
Chapter 6

Inference with Tree-Clustering

As noted in Chapters 3, 4, topological characterization of tractability in graphical models

is centered on the graph parameter called induced-width or tree-width. In this chap-

ter, we take variable elimination algorithms such as bucket-elimination one step further,

showing that they are a restricted version of schemes that are based on the notion of

tree-decompositions which is applicable across the whole spectrum of graphical models.

These methods have received different names in different research areas, such as join-tree

clustering, clique-tree clustering and hyper-tree decompositions. We will refer to these

schemes by the umbrella name tree-clustering or tree-decomposition. The complexity of

these methods is governed by the induced-width, the same parameter that controls the

performance of bucket elimination.

We will start by extending the bucket-elimination algorithm into an algorithms that

process a special class of tree-decompositions, called bucket-trees, and will then move to

the general notion of tree-decomposition.

6.1 Bucket-Tree Elimination

The bucket-elimination algorithm, BE-bel, for belief updating computes the belief of the

first node in the ordering, given all the evidence or just the probability of evidence.

However, it is often desirable to answer the belief query for every variable in the network.

A brute-force approach will require running BE-bel n times, each time with a different

variable order. We will show next that this is unnecessary. By viewing bucket-elimination
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104 CHAPTER 6. INFERENCE WITH TREE-CLUSTERING

as message passing algorithm along a rooted bucket-tree, we can augment it with a second

message passing from root to leaves which is equivalent to running the algorithm for each

variable separately. This yields a two-phase variable elimination algorithm up and down

the bucket-tree.

In the following we will describe the idea of message passing along the bucket tree using

the general operators of combine and marginalize. However, to make it more readable we

will denote ”combine” by product and ”marginalize” by summation. In other words

instead of ⊗ we will write
∏

and instead of ⇓,
∑

. Some exception for this will occur

when we would want the reader to recognize the generality of framework. So, these

symbols will stand both for their specific meaning of product and sum (e.g., in the context

of probabilistic networks) as well as for these more general meanings of combine and

marginalize.

Let M be a graphical model M = ⟨X,D,F,
∏
⟩ and d an ordering of its variables

X1, ..., Xn. Let BX1 , ..., BXn denote a set of bucket, one for each variable. Each bucket

Bi contains those functions in V whose latest variable in d is Xi (i.e., according to the

bucket-partitioning rule). A bucket-tree of M has buckets as its nodes. Bucket BX is

connected to bucket BY if the function generated in bucket BX by BE is placed in BY .

The variables of BX , are those appearing in the scopes of any of its new and old functions.

Therefore, in a bucket tree, every vertex BX other than the root, has one parent vertex BY

and possibly several child vertices BZ1 , ..., BZt . The structure of the bucket-tree can also

be extracted from the induced-ordered graph ofM along d using the following definition.

Definition 6.1.1 (bucket-tree, graph-based) Let M = ⟨X,D,F,
∏
⟩ be a graphical

model and d an ordering of its variables d = (X1, ..., Xn). Let G∗
d be the induced graph

along d of the graphical model whose primal graph is G. The bucket tree has the buckets

{BXi
}i=1n as its nodes, each associated with a variable. The bucket contains a set of

functions and a set of variables. The functions are those placed in the bucket according to

the bucket partitioning rule. The set of variables in BXi
is Xi and all its induced-parents

in G∗
d. Abusing notation, we will denote by Bi also its set of variables. Each vertex BX

points to BY (or, BY is the parent of BX) if Y is the latest neighbor of X that appear

before X in G∗
d. Each variable X and its earlier neighbors in the induced-graph are the

variables of bucket BX . If BY is the parent of BX in the bucket-tree, then the separator

of X and Y is the set of variables appearing in BX ∩BY , denoted sep(X,Y ).
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Example 6.1.2 Consider the Bayesian network defined over the DAG in Figure 2.5(a).

Figure 6.1a shows the initial buckets along ordering d = A,B,C, D, F,G, and the mes-

sages, labeled by λ, that will be passed by bucket-elimination from top to bottom. Figure

6.1b depicts the same computation as a message-passing along its bucket-tree. Notice that

the ordering is displayed bottom-up and messages are passed top-down in the figure. For

example, we have the following set of variables in buckets: BG = {G,F}, BF = {F,B,C},
BD = {D,A,B} and so on. We will often abbreviate BXi

by Bi.

Definition 6.1.3 (elim(i,j)) Given a bucket tree having buckets {B1, ...Bn} and given

a directed edge (Bi, Bj), elim(i, j) is the set of variables in Bi and not in Bj, namely

elim(i, j) = Bi − sep(i, j).

Assume now that we have a Bayesian network and we computed bel(A) using BA as the

first bucket, which is therefore processed last as shown above. Assume that we now want

to compute bel(D). Instead of doing all the computation from scratch using a different

variable ordering whose first variable is D, we can take the bucket tree and virtually

re-orient the edges making D the root of the tree. If we shift messages appropriately as

dictated by the partition-rule along the new ordering, we can pass messages from the leaves

to this new root. In this new bucket-tree along the ordering D,B,A,C, F,G, the bucket of

ABA includes 3 functions {P (A), P (B|A), P (D|B,A)} with variables {A,B,D}, while the
buckets BB and BD will have no functions. Subsequently, when BE-BEL process bucket

A along this new order, will eliminate variables A and B (in this order) by summation

over that product.

The only messages that need to be changed are along the path from A to B to D. It

turns out that all these changes can be captured by a second message passing from root

to leaves along the original bucket-tree.

Algorithm bucket-tree-elimination(BTE) in Figure 6.2 includes the two phases of mes-

sage passing computations along the bucket-tree. The top-down phase is identical to

general bucket-elimination. The bottom-up messages are defined as follows. The mes-

sages sent from the root up to the leaves will be denoted by π. The message from Bj

to a child Bi combines (e.g., multiply) all the functions currently in Bj including the π

messages from its parent bucket and all the λ messages from its other child buckets and

marginalize (e.g., sum) over the eliminator from Bj to Bi. We see that upwards messages
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Figure 6.1: Execution of BE along the bucket-tree

may be generated by eliminating zero, one or more variables while going down each bucket

eliminate a single variable.

Example 6.1.4 Figure 6.3a shows the complete execution of BTE along the linear order

of buckets and along the bucket-tree, for the belief-updating task. The π and λ messages

are placed on the outgoing upward directed arcs. The π functions in the up phase are

depicted in Figure 6.3b and are computed as follows:

πBA(a) = P (a)

πCB(c, a) = P (b|a)λBD(a, b)πBA(a)
πDB (a, b) = P (b|a)λBC(a, b)πBA(a, b)
πFC (c, b) =

∑
a P (c|a)πCB(a, b)

πGF (f) =
∑

b,c P (f |b, c)πFC (c, b)

The formal correctness of BTE will follow as a special case of the correctness of a

larger class of tree propagation algorithms, as we show later.

Theorem 6.1.5 When Algorithm BTE terminates, the combination (e.g., product) of

functions in each bucket is the marginal over the bucket’s variables joint with the evidence.

Respectively, then Πf∈Bi
f = bel(Bi, e).

When BTE terminates, each bucket Bi has π
i
j received from its parent Bj in the tree,

its own original f functions and the λik sent from each child Bk. Then, the belief queries

can be computed by combining all the functions in a bucket as specified by BTE.
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Algorithm bucket-tree elimination (BTE)

Input: A problemM = ⟨X,D,F,
∏
⟩, ordering d.

Output: Augmented buckets containing the original functions and all the π and

λ functions received from neighbors in the bucket-tree.

0. Pre-processing:

Place each function in the latest bucket, along d, that mentions a variable in its

scope. Connect two buckets Bi and Bj if variable Xj is the latest earlier neighbor

of Xi in the induced graph Gd.

1. Top-down phase: λ messages (BE)

For i = n to 1, process bucket Bi:

Let λi1 , ...λir be all the functions in Bi at the time Bi is processed, including the

original functions of F . The message λji sent from Bi to its parent Bj, is computed

by

λji =
∑

elim(j,i)

∏
k,k ̸=j

λik

2. bottom-up phase: π messages

For j = 1 to n, process bucket Bj:

Let λj1 , ..., λjr be all the functions in Bj at the time Bj is processed, including the

original functions of F . Bj takes the π message received from its child Bk, π
j
k,

and computes a message πij for each child bucket Bj by

πij =
∑

elim(j,i)

πjk · (
∏
r ̸=i

λjr)

3. Answering singleton queries (e.g., deriving beliefs)

the functions f1, ..., ft in the augmented bucket BX at termination, compute

bel(BX) =
∏
f∈Bi

f

and the belief of X is computed by

Bel(X) =
∑

BX−{X}

∏
f∈Bj

f

Figure 6.2: Algorithm Bucket-Tree Elimination
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Figure 6.3: Propagation of π’s and λ’s along the bucket-tree

We next address the complexity of BTE, and in particular compare it with n execu-

tions of BE.

Theorem 6.1.6 (Complexity of BTE) Let w∗ be the induced width of G along order-

ing d, r be the number of functions in the given Bayesian network and k be the maximum

domain size. The time complexity of BTE is O(r ·deg ·kw∗+1), where deg is the maximum

degree in the bucket-tree. The space complexity of BTE is O(n · kw∗
).

Proof: Since the number of buckets is n, and the induced width w∗, the downward λ

messages take O(r · kw∗+1) as we already shown. The upward messages per bucket are

computed for each of its child nodes and each such message takes O(ri · kw∗+1) steps,

yielding a total of O(ri · deg · kw∗+1). Overall, we get complexity of O(r · deg · kw∗+1).

Since the size of each message is ksep, and since here sep = w∗, we get space complexity

of O(n · kw∗
). 2.

The complexity of BTE can be improved to O(rkw
∗+1) time and O(nkw

∗+1) space [?],

but this distinction is subsumed by a more general tree-propagation algorithm that we

will describe shortly.

In theory the speedup expected from running BTE vs running n-BE (BE n times)

is at most n. This may seem insignificant compared with the exponential complexity in
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Bucket-Tree Propagation (BTP)

Input: For each node Xi, its bucket Bi and its neighboring buckets. Let λij be the

message sent to Bi from its neighbor Bj and fi1 , ..., fik the original functions in bucket

Bi.

The message Bi sends to a neighbor Bj, once it received all the messages from its

neighbors except from Bj is:

λji =
∑

Bi−sep(i,j)

(
∏
i

fi) · (
∏
k ̸=j

λik)

Figure 6.4: The Bucket-tree propagation (BTP) for X

w∗, however in practice it can be very significant. The actual speedup of BTE relative

to n-BE may be smaller than n, however. We know that the complexity of n-BE is

O(n · r · kw∗+1), whereas the complexity of BTE is O(deg · r · kw∗+1).

6.1.1 Bucket-tree propagation, an asynchronous version

The BTE algorithm can be described in an asynchronous manner when viewing the bucket-

tree as an undirected tree and passing only one type of messages which we will denote

by λ. In this view, each bucket receives λ messages from each of its neighbors and each

sends a λ message to every neighbors. We distinguish between the original f functions

placed in bucket Bi and the messages that it received from its neighbors. The algorithm

is described in Figure 6.4. We call the resulting algorithm Bucket Tree Propagation or

BTP.

Proposition 6.1.7 Let {fi}, i = 1, ...j be the original functions in BX , let Y1, ...Yk. Al-

gorithm BTP is guaranteed to converge to the same bucket content as BTE .

Proof: see exercises
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6.2 From Buckets to Super-Buckets to cluster-Tree

elimination

The BTE and BTP algorithms are special cases of a wider class of algorithms all based

on an underlying tree decomposition. A tree-decomposition takes a graphical model and

embeds it in a tree of clusters, where each cluster is defined by a set of variables and a set

of the input functions. The decomposition allows message-passing between the clusters in

a manner similar to BTE. The correctness of this message passing algorithms is tied to

the fact that the clusters are connected in a tree. Graphical models having such graphical

structures are called acyclic Graphical models [28], and also called decomposable graphical

models in [33].

6.2.1 Acyclic graphical models

To review, a hypergraph is a structure H = (V, S) that consists of a set of vertices

V = {v1, .., vn} and a set of subsets of these vertices S = {S1, ..., Sl}, Si ⊆ V , called

hyperedges. The hyperedges differ from regular edges in that they each “connect” more

than two variables.

As noted earlier, a hypergraph H = (V, S) can be mapped to a regular graph called a

dual graph Hdual. The nodes of the dual graph are the hyperedges from the hypergraph,

and a pair of such nodes is connected if they share vertices in V . The arc that connects two

such nodes is labeled by the shared vertices. Formally, given H = (V, S), Hdual = (S,E)

where

S = {S1, ..., Sl} are edges in H, and (Si, Sj) ∈ E iff Si ∩ Sj ̸= ∅. A primal graph of a

hypergraph H = (V, S) has V as its set of nodes, and any two nodes are connected by an

arc if they appear in the same hyperedge. Note that if all the functions in the graphical

model have scopes of 2, then its hypergraph is identical to its primal graph.

Any graphical model R =< X,D,G,F >, F = {fS1 , ..., fSt} can be associated with

a hypergraph HR = (X,H), where X is the set of nodes (variables), and H is the set of

scopes of the functions in F , namely H = {S1, ..., Sl}. Therefore, the corresponding dual

graph of the graphical model associates a node with each function’s scope and an arc for

each two nodes sharing variables.
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If a problem’s dual graph happens to be a tree, it can be shown that it can be solved

in linear time using a BTE-like message-passing algorithm. It turns out, however, that

sometimes some arcs can be removed from the dual graph while maintaining the same

independency relationships that hold in the hypergraph and in the primal graph. These

arcs can be viewed as redundant. An arc can be deleted if the variables labeling the

arc are shared by every arc along an alternate path between the two end points. This is

because the alternate path already enforces the necessary dependencies.

We call the property that ensures such legitimate arc removal the running intersection

property or connectedness property. The running intersection property can be defined

over hypergraphs or over their dual graphs, and is used to characterize equivalent concepts

such as join-trees (defined over dual graphs) or hypertrees (defined over hypergraphs). An

arc subgraph of a graph contains the same set of nodes as the graph, and a subset of its

arcs.

Definition 6.2.1 (connectedness, join-trees, hypertrees and acyclic networks)

Given a dual graph of a hypergraph, an arc subgraph of the dual graph satisfies the con-

nectedness property iff for each two nodes that share a variable, there is at least one path

of labeled arcs, each containing the shared variables. An arc subgraph of the dual graph

that satisfies the connectedness property is called a join-graph. A join-graph that is a tree

is called a join-tree. A hypergraph whose dual-graph has a join-tree is called a hypertree.

A graphical model whose hypergrpah is a hyper-tree is called an acyclic graphical model.

Example 6.2.2 Considering again the graphs in Figure 5.1, we can see that the join-tree

in Figure 5.1(d) satisfies the connectedness property. The hypergraph in Figure 5.1(a)

has a join-tree and is therefore a hypertree.

Theorem 6.2.3 Given an acyclic graphical model, algorithm BTE can compute the

marginal problem on each scope of an input function in linear time and space.

Proof: left as an exercise

So now that we have established that acyclic decomposable models can be solved

efficiently, all that remains is to transform a general graphical model into an acyclic one.

This indeed is what algorithm tree-decomposition does.
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6.2.2 Tree-decomposition and Cluster-tree elimination

We now define those cluster-tree decompositions which facilitate message propagation

along a tree of clusters. We will show that a bucket-tree is a special case.

Definition 6.2.4 (tree-decomposition, cluster tree) Let M =< X,D, F,
∏

> be a

graphical model. A tree-decomposition for M is a triple < T, χ, ψ >, where T = (V,E)

is a tree, and χ and ψ are labeling functions which associate with each vertex v ∈ V two

sets, χ(v) ⊆ X and ψ(v) ⊆ F satisfying:

1. For each function fi ∈ F , there is exactly one vertex v ∈ V such that fi ∈ ψ(v),
and scope(fi) ⊆ χ(v).

2. For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a connected subtree

of T . This is also called the running intersection property.

We will often refer to a node and its functions as a cluster and use the term tree-

decomposition and cluster tree interchangeably.

We will redefine now earlier graph-parameters using the notion of tree-decomposition.

Definition 6.2.5 (treewidth, separator-width, eliminator) The treewidth [3] of a

tree-decomposition < T, χ, ψ > is maxv∈V |χ(v)|. Given two adjacent vertices u and v of

a tree-decomposition, the separator of u and v is defined as sep(u, v) = χ(u) ∩ χ(v), and
the eliminator of u with respect to v is elim(u, v) = χ(u)− χ(v). The separator-width is

the maximum over all separators.

Example 6.2.6 Consider the belief network in Figure 2.5a. Any of the trees in Figure 6.6

are tree-decompositions for this problem where the functions can be partitioned into

clusters that contain their scopes. The labeling χ are the sets of variables in each node. For

example, Figure 6.6C shows a cluster-tree decomposition with two vertices, and labelling

χ(1) = {G,F} and χ(2) = {A,B,C,D, F}. Any function with scope {G} must be placed

in vertex 1 because vertex 1 is the only vertex that contains variable G (placing a function

having G in its scope in another vertex will force us to add variable G to that vertex as

well). Any function with scope {A,B,C,D} or its subset must be placed in vertex 2, and

any function with scope {F} can be placed either in vertex 1 or 2. Note that the trees

in Figure 6.6 are drawn upside-down, namely, the leaves are at the top and the root is at

the bottom.
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Algorithm cluster-tree elimination (CTE)

Input: A tree decomposition < T, χ, ψ > for a problem M =< X,D, F,
∏
} >,

X = {X1, ..., Xn}, F = {f1, ..., fr}.
Output: An augmented tree whose vertices are clusters containing the original

functions as well as messages received from neighbors. A solution computed from

the augmented clusters.

Compute messages:

For every edge (u, v) in the tree, do

• Let m(u,v) denote the message sent by vertex u to vertex v.

• Let cluster(u) = ψ(u) ∪ {m(i,u)|(i, u) ∈ T}.

• If vertex u has received messages from all adjacent vertices other than v,

then compute and send to v,

m(u,v) =
∑

sep(u,v)

(
∏

f∈cluster(u),f ̸=m(v,u)

f)

Endfor

Note: functions whose scope does not contain elimination variables do not need

to be processed, and can instead be directly passed on to the receiving vertex.

Return: A tree-decomposition augmented with messages, and for every v ∈ T

Figure 6.5: Algorithm Cluster-Tree Elimination (CTE)

Notice that it may be that sep(u, v) = χ(u) (that is, all variables in vertex u belong

to an adjacent vertex v). In this case the size of the tree-decomposition can be reduced

by merging vertex u into v without increasing the tree-width of the tree-decomposition.

Definition 6.2.7 (minimal tree-decomposition) A tree-decomposition is minimal if

sep(u, v) ⊂ χ(u) and sep(u, v) ⊂ χ(v).

We immediately observe that the bucket-tree is often not minimal. We can make it

minimal however, by having each subsumed bucket be absorbed into its containing bucket,

yielding super-bucket tree.
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Figure 6.6: From a bucket-tree to join-tree to a super-bucket-tree

A tree-decomposition allows answers to queries using message-passing as we saw in

BTE. The algorithm, called Cluster-tree elimination algorithm CTE, is presented in Fig-

ure 6.5. Each vertex of the tree sends a function to each of its neighbors. All the functions

in vertex u and all messages received by u from all its neighbors other than v are combined

using the combination operator (e.g., product). The combined function is projected onto

the separator of u and v using the marginalization operator and the projected function is

then sent from u to v. Functions that do not share variables with the eliminated variables

are passed along separately in the message.

Vertex activation can be asynchronous and convergence is guaranteed. If processing

is performed from leaves to root and back, convergence is guaranteed after two passes,

where only one message is sent on each edge in each direction. If the tree contains m

edges, then a total of 2m messages will be sent.

Example 6.2.8 Consider again the graphical model whose primal graph appears in Fig-

ure 2.5(a). Assume all functions are on pairs of variables (you can think of this as a

Markov network). Two tree-decompositions are described in Figure 6.8. Figure 6.9

shows the messages propagated for the tree-decomposition in Figure 6.8b. Since cluster 1

contains only one function, the message from cluster 1 to 2 is the fFD over the separator

between cluster 1 and 2, which is variable D. The message m(2,3) from cluster 2 to clus-

ter 3 combines the functions in cluster 2 with the message m(1,2), and projects over the

separator between cluster 2 and 3, which is {B,C}, and so on.

Once all vertices have received messages from all their neighbors, a solution to the

problem can be generated using the output augmented tree (as described in the algorithm)
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Figure 6.7: A graph (a) and two of its induced graphs (b) and (c).
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.

in output linear time. For some tasks the whole output tree is used to compute the solution

(e.g., computing an optimal tuple).

6.2.3 The special case of Belief Updating

As noted earlier, the most used tree decomposition method is called join-tree decom-

position [27, 17] (also called junction-trees). Such decompositions can be generated by

embedding the network’s moral graph, G, in a chordal graph, using a triangulation al-

gorithm. The maximal cliques of the generated chordal graph can serve as nodes in the

join-tree. Subsequently, every CPT pi is placed in one clique containing its scope. A

join-tree decomposition of a belief network (G,P ) is a tree T = (V,E), where V is the set

of maximal cliques of a chordal graph G
′
that contains G, and E is a set of edges that

form a tree between cliques, satisfying the running intersection property [28].

Algorithm CTE for belief updating denoted CTE-BU is described again in Figure 6.11.

The algorithm pays a special attention to the processing of observed variables since the

presence of evidence is a central component in belief updating. When a cluster sends a
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Figure 6.10: a) A belief network; b) A join-tree decomposition; c)Execution of CTE-BU;

no individual functions appear in this case

message to a neighbor, the algorithm operates on all the functions in the cluster except the

message from that particular neighbor. The message contains a single combined function

and individual functions that do not share variables with the relevant eliminator. All the

non-individual functions are combined in a product and summed over the eliminator.

Example 6.2.9 Figure 6.10 describes a belief network (a) and a join-tree decomposition

for it (b). Figure 6.10c shows the trace of running CTE-BU. In this case no individual

functions appear between any of the clusters.
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Algorithm CTE for Belief-Updating (CTE-BU)

Input: A tree decomposition < T, χ, ψ >, T = (V,E) for BN =< X,D,G, P >.

Evidence variables var(e).

Output: An augmented tree whose nodes are clusters containing the original CPTs

and the messages received from neighbors. P (Xi, e), ∀Xi ∈ X.

Denote by H(u,v) the message from vertex u to v, nev(u) the neighbors of u in T

excluding v.

cluster(u) = ψ(u) ∪ {H(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• Compute messages:

For every node u in T , once u has received messages from all nev(u), compute message

to node v:

1. Process observed variables:

Assign relevant evidence to all pi ∈ ψ(u)
2. Compute the combined function:

h(u,v) =
∑

elim(u,v)

∏
f∈A

f.

where A is the set of functions in clusterv(u) whose scope intersects elim(u, v).

Add h(u,v) to H(u,v) and add all the individual functions in clusterv(u)−A
Send H(u,v) to node v.

• Compute P (Xi, e):

For every Xi ∈ X let u be a vertex in T such that Xi ∈ χ(u). Compute P (Xi, e) =∑
χ(u)−{Xi}(

∏
f∈cluster(u) f). bel(Xi) = αP (Xi, e)

Figure 6.11: Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU)

6.3 Properties of CTE

6.3.1 Correctness of CTE

We can prove correctness by relying on the correctness of CTE when applied to an acyclic

network and by realizing the a tree-decomposition can be viewed as transforming a general

graphical model into an acyclic one.
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We will next give a general direct proof. We will prove the general case using basic

properties of the combine and marginalize operators in order to emphasize the broad

applicability of this algorithm. For emphasis we will now use general operator notations.

The theorem articulates the properties (which are all obeyed by graphical models) required

for correctness.

Theorem 6.3.1 (soundness and Completeness) Assuming that the combination op-

erator
⊗

i and the marginalization operator ⇓Y satisfy the following properties:

1. Order of marginalization does not matter:

⇓X−{Xi} (⇓X−{Xj} f(X)) =⇓X−{Xj} (⇓X−{Xi} f(X))

2. Commutativity: f
⊗

g = g
⊗

f

3. Associativity: f
⊗

(g
⊗

h) = (f
⊗

g)
⊗

h

4. Restricted distributivity:

⇓X−{Xk} [f(X − {Xk})
⊗

g(X)] = f(X − {Xk})
⊗
⇓X−{Xk} g(X)

Algorithm CTE is sound and complete.

Proof. By definition, solving an automated reasoning problem P requires computing a

function F (Zi) =⇓Zi

⊗r
i=1 fi for each Zi. Using the four properties of combination and

marginalization operators, the claim can be proved by induction on the depth of the tree

as follows.

Let < T, χ, ψ > be a cluster-tree decomposition for P . By definition, there must be

a vertex v ∈ T , such that Zi ⊆ χ(v). We create a partial order of the vertices of T by

making v the root of T . Let Tu = (Nu, Eu) be a subtree of T rooted at vertex u. We

define χ(Tu) =
∪
w∈Nu

χ(w) and χ(T − Tu) =
∪
w∈{N−Nu} χ(w).

We rearrange the order in which functions are combined when F (Zi) is computed. Let

d(j) ∈ N, j = 1, ..., |N | be a partial order of vertices of the rooted tree T , such that a

vertex must be in the ordering before any of its children. The first vertex in the ordering

is the root of the tree. Let Fu =
⊗

f∈ψ(u) f . We define

F
′
(Zi) =⇓Zi

|N |⊗
j=1

Fd(j)
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Because of associativity and commutativity, we have F
′
(Zi) = F (Zi).

We define e(u) = χ(u) − sep(u,w), where w is the parent of u in the rooted tree T .

For the root vertex v, e(v) = X − Zi. In other words, e(u) is the set of variables that

are eliminated when we go from u to w. We define e(Tu) =
∪
w∈Nu

e(w), that is, e(Tu)

is the set of variables that are eliminated in the subtree rooted at u. Because of the

connectedness property, it must be that e(Tu)
∩
{Xi|Xi ∈ χ(T − Tu)} = ∅. Therefore,

variables in e(Tu) appear only in the subtree rooted at u.

Next, we rearrange the order in F
′
(Zi) in which the marginalization is applied. If

Xi ̸∈ Zi and Xi ∈ e(d(k)) for some k, then the marginalization eliminating Xi can be

applied to
⊗|N |

j=k Fd(j) instead of
⊗|N |

j=1 Fd(j). This is safe to do, because as shown above,

if a variable Xi belongs to e(d(k)), then it cannot be part of any Fd(j), j < k. Let ch(u)

be the set of children of u in the rooted tree T . If ch(u) = ∅ (vertex u is a leaf vertex),

then we define F u =⇓X−e(u) Fu. Otherwise we define F u =⇓X−e(u) (Fu
⊗

w∈ch(u) F
w). If v

is the root of T , we define

F
′′
(Zi) = F v

Because of properties 1 and 4, we have F
′′
(Zi) = F (Zi). However, F

′′
(Zi) is exactly what

the cluster-tree algorithm computes. The message that each vertex u sends to its parent

is F u. This concludes the proof. 2

6.3.2 Complexity of CTE

Algorithm CTE can be subtly varied to influence its time and space complexities. The

description in Figure 6.5 may imply an implementation whose time and space complexity

are the same. At first glance, it seems that the space complexity is also exponential in

w∗. Indeed, if we first record the combined function in Equation 6.2.2 and subsequently

marginalized on the separator, we will have space complexity exponential in w∗. However,

we can interleave the combination and marginalization operations, and thereby make the

space complexity identical to the size of the sent message as follows. In Equation 6.2.2, we

compute the message m, which is a function defined over the separator, sep, because all

the variables in the eliminator, elim(u) = χ(u)− sep, are eliminated by marginalization

(e.g., summation). This can be implemented by enumeration (or search) as follows: For

each assignment a to χ(u), we compute the combined functional value, and accumulate
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the marginalization value on the separator, sep, updating asep, of the message function

m(sep).

Theorem 6.3.2 (Complexity of CTE) Let N be the number of vertices in the tree

decomposition, w its tree-width, sep its maximum separator size, r the number of input

functions in F , deg the maximum degree in T , and k the maximum domain size of a

variable. The time complexity of CTE is O((r+N) · deg · kw+1) and its space complexity

is O(N · ksep).

Proof. The time complexity of processing a vertex u is degu · (|ψ(u)|+ degu − 1) · k|χ(u)|,
where degu is the degree of u, because vertex u has to send out degu messages, each being

a combination of (|ψ(u)| + degu − 1) functions, and requiring the enumeration of k|χ(u)|

combinations of values. The time complexity of CTE is

Time(CTE) =
∑
u

degu · (|ψ(u)|+ degu − 1) · k|χ(u)|

By bounding the first occurrence of degu by deg and |χ(u)| by the tree-width w + 1, we

get

Time(CTE) ≤ deg · kw+1 ·
∑
u

(|ψ(u)|+ degu − 1)

Since
∑

u |ψ(u)| = r we can write

Time(CTE) ≤ deg · kw+1 · (r +N)

= O((r +N) · deg · kw+1)

For each edge CTE will record two functions. Since the number of edges is bounded

by N and the size of each function we record is bounded by ksep, the space complexity is

bounded by O(N · ksep).
If the cluster-tree is minimal (for any u and v, sep(u, v) ⊂ χ(u) and sep(u, v) ⊂ χ(v)),

then we can bound the number of vertices N by n. Assuming r ≥ n, the time complexity

of a minimal CTE is O(deg · r · kw+1). 2

Indeed, the above complexity is what we also observed for BTE. We will next show

that bucket-trees are tree-decompositions. From this we can infer that CTE on a bucket-

tree (which coincides with BTE) is sound, providing an alternative proof for its correct-

ness.
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Theorem 6.3.3 A bucket tree of a graphical modelM is a tree-decomposition ofM.

Proof: We need to show how to construct a tree T = (V,E) and mappings χ and ψ,

as well as prove that conditions of Definition 6.2.4 are satisfied. There is a one-to-one

correspondence between vertices of V and buckets Bi (in the following we will refer to

buckets as vertices of the cluster-tree). If a bucket Bi has a parent (is connected to)

bucket Bj, there is an edge (Bi, Bj) ∈ E. Labelling χ(Bi) is the union of the signatures

of new and old functions in Bi, and labeling ψ(Bi) is the set of new functions in Bi.

Condition 1 of Definition 6.2.4 is satisfied because each function is placed in exactly

one bucket; condition 2 of Definition 6.2.4 is also satisfied because labeling χ(Bi) is the

union of scopes of all functions in Bi. Condition 4 of Definition 6.2.4 is trivially satisfied

since there is exactly one bucket for each variable.

Finally we need to prove the connectedness property (condition 3 of Definition 6.2.4).

Lets assume that there is a variable Xk with respect to which the connectedness property

is violated. This means that there must be (at least) two disjoint subtrees, T1 and T2,

of T , such that each vertex in both subtrees contains Xk, and there is no edge between

a vertex in T1 and T2. Let BI be a vertex in T1 such that Xi is the earliest relative to

ordering d, and Bj a vertex in T2 such that Xj is the earliest in ordering d. Since T1 and

T2 are disjoint, it must be that Xi ̸= Xj. However, this is impossible since this would

mean that there are two buckets that eliminate variable Xk. 2

One way of structuring tree-decompositions beyond bucket-trees is to generate a

bucket-tree from an induced graph, and then create subsequent trees by merging adjacent

clusters. Indeed,

Proposition 6.3.4 If T is a tree-decomposition, then any tree obtained by merging ad-

jacent clusters is also a tree-decomposition.

Proof: see exercises.

So, to obtain a new tree-decomposition we can start from a bucket-tree and merge

adjacent buckets, yielding super-buckets. The maximal cliques in the induced-order graph

are a special kind of super-buckets which form a tree-decomposition called join-tree.

Example 6.3.5 [show a detailed example showing the computation by CTE that is

bounded by the separator size]
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The separator sizes in bucket-trees are equal to the cluster sizes ( minus 1) and there-

fore the time complexity and space complexity for BTE/BTP are the same. In general

however, for any cluster tree and, in particular, for the join-tree, the separators sizes may

be far smaller than the maximal cliques sizes.

Example 6.3.6 Consider the e tree-decompositions in Figure 6.7. The first two yield

CTE having time exponential in three and space exponential in 2. The third yield time

exponential in 5 and space linear.

6.4 Message propagation schemes

It is clear that whenever we have a graphical model that is already a real tree, its treewidth

or induced-width is 1. We also saw that whenever a graphical model is acyclic message-

passing is efficient and can be accomplished in linear time and space. A special case of

acyclic graphical models which are not strictly speaking real trees, are polytrees. Therefore,

when a directed graphical model (e.g., a Bayesian network) is a polytree most queries of

interest such as marginals and optimization can be accomplished in linear time and space

[33]. This case deserves special attention for historical reasons; it was recognized by Pearl

as a generalization of trees on which his belief propagation algorithm was defined and

shown to be sound and complete, and it also gives rise to an iterative approximation

algorithm over general networks, as we will discuss later.

Definition 6.4.1 (polytree) A polytree is a directed acyclic graph whose underlying

undirected graph has no cycles (see Figure 6.12(a)).

A polytree decomposition. Given a Bayesian network which is a polytree, its dual

graph can be easily seen to be a tree, and thus yield a join-tree decomposition. Namely,

each variable X and its parents pa(X) is a node CX that includes its CPT, P (X|pa(X))

and the family variables. Note, that the separators of this cluster tree are all singleton

variables. Clearly,

Proposition 6.4.2 A polytree has a tree dual graph and it is therefore an acyclic graphical

model.
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Figure 6.12: (a) A polytree and (b) a legal processing ordering

If we direct the edges of the polytree-decomposition from a cluster of a parent node

X to the cluster of its child, the π and λ messages that propagate along the polytree

decomposition using BTE (or CTE) can be shown to be identical to the original Pearl’s

belief propagation messages. We therefore define belief propagation (BP) as algorithm

CTE algorithm that is applied to a polytree dual graph decomposition. Indeed,

Theorem 6.4.3 Given a polytree network and its dual graph, algorithms CTE applied

along its join-tree is time and space linear in the network’s size. 2

Algorithm belief propagation is one iteration of the algorithm presented in Figure 6.14

Example 6.4.4 Consider the polytree given in Figure 6.12. It is easy to see that if we

use a width-1 ordering of the variables (looking at the undirected tree) then each bucket

contains exactly one function. Therefore, the bucket tree generated is identical to the dual

join-tree in this case. Message passing from leaves to the root X1 and back will facilitate

the marginals for each variable.

In the next section we will discussion how can belief propagation be considered as an

iterative algorithm for general graphical models.

6.4.1 Iterative Belief Propagation over Dual Join-Graphs

Since the message propagation algorithm over tree networks is defined distributively as

a message-passing algorithm between the original functions, it is well defined even if
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executed over a network with loops. Note that the notion of bucket-tree allows the view of

message passing between the original variables, while the dual graph notion emphasize the

view of message-passing between functions. Both view are equally useful and correspond

to the same algorithm.

Iterative belief propagation (IBP) is an iterative application of belief propagation BP

defined above for poly-trees [33]. In this section we will present IBP as an instance of

cluster-tree elimination over variants of the dual graph that may have loops. While we

already defined the notion of a dual graph using the intermediate concept of hypergraphs,

we will now redefine it directly for graphical models.

Definition 6.4.5 (dual graphs, join dual graphs, arc-minimal dual-graphs) Given

a graphical modelM =< X,D, F,
∏
>.

• The dual graph DF of the graphical model M, is an arc-labeled graph defined over

the its functions. Namely, it has a node for each function labeled with the func-

tion’s scope and a labeled arc connecting any two nodes that share a variable in the

function’s scope. The arcs are labeled by the shared variables.

• A dual join-graph is a labeled arc subgraph of DF whose arc labels are subsets of the

labels of DF such that the running intersection property, is satisfied.

• An arc-minimal dual join-graph is a dual join-graph for which none of its labels can

be further reduced while maintaining the connectedness property.

Recall that the running intersection property requires that any two nodes that share

a variable in the dual join-graph be connected by a path of arcs whose labels contain

the shared variable. Clearly the dual graph itself is a dual join-graph because any two

nodes that share a variable are directly connected. Interestingly, there are many dual

join-graphs of the same dual graph and many of them are arc-minimal.

We define Iterative Belief Propagation on a dual join-graph. Each node sends a mes-

sage over an arc whose scope is identical to the label on that arc. Since the polytree

algorithm sends messages whose scopes are singleton variables only, we will highlight arc-

minimal singleton dual join-graph which capture this polytree property. Given a Bayesian

network, one such dual graph can be constructed directly from its directed graph by la-

beling each arc connecting a child family with its parent family by its parent name. It

can be shown that:
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Figure 6.13: a) A belief network; b) A dual join-graph with singleton labels; c) A dual

join-graph which is a join-tree

Proposition 6.4.6 The dual graph of any Bayesian network has an arc-minimal dual

join-graph where each arc is labeled by a single variable.

Proof: Consider a topological ordering of the nodes in the directed acyclic graph associ-

ated with the Bayesian network d = X1, ..., Xn. We define the following dual join-graph.

Every node in the dual graph D, associated with pi is connected to node pj, j < i if

Xj ∈ pai. We label the arc between pj and pi by variable Xj, namely lij = {Xj}. It is

easy to see that the resulting arc-labeled subgraph of the dual graph satisfies connected-

ness. (Take the original acyclic graph G and add to each node its CPT family, namely all

the other parents that precede it in the ordering. Since G already satisfies connectedness

so is the arc-minimal graph generated.) The resulting labeled graph is a dual graph with

singleton labels.

Example 6.4.7 Consider the acyclic directed graph on 3 variables A,B,C that corre-

sponds to a Bayesian networks having the CPTs 1) P (C|A,B), 2) P (B|A) and 3) P (A),

given in Figure 6.13a. Figure 6.13b shows a dual graph with singleton labels on the arcs.

Figure 6.13c shows a dual graph which is a join tree. In one dual graph we have the arcs

between CPTs (1, 2) labeled B, between CPTs (2, 3) labeled A and between CPTs (1, 3)

labeled A. This is the dual graph that has singleton labels. Another dual graph is a tree

with only 2 arcs: between CPTs (1, 2) labeled AB and between CPTs (2, 3) labeled by

A. This later one is a join-tree on which belief propagation can solve the problem exactly

in 2 iterations.

Algorithm Iterative belief propagation (IBP) is given in Figure 6.14. It is easy to see

that one iteration of IBP is time and space linear in the size of the belief network, and

when IBP is applied to the singleton labeled dual graph it coincides with Pearl’s belief
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Algorithm IBP

Input: An arc-labeled dual join-graph DJ = (V,E,L) for a graphical model M =<

X,D,F,
∏
>.

Output: An augmented graph whose nodes include the original functions and the messages

received from neighbors. Denote by: hvu the message from u to v; ne(u) the neighbors of u in

V ; nev(u) = ne(u)− {v}; luv the label of (u, v) ∈ E; elim(u, v) = scope(u)− sep(u, v).
• One iteration of IBP

For every node u in DJ in a topological order and back, do:

1. Process observed variables

Assign evidence variables to the each pi and remove them from the labeled arcs.

2. Compute and send to v the function:

hvu =
∑

elim(u,v)

(pu ·
∏

{hu
i ,i∈nev(u)}

hui )

Endfor

• Compute approximations of P (Fi|e), P (Xi|e):
For every Xi ∈ X let u be the vertex of family Fi in DJ ,

bel(Fi) = P (Fi|e) = α(
∏

hu
i ,u∈ne(i) h

u
i ) · pu;

bel(Xi) = P (Xi|e) = α
∑

scope(u)−{Xi} P (Fi|e).

Figure 6.14: Algorithm Iterative Belief Propagation

propagation which was presented as a message-passing applied directly to the acyclic

graph representation with one change. The message were normalized. Clearly when the

dual join-graph is a tree IBP converges after one iteration (two passes, up and down the

tree) to the exact representation, from which beliefs can be computed.

6.4.2 the semantic of the polytree messages

(to be completed)

6.5 Combining Elimination and Conditioning

A serious drawback of elimination and clustering algorithms is that they require consid-

erable memory for recording the intermediate functions. We already observed that when

variables are assigned values this help reduce the computation by reducing the induced-

width. Cutset conditioning is a scheme that exploit this property in a systematic way.
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We can select a subset of variables, assign them values (i.e., condition on them) and solve

the remaining problem by inference. This yield a conditioning-based decomposition of

the problem into a collection of easier problems which all need to be solved. This set of

conditioned problems can be traversed systematically be a search algorithm, yielding a

scheme called conditioning search or cutset conditioning scheme. The nice thing about

conditioning search is that it requires only linear space. By combining conditioning and

elimination, we may be able to reduce the amount of memory needed while still having

performance guarantee.

Full conditioning for probabilistic networks is brute-force search, namely, traversing the

tree of partial value assignments and accumulating the appropriate sums of probabilities.

(It can be viewed as an algorithm for processing the algebraic expressions from left to

right, rather than from right to left as was demonstrated for elimination). For example,

we can compute the expression for belief updating or the probability of evidence in the

network of Figure 2.5:

Bel(A = a) =
∑

c,b,f,d,g

P (g|f)P (f |b, c)P (d|a, b)P (c|a)P (b|a)P (a)

= P (a)
∑
c

P (c|a)
∑
b

P (b|a)
∑
f

P (f |b, c)
∑
d

P (d|b, a)
∑
g

P (g|f), (6.1)

by traversing the tree in Figure 6.15, going along the ordering from first variable to last

variable.

The tree can be traversed either breadth-first or depth-first resulting in algorithms such

as best-first search and branch and bound, respectively. The sum can be accumulated for

each value of variable A.

Notation: LetX be a subset of variables and V = v be a value assignment to V . f(X)|v
denotes the function f where the arguments inX∩V are assigned the corresponding values

in v.

Let C be a subset of conditioned variables, C ⊆ X, and V = X −C. We denote by v

an assignment to V and by c an assignment to C. Obviously,∑
x

P (x, e) =
∑
c

∑
v

P (c, v, e) =
∑
c,v

ΠiP (xi|xpai)|(c,v,e)
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Figure 6.15: probability tree

Therefore, for every partial tuple c, we can compute
∑

v P (v, c, e) using bucket elimina-

tion, while treating the conditioned variables as observed variables. This basic computa-

tion will be enumerated for all value combinations of the conditioned variables, and the

sum will be accumulated. This straightforward algorithm is presented in Figure 6.16.

Given a particular value assignment c, the time and space complexity of computing the

probability over the rest of the variables is bounded exponentially by the induced width

of the ordered moral graph along d adjusted for both observed and conditioned nodes,

denoted w∗(d, e∪c). Therefore, the induced graph is generated without connecting earlier

neighbors of both evidence and conditioned variables.

Theorem 6.5.1 Given a set of conditioning variables, C, the space complexity of algo-

rithm vec-bel is O(n · exp(w∗(d, c ∪ e)), while its time complexity is O(n · exp(w∗(d, e ∪
c) + |C|)), where the induced width w∗(d, c ∪ e), is computed on the ordered moral graph

that was adjusted relative to e and c. 2

When the variables in e ∪ c constitute a cycle-cutset of the primal, or moral graph,

the graph can be ordered so that its adjusted induced width equals 1 and vec-bel reduces

to the well known cycle-cutset algorithm [12], or if the cutset yield a polytree we get the

well know loop-cutset algorithm [33].
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Algorithm VEC-bel

Input: A belief network BN = {P1, ..., Pn}; an ordering of the

variables, d; a subset C of conditioned variables; observations e.

Output: Bel(A) = P (A|e).
Initialize: λ = 0.

1. For every assignment C = c, do

• λ1 ← The output of BE-bel with c ∪ e as observations.
• λ← λ+ λ1. (update the sum).

2. Return λ.

Figure 6.16: Algorithm vec-bel

Definition 6.5.2 Given an undirected graph, G a cycle-cutset is a subset of the nodes

that breaks all its cycles. Namely, when removed, the graph has no cycles. A cutset is

called loop-cutset if it removal from a directed graph generates a polytree

In general Theorem 6.5.1 calls for a secondary optimization task on graphs:

Definition 6.5.3 (secondary-optimization task) Given a graph G = (V,E) and a

constant r, find a smallest subset of nodes Cr, such that G′ = (V − Cr, E′), where E′
includes all the edgs in E that are not incident to nodes in Cr, has induced-width less or

equal r.

Clearly, the minimal cycle-cutset corresponds to the case where the induced-width is

r = 1. The loop-cutset corresponds to the case when conditioning creates a poly-tree.

The general task is clearly NP-complete.

Clearly, algorithm vec-bel can be implemented more effectively if we take advantage

of shared partial assignments to the conditioned variables. There is a variety of possible

hybrids between conditioning and elimination that can refine this basic procedure. One

method imposes an upper bound on the scope of functions recorded and decides dynam-

ically, during processing, whether to process a bucket by elimination or by conditioning

Another method which uses the super-bucket approach collects a set of consecutive buck-

ets into one super-bucket that it processes by conditioning, thus avoiding recording some

intermediate results
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