = running Pearl’s BP over the dual gra
Dual-graph: nodes are cpts, arcs connect non-empty
intersections.

BP is Time and space linear

29



lterative Belief
Proapagation

‘a

T Belief propagation is exact for poly-trees
= |BP - applying BP iteratively to cyclic
networks

One step :
update

BEL(U,)
A N

= No guarantees for convergence
= Works well for many coding networks

30



ng MBE-mpe vs. IBP

BER

approx - mpe is better on low - w * codes
IBP is better on randomly generated (high - w*) codes

Bit error rate (BER) as a function of noise (sigma):
Structured (50,25) block code, P=7

L0

ot

1079 o

—&— 1BP(1l)
—=— 1BP(10)
elim-mpe

0.3

04 0.5 0.6
sigma

0.7

BER

10 °3

107

10

. Random (100,50) block code, P=4

1BP(1)
1BP(10)

approx-mpe( 1)
approx-mpe(7)

0.2 0.3 0.4 0.5 0.6 0.7
sigma



IIIMini-buckets: summary

||
= Mini-buckets - local inference approximation

" |dea: bound size of recorded functions

= Approx-mpe(i) - mini-bucket algorithm for MPE

= Better results for noisy-OR than for random
problems

= Accuracy increases with decreasing noise in
coding

= Accuracy increases for likely evidence

= Sparser graphs -> higher accuracy

= Coding networks: approx-mpe outperfroms IBP on
low-induced width codes

32



Cluster Tree Elimination -
A mmpmperties
=

L

= Correctness and completeness: Algorithm CTE is
correct, i.e. it computes the exact joint probability of a
single variable and the evidence.

= Time complexity: O (deg x(n+N) xd w+1)

= Space complexity: O (N xd =er)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size

33



Cluster Tree Elimination -

the m dges
| P
o8 1 L |P@ POl pcab)

l ho (b,0) =% p(a)Ip(b|a)Dp(c|a,b)

BC
BCDF
2 p(d|b), p(fic,d)
h(1,z)(bxc)
aeye0 L R0, p@IB)Ip(f o)y, (o)
elim(2,3)={C,D} c,d
BEF
3 | pleb, hy b,
EF

EF G
4 p(glef)
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Mini-Clustering for belief
m“updating

)|
= Motivation:

= Time and space complexity of Cluster Tree Elimination depend on the
induced width w* of the problem

= When the induced width w* is big, CTE algorithm becomes infeasible

i

= The basic idea:

= Try to reduce the size of the cluster (the exponent);
partition each cluster into mini-clusters with less variables

= Accuracy parameter i = maximum number of variables in a mini-cluster
= The idea was explored for variable elimination (Mini-Bucket)

35



¢Idea of Mini-Clustering

Split a cluster into mini-clusters => bound complexity

cluster(u) = éhlﬂ‘ﬂﬁmhﬂl’ﬂ'ﬂﬁr‘}

/hgnh\

Pan-ath!
\ /

=R MMEER I

Exponential complexity decrease: O(e") - O(e")+O(e"™") 36




Mini-Clustering - MC

k* N
|

| . : .
Cluster Tree Elimination [ EALB (S ] Mini-Clustering, i=3
p(a), p(bla), p(c|a,b) 1
h, (bsc) = z p(a)Up(b|a)p(c|a,b) BC hio (b,C) = z p(a)Up(b|a)Up(c|a,b)
BCD CDF
p(d|b), h(1,z)(bsc) p(fle,d)
|
hoy(®,1)= Y p(d (D), (B,ODp(fcd)  BF hoy(®)=)  p(d|b)hy, (b,c)
¢d sep(2,3) | = {B,F} c,d
elim(2,3)| = {C,D}
\\ [ BEF ]
p(e|b,f)
% T br

[ EFG ]
p(gle)
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Mini-Clustering - example

BC

2| BCDF

BF

D
'
1

EF

4| EFG

H,, ,,

(2,1

H(2,3)

H(3,2)

H(3,4)

hi2,(b,©):=="> p(a) Bp(b|a)Cp(c|a,b)

2y (D) ZZZ p(d |b) [Hg ,, (b, f)

h(22,1) (c) :mmax p(f |c,d)
d,f

h(lz’g) (b) := Z p(d | b) Iﬂ(ll’z) (b, o)

hZ(f):==max p(f |e,d)

h(13,2) (b, f):= z p(el|b, ) I3(14,3) (e, )

h(13,4) (e’ f) = Z p(e | b, f) |3(12,3) (b) |3(22,3)( f)

H 5, h(14,3)(e, f)=p(G=g.le [)
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Cluster Tree Elimination vs.
iMini-CIustering

ABC
h(1,2) (b,c)
BC

-

BF

BEb

4| EFG

h(2,1) (b,c)
R, f)

A2y (bs 1)

(34)(e f)

ha s (e f)

( )
1| ABC |
I

BC

2[ BCDF ]
I

BF

3[ BEF }
!

EF

H(1’2) h(ll,z)(b’c)
h(12,1)(b)
H(2,1) h(22,1)(C)

hiy 5 (D)
H(2,3) (22,3)
o (F)

H(3’2) h(13,2)(b) f)
H 3 4 hiule f)

H(4 3) (43)(e f)
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SO ITIUTIVUIUWU Ul 1TUUC
duplication
i for mini-clustering

)|
= We can have a different duplication of nodes going up
and down. Example: going down.

—
1 ﬂBE I':_: ]|=':|1]:5 ]|[b:|= II:E ZI|=':I]JZ.= :Il[l:]:
T T Haaethi ), 2PIETBIR(0F) mac p(f” 0"
v Dol
2 | BCDF 2
R
T He =t i JFI-:F:_:,={I11:_:_:,[L},1‘]]
3 | BEF 3| BEF
I':;_=|=':|1]:;_=|[E.-f:l] l I':;_=|=':|1]:;_=|[E.-ﬂ]
4 | EFG 4| EFG
M— m—
a) (0)

Figure 1.14: Node duplication semantics of MC: (a) trace of MC-BU(3); (b) trace of
CTE-BU.



Join-Tree Clustering

1| ABC |
!

ho2(b,0)=> p(a)Lp(b|a)p(c|a,b)

BC
he, . (b,c) = ; p(d|b)Lp(f |c,d) g, (b, f)
2| BCDF
h(2,3) (b, f)= Z p(d|b)Lp(f |c,d) (A, ,, (b, c)
BF
h(3,2) b, f)= z p(e|b, f) |:Bl(4,3) (e, f)
3| BEF
EXACT - h(3,4)(e’ f)= Z p(e|b, f) |]'(2,3)(13: f)
?_lg,orithg) _
Ime ana space. [ huyleN=pG=g.le.)
exp(cluster 4| EEG
size)= 41

avnltfroowidrh)



mi-CIustering

- lif a cluster into mini-clusters => bound complexit

mill U
Y- e Poogra o b

APPROXIMA
TE

algorithm é’ﬁ’{j‘ Wﬂ} Hl'ﬁlljf'ﬂ]ﬁ'}

NI LA L
elim i1=1 im 1=1 [ imi=r+1

Exponential complexity decrease O(e") — O(e™)+0(e"" ™)
42




BC

" BCD
p(d|b), h(1,2)(b:C)

o

CDF
\__P(flc,d)

/

BF l

BEF
3 | p(elbf),
h1(2,3)(b): hz(z,s)(f)

|

EF

EF G
4 pr(glef)

Mini-Clustering, 1-bound=3

ABC
L | p@, pla), p(cla,b)

huo(b,0) =% p(a)tp(b|a)Tp(c|a,b)

(23)(b)_Z p(d|b)|ﬂ12)(b,c)
h(223)(f) maxp(f|cd)

APPROXIMATE

algorithm

Time and space:
exp(i-lbound)

Number of variables in a

- -y [  E——




Mini-Clustering
;i |

nll 1
= Correctness and completeness: Algorithm

MC(/) computes a bound (or an approximation)
on the joint probability P(X,e) of each variable

and each of its values.
= Time & space complexity: O(n x hw* xd )

where hw* = max, | {f| f n x(u) Z @} |

44



Lower bounds and mean
approximations

k* N

We can replace max operator by
" min => |ower bound on the joint

" mean => approximation of the
joint

45



Normalization
ki |

= MC can compute an (upper) bound on the joint
P(X,le) _
P(X,,e)

=« Deriving a bound on the conditional P(X |e) is not easy when
the exact P(e) is not available

= |If a lower bound would be available, we could use:

as an upper bound on the posterior

= In our experiments we norm&(2dd the results and regarded
them as approximations ofthe posterior P(X|e)

P(X;,e)/ P(e)
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Experimental results
o B

mll U
= Algorithms:
J = Measures:
= Exact _ .
= |IBP "= Normalized Hamming
= Gibbs sampling (GS) Distance (NHD)

BER (Bit Error Rate)
Absolute error
Relative error

= Time

= MC with normalization
(approximate)

= Networks (all variables are
binary):
= Coding networks
= CPCS 54, 360, 422
= Grid networks (MxM)
= Random noisy-OR networks

= Random networks 47



Absolute error

1 B
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Noisy-OR networks -

| Absolute error
b

Noisy-OR ngtwlirki N P *E16j 25linsgances Noisy-OR n : i 25 instances

le+0 le+0

© EEEEREERENR *

le-1 A le-1 A

Gibbs Sampling Gibbs Sampling

E le-2 A E le-2 A
(&) (]
] L
= =
o o
8 1e3 | III 8 1e3 |
) I I . )

» I.H-;‘ iy

le-5 A le-5 A

0 ) : 16 0 : 16
-bdind
evidence=10 evidence=20
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Grid 15x15 - 10 evidence
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Absolute error

evidence=0

Absolute error
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Coding networks - Bit Error

N
‘a1
mll 1

Bit Error Rate

Coding networfis, Nk10(§ P=4, sigha=§2,
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i-bqind
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0.08 A
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IBP

0.06

i-bqind

sigma=.51
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||IMini—CIustering summary

= MC extends the partition based approximation
from mini-buckets to general tree decompositions
for the problem of belief updating

= Empirical evaluation demonstrates its
effectiveness and superiority (for certain types of
problems, with respect to the measures
considered) relative to other existing algorithms

53



| Heuristic for partitioning
W

1
Scope-based Partitioning Heuristic. The scope-based
partition heuristic (SCP) aims at minimizing the number of
mini-buckets in the partition by including in each minibucket
as many functions as possible as long as the / bound is
satisfied. First, single
function mini-buckets are decreasingly ordered according to
their arity. Then, each minibucket is absorbed into the left-
most mini-bucket with whom it can be merged.

The time and space complexity of Partition(B, i) , where B is
the partitioned bucket, using the SCP heuristic is O(|B| log (|
B|) + |B|™2) and O(exp(i)), respectively.

The scope-based
heuristic is is quite fast, its shortcoming is that it does not
consider the actual information in the functions.



Content-based heuristics
. ||I(RoIIon and Dechter 2010)

1234
- Log relative error:

14023 17234 12453 13724 12374 13472 12434 REff h} _ Zg{]ﬂg 'Lf'Lﬂ] B 10{.’;”3“1}]\:!

- Mazx log relative error:
1723704 140203 112473 137274 127314 112734

%—-—-—" MRE(f, h) = max,{log (f(t)) — log (h(t))}

1027374

Partitioning lattice of bucket { fi, fa, fs, fi}.

Use greedy heuristic derived from a distance function to decide
which functions go into a single mini-bucket
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lterative Join Graph
mlPropagation

)|
= Loopy Belief Propagation
= Cyclic graphs
= |terative
= Converges fast in practice (no guarantees though)

Very good approximations (e.g., turbo decoding, LDPC codes,
SAT - survey propagation)

i

= Mini-Clustering(i)
" Tree decompositions
= Only two sets of messages (inward, outward)

= Anytime behavior - can improve with more time by increasing
the i-bound

= We want to combine;:
= |terative virtues of Loopy BP
= Anytime behavior of Mini-Clustering(i)

56



N

JGP - The basic idea

Apply Cluster Tree Elimination to any join-
graph

We commit to graphs that are I-maps

Avoid cycles as long as I-mapness is not
violated

Result: use minimal arc-labeled join-graphs

57



Minimal arc-labeled join-

gk s0raph

2
& AB‘B@ @B

Figure 1.17: a) A belief network; b) A dual join-graph with singleton labels; ¢) A dual
join-graph which is a join-tree

Figure 1.15: An are-labeled decomposition
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h

[|GP - Example

=

Belief network

Loopy BP graph
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A ABC C

* Arc-Minimal Join-Graph

‘a1
1

A AB BC C

ABDE BCE
BE

Arcs labeled with

any single o] e
variable should
form a TREE
CDEF
F FGH H H
F P& GH H

Gl
FGI GHIJ



Collapsing Clusters




Jom Graphs

-

less
complexity
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Message propagation

ABCDE

p(a), p(c), p(blac),
p(d|abe),p(e|b,c) BC
h(3,1)(bc)

\ M3 ) (UC)

Non-minimal arc-labeled: ~ h,, ,,(cde) = Z p(a) p(c) p(b|ac)p(d|abe)p(e|bc)h,,,,(bc)
sep(1,2)={C,D,E} a,

elim(1,2)={A,B} 63



IIIBounded decompositions

1
= We want arc-labeled decompositions such
that:

" the cluster size (internal width) is bounded by i (the
accuracy parameter)

= the width of the decomposition as a graph (external
width) is as small as possible

.

= Possible approaches to build decompositions:

= partition-based algorithms - inspired by the mini-
bucket decomposition

= grouping-based algorithms

64



Constructing Join-Graphs

. B
k¥ WGFE) GFE ) P(GJF,E) ') G
E: (EBF) *(EF) e‘
N — / G
F: (FCD) ™ (BF) P(Fic,0)( FCP
H_/
D: \(DB)\‘(CDl
C: \(CAB)\Q (CB)
N
B: (BA) “(AB) (B)
A: T (A
a) schematic mini-bucket(i), i=3 b) arc-labeled join-graph

decomposition
65



1JGP properties

|JGP(/) applies BP to min arc-labeled join-graph,
whose cluster size is bounded by |

On join-trees 1JGP finds exact beliefs

|JGP is a Generalized Belief Propagation
algorithm (Yedidia, Freeman, Weiss 2001)

Complexity of one iteration:
= time:
" space;:
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i Empirical evaluation

" Measures:
Algorithms: = Absolute error
= Exact _
« IBP " Relative error
= MC = Kulbach-Leibler (KL) distance
= |JGP = Bit Error Rate
= Time

= Networks (all variables are binary):
= Random networks
= Grid networks (MxM)
= CPCS 54, 360, 422
= Coding networks

67
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Coding networks - BER
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KL distance

0.1~

0.01 A

0.001 ~

CPCS 422 - KL Distance

I FIS I22Iev|1:

1IJGP 30 it (at convergence)
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IBP 10 it (at convergence)
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IJGP at convergence
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) D
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ol

KL distance
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| Coding networks - Time

10 -

k\* MII CodinI, :400‘500 instahces, 30 ferations, v =43

81 IJGP 30 iterations

MC
IBP 30 iterations

Time (seconds)
N

: -

i-odind
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More On the Power of Belief
1 Propagation
=

= BP as local minima of KL distance

= BP’s power from constraint propagation
perspective.

712



N
-

More On the Power of Belief
Propagation

= BP as local minima of KL distance

73



The Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL—divergence)

Pr'(x|e)
Pr(x|e)

KL(Pr'(X|e). Pr(X|e)) = > Pr'(x|e) log

o KL(Pr'(X|e),Pr(X|e)) is non-negative

@ equal to zero if and only if Pr/(X|e) and Pr(X|e) are
equivalent.




The Kullback-Leibler Divergence

KL—-divergence is not a true distance measure in that it is not
symmetric. In general:

KL(Pr'(X|e), Pr(X|e)) # KL(Pr(Xe), Pr'(X|e)).

o KL(Pr'(X|e),Pr(X|e)) weighting the KL—divergence by the
approximate distribution Pr’
@ We shall indeed focus on the KL—divergence weighted by the

approximate distribution as it has some useful computational
properties.



The Kullback-Leibler Divergence

Let Pr(X) be a distribution induced by a Bayesian network N having

families XU

The KL-divergence between Pr and another distribution Pr’ can be
written as a sum of three components:

KL(Pr'(X[e), Pr(X|e))
— —ENT'(X[|e) — ch (log \e(X)©Oxu) + log Pr(e).

where

- ENT'(X|e) = = >, Pr'(x|e)log Pr'(x|e) is the entropy of the
conditioned approximate distribution Pr’(X|e).

— AVG'(log Ae(X)Oxu) = X, Pr'(xule) log Ae(x)by, is a set of
expectations over the original network parameters weighted by the
conditioned approximate distribution.




The Kullback-Leibler Divergence

A distribution Pr'(X|e) minimizes the KL-divergence

KL(Pr'(X|e), Pr(X|e)) if it maximizes

ENT'(X|e) + > AVG'(log Ae(X)Oxu)
XU

Competing properties of Pr'(X|e) that minimize the KL—divergence:

@ Pr’(Xle) should match the original distribution by giving more
weight to more likely parameters Ae(x)fy, (i.e, maximize the
expectations).

e Pr/(Xle) should not favor unnecessarily one network instantiation
over another by being evenly distributed (i.e., maximize the
entropy).



Optimizing the KL-Divergence

The approximations computed by IBP are based on assuming an
approximate distribution Pr’'(X) that factors as follows:

Pr/(XUle)
LT, o Pr(Ue)

Pr'(X|e) =

@ This choice of Pr'(X|e) is expressive enough to describe distributions
Pr(X|e) induced by polytree networks N

@ |n the case where N is not a polytree, then we are simply trying to fit

Pr(X|e) into an approximation Pr'(X|e) as if it were generated by a
polytree network.

@ The entropy of distribution Pr’(X|e) can be expressed as:

Pr'(xule
ENT'(X|e) = = > "> Pr'(xule) |0g1_[ (PI,LU)M

XU xu t~u



Optimizing the KL-Divergence

Let Pr(X) be a distribution induced by a Bayesian network N having families
XU. Then IBP messages are a fixed point if and only if IBP marginals
pty = BEL(u) and pi,, = BEL(xu) are a stationary point of:

ENT’(X[e) Z AVG'(log Ae(X)Oxu)

— o z z Hoxu |0€ ﬂxuﬂu + Z Z = IDg)& x|l|_-

XU xu ”N“ XU  xu

under normalization constraints:

Z [ty = Z Lixu = 1

u XU
for each family XU and parent U, and under consistency constraints:

D fixu = py

XU~y

for each family instantiation xu and value y of family member ¥ € XU.




Optimizing the KL-Divergence

@ IBP fixed points are stationary points of the KL—divergence:
they may only be local minima, or they may not be minima.

@ When IBP performs well, it will often have fixed points that
are indeed minima of the KL—divergence.

@ For problems where IBP does not behave as well, we will next
seek approximations Pr’ whose factorizations are more
expressive than that of the polytree-based factorization.



Generalized Belief Propagation

If a distribution Pr’ has the form:

Pr'(Cle)
! _11C
Pr'(X|e) = I[P (Sle)’

then its entropy has the form:

ENT'(X[e) = Y ENT'(Cle) — > ENT'(S|e).
C S

When the marginals Pr’(Cle) and Pr’(S|e) are readily available,
the ENT component of the KL—divergence can be computed
efficiently.



Joingraphs

While a jointree induces an exact factorization of a distribution, a
joingraph G induces an approximate factorization:

Pr'(C;
Pl’f(X‘E): Hf 1;( ,‘E)
H;jPl‘(SFﬂE)

which is a product of cluster marginals over a product of separator
marginals. When the joingraph corresponds to a jointree, the
above factorization will be exact.



Joingraphs

o
A Bj.
\\
s ABC | | ABD
g @ N
\(/ c \L{u‘“
- | CDE
E Sy
Bayesian network dual joingraph

A dual joingraph leads to the factorization used by IBP.



Joingraphs

NN NN
|\,£‘11_B_f_:'/ ABD l/;BE'/ AB:?/
AB$’___ ARD AC — AD
< &
1CD 1CD
Copp .
(@) (=
jointree joingraph

The jointree induces the following factorization, which is exact:

Py’ (ABC|e)Pr'(ABD|e)Pr (ABCD|e)Pr'( CDE|e)
Pr'(ABCle)Pr'(ABD|e)Pr'(CDle)

Pr'(X|e) =



Joingraphs

CN N BN
QBC/’, ABD (;135/ ABEJ)/,
AB%/ — ABRD AC — AD
o, ez
1(:'5' 1CD
(@) (
jointree joingraph

The joingraph induces the following factorization:

Pr'(ABC|e)Pr'(ABD|e)Pr'(ACD|e)Pr'(CDE|e)
Pr'(Ble)Pr’ (AC|e)Pr (AD]e)Pr'(CDle)

Pr'(X|e) =



terative Joingraph Propagation

Computing cluster marginals i, = Pr’(cj|e) and separator
marginals s, = Pr'(s;;|e) that minimize the KL—divergence

between Pr'(X|e) and Pr(X|e)

This optimization problem can be solved using a generalization of
IBP, called iterative joingraph propagation (IJGP), which is a
message passing algorithm that operates on a joingraph.



lterative Joingraph Propagation

IJGP(G, ®)

input:
G: a joingraph
¢ factors assigned to clusters of G

output: approximate marginal BEL(C;) for each node i in the joingraph G.
main:
l:t—o0
27 initialize all Mmessages Mﬁ- {uniformly)
3: while messages have not converged do
4: t—1t+1
5 for each joingraph edge i— do
t t—1
. t r—1
7 Mﬁ — "N chxsg ‘bj ﬂk;ﬁ M;U-
3 end for
0: end while
1

O: return BEL(C;) — n &; [, M[; for each node i



terative Joingraph Propagation

Let Pr(X) be a distribution induced by a Bayesian network N having families XU, and let C; and 5;; be the
clusters and separators of a joingraph for N.
Then messages M;; are a fixed point of IJGP if and enly if IJGP marginals He, = BEL(c;) and Ms; = BEL(sjj) are

a stationary point of:

ENT'(X]e) + > AVG'(log ¢;)
C;

_ _ZZM Iaqu—l-ZZ#s |GE“5U+ZZ“E log ®;(<;),

‘]_ EU -
under normalization constraints:

for each cluster C; and separator Sj;, and under consistency constraints:

Z Hec; = Hs; = Z Hc;

NEU NEU

for each separator 5;; and neighboring clusters C; and C;.




A spectrum of approximations.

IBP: results from applying IJGP to the dual joingraph.

Jointree algorithm: results from applying IJGP to a jointree (as a

joingraph).

In between these two ends, we have a spectrum of joingraphs and
corresponding factorizations, where I1JGP seeks stationary points of
the KL—divergence between these factorizations and the original

distribution.



More On the Power of Belief
- MIIPropagation

= BP’s power from constraint
propagation perspective.

90



Inference Power of Loopy

ki MIIIB P

nll 1
= Comparison with iterative algorithms

INn constraint networks

" Zero-beliefs Inconsistent
. <
assignments

" £-Ssmall beliefs - experimental study
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Constraint networks

lé Wap coloring

Variables: countries (A B C etc.)

Values: colors (red green blue)

Constraints: A #D, DZE, etc.

A

red
red
green
green
yellow
yellow




| _Arc-consistency

= Sound
= |Incomplete

= Always converges
(polynomial)

A B B
1 | = 1
2 513 2
@ @
Y NG
A<D Bc=
12|, _ 171
2 | 3
C
1 < 1
2 D<C 2
3 1| 2 3
2 | 3
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Relational Distributed Arc-

i 1 Prlma
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istency

Dual
w Tl
A B AB BC
1 1 AB 1222
2 2 2 333
3 @ A< @ 3 23>AB/ B \BC
B
= 1] 2 \B=
A<D 2 | 3 c AB AD
1 2 1 1
2 3 2 2 :;;; A C
3 3
@ @
1 1 AD
2 3 D
. : * 2 (AD) (bC
AD DC
1223

BC

BC DC

2 2|12

3323
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Flattening the Bayesian
Network

D | P(D|A,B)
3

P(F|B,C)

1
1
1
1
1
1
0

D| F G| P(G|D,F)
3 1
3 1
......... 0

Belief network

Flat constraint network
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¢ IBP - inference power for zero beliefs
=

" Theorem:

Trace of zero beliefs of Iterative Belief Propagation =
Trace of invalid tuples of arc-consistency on flat network

"= Soundness:

" The inference of zero beliefs by IBP converges in a finite number of
iterations

= 3ll the inferred zero beliefs are correct

= Incompleteness:
= |IBP may not infer all the true zero beliefs 96



¥

# of
tuples

Zero and €-Small Beliefs

ro beliefs

e-small beliefs

true
Zeros

LBP
Zeros

{rue

g-small
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Percentage
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Coding Networks

mm Distribution of exact beliefs — Loopy BP Absolute Error
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IMIRa ndom Networks
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o o o o o = I o I = o o o o o
cpcs360, evidence = 20 cpcs360, evidence = 30 cpcsb4, evidence = 10

- 0.000

CPCS54: 100 instances, w*=15
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Sum Score

|JGP on UAIOG6 problems
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AN

Sum Score

|JGP on Set Relational
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Using Mini-bucket

approximation in search
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Mini-Bucket can be used to
i guide more than one solution

| Mini-buckets
‘A1 L T~
| N /B\
e ~ e ~
° bucket B: \F(a,b) F(b,C) F(b,d) F(b,e)
/

bucket C: h®(a,c) F(c,e) F(a,.c)

' bucket D: F(a,d) h®(d,e)

Q G bucketE: e€=0 h¢(e,a) hD(e,a)/

v bucket A: ht(a)

L = lower bound
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Basic Heuristic Search

- M“Schemes

Bl Heuristic function f(x?P) computes a lower bound on the
best

extension of xP and can be used to guide a heuristic
search algorithm. We focus on:

1. Branch-and-Bound 2. Best-First Search
Use heuristic function f(x?) to Always expand the node
prune the depth-first search  with the highest heuristic

tree value f(xr)
Linear space more) Needs lo* of memory
O el
O O

< ofa égo
ij O
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Heuristic search

L Ea

= Mini-buckets record upper-bound heuristics
= The evaluation function over X, = (Xl’“'xp)

f(x,)= g(X )h(x, )
9(x, )‘|_|P(x | pa;)
h(x,) = |‘|h.

J
= Best-first: expand amedéiwith maximal evaluation function
= Branch and Bound: prune if f <= upper bound
= Properties:

= an exact algorithm

= Better heuristics lead to more pruning
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Heuristic Function

‘a1
1

Given a cost function

P(a,b,c,d,e) = P(a) * P(bla)  P(c|a) « P(e|b,c) « P(d|b,a)
Define an evaluation function over a partial assignment as the
probability of it’s best extension

=0

=40
\@

f* (a’e’d) = max, . P(a,b,C,d,e) =
= P(a),» max, P(bla) - P(cla) + P(elb.c) - P(dlab)

o~

N\ —

=g(a,ed) e H*(a,e,d)
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MBE Heuristics

A\
i 1

|
Given a partial assighnment x?, estimate the cost of the

9‘.@
'.9' best extension to a full solution

(D) " The evaluation function f(x*) can be computed using

nction recorded by the Mini-Bucket scheme
Cost Network! f(a,e,D))=g(a,e) + H(a,e,D )

4 B: \F(E,B,C)J F(D,A,B) F(B,A)
— ‘R
C: F(C,A) hB8(E,C)
Y N
D: / h*(D,A),
;/ ]
E: h<(E,A) Z
T
A: F(A) htE(A) h°(A)

f(a,e,D) = F(a) + h®*(D,a) + h¢(e,a)

g h - is admissible
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Li MIIPrOpertleS

= Heuristic is consistent/monotone

= Heuristic is admissible

= Heuristic is computed in linear time
= [IMPORTANT:

= Mini-buckets generate heuristics of varying
strength using control parameter - bound |

* Higher bound -> more preprocessing ->
stronger heuristics -> less search

= Allows controlled trade-off between
preprocessing and search
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| Classic Branch-and-Bound

Upper Bound UB

Lower Bound LB

9" B(n) = g(n) + h(n)

Prune if LB(n) = UB

h(n) estimates
Optimal cost below n

OR Search Tree
111



% Solved Exactly

=
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o
©

o
©

©
3

o
o

g
3

o
~

o
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o
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o
i

o
=}

!

Empirical Evaluation

MIof Mmini-bucket heuristics
)|

Time [sec]

—&— BBMB i=2
O - BFMB i=2
—v¥— BBMB i=6
— BFMBi=6
—i— BBMB i=10
— - BFMB i=10
—4 - BBMB =14
—— BFMB i=14

% Solved Exactly

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Random Coding, K=100, noise 0.32

600000000
u 00000
po0oo e aamnnns

vy L 2 2n o o dh MM

—@— BBMBIi=6
. O - BFMBi=6
—y— BBMBIi=10
— BFMB i=10
—m— BBMBi=14

J _0 . BFMBi=14

10 20

Time [sec]

30
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AND/OR Branch-and-
Bound Searel

0
@
an Sl | 5 [g 11 [1]

OR 5 (B 11 (B
0 (] 0 (]

w [0] 5 [1] 11 [0] 1]

orR © © 4 (D 2 (© 3 (D
) %) 1 © o 2 o 2
o 1 3o 4 1 o 1] 3o 4 [1

OR 3(E) () 3E) ()
o /A3 o N4 o /N3 o N4
o 1] o [1] o 1] o [1]

THY
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1 ICTUl IolLILC LLvdliudtuiulli
Function

A B Cf,(ABC) A B F f,(ABF) B D E f,(BDE)
000 2 000 3 000 6
001 5 001 5 001 4
010 3 0/1lo0, 1 __ o010 8
011 5 011 4 01/1 5
100 9 100 6 100 9
101 3 101 5 101 3
110 7 110 6 110 7
111 2 111 5 111 4

AND

OR

AND

OR

AND

OR ‘;,I4 58 I h(D,0) = 4 tip nodes
AND o 1 [ i T
f(T’') = w(A0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) = 12 = (T
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mlSoftware & Competitions

= How to use the software

= http://graphmod.ics.uci.edu/group/Software
= http://mulcyber.toulouse.inra.fr/projects/toulbar2

*

= Reports on competitions
= UAI-2006, 2008, 2010 Competitions
* PE, MAR, MPE tasks

" CP-2006 Competition
= WCSP task
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Toulbar2 and aolib

\i 1

foulbar2

http://mulcyber.toulouse.inra.fr/gf/project/toulbar2
(Open source WCSP, MPE solver in C++)

= aolib
http://graphmod.ics.uci.edu/group/Software
(WCSP, MPE, ILP solver in C++, inference and counting)

= Large set of benchmarks
http://carlit.toulouse.inra.fr/cqgi-bin/awki.cqgi/SoftCSP
http://graphmod.ics.uci.edu/group/Repository
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http://mulcyber.toulouse.inra.fr/gf/project/toulbar2
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
http://graphmod.ics.uci.edu/group/Repository

1 UAI-2006 Competition
=

* Team 1 (UCLA)
= David Allen, Mark Chavira, Arthur Choi, Adnan
Darwiche

= Team 2 (IET)

= Masami Takikawa, Hans Dettmar, Francis Fung,
Rick Kissh

" Team 5 (UCI)

= Radu Marinescu, Robert Mateescu, Rina Dechter
= Used AOBB-C+SMB(i) solver for MPE
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UAI-2006 Results

k Proportions (how often was each team a particular rank, rank 1 is best

Ra
lﬁ |

L ® Rank 1 [ Rank 2 0D Rank 3 H Fail

Rank Proportior

Team 1 Team 2 Team 5
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UAI-2008 Competition

AOBB-C+SMB(i) - (i = 18, 20, 22)

= AND/OR Branch-and-Bound with pre-compiled mini-bucket heuristics (i-
bound), full caching, static pseudo-trees, constraint propagation

AOBF-C+SMB(i) - (i = 18, 20, 22)

= AND/OR Best-First search with pre-compiled mini-bucket heuristics (i-
bound), full caching, static pseudo-trees, no constraint propagation

= Toulbar2

*= OR Branch-and-Bound, dynamic variable/value orderings, EDAC
consistency for binary and ternary cost functions, variable elimination of
small degree (2) during search

Toulbar2/BTD

= DFBB exploiting a tree decomposition (AND/OR), same search inside
clusters as toulbar2, full caching (no cluster merging), combines RDS
and EDAC, and caching lower bounds

AN
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Instances solwved

UAI-2008 Results
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UAI-2008 Results (contd.)

10

Instances solved

MPE : Linkage 2

T T T T T T / &
il il il i il il /.l. il i il il i il oy
W e 0 W e 0 W e L W HE W e
N N ] N N ] 3 N ] g N HE N ]
| | | | | | | |
4 51 &8 10 12 14 16 18 20
Minutes
inra —— aobbl —%— aobb3 aobf2z

inra—mf —¥—

aobbz —&8— aobfl —%— aobhf3 —b—
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1 UAI-2010 Competition
L

= Tasks
= PR: probability of evidence
= MAR: posterior marginals
= MPE: most probable explanation

= 3 tracks: 20 sec, 20 min, 1 hour

= PR, MAR - 204 instances: MPE - 442 instances

= CSP, grids, image alignment, medical diagnosis, object
detection, pedigree, protein folding, protein-protein
interaction, relational model, segmentation

= Exact and approximate solvers
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- MIIIUAI_ZO]'O Results

ml 1 (Mateescu et al, JAIR2010),
= MAR task (Dechter et al, UAI2002)

= 1st place (20 min, 1 hour) - (impl. by Vibhav Gogate)
= Anytime IJGP(i) with randomized orderings and SAT based domain
pruning
= PR task

- 1= place (20 min, 1 hour) _(?ngpé]t%yD |n}1n9/0(§oagnadte|%ecmer UAI2010)

= Formula SampleSearch with |JGP(3) based importance distribution,
w-cutset sampling, minisat based search, rejection control

= MPE task
= 3rd place (all tracks) - (impl. by Lars Otten)

= AND/OR BnB with bucket =fill d
tree, LDS bgse\évlsear?c”r:lfo?(l:nlilsl rg&;ﬁi@%ﬂ?ﬁgg RI?S%AFII\'/IA‘?C??E()&(?
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