
Chapter 8

Bounding Inference

Up to now we focused almost exclusively on exact algorithms for processing graphical

models and we emphasized the two styles of inference (exemplified by variable elimination

schemes) and search, or conditioning, exemplified by AND/OR search or backtracking

search (for constraint networks). We also showed that hybrids of search and inference are

effective and can be used to trade space for time.

Clearly, due to the hardness of the tasks we address, some networks cannot be pro-

cessed exactly because their structure is not sparse enough; its treewidth is too high, and

the functions themselves do not posses any property that can be exploited. In such cases

approximation algorithms are the only choice. Approximation algorithms can also be de-

signed as either approximating an inference scheme, or as approximating search. Bounded

inference algorithms, on which this chapter focuses, approximate inference, while sampling

scheme can be viewed as approximating search.

This chapter presents a class of approximation algorithms that bound the dimension-

ality of dependencies created by inference algorithms. This yields a collection of parame-

terized schemes of mini-buckets, mini-clustering and iterative join-graph propagation that

offers adjustable trade-off between accuracy and efficiency.

It was shown that approximation scheme within given relative error bounds is NP-

hard [57, 67]. Nevertheless there are approximation strategies that work well in practice.

One alternative for dealing with these bleak fact is to develop anytime algorithms. These

algorithms can be interrupted at any time producing the best solution found thus far.

Other methodology is to exploit the special structure of the problem or to aim at providing
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Figure 8.1: The idea of mini-bucket approximation.

some guarantee in the form of upper and lower bounds.

The class of mini-bucket approximation algorithms imports some ideas of local infer-

ence from constraint networks to probabilistic reasoning and combinatorial optimization.

As we showed ( Chapter ??) the bucket-elimination algorithm is a unifying algorithmic

scheme that generalizes non-serial dynamic programming to enable complex problem-

solving and reasoning across a variety of frameworks. As was shown in Chapters 3 and

4, among the algorithms that can be expressed as bucket-elimination are directional-

resolution for propositional satisfiability adaptive-consistency for constraint satisfaction,

Fourier and Gaussian elimination for linear inequalities, dynamic-programming for com-

binatorial optimization as well as many algorithms for probabilistic inference [17].

In the following sections we will introduce the mini-bucket elimination scheme.

8.1 Mini-bucket approximation for MPE

We will introduce the idea of mini-bucket approximation using the combinatorial opti-

mization task of finding the most probable explanation, MPE.

Consider the bucket-elimination algorithm BE-mpe. Since the complexity of processing

a bucket depends on the number of arguments (arity) of the functions being recorded, we

should consider approximating these functions by a collection of smaller-arity functions.
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Let h1, ..., ht be the functions in the bucket of Xp, and let S1, ..., St be their scopes. When

BE-mpe processes bucket(Xp), the function hp = maxXpΠ
t
i=1hi is computed. A simple

approximation idea is to compute an upper bound on hp by “migrating” the maximization

inside the multiplication. Since, in general, for any two non-negative functions Z(x)

and Y (x), maxx Z(x) · Y (x) ≤ maxx Z(x) ·maxx Y (x), this approximation will compute

an upper bound on hp. For example, the function gp = Πt
i=1 maxXp hi, is an upper

bound on hp. Procedurally it implies that the elimination operation of maximization is

applied separately to each function, requiring less computation (when hi’s scopes include

additional variables).

The idea is demonstrated in Figure 8.1, where the bucket of variable X having n

functions is split into two mini-buckets of size r and (n − r), r ≤ n, and it can be

generalized to any partitioning of a set of functions h1, ..., ht into subsets called mini-

buckets. Let Q = {Q1, ..., Qr} be a partitioning into mini-buckets of the functions

h1, ..., ht in Xp’s bucket, where the mini-bucket Ql contains the functions hl1 , ..., hlr . The

complete algorithm BE-mpe computes hp = maxXp Π
t
i=1hi, which can be rewritten as

hp = maxXp Π
r
l=1Πh∈Ql

h. By migrating maximization into each mini-bucket we can com-

pute: gpQ = Πr
l=1 maxXp Πh∈Ql

h. The new functions maxXp Πh∈Ql
h can now be placed

separately into the bucket of the highest-variable in their scope and the algorithm pro-

ceeds with the next variable. Functions without arguments (i.e., constants) are placed in

the lowest bucket. The reader should be convinced that the maximized product generated

in the first bucket is an upper bound on the MPE value. Finally, A lower bound can also

be computed as the probability of a (suboptimal) assignment found in the forward phase

of the algorithm.

It is convenient to control the algorithm’s performance using two bounding parameters.

Parameter i will bound the number of variables in the mini-bucket, while m will bound

the number of functions in the mini-bucket. The mini-bucket elimination (mbe) algorithm

for finding MPE, mbe-mpe(i,m), is described in Figure 8.2.

Clearly we would want the mini-buckets to be as small as possible yet we wish the

scheme to be as accurate as possible. There are certain obvious restrictions on possible

partitions into mini-buckets which will exclude some obvious unwarranted choice. Clearly,

we would want to have a small number of mini-buckets which also means that we want to
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Algorithm mbe-mpe(i,m)
Input: A belief network BN = (G,P ), an ordering o, evidence ē.
Output: An upper bound U and a lower bound L on the MPE = maxx̄ P (x̄, ē),
and a suboptimal solution x̄a that provides a lower bound L = P (x̄a).
1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn,

where bucketp contains all CPTs h1, h2, ..., ht whose highest-index variable is Xp.
2. Backward: for p = n to 2 do
• If Xp is observed (Xp = a), assign Xp = a in each hj and put the result
in its highest-variable bucket (put constants in bucket1).
• Else for h1, h2, ..., ht in bucketp do

Generate an (i,m)-mini-bucket-partitioning, Q
′
= {Q1, ..., Qr}.

for each Ql ∈ Q
′
containing hl1 , ...hlt , do

compute hl = maxXpΠ
t
j=1hlj and place it in the bucket of the highest-index

variable in Ul ←
∪t
j=1 Slj − {Xp}, where Slj is the scope of hlj

(put constants in bucket1).
3. Forward: for p = 1 to n, given xa1, ..., x

a
p−1, do

assign a value xap to Xp that maximizes the product of all functions in bucketp.

4. Return the assignment x̄a = (xa1, ..., x
a
n), a lower bound L = P (x̄a), and

an upper bound U = maxx1
∏
hj∈bucket1 h

j on the MPE = maxx̄ P (x̄, ē).

Figure 8.2: Algorithm mbe-mpe(i,m).

have as many functions as possible in each mini-bucket. Clearly therefore, if one function

scope subsumed another, we would wish that to share the same mini-bucket.

Definition 8.1.1 ((i,m)-partitioning) A partitioning of h1, ..., ht is canonical if any

function f whose scope is subsumed by the scope of another function, is placed into a

bucket containing one of those subsuming functions. A partitioning Q into mini-buckets

is an (i,m)-partitioning if and only if (1) it is canonical, (2) at most m non-subsumed

functions are included in each mini-bucket, (3) the total number of variables in a mini-

bucket does not exceed i, and (4) the partitioning is refinement-maximal, namely, there is

no other (i,m)-partitioning that it refines.

The parameters i (number of variables) and m (number of functions allowed per mini-

bucket) are not independent, and some combinations of i and m do not allow an (i,m)-

partitioning. However, it is easy to see that If the bound i on the number of variables in
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Figure 8.3: Comparison between (a) elim-mpe and (b) mbe-mpe(3,2).

a mini-bucket is not smaller than the maximum family size, then, for any value of m > 0,

there exists an (i,m)-partitioning of each bucket.

The use of the two parameters i and m, although not independent, allow a richer set

of partitioning schemes than using i or m alone. Since mbe-mpe(i,m) computes an upper

bound in each bucket it yields an overall upper bound on the resulting MPE.

Theorem 8.1.2 (mbe-mpe properties) Algorithm mbe-mpe(i,m) computes an upper

and lower bounds on the MPE.

We will prove the theorem later (section 8.5) in a more general setting, common to all

mini-bucket elimination algorithms.

In general, as m and i increase, we get more accurate approximations. Note, however,

a monotonic increase in accuracy as a function of i can be guaranteed only for refinements

of a given partitioning as we discuss next.

Definition 8.1.3 Given two partitionings Q
′
and Q

′′
over the same set of elements, Q

′

is a refinement of Q
′′
if and only if for every set A ∈ Q′

there exists a set B ∈ Q′′
such

that A ⊆ B.
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It is easy to see that:

Proposition 8.1.4 If Q
′′
is a refinement of Q

′
in bucketp, then h

p ≤ gp
Q′ ≤ gp

Q′′ .

Proof: Clearly for any partitioning Q we have hp ≤ gpQ.

By definition, given a refinement Q′′ = {Q′′
1, ..., Q

′′
k} of a partitioning Q′ = {Q′

1, ...,

Q′
m}, each mini-bucket i ∈ {1, ..., k} of Q′′ belongs to some mini-bucket j ∈ {1, ...,m} of

Q′. In other words, each mini-bucket j of Q′ is further partitioned into the corresponding

mini-buckets of Q′′, Q′
j = {Q′′

j1
, ..., Q′′

jl
}. Therefore,

gpQ′′ =
k∏
i=1

(max
Xp

Πl∈Q′′
i
hl) =

m∏
j=1

∏
Q′′

i ⊆Q′
j

(max
Xp

Πl∈Q′′
i
hl) ≥

m∏
j=1

(max
Xp

Πl∈Q′
j
hl) = gpQ′ .

Example 8.1.5 Figure 8.3 compares algorithms BE-mpe and mbe-mpe(i,m) where i = 3

and m = 2 over the network in Figure 2.5a along the ordering o = (A, E,D, C,B). The

exact BE-mpe sequentially records the new functions (shown in boldface) hB(a, d, c, e),

hC(a, d, e), hD(a, e), and hE(a). Then, in the bucket ofA, it computesM = maxa P (a)h
E(a).

Subsequently, an MPE assignment (A = a′, B = b′, C = c′, D = d′, E = e′) where e′ = 0

is the evidence, can be computed along o by selecting a value that maximizes the product

of functions in the corresponding buckets conditioned on the previously assigned values.

Namely, a′ = argmaxa P (a)h
E(a), e′ = 0, d′ = argmaxd h

C(a′, d, e = 0), and so on.

On the other hand, since bucket(B) includes five variables, mbe-mpe(3,2) splits it

into two mini-buckets {P (e|b, c)} and {P (d|a, b), P (b|a)}, each containing no more than 3

variables, as shown in Figure 8.3b (the (3,2)-partitioning can be selected arbitrarily). The

new functions hB(e, c) and hB(d, a) are generated in different mini-buckets and are placed

independently in lower buckets. In each of the remaining lower buckets that still need

to be processed, the number of variables is not larger than 3 and therefore no further

partitioning occurs. An upper bound on the MPE value is computed by maximizing

over A the product of functions in A’s bucket: U = maxaP (a)h
E(a)hD(a). Once all the

buckets are processed, a suboptimal MPE tuple is computed by assigning a value to each

variable that maximizes the product of functions in the corresponding bucket, as if exact

BE-mpe is applied. By design, mbe-mpe(3,2) does not produce functions on more than 2

variables, while the exact algorithm BE-mpe records a function on 4 variables.
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In summary, algorithm mbe-mpe(i,m) computes an interval [L,U ] containing the high-

est MPE value where U is the upper bound computed by the backward phase and L is

the probability of the returned assignment.

Note however that mbe-mpe computes the bounds on MPE = maxx̄ P (x̄, ē), rather

than on M = maxx̄ P (x̄|ē) =MPE/P (ē). Thus

L

P (ē)
≤M ≤ U

P (ē)

While the probability of evidence clearly influences that quality of the bound interval

on M , the ratio between the upper and the lower bound is not.

8.1.1 The mini-bucket semantics

The Mini-Bucket computation can be given a useful interpretation. It can be viewed as

an exact computation over a simplified graphical model where for every mini-bucket of we

use a new copy the bucket’s variable. Namely, For each bucket and its partitioning into

mini-buckets, a variable in the original problem is replaced by a set of new variables, each

corresponding to a single mini-bucket. In the resulting relaxed problem, each function is

associated with the copy of the variable corresponding to its mini-bucket in the original

problem. For example, the Mini-Bucket trace in Figure 8.3b, corresponds to solving

exactly by full bucket-elimination the network of the problem in Figure 8.4. Variable B

is replaced by two variables B1 and B2, and the functions P (e|b, c), P (d|a, b), and P (b|a)
are replaced by P (e|b1, c), P (d|a, b2) and P (b2|a). Thus the two mini-buckets correspond

to two full buckets in the new simplified or relaxed problem. The relaxed problem has a

smaller width and can be solved efficiently, yielding a bound (upper or lower) as expected.

Certificate of optimality. Clearly when the lower bound is equal to the upper bound

we know that we found the optimal solution. Alternatively, if we use the node duplication

explicitly, whenever the optimal solution assign the same value to duplicated variables,

we would also know that the solution is optimal, even if we did not have an upper-bound

to compare with.

As we will see next, approximating conditional probabilities using bounds on joint

probabilities may be more problematic for belief updating.
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Figure 8.4: relaxed network corresponding to mini-bucket execution in Figure 8.3b

8.2 Mini-bucket approximation for belief updating

As shown in Chapter ??, the bucket elimination algorithm BE-bel for belief assessment

is similar to BE-mpe except that maximization is replaced by summation and no value

assignment is generated. Algorithm BE-bel finds P (x1, ē) and then computes P (x1|ē) =
αP (x1, ē) where α is the normalization constant (see Figure 4.4).

The mini-bucket idea used for approximating MPE can be applied to belief updating.

Let Q′ = {Q1, ..., Qr} be a partitioning of the functions h1, ...ht (defined over scopes

S1, ..., St, respectively) in Xp’s bucket. Algorithm BE-bel computes hp : Up → ℜ, where
hp =

∑
Xp

Πt
i=1hi, and Up = ∪iSi − {Xp}. The function hp can be rewritten as hp =∑

Xp
Πr
l=1Πli|i=1,..,jlhli . If we follow the MPE approximation precisely and migrate the

summation operator into each mini-bucket, we will get fpQ′ = Πr
l=1

∑
Xp

Πlihli . This,

however, is an unnecessarily large upper bound of hp in which each Πlihli that is a function

of Xp is bounded by
∑

Xp
Πlihli , a constant relative to Xp. Instead, we rewrite hp =∑

Xp
(Π1ih1i) · (Πr

l=2Πlihli). Subsequently, instead of bounding a function of X by its sum

over X, we can bound (i > 1), by its maximum over X, yielding gpQ′ = (
∑

Xp
Π1ih1i) ·

(Πr
l=2 maxXp Πlihli). Therefore, an upper bound gp of hp can be obtained by processing
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Algorithm mbe-bel-max(i,m)
Input: A belief network BN = (G,P ), an ordering o, and evidence ē.
Output: an upper bound on P (x1, ē) and an upper bound on P (e).
1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn,

where bucketk contains all CPTs h1, h2, ..., ht whose highest-index variable is Xk.
2. Backward: for k = n to 2 do
• If Xp is observed (Xk = a), assign Xk ← a in each hj and put the result
in the highest-variable bucket of its scope (put constants in bucket1).
• Else for h1, h2, ..., ht in bucketk do

Generate an (i,m)-mini-bucket-partitioning, Q
′
= {Q1, ..., Qr}.

For each Ql ∈ Q
′
, containing hl1 , ...hlt , do

If l = 1 compute hl =
∑

Xk
Πtj=1h1j

Else compute hl = maxXk
Πtj=1hlj

Add hl to the bucket of the highest-index variable in Ul ←
∪t
j=1 Slj − {Xk},

(put constant functions in bucket1).
3. Return P ′(x̄1, e) < −− the product of functions in the bucket
of X1, which is an upper bound on P (x1, ē).
P ′(e) < −−

∑
x1
P ′(x̄1, e), which is an upper bound on probability of evidence.

Figure 8.5: Algorithm mbe-bel-max(i,m).
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one of Xp’s mini-buckets by summation and the rest by maximization.

A lower bound on the belief, or its mean value, can be obtained in a similar way.

Algorithm mbe-bel-max(i,m) that uses themax elimination operator is described in Figure

8.5. Algorithms mbe-bel-min and mbe-bel-mean can be obtained by replacing the operator

max by min and by mean, respectively.

Notice that the node duplication semantics of MNE implies summation for each of the

mini-buckets.

Theorem 8.2.1 Given a Bayesian network with evidence e, algorithm MBE-bel-max(i,m)

computes an upper bound on P (X1, e) and P (e) in time and space O(r · ki), when r is the

number of functions and k bound the domain size.

We will have the same relationships between partitionings and their refinements as for

the mpe case.

Proposition 8.2.2 For every partitioning Q and its variable Xp, h
p ≤ gpQ ≤ fpQ, where

in f each mini-bucket is processed by summation and in g, one is processed by summation

and the rest by maximization. Also, if Q
′′
is a refinement partitioning of Q

′
, then hp ≤

gp
Q′ ≤ gp

Q′′ .

8.2.1 Normalization

Note that aprox-bel-max computes an upper bound on P (x1, ē) but not on P (x1|ē). If

an exact value of P (ē) is not available, deriving a bound on P (x1|ē) from a bound on

P (x1, ē) is not easy, because
g(x1)∑
x1
g(x1)

, where g(x) is the upper bound on P (x1, ē), is not

necessarily an upper bound on P (x1|ē). As noted we can derive a lower bound, f , on P (ē)

using mbe-bel-min and then compute g(x1)
f

as an upper bound on P (x1|ē). This however

is likely to generate weak bounds due to compounded error.

Alternatively, let Ui and Li be the upper bound and lower bounding functions on

P (X1 = xi, ē) obtained by mbe-bel-max and mbe-bel-min, respectively. Then,

Li
P (ē)

≤ P (xi|ē) ≤
Ui
P (ē)

Therefore, although P (ē) is not known, the ratio of upper to lower bounds remains the

same. Yet, the difference between the upper and the lower bounds can grow substantially,
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especially in cases of rare evidence. Note that if P (ē) ≤ Ui, we get Li

P (ē)
≤ P (X1|ē) ≤ 1,

yielding a trivial upper bound. Finally, note that no guarantee is given for gmean(xi),

and therefore, the approximation of gmean(xi)∑
x1
gmean(x1)

can be below or above the exact value.

Interestingly, the computation of gmean(X1=xi)∑
x1
gmean(x1)

is achieved when processing all mini-buckets

by summations, and subsequently normalizing. Namely, this is what is obtained when

we transform the original network by node duplication and apply exact BE-bel to the

simplified network.

8.3 Mini-bucket elimination for MAP

Algorithm BE-map is a combination of BE-mpe and BE-bel as we have shown in Chapter

??; some of the variables are eliminated by summation, while the others by maximization.

Given a belief network, a subset of hypothesis variables A = {A1, ..., Ak}, and evidence

ē, the problem is to find an assignment to the hypothesized variables that maximizes their

probability conditioned on ē. Formally, we wish to find

āmapk = argmax
āk

P (āk|ē) = argmax
āk

∑
x̄nk+1

Πn
i=1P (xi, ē| ¯xpai)
P (ē)

(8.1)

where x̄ = (a1, ..., ak, xk+1, ..., xn) denotes an assignment to all variables, while āk =

(a1, ..., ak) and x̄nk+1 = (xk+1, ..., xn) denote assignments to the hypothesis and non-

hypothesis variables, respectively. Since P (ē) is a normalization constant, the maximum

of P (āk|ē) is achieved at the same point as the maximum of P (āk, ē) (as before, we have

P (āk|ē) = P (āk,ē)
P (ē)

.) and therefore we define MAP = P (āk, ē). We will derive an approxi-

mation to this quantity which is easier than approximating P (āk|ē).
The bucket-elimination algorithm for finding the exact MAP, BE-map, assumes only

orderings in which the hypothesized variables appear first and thus are processed last

by the algorithm, as discussed earlier. This restriction makes the task more difficult

because it implies higher induced widths. The algorithm has the usual backward phase.

Its forward phase however is relative to the hypothesis variables only. The mini-bucket

scheme for map is a straightforward extension of the algorithms mbe-mpe and mbe-bel-

max. We partition each bucket into mini-buckets as before. If the bucket’s variable can

be eliminated by summation, we apply the rule we have in mbe-bel-max in which one
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Algorithm mbe-map(i,m)
Input: A belief network BN = (G,P ), a subset of variables A = {A1, ..., Ak},
an ordering of the variables, o, in which the A’s appear first, and evidence ē.
Output: An upper bound U on the MAP and a suboptimal solution A = āak.
1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn
where bucketP contains all CPTs, h1, ..., ht whose highest index variable is Xp.
2. Backward: for p = n to 1 do
• If Xp is observed (Xp = a), assign Xp = a in each hi and put the result
in its highest-variable bucket (put constants in bucket1).
• Else for h1, h2, ..., hj in bucketp do

Generate an (i,m)-partitioning, Q
′
of the matrices hi into mini-buckets Q1, ..., Qr.

• If XP ̸∈ A /* not a hypothesis variable */

for each Ql ∈ Q
′
, containing hl1 , ...hlt , do

If l = 1, compute hl =
∑

Xp
Πti=1h1i

Else compute hl = maxXpΠ
t
i=1hli

Add hl to the bucket of the highest-index variable in Ul ←
∪t
i=1 Sli − {Xp},

(put constants in bucket1).
• Else (Xp ∈ A) /* a hypothesis variable */

for each Ql ∈ Q
′
containing hl1 , ...hlt compute hl = maxXpΠ

t
i=1hli and place it

in the bucket of the highest-index variable in Ul ←
∪t
i=1 Sli − {Xp},

(put constants in bucket1).
3. Forward: for p = 1 to k, given A1 = aa1, ..., Ap−1 = aap−1,

assign a value aap to Ap that maximizes the product of all functions in bucketp.

4. Return An upper bound U = maxa1
∏
hi∈bucket1 hi on MAP , computed in the first bucket.

and the assignment āak = (aa1, ..., a
a
k).

Figure 8.6: Algorithm mbe-map(i,m).
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Figure 8.7: Belief network for a linear block code.

mini-bucket is approximated by summation and the rest by maximization. When the

algorithm reaches the hypothesis buckets, their processing is identical to that of mbe-mpe.

Algorithm mbe-map(i,m) is described in Figure 8.6.

Oncembe-map terminates, we have an upper bound and we can compute an assignment

to the hypothesis variables. While the probability of this assignment is a lower bound for

the MAP, computing the actual probability is no longer a simple forward step over the

generated buckets but requires an exact inference. We cannot use the functions generated

by mbe-bel-max in the buckets of summation variables since those serve as upper bounds.

One possibility is, once an assignment is obtained, to rerun the mini-bucket algorithm

over the non-hypothesis variables using the min operator (as in mbe-bel-min, and then

compute a lower bound on the assigned tuple in another forward step over the first k

buckets. We will leave the details of this idea as an exercise.

Exercise: Show how we can obtain both a lower bound and an upper-bound on the map

query.

Example 8.3.1 Consider a belief network which describes the decoding of a linear block

code, shown in Figure 8.7. In this network, Ui are information bits and Xj are code bits,

which are functionally dependent on Ui. The vector (U,X), called the channel input, is

transmitted through a noisy channel which adds Gaussian noise and results in the channel

output vector Y = (Y u, Y x) . The decoding task is to assess the most likely values for

the U ’s given the observed values Y = (ȳu, ȳx), which is the MAP task where U is the set

of hypothesis variables, and Y = (ȳu, ȳx) is the evidence. After processing the observed
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buckets we get the following bucket configuration (lower case y’s are observed values):

bucket(X0) = P (yx0 |X0), P (X0|U0, U1, U2),

bucket(X1) = P (yx1 |X1), P (X1|U1, U2, U3),

bucket(X2) = P (yx2 |X2), P (X2|U2, U3, U4),

bucket(X3) = P (yx3 |X3), P (X3|U3, U4, U0),

bucket(X4) = P (yx4 |X4), P (X4|U4, U0, U1),

bucket(U0) = P (U0), P (y
u
0 |U0),

bucket(U1) = P (U1), P (y
u
1 |U1),

bucket(U2) = P (U2), P (y
u
2 |U2),

bucket(U3) = P (U3), P (y
u
3 |U3),

bucket(U4) = P (U4), P (y
u
4 |U4).

Processing by mbe-map(4,1) of the first top five buckets by summation and the rest by

maximization, results in the following mini-bucket partitionings and function generation:

bucket(X0) = {P (yx0 |X0), P (X0|U0, U1, U2)},
bucket(X1) = {P (yx1 |X1), P (X1|U1, U2, U3)},
bucket(X2) = {P (yx2 |X2), P (X2|U2, U3, U4)},
bucket(X3) = {P (yx3 |X3), P (X3|U3, U4, U0)},
bucket(X4) = {P (yx4 |X4), P (X4|U4, U0, U1)},
bucket(U0) = {P (U0), P (y

u
0 |U0), h

X0(U0, U1, U2)}, {hX3(U3, U4, U0)}, {hX4(U4, U0, U1)},
bucket(U1) = {P (U1), P (y

u
1 |U1), h

X1(U1, U2, U3), h
U0(U1, U2)}, {hU0(U4, U1)},

bucket(U2) = {P (U2), P (y
u
2 |U2), h

X2(U2, U3, U4), h
U1(U2, U3)},

bucket(U3) = {P (U3), P (y
u
3 |U3), h

U0(U3, U4), h
U1(U3, U4), h

U2(U3, U4)},
bucket(U4) = {P (U4), P (y

u
4 |U4), h

U1(U4), h
U3(U4)}.

The first five buckets are not partitioned at all and are processed as full buckets, since in

this case a full bucket is a (4,1)-partitioning. This processing generates five new functions,

three are placed in bucket U0, one in bucket U1 and one in bucket U2. Then bucket U0

is partitioned into three mini-buckets processed by maximization, creating two functions

placed in bucket U1 and one function placed in bucket U3. Bucket U1 is partitioned into

two mini-buckets, generating functions placed in bucket U2 and bucket U3. Subsequent

buckets are processed as full buckets. Note that the scope of recorded functions is bounded

by 3.

In the bucket of U4 we get an upper bound U satisfying U ≥ MAP = P (U, ȳu, ȳx)

where ȳu and , ȳx are the observed outputs for the U ’s and the X’s bits transmitted.

In order to bound P (U |ē), where ē = (ȳu, ȳx), we need P (ē) which is not available.
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Yet, again, in most cases we are interested in the ratio P (U = ū1|ē)/P (U = ū2|ē) for

competing hypotheses U = ū1 and U = ū2 rather than in the absolute values. Since

P (U |ē) = P (U, ē)/P (ē) and the probability of the evidence is just a constant factor

independent of U , the ratio is equal to P (U1, ē)/P (U2, ē).

Exercise: What is the relaxed network that corresponds to the above computation?

How would you generate a candidate MAP assignment? how would you compute its

probability?

8.4 Mini-buckets for discrete optimization

The mini-bucket principle can also be applied to deterministic discrete optimization prob-

lems which can be defined over cost networks, yielding approximation to dynamic program-

ming for discrete optimization [9]. In fact, the MPE task is a special case of combinatorial

optimization and its approximation via mini-buckets can be straightforwardly extended

to the general case. For completeness sake we present the algorithm explicitly within the

framework of cost networks.

As defined earlier a cost network is a triplet (X,D,C), where X is a set of discrete

variables, X = {X1, ..., Xn}, over domains D = {D1, ..., Dn}, and C is a set of real-

valued cost functions C1, ..., Cl. The cost function is defined by C(X) =
∑l

i=1Ci. The

optimization (minimization) problem is to find an assignment xopt = (x1
opt, ..., xn

opt) such

that C(xopt) = minx=(x1,...,xn)C(x).

Algorithm mbe-opt is described for the sake of completeness in Figure 8.8. Step 2

(backward step) computes a lower bound on the cost function while Step 3 (forward step)

generates a suboptimal solution which provides an upper bound on the cost function.

unified presentation of mbe.

Clearly the mini-bucket scheme is applicable to any bucket-elimination scheme and

can be described within the general framework using the combination and marginalization

operators. We leave it as an exercise.
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Algorithm mbe-opt(i,m)
Input: A cost network (X,D,C), C = {C1, ..., Cl}; ordering o, a set of assignments e.
Output: A lower and an upper bound on the optimal cost.
1. Initialize: Partition C and e into bucket1, . . ., bucketn, where bucketp

contains all components h1, h2, ..., ht whose highest-index variable is Xp.
2. Backward: for p = n to 2 do
• If Xp is observed (Xp = a), replace Xp by a in each hi and put the result
in its highest-variable bucket (put constants in bucket1).
• Else for h1, h2, ..., ht in bucketp do
Generate an (i,m)-mini-bucket-partitioning, Q

′
= {Q1, ..., Qr}.

For each Ql ∈ Q
′
containing hl1 , ...hlt , compute hl = minXp

∑t
i=1 hli and add it

to the bucket of the highest-index variable in Ul ←
∪t
i=1 Sli − {Xp}, where Sli

is the set of arguments of hli (put constants in bucket1).
3. Forward: for p = 1 to n, given X1 = xopt1 , ..., Xp−1 = xoptp−1,

assign a value xoptp to Xp that minimizes the sum of all functions in bucketp.

4. Return the assignment xopt = (xopt1 , ..., xoptn ), an upper bound U = C(xopt),
and a lower bound L = minx1

∑
hi∈bucket1 h

i on the optimal cost.

Figure 8.8: Algorithm mbe-opt(i,m).

8.5 Complexity and tractability

8.5.1 The case of low induced width

We denote by mini-bucket-elimination(i,m), or simply mbe(i,m), a generic mini-bucket

scheme with parameters i and m, without specifying the particular task it solves, which

can be either one of probabilistic inference tasks defined above or a general constrained

optimization problem.

It is easy to derive mbe(i,m) complexity as the bucket-elimination complexity of the

relaxed problem generated by variable/node duplication. Since node duplication can

generate at most r additional variables but will leave the number of functions fixed at r,

and since the resulting problem has induced-width bounded by i, BE complexity on such

a problem is time complexity O(r · ki).

Theorem 8.5.1 Algorithm mbe(i,m) takes O(r · exp(i)) time and space, where r is the
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Figure 8.9: (a) A polytree and (b) a legal ordering, assuming that nodes Z1, Z2, Z3 and Y1 are
observed.

number of input functions1. For m = 1, mbe(i,1) is linear. It is time and space linear

and is bounded by O(r · exp(|S|)), where |S| is the maximum scope of any input function,

|S| ≤ i ≤ n.

Clearly, when the induced-width along the processing order is smaller than i, mbe(i, n)

coincides with bucket-elimination and is therefore exact. This is because each full bucket

satisfies the condition of being an (i, n)-partitioning.

Theorem 8.5.2 Given an ordering of the variables, o, algorithm mbe(i, n) applied along

o is complete for networks having w∗
o ≤ i.

It is interesting to note that when m = 1 the algorithm mbe(i,m) is exact for any

acyclic network, and in particular for for polytrees, if applied along some appropriate

orderings. Such suitable orderings are determined be consulting a rooted join-tree of the

acyclic network (we know that such exists from the definition of an acyclic network as

discussed in Chapter 6). We can now order the variables from last to first by selecting

and removing a leaf function from the rooted join-tree and placing all its variables that

were not ordered yet, consecutively, next in the ordering. With such orderings, each

bucket would contain at most one non-subsumed function.

1Note that r = n for Bayesian networks, but can be higher or lower for general constraint optimization

tasks
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Theorem 8.5.3 Given an acyclic network (e.g., a polytree), there exists an ordering o

such that algorithm mbe(n,1) is exact and is time and space O(n · exp(|S|)), where |S| is
the largest scope size of any input function.

Example 8.5.4 Consider an ordering o = (X1, U3, U2, U1, Y1, Z1, Z2, Z3) of the polytree

in Figure 8.9a, where the last four variables Y1, Z1, Z2, Z3 in the ordering are observed.

Once the last four buckets were already processed as observation buckets, we get (ob-

served values shown in low-case):

bucket(U1) = P (U1), P (X1|U1, U2, U3), P (z1|U1),

bucket(U2) = P (U2), P (z2|U2),

bucket(U3) = P (U3), P (z3|U3)

bucket(X1) = P (y1|X1).

Not coincidentally, on polytrees, mbe(n,1) is similar to one pass of Pearl’s well-known

propagation algorithm.

8.6 Using the Mini-bucket scheme

8.6.1 Anytime inference

An important property of the mini-bucket scheme is that it provides an adjustable trade-

off between accuracy of solution and computational complexity. Both the accuracy and

the complexity increase with increasing the parameters i and m. While in general it may

not be easy to predict the algorithm’s performance for a particular parameter setting, it

is possible to use this scheme within the anytime framework.

Anytime algorithms can be interrupted at any time producing the best solution found

thus far. As more time is available, better solutions will be generated. Clearly, an iterative

application of such schemes with less restrictions on the amount of information they use,

results in an anytime inference algorithms that eventually become exact, if sufficient

computational resources are available.

We can have an anytime algorithm by running a sequence of mini-bucket algorithms

with increasing values of i and m until either a desired level of accuracy is obtained, or
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Algorithm anytime-mpe(ϵ)
Input: Initial values of i and m, i0 and m0; increments istep and mstep,
and desired approximation error ϵ.
Output: U and L
1. Initialize: i = i0,m = m0.
2. do
3. run mbe-mpe(i,m)
4. U ← upper bound of mbe-mpe(i,m)
5. L← lower bound of mbe-mpe(i,m)
6. Retain best bounds U,L, and best solution found so far
7. if 1 ≤ U/L ≤ 1 + ϵ, return solution
8. else increase i and m: i← i+ istep and m← m+mstep

9. while computational resources are available
10. Return the largest L

and the smallest U found so far.

Figure 8.10: Algorithm anytime-mpe(ϵ).

until the computational resources are exhausted. This anytime version is particularly

attractive for an optimization task such as the most probable explanation (mpe). The

anytime algorithm anytime-mpe(ϵ) is presented in Figure 8.10. The parameter ϵ is the

desired accuracy level. The algorithm uses initial parameter settings, i0 and m0, and

increments istep and mstep. Starting with i = i0 and m = m0, mbe-mpe(i,m) computes a

suboptimal MPE solution and the corresponding lower bound L, and an upper bound (U)

for increasing values of i and m. The algorithm terminates when either 1 ≤ U/L ≤ 1+ ϵ,

or when the computational resources are exhausted, returning the largest lower bound and

the smallest upper bound found so far, as well as the current best suboptimal solution.

Note that the algorithm is complete when ϵ = 0.

For other queries, such as belief computations deriving the upper and lower bound

can be done using two runs of the algorithm (with the max and the min operators,

respectively).

The above scheme can be refined and improved to save redundant computation in the

repeated mini-bucket runs and also in controlling the partitioning from one run to the

next in a manner that will guarantee improvements (by combining some mini-buckets, for
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example). You may want to consider the following exercise: design an anytime scheme

that allows computation sharing between subsequent mbe processing.

Another orthogonal anytime extension of the mini-bucket, is to embed it within a

complete anytime heuristic search algorithm such as branch-and-bound for optimization

tasks. Since, the mini-bucket scheme computes bounds (upper or lower) of the exact

quantities, these bounds can be used as heuristic functions to guide search algorithms

and for pruning the search space. In other words, rather than stopping with the first

solution found (which is a lower bound), as it is done in the forward step of mbe-mpe, we

can continue searching for better solutions, while using the mini-bucket functions to guide

and prune the search. This approach was explored extensively in the recent decade and

demonstrated very good results both for probabilistic optimization tasks such as MPE as

well as for constraint optimization problems [39, 48].

Finally in the context of sum-product queries such as belief computation and probabil-

ity of evidence we can view the mini-bucket’s output as an approximate Bayesian network.

Thus, instead of generating larger and larger function by increasing mini-bucket’s i-bound,

we can use this networks as a basis for sampling schemes, generating what is known as

the proposal distribution for importance sampling. For more details on this direction see

[62, 78, 33, 32].

8.6.2 Heuristic for partitionings

Clearly, there are many ways to partition a bucket into a collection of mini-buckets having

a give parameters i and m. These partitionings can be guided by the graph, or by the

content of the actual functions, aiming to minimize the error incurred by a particular

partition. It is clear that optimizing the partition strategy is hard and therefore a greedy

heuristic is most appropriate.

One popular partitioning heuristic, was scope-based, relying solely on the functions

arguments.

Scope-based Partitioning Heuristic. The scope-based partition heuristic (SCP) aims

at minimizing the number of mini-buckets in the partition by including in each mini-

bucket as many functions as possible as long as the i bound is satisfied. First, single
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Figure 8.11: Partitioning lattice of bucket {f1, f2, f3, f4}. We specify each function by its

subindex.

function mini-buckets are decreasingly ordered according to their arity. Then, each mini-

bucket is absorbed into the left-most mini-bucket with whom it can be merged. The

time and space complexity of Partition(B, i) , where B is the partitioned bucket, using

the SCP heuristic is O(|B| log (|B|) + |B|2) and O(exp(i)), respectively. The scope-based
heuristic is is quite fast, its shortcoming is that it does not consider the actual information

contained in each function.

Recently, bucket partitioning strategies that take into account the functions them-

selves were also explored. Given a bucket B, the goal of the partition process is to find an

i-partition Q of B such that the function computed by the collection of mini-buckets gQ is

the closest to the exact bucket function g, according to some distance measure d. There-

fore, the partition task is to find an i-partition Q∗ of B such that Q∗ = argminQ d(g
Q, g).

Measure considered includes log relative error, maximum log relative error, KL divergence

and absolute error. For example:

- Log relative error :

RE(f, h) =
∑

t(log (f(t))− log (h(t)))

- Max log relative error :

MRE(f, h) = maxt{log (f(t))− log (h(t))}

We can organize the space of partitions in a lattice using the refinement relation since

it yields a partial order. Each partition Q of bucket B is a vertex in the lattice. There is

an upward edge from Q to Q′ if Q′ results from merging two mini-buckets of Q in which

case Q′ is a child of Q. The set of all children of Q is denoted by ch(Q). The bottom
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partition in the lattice is Q⊥ while the top partition is Q⊤. For any two partitions Q and

Q′, if Q′ is a descendent of Q then gQ
′
is clearly tighter than gQ . Namely,

Example 8.6.1 Figure 8.11 shows the partitioning lattice of bucket B = {f1, f2, f3, f4}.
Consider a bucket Bx = {f1, f2, f3, f4}. Its Hasse diagram in depicted in Figure 8.11. As

observed, the finest partition is Q⊥ = {{f1}, {f2}, {f3}, {f4}} (depicted in the bottom of

the diagram). The coarsest partition is Q⊤ = {{f1, f2, f3, f4}} (depicted in the top of the

diagram).

Since an optimal partition-seeking algorithm may need to traverse the partitioning

lattice bottom-up along all paths, yields a computationally hard task, scheme focused

on depth-first greedy traversals only, are preferred. By looking at the error that occur

when considering the options of combining two functions into a single mini-bucket versus

keeping them separate, a guiding heuristic function along the lattice can be used. The

traversal can be guided by a heuristic function h defined on a partition Q and its child

partition Q′, denoted Q → Q′. The local distance heuristics derived from the above

distance measures yield content-based local partitioning heuristics. For more information

see [?]

Generalized mini-bucket. The idea of scheduling the mini-buckets that are processed

can be relaxed and does not have to be regimented along the original buckets. In other

words, we can process a single mini-bucket of B first, yielding a new, relaxed problem

to which we can apply the mini-bucket recursively. in particular we can identify, and

process a mini-bucket of C and then go back and process another mini-bucket of B and

so on. This alternative schedule is visible once we reason about partitioning heuristics as

node duplications. When we have a relaxed network we can process it by any means, not

necessarily by bucket-elimination. This observation provide a richer collection of bounding

schemes that can be studied.

8.6.3 Current mini-bucket extensions

Current focus is on augmenting the mini-bucket scheme with mini-bucket re-parameterizations

ideas, also known as soft-arc consistency. The idea is to shift some of the function content

in between mini-buckets while maintaining an equivalent representation of the problem,
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Figure 8.12: (a) A belief network; (b) A join-tree decomposition; (c) Execution of CTE-

BU.

in a way that makes the mini-bucket functions more balanced. An orthogonal idea ap-

plicable to the sum-product cases is of weighted mini-buckets [?], which allows a richer

collection of choices of mini-bucket as being processed by optimization marginalization

or by summation. As described above, currently one mini-bucket should be processed by

summation while the rest by optimization (min or max). We can instead associate weights

with each mini-bucket in a particular manner. The weighted scheme can be instantiated

int the selection of max or min mini-buckets as their special cases, and can guide an

optimal selection of mini-buckets to sum over.

8.7 Partition-Based Mini-Clustering

The mini-bucket idea can be extended to any tree-decomposition scheme. In this section

we will describe one such an extension called Mini-Clustering (MC). The benefit of this

algorithm is that all single-variable beliefs are computed (approximately) at once, using a

two-phase message-passing process along the cluster tree like in the mini-bucket bounded

inference.

We focus on likelihood computations (belief-updating and probability of evidence) for

which such extensions (from mini-bucket to mini-clustering) are most relevant. We will

consider a general belief network BN =< X,D,G, P > and its tree-decomposition defined

by a triple < T, χ, ψ >, where T = (V,E) is a tree, and χ and ψ are labeling functions

which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P , satisfying the
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two conditions of running intersection property and containment.

Rather than computing the mini-bucket approximation n times, one for each variable

as would be required by the mini-bucket approach, mini-clustering performs an equiva-

lent computation with just two message passings along each arc of the tree-decomposition.

We partition the cluster into p mini-clusters mc(1), . . . ,mc(p), each having at most i vari-

ables, where i is the i-bound controlling the accuracy. Instead of computing by CTE-BU

h(u,v) =
∑

elim(u,v)

∏
f∈ψ(u) f ; we can divide the functions of ψ(u) into p mini-clusters

mc(k), and rewrite h(u,v) =
∑

elim(u,v)

∏
f∈ψ(u) f =

∑
elim(u,v)

∏p
k=1

∏
f∈mc(k) f . By migrat-

ing the summation operator into each mini-cluster, yielding
∏p

k=1

∑
elim(u,v)

∏
f∈mc(k) f ,

we get an upper bound on h(u,v). The resulting algorithm is called MC-BU(i).

Consequently, the combined functions are approximated via mini-clusters, as follows.

Suppose u ∈ V has received messages from all its neighbors other than v (the message

from v is ignored even if received). The functions in clusterv(u) that are to be combined

are partitioned into mini-clusters {mc(1), . . . ,mc(p)}, each one containing at most i vari-

ables. Each mini-cluster is processed by summation over the eliminator, and the resulting

combined functions as well as all the individual functions are sent to v.

As in the mini-bucket case we can also derive a lower-bound on beliefs by replacing

the max operator with min operator. This allows, in principle, computing both an upper

bound and a lower bound on the joint beliefs. Alternatively, if we yield the idea of deriving

a bound we can replace max by a mean operator (taking the sum and dividing by the

number of elements in the sum), deriving an approximation of the joint belief.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU by replacing step

2 of the main loop and the final part of computing the upper bounds on the joint belief

by the procedure given in Figure 8.23.

The partitioning of clusters to mini-clusters can be done in an identical manner to

partitioning buckets into mini-buckets as discussed earlier.

Example 8.7.1 Figure 8.13 shows the trace of running MC-BU(3) on the problem in

Figure 8.12. First, evidence G = ge is assigned in all CPTs. There are no individual

functions to be sent from cluster 1 to cluster 2. Cluster 1 contains only 3 variables,

χ(1) = {A,B,C}, therefore it is not partitioned. The combined function h(1,2)1(b, c) =∑
a p(a)·p(b|a)·p(c|a, b) is computed and the messageH(1,2) = {h(1,2)1(b, c)} is sent to node

2. Now, node 2 can send its message to node 3. Again, there are no individual functions.
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Figure 8.13: Execution of MC-BU for i = 3

Cluster 2 contains 4 variables, χ(2) = {B,C,D, F}, and a partitioning is necessary: MC-

BU(3) can choose mc(1) = {p(d|b), h(1,2)(b, c)} and mc(2) = {p(f |c, d)}. The combined

functions h(2,3)1(b) =
∑

c,d p(d|b)·h(1,2)(b, c) and h(2,3)2(f) = maxc,dp(f |c, d) are computed

and the message H(4,3) = {h(2,3)1(b), h(2,3)2(f)} is sent to node 3. The algorithm continues

until every node has received messages from all its neighbors. An upper bound on p(a,G =

ge) can now be computed by choosing cluster 1, which contains variable A. It doesn’t need

partitioning, so the algorithm just computes
∑

b,c p(a)·p(b|a)·p(c|a, b)·h(2,1)1(b)·h(2,1)2(c).
Notice that unlike CTE-BU which processes 4 variables in cluster 2, MC-BU(3) never

processes more than 3 variables at a time.

It is easy to see that,

Theorem 8.7.2 MC-BU(i) computes an upper bound on the joint probability P (X, e) of

each variable and each of its values.

Theorem 8.7.3 (Complexity of MC-BU(i)) Given a Bayesian network B = ⟨X,D,G, P ⟩
and a tree-decomposition ⟨T, χ, ψ⟩ of B, the time and space complexity of MC-BU(i) is

O(n · hw∗ · di), where n is the number of variables, d is the maximum domain size of a

variable and hw∗ = maxu∈T |{f ∈ P |scope(f) ∩ χ(u) ̸= φ}|, which bounds the number of

mini-clusters.
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Semantics of Mini-Clustering.

The mini-clustering generalizes the mini-bucket scheme which was shown to have the

semantics of relaxation via node duplication [38, ?]. We extend it to mini-clustering by

showing how it can apply as is to messages flow in one direction (inward, from leaves

to root), as follows. Given a tree-decomposition D, when computing a function h(u,v)

(the message that cluster u sends to cluster v), cluster u is partitioned into p mini-

clusters u1, ..., up, which are first computed independently and then multiplied together.

Instead consider a different decomposition D
′
, which is just like D, with the exception

that (a) instead of u, it has clusters u1, ..., up, all of which are children of v, and each

variable appearing in more than a single mini-cluster becomes a new variable, (b) each

child w of u (in D) is a child of uk (in D
′
), such that h(w,u) (in D) is assigned to uk

(in D
′
) during the partitioning. Note that D

′
is not a legal tree-decomposition relative

to the original variables since it violates the connectedness property: the mini-clusters

u1, ..., up contain variables elim(u, v) but the path between the nodes u1, ..., up (this path

goes through v) does not. However, it is a legal tree-decomposition relative to the new

variables. It is straightforward to see that H(u,v) computed by MC-BU(i) on D is the

same as {h(ui,v)|i = 1, ..., p} computed by CTE-BU on D
′
in the direction from leaves to

root.

Example 8.7.4 Figure 8.14(a) shows a trace of the bottom-up phase of MC-BU(3) on

the network in Figure 8.13. Figure 8.14(b) shows a trace of the bottom-up phase of CTE-

BU algorithm on a problem obtained from the problem in Figure 8.13 by splitting nodes

D (into D′ and D′′) and F (into F ′ and F ′′).

The MC-BU algorithm computes an upper bound P (Xi, e) on the joint probability

P (Xi, e). However, deriving a bound on the conditional probability P (Xi|e) is not easy
when the exact value of P (e) is not available. If we just try to divide (multiply) P (Xi, e)

by a constant, the result is not necessarily an upper bound on P (Xi|e). It is easy to

show that normalization with the mean operator is identical to normalization of MC-BU

output when applying the summation operator in all the mini-clusters.

MC-BU(i) is an improvement over the Mini-Bucket algorithm MB(i), in that it allows

the computation of P (Xi, e) for all variables with a single run, whereas MB(i) computes
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BCDFBEFEFGH(4,3)={h1(4,3)(e,f)}H(3,2)={h1(3,2)(b,f)}H(2,1)={h1(2,1)(b),h2(2,1)(c)}1234

BD’F’BEF’EF’G
12’34

CD’’F’’2’’H(4,3)={h1(4,3)(e,f)}H(3,2)={h1(3,2)(b,f)} ABCH(2’,1)={h1(2’,1)(b)=∑p(d’|b)h1(3,2’)(b,f’)} H(2’’,1)={h1(2’’,1)(c)=max p(f’’|c,d’’)}
(b)

Figure 8.14: Node duplication semantics of MC: (a) trace of MC-BU(3); (b) trace of

CTE-BU.

P (Xi, e) for just one variable, with a single run [63]. When computing P (Xi, e) for each

variable, MB(i) has to be run n times, once for each variable (an algorithm we call nMB(i)).

In [38] it was demonstrated that MC-BU(i) has up to linear speed-up over nMB(i). For

a given i, the accuracy of MC-BU(i) can be shown to be not worse than that of nMB(i).

8.8 Iterative Join-Graph Propagation

Mini-clustering is an anytime algorithm but it works on tree-decompositions and it con-

verges in two passes, so iterating doesn’t change the messages. IBP is an iterative algo-

rithm that converges in many cases, and when it converges it does so very fast. Allowing

it more time doesn’t improve its accuracy. The immediate question is if we can combine

the anytime property of MC obtained using its i-bound, with the iterative qualities of

IBP. Algorithm Iterative Join-graph Propagation (IJGP) was designed to benefit from

both these directions. It works on a general join-graph which may contain cycles. The

cluster size of the graph is user adjustable by the i-bound (providing the anytime nature),

and the cycles in the graph allow iterating.
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The algorithm applies message computation over a join-graph decomposition, which

has all the ingredients of a join-tree, except the underlying graph may have cycles.

Definition 8.8.1 (join-graph decompositions) A join-graph decomposition for BN =<

X,D,G, P > is a triple D =< JG, χ, ψ >, where JG = (V,E) is a graph, and χ and

ψ are labeling functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and

ψ(v) ⊆ P such that:

1. For each pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and

scope(pi) ⊆ χ(v).

2. (connectedness) For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a

connected subgraph of G, a property also called the running intersection property.

Definition 8.8.2 (joinwidth) Let D = ⟨JG, χ, ψ⟩ be a join-graph decomposition of a

belief network B = ⟨X,D,G, P ⟩. The joinwidth of D is maxv∈V |χ(v)|. The joinwidth of

B is the minimum joinwidth over all its join-graph decompositions.

We will refer to a node and its CPT functions as a cluster (note, though, that a node

may be associated with an empty set of CPTs) and use the term join-graph-decomposition

and cluster graph interchangeably. A join-tree-decomposition or a cluster tree is the special

case when the join-graph JG is a tree.

It is clear that one of the problems of message propagation over cyclic join-graphs is

over-counting. To reduce this problem we devise a scheme, which avoids cyclicity with

respect to any single variable. The algorithm works on arc-labeled join-graphs.

If a graph-decomposition is not arc-minimal it is easy to remove some of its arcs

until it becomes arc-minimal. In our preliminary experiments we observed immediately

that when applying join-tree propagation on a join-graph iteratively, it is crucial to avoid

cycling messages relative to every single variable. The property of arc-minimality is not

sufficient to ensure such acyclicity though. What is required is that, for every variable X,

the arc-subgraph that contains X be a tree.

Example 8.8.3 The example in Figure 8.15a shows an arc minimal join-graph which

contains a cycle relative to variable 4, with arcs labeled with separators. Notice however

that if we remove variable 4 from the label of one arc we will have no cycles (relative to

single variables) while the connectedness property will still be maintained.
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Figure 8.15: An arc-labeled decomposition

To allow more flexible notions of connectedness we refine the definition of join-graph

decompositions, when arcs can be labeled with a subset of their separator.

Definition 8.8.4 ((minimal) arc-labeled join-graph decompositions) An arc-labeled

decomposition for BN =< X,D,G, P > is a four-tuple D =< JG, χ, ψ, θ >, where

JG = (V,E) is a graph, χ and ψ associate with each vertex v ∈ V the sets χ(v) ⊆ X and

ψ(v) ⊆ P and θ associates with each edge (v, u) ⊂ E the set θ((v, u)) ⊆ X such that:

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. (arc-connectedness) For each arc (u, v), θ(u, v) ⊆ sep(u, v), such that ∀Xi ∈ X,

any two clusters containing Xi can be connected by a path whose every arc’s label

includes Xi.

Finally, an arc-labeled join-graph is minimal if no variable can be deleted from any label

while still satisfying the arc-connectedness property. recall the following definitions of

separators and eliminators.

Definition 8.8.5 (separator, eliminator) recall that Given two adjacent vertices u

and v of JG, the separator of u and v is defined as sep(u, v) = θ((u, v)), and the eliminator

of u with respect to v is elim(u, v) = χ(u)− θ((u, v)).

Arc-labeled join-graphs can be made label minimal by deleting variables from their

labels while maintaining connectedness (if an edge label becomes empty, the edge can be

deleted altogether). It is easy to see that,

Proposition 8.8.6 A minimal edge-labeled join-graph does not contain any cycle relative

to any single variable. That is, any two clusters containing the same variable are connected

by exactly one path labeled with that variable.



204 CHAPTER 8. BOUNDING INFERENCE

Notice that every minimal edge-labeled join-graph is edge-minimal (no edge can be

deleted), but not vice-versa. The mini-clustering approximation presented in the previous

section works by relaxing the join-tree requirement of exact inference into a collection of

join-trees having smaller cluster size. It introduces some independencies in the original

problem via node duplication and applies exact inference on the relaxed model requiring

only 2 message passings. For the class of IJGP algorithms the idea is to relax the tree-

structure requirement and use join-graphs which do not introduce any new independencies,

utilizing an iterative message-passing on the resulting cyclic structure.

Indeed, it can be shown that any join-graph of a belief network does not introduce

any new independencies to the problem, namely it is an I-map (independency map [58])

of the underlying probability distribution relative to node-separation. Since we plan to

use minimally edge-labeled join-graphs to address over-counting problems, the question

is what kind of independencies are captured by such graphs.

Definition 8.8.7 (edge-separation in (edge-labeled) join-graphs) Let D = ⟨JG, χ, ψ, θ⟩,
JG = (V,E) be an edge-labeled decomposition of a Bayesian network B = ⟨X,D,G, P ⟩.
Let NW , NY ⊆ V be two sets of nodes, and EZ ⊆ E be a set of edges in JG. Let W,Y, Z

be their corresponding sets of variables (W = ∪v∈NW
χ(v), Z = ∪e∈EZ

θ(e)). We say that

EZ edge-separates NW and NY in D if there is no path between NW and NY in the JG

graph whose edges in EZ are removed. In this case we also say that W is separated from

Y given Z in D, and write ⟨W |Z|Y ⟩D. Edge-separation in a regular join-graph is defined

relative to its separators.

Theorem 8.8.8 Any edge-labeled join-graph decomposition D = ⟨JG, χ, ψ, θ⟩ of a belief

network B = ⟨X,D,G, P ⟩ is an I-map of P relative to edge-separation. Namely, any edge

separation in D corresponds to conditional independence in P .

For a proof see [51].

8.8.1 Algorithm IJGP

Applying CTE iteratively to minimal edge-labeled join-graphs yields our algorithm It-

erative Join-Graph Propagation (IJGP) described in Figure 8.16. One iteration of the

algorithm applies message-passing in a topological order over the join-graph, forward and
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Algorithm Iterative Join Graph Propagation (IJGP)

Input An arc-labeled join-graph decomposition ⟨JG, χ, ψ, θ⟩, JG = (V,E) for B =

⟨X,D,G, P ⟩. Evidence variables var(e).

Output An augmented graph whose nodes are clusters containing the original CPTs and the

messages received from neighbors. Approximations of P (Xi, e), ∀Xi ∈ X.

Denote by h(u,v) the message from vertex u to v, nev(u) the neighbors of u in JG excluding v.

cluster(u) = ψ(u) ∪ {h(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• One iteration of IJGP:

For every node u in JG in some topological order d and back, do

1. Process observed variables:

Assign relevant evidence to all pi ∈ ψ(u) χ(u) := χ(u)− var(e), ∀u ∈ V
2. Compute individual functions:

Include in H(u,v) each function in clusterv(u) whose scope does not contain variables in

elim(u, v). Denote by A the remaining functions.

3. Compute and send to v the combined function: h(u,v) =
∑

elim(u,v)

∏
f∈A f .

Send h(u,v) and the individual functions H(u,v) to node v.

Endfor

• Compute P (Xi, e):

For every Xi ∈ X let u be a vertex in JG such that Xi ∈ χ(u).
Compute P (Xi, e) = α

∑
χ(u)−{Xi}(

∏
f∈cluster(u) f)

Figure 8.16: Algorithm Iterative Join-Graph Propagation (IJGP)

back. When node u sends a message (or messages) to a neighbor node v it operates on all

the CPTs in its cluster and on all the messages sent from its neighbors excluding the ones

received from v. First, all individual functions that share no variables with the eliminator

are collected and sent to v. All the rest of the functions are combined in a product and

summed over the eliminator between u and v.

It is straightforward to show that:

Theorem 8.8.9 1. [45] If IJGP is applied to a join-tree decomposition it reduces to

join-tree clustering and it therefore is guaranteed to compute the exact beliefs in one

iteration.

2. [44] The time complexity of one iteration of IJGP is O(deg · (n + N) · dw∗+1) and

its space complexity is O(N · dθ), where deg is the maximum degree of a node in
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the join-graph, n is the number of variables, N is the number of nodes in the graph

decomposition, d is the maximum domain size, w∗ is the maximum cluster size and

θ is the maximum label size.

For proof see properties of CTE in [37].

One question which we did not address at all in this section is why propagating the

messages iteratively should help. Why is IJGP upon convergence, superior to IJGP with

one iteration and is superior to MC? One clue can be provided when considering determin-

istic constraint networks which can be viewed as “extreme probabilistic networks”. It is

known that constraint propagation algorithms, which are analogous to the messages sent

by belief propagation, are guaranteed to converge and are guaranteed to improve with

convergence. The propagation scheme presented here works like constraint propagation

relative to the flat network abstraction of P (where all non-zero entries are normalized to a

positive constant), and propagation is guaranteed to be more accurate for that abstraction

at least. It is precisely these issues that we address in Section ??. Another explanation

will be provided by showing a connection between the probability distribution generated

by IJGP (upon convergence) and the distribution that minimize a distance function to

the exact distribution, as we discuss later.

Next we will demonstrate that the well-known algorithm IBP is a special case of IJGP.

8.8.2 The Special Case of Iterative Belief Propagation

Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm (that

was defined for poly-trees [58]) to any Bayesian network. We will describe IBP as an

instance of join-graph propagation over a dual graph.

Definition 8.8.10 (dual graphs) Given a set of functions F = {f1, ..., fl} over scopes

S1, ..., Sl, the dual graph of F is a graph DG = (V,E, L) that associates a node with

each function, namely V = F and an edge connects any two nodes whose function’s scope

share a variable, E = {(fi, fj)|Si ∩ Sj ̸= φ} . L is a set of labels for the edges, each edge

being labeled by the shared variables of its nodes, L = {lij = Si ∩ Sj|(i, j) ∈ E}. A dual

join-graph is an edge-labeled edge subgraph of DG. A minimal dual join-graph is a dual

join-graph for which none of the edge labels can be further reduced while maintaining the

connectedness property.
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Figure 8.17: a) A belief network; b) A dual join-graph with singleton labels; c) A dual

join-graph which is a join-tree

Interestingly, there may be many minimal dual join-graphs of the same dual graph.

We will define Iterative Belief Propagation on a dual join-graph. Each node sends a

message over an edge whose scope is identical to the label on that edge. Since Pearl’s

algorithm sends messages whose scopes are singleton variables only, we highlight minimal

singleton-label dual join-graphs.

Proposition 8.8.11 Any Bayesian network has a minimal dual join-graph where each

edge is labeled by a single variable.

Proof: Consider a topological ordering of the nodes in the acyclic directed graph of the

Bayesian network d = X1, ..., Xn. We define the following dual join-graph. Every node

in the dual graph D, associated with pi is connected to node pj, j < i if Xj ∈ pa(Xi).

We label the edge between pj and pi by variable Xj, namely lij = {Xj}. It is easy to see

that the resulting edge-labeled subgraph of the dual graph satisfies connectedness. (Take

the original acyclic graph G and add to each node its CPT family, namely all the other

parents that precede it in the ordering. Since G already satisfies connectedness so is the

minimal graph generated.) The resulting labeled graph is a dual graph with singleton

labels.

Example 8.8.12 Consider the belief network on 3 variablesA,B,C with CPTs 1.P (C|A,B),

2.P (B|A) and 3.P (A), given in Figure 8.17a. Figure 8.17b shows a dual graph with sin-

gleton labels on the edges. Figure 8.17c shows a dual graph which is a join-tree, on which

belief propagation can solve the problem exactly in one iteration (two passes up and down

the tree).

For completeness, we present IBP algorithm in Figure 8.18. The algorithm is a special

case of IJGP. It is easy to see that one iteration of IBP is time and space linear in the
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Algorithm IBP

Input: An edge-labeled dual join-graph DG = (V,E, L) for a Bayesian network B =

⟨X,D,G, P ⟩. Evidence e.
Output: An augmented graph whose nodes include the original CPTs and the messages

received from neighbors. Approximations of P (Xi, e), ∀Xi ∈ X. Approximations of

P (Fi, e), ∀Fi ∈ B.
Denote by: hvu the message from u to v; ne(u) the neighbors of u in V ; nev(u) = ne(u)− {v};
luv the label of (u, v) ∈ E; elim(u, v) = scope(u)− scope(v).
• One iteration of IBP

For every node u in DJ in a topological order and back, do:

1. Process observed variables

Assign evidence variables to the each pi and remove them from the labeled edges.

2. Compute and send to v the function:

hvu =
∑

elim(u,v)

(pu ·
∏

{hu
i ,i∈nev(u)}

hui )

Endfor

• Compute approximations of P (Fi, e), P (Xi, e):

For every Xi ∈ X let u be the vertex of family Fi in DJ ,

P (Fi, e) = α(
∏

hu
i ,u∈ne(i) h

u
i ) · pu;

P (Xi, e) = α
∑

scope(u)−{Xi} P (Fi, e).

Figure 8.18: Algorithm Iterative Belief Propagation

size of the belief network. It is also easy to show that when IBP is applied to a minimal

singleton-labeled dual graph it coincides with Pearl’s belief propagation applied directly

to the acyclic graph representation. Also, when the dual join-graph is a tree IBP converges

after one iteration (two passes, up and down the tree) to the exact beliefs.

8.8.3 Bounded Join-Graph Decompositions

Since we want to control the complexity of join-graph algorithms, we will define it on

decompositions having bounded cluster size. If the number of variables in a cluster is

bounded by i, the time and space complexity of processing one cluster is exponential in i.

Given a join-graph decomposition D = ⟨JG, χ, ψ, θ⟩, the accuracy and complexity on

the (iterative) join-graph propagation algorithm depends on the joinwidth of D defined
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Algorithm Join-Graph Structuring(i)

1. Apply procedure schematic mini-bucket(i).

2. Associate each resulting mini-bucket with a node in the join-graph, the vari-

ables of the nodes are those appearing in the mini-bucket, the original func-

tions are those in the mini-bucket.

3. Keep the edges created by the procedure (called out-edges) and label them

by the regular separator.

4. Connect the mini-bucket clusters belonging to the same bucket in a chain by

in-edges labeled by the single variable of the bucket.

Figure 8.19: Algorithm Join-Graph Structuring(i).
Procedure Schematic Mini-Bucket(i)

1. Order the variables from X1 to Xn minimizing (heuristically) induced-width,

and associate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. For j = n to 1 do:

Partition the functions in bucket(Xj) into mini-buckets having at most i vari-

ables.

For each mini-bucket mb create a new scope-function (message) f where

scope(f) = {X|X ∈ mb} − {Xi} and place scope(f) in the bucket of its

highest variable. Maintain an edge between mb and the mini-bucket (created

later) of f .

Figure 8.20: Procedure Schematic Mini-Bucket(i).

as maxv∈V |χ(v)|. Intuition also suggests that the accuracy depends on how far the join-

graph is from a join-tree, which may be captured by the treewidth of JG which we would

call external width.

We can now state our target decomposition as follows. Given a graph G, and a

bounding parameter i we wish to find a join-graph decomposition D of G whose internal

width is bounded by i and whose external width is minimized.

We can consider two classes of algorithms. One class is partition-based. It starts from

a given tree-decomposition and then partitions the clusters until the decomposition has

clusters bounded by i. An alternative approach is grouping-based. It starts from a minimal

dual-graph-based join-graph decomposition (where each cluster contains a single CPT)
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and groups clusters into larger clusters as long as the resulting clusters do not exceed the

given bound. In both methods one should attempt to reduce the external width of the

generated graph-decomposition.

We will next present a partition-based approach which is based on the decomposition

suggested by the mini-bucket scheme. Given a bound i, algorithm Join-Graph Structur-

ing(i) applies the procedure Schematic Mini-Bucket(i), described in Figure 8.20. The

procedure only traces the scopes of the functions that would be generated by the full

mini-bucket procedure, avoiding actual function computation. The procedure ends with

a collection of mini-bucket trees, each rooted in the mini-bucket of the first variable. Each

of these trees is minimally edge-labeled. Then, in-edges labeled with only one variable are

introduced, and they are added only to obtain the running intersection property between

branches of these trees.

Proposition 8.8.13 Algorithm Join-Graph Structuring(i) generates a minimal edge-labeled

join-graph decomposition having bound i.

Proof: The construction of the join-graph specifies the vertices and edges of the join-

graph, as well as the variable and function labels of each vertex. We need to demonstrate

that 1) the connectedness property holds, and 2) that edge-labels are minimal.

Connectedness property specifies that for any 2 vertices u and v, if vertices u and

v contain variable X, then there must be a path u,w1, ..., wm, v between u and v such

that every vertex on this path contains variable X. There are two cases here. 1) u and

v correspond to 2 mini-buckets in the same bucket, or 2) u and v correspond to mini-

buckets in different buckets. In case 1 we have 2 further cases, 1a) variable X is being

eliminated in this bucket, or 1b) variable X is not eliminated in this bucket. In case 1a,

each mini-bucket must contain X and all mini-buckets of the bucket are connected as a

chain, so the connectedness property holds. In case 1b, vertexes u and v connect to their

(respectively) parents, who in turn connect to their parents, etc. until a bucket in the

scheme where variable X is eliminated. All nodes along this chain connect variable X, so

the connectedness property holds. Case 2 resolves like case 1b.

To show that edge labels are minimal, we need to prove that there are no cycles

with respect to edge labels. If there is a cycle with respect to variable X, then it must

involve at least one in-edge (edge connecting two mini-buckets in the same bucket). This
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Figure 8.21: Join-graph decompositions.

means variable X must be the variable being eliminated in the bucket of this in-edge.

That means variable X is not contained in any of the parents of the mini-buckets of this

bucket. Therefore, in order for the cycle to exist, another in-edge down the bucket-tree

from this bucket must contain X. However, this is impossible as this would imply that

variable X is eliminated twice.

Example 8.8.14 Figure 8.21a shows the trace of procedure schematic mini-bucket(3)

applied to the problem described in Figure 8.12a. The decomposition in Figure 8.21b is

created by the algorithm graph structuring. The only cluster partitioned is that of F into

two scopes (FCD) and (BF), connected by an in-edge labeled with F.

Example 8.8.15 Figure 8.22 shows a range of edge-labeled join-graphs. On the left

extreme we have a graph with smaller clusters, but more cycles. This is the type of

graph IBP works on. On the right extreme we have a tree decomposition, which has no

cycles but has bigger clusters. In between, there could be a number of join-graphs where

maximum cluster size can be traded for number of cycles. Intuitively, the graphs on the

left present less complexity for join-graph algorithms because the cluster size is small, but

they are also likely to be less accurate. The graphs on the right side are computationally

more complex, because of larger cluster size, but are likely to be more accurate.
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Figure 8.22: Join-graphs.
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Procedure MC for Belief Updating (MC-BU(i))

Input: A tree decomposition ⟨T, χ, ψ⟩T = (V,E) for

B = ⟨X,D,G, P ⟩. Evidence variables var(e). Accuracy parameter i.

Output: An augmented tree whose nodes are clusters containing the original CPTs

as well as messages received from neighbors. An upper bound for P (Xi, e). Denote

by H(u,v) the message sent by vertex u to vertex v, nev(u) the neighbors of u in T

excluding v.

cluster(u) = ψ(u) ∪ {H(v,u)|(v, u) ∈ E}.

Compute messages:

For every node u in the cluster tree, T , once u has received messages from all nev(u),

compute message to node v:

1. Process observed variables: assign relevant evidence to all pi ∈ ψ(u).

2. Compute the combined mini-functions:

Make an (i)-size mini-cluster partitioning of clusterv(u), {mc(1), . . . ,mc(p)};

h(u,v)1 =
∑

elim(u,v)

∏
f∈mc(1) f

hi(u,v) = maxelim(u,v)

∏
f∈mc(i) f i = 2, . . . , p

add {hi(u,v)|i = 1, . . . , p} to H(u,v). Send H(u,v) to v.

Compute upper bounds P (Xi, e) on P (Xi, e):

For every Xi ∈ X let u ∈ V be a cluster such that Xi ∈ χ(u). Make (i) mini-clusters

from cluster(u), {mc(1), . . . ,mc(p)}; Compute P (Xi, e) =

(
∑

χ(u)−Xi

∏
f∈mc(1) f) · (

∏p
k=2maxχ(u)−Xi

∏
f∈mc(k) f).

Figure 8.23: Procedure Mini-Clustering for Belief Updating (MC-BU)
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