
Reasoning with Graphical Models

Rina Dechter

April 27, 2011

2

Contents

1 Introduction 7

1.1 Overview by chapter . 8

1.2 Mathematical background . 9

1.2.1 Sets, domains, and tuples . 9

1.2.2 Relations . 10

1.2.3 Propositional Theories . 11

1.2.4 Graphs: general concepts . 14

1.2.5 Background in complexity . 16

2 Basics of Graphical Models 19

2.1 Classes of Graphical Models . 19

2.1.1 Constraint Networks . 22

2.1.2 Cost Networks . 25

2.1.3 Probability Networks . 28

2.1.4 Mixed networks . 32

2.2 General Graphical models . 34

2.3 Example of Real applications and Benchmarks 37

2.3.1 Linkage analysis . 37

2.3.2 Probabilistic decoding . 40

2.3.3 Networks from optimization and constraints 42

2.4 Bibliographical notes . 44

2.5 Exercises . 44

3

4 CONTENTS

3 Inference: Bucket-elimination for Deterministic Networks 45

3.1 The case of Constraint Networks . 48

3.2 Bucket elimination for Propositional CNFs 55

3.3 Bucket elimination for linear inequalities 59

4 Inference: Bucket-Elimination for Probablistic Networks 63

4.1 Belief Assessment and Probability of Evidence 63

4.1.1 Deriving BE-bel . 64

4.1.2 Complexity . 71

4.1.3 Handling Observations by Conditioning 74

4.1.4 Relevant subnetworks . 76

4.2 Bucket elimination for optimization tasks 78

4.2.1 An Elimination Algorithm for mpe 78

4.2.2 An Elimination Algorithm for MAP 82

4.3 Cost Networks and Dynamic Programming 82

4.4 Mixed Networks . 85

4.5 The general bucket elimination . 89

4.6 Summary . 91

4.7 Chapter Notes . 91

5 The Graphs of Graphical Models 93

5.1 Dual graphs and hypergraphs . 94

5.1.1 The induced width . 95

5.2 Chordal graphs . 99

Bibliography 101

Bibliography 101

CONTENTS 5

Notation

R a constraint network

x1, . . . , xnvariables

n the number of variables in a constraint network

Di the domain of variable xi

X,Y, Z sets of variables

R,S, T relations

r, s, t tuples in a relation

< x1, a1 >< x2, a2 >, ..., < xn, an > an assignment tuple

σx1=d1,...,xk=dk(R)

the selection operation on relations

ΠY (R) the projection operatoin on relations

⌈x⌉ the integer n such that x ≤ n ≤ x+ 1

6 CONTENTS

Chapter 1

Introduction

Over the last three decades, research in Artificial Intelligence has witnessed marked growth

in the core disciplines of knowledge representation, learning and reasoning. This growth

has been facilitated by a set of graph-based representations and reasoning algorithms

known as Graphical Models. The key idea of the graphical models paradigm is that

knowledge can be more efficiently expressed and reasoned about if it is represented as a

set of local functions defined over small subsets of variables where the variable interactions

induced by these functions are captured by a graph structure. The graph is a powerful

abstraction, revealing the independencies and irrelevancies that make it tractable to reason

over high dimensional domains [30].

Although queries posed over graphical models are NP-hard, and thus generally in-

tractable, graphical models invite effective algorithms for many graph structures and

for many queries, including combinatorial optimization, constraint satisfaction, count-

ing, likelihood computation, and even knowledge compilation. And the breadth of these

queries render these algorithms applicable to a variety of fields including scheduling,

planning, diagnosis, design, hardware and software testing, bio-informatics and linkage

analysis.

The goal of this book is to present a unifying treatment of graphical models in a way

that goes beyond a commitment to the particular types of knowledge expressed in the

model. The study of graphical models has been largely fragmented among several research

communities that have and continue to utilize the properties of these models to answer

7

8 CHAPTER 1. INTRODUCTION

specific queries about a particular type of knowledge. In chapter two, we will review the

various flavors of models, but the focus of this book is on query processing algorithms

which exploit graph structures and are thus applicable across all graphical models. These

algorithms can be broadly classified as either inference-based or search-based, and each

class will be discussed separately, for they share different characteristics. Inference-based

algorithms (e.g., variable-elimination, join-tree clustering) have been well studied for over

two decades, and their complexity bounds are thoroughly understood. These algorithms

are exponentially bounded in both time and space by a graph parameter called tree-width.

Search-based algorithms can be executed in linear space, and this makes them attractive,

but it is only recently that search algorithms with efficient time bounds have emerged.

Furthermore, search methods are more naturally poised to exploit the internal structure

of the functions themselves, what is often called their local structure. Borrowing on ideas

from the inference literature, these newer algorithms enable improved performance by

flexibly trading off time and space.

The book will not cover issues of modeling (by knowledge acquisition or learning from

data) which are the two primary approaches for generating probabilistic graphical models.

For this we refer the readers to the books in the area. First and foremost is the classical

book that introduced probabilistic graphical models [30] and a sequence of books that

followed amongst which are [28, 21]. In particular note the comprehensive two recent

textbooks [1, 23]. For deterministic graphical models of Constraint networks see [13].

1.1 Overview by chapter

Chapter 2 present the reader to the concepts of graphical models, provide definitions

and the specific graphical models that we will discuss throughout the book. Chapters

3-6 discuss exact inference algorithms, Chapter 5, provides background in graph theory

that will be needed throughout the book. Chapter 7 focuses on exact search schemes.

Specifically, chapter 3 describes the bucket-elimination for deterministic networks, chapter

4 focuses on probabilistic networks. Chapter 6 shows how these variable elimination

algorithms can be extended to tree-decomposition yielding the jointree and junction tree

propagation. Chapter 7 focuses on search

1.2. MATHEMATICAL BACKGROUND 9

1.2 Mathematical background

The formalization of constraint networks relies upon concepts drawn from the related

areas of discrete mathematics, logic, the theory of relational databases and graph theory

and probability theory. This section is a summary of the mathematical knowledge needed

for understanding the formalization of constraint networks and the analyses presented

in subsequent chapters. Here we present the basic notations and definitions for sets,

relations, probabilistic functions, operations on relations, on cost functions and graphs.

For those readers already familiar with these topics, a skim of this material will suffice to

ensure your understanding of notation used in the book.

1.2.1 Sets, domains, and tuples

A set is a collection of distinguishable objects, and an object in the collection is called a

member or an element of the set. A set cannot contain the same object more than once,

and its elements are not ordered. If an object x is a member of set A, we write x ∈ A; if
an object x is not a member of set A, we write x ̸∈ A. A set can be defined explicitly, by

listing the members of the set, or implicitly, by stating a property satisfied by elements

of the set. For example, A = {1, 2, 3} and A = {x | x an integer and 1 ≤ x ≤ 3} both

represent the same set with three members, 1, 2 and 3. If each element of a set A is also

an element of set B, then we write A ⊆ B and say that A is a subset of B. Set A is a

proper subset of B, written A ⊂ B, if A ⊆ B but A ̸= B.

Given two sets A and B, we can also define new sets by applying set operations: the

intersection of two sets A and B is the set A ∩ B = {x | x ∈ A and x ∈ B}, the union

of two sets A and B is the set A ∪ B = {x | x ∈ A or x ∈ B}, and the difference of two

sets A and B is the set A − B = {x | x ∈ A and x ̸∈ B}. A set containing no members

is called an empty set and is denoted ∅. The number of elements in a set S is called the

size (or cardinality) of the set and is denoted |S|. Two sets A and B are disjoint if they

have no elements in common; that is, if A ∩B = ∅.
The domain of a variable is simply a set that lists all of the possible objects that

a variable can denote or all of the possible values that a variable can be assigned. A

k-tuple (or simply a tuple) is a sequence of k not necessarily distinct objects denoted by

10 CHAPTER 1. INTRODUCTION

(a1, . . . , ak), and an object in the sequence is called a component. The Cartesian product

(or simply the product) of a list of domains D1, . . . , Dk, written D1 × · · · ×Dk, is the set

of all k-tuples (a1, . . . , ak) such that a1 is in D1, a2 is in D2, and so on.

Example 1.2.1 Let D1 = {black, green} and D2 = {apple juice, coffee, tea}. The

Cartesian product D1 × D2 is the set of tuples {(black, apple juice), (black, coffee),

(black, tea), (green, apple juice), (green, coffee), (green, tea)}.

1.2.2 Relations

Given a set of variables X = {x1, . . . , xk}, each associated with a domain D1, . . . , Dk

respectively, a relation R on the set of variables is any subset of the Cartesian product of

their domains. The set of variables on which a relation is defined is called the scope of the

relation, denoted scope(R). Each relation that is a subset of some product D1× · · · ×Dk

of k domains is said to have arity k. If k = 1, 2, or 3, then the relation is called a unary,

binary or ternary relation, respectively. If R = D1×· · ·×Dk, then R is called a universal

relation. We will frequently denote a relation defined on a scope S by RS.

Example 1.2.2 Let D1 = {black, green} be the domain of variable x1 and let D2 =

{apple juice, coffee, tea} be the domain of variable x2. The set of tuples {(black, coffee),
(black, tea), (green, tea)} is a relation on {x1, x2}, since the tuples are a subset of the

product of D1 and D2. The scope of this relation is {x1, x2}.

The empty set is another example of a relation.

Representing relations

Relations are sets of tuples defined over the same scope, and, as discussed above for sets,

they may be either explicitly or implicitly defined. For example, let R be a relation on

the set of variables {x1, x2}, where D1 = {black, green} and D2 = {apple juice, coffee,

tea}. Then the relation R1 on the scope {x1, x2} given by R1 = {(black, coffee), (black,
tea), (green, tea)} and R2 = {(x1, x2) | x1 ∈ D1, x2 ∈ D2, and x1 is before x2 in dictionary

ordering} both represent the same relation. Using arithmetic expressions we can also

write more succinctly, x1 ≤ x2 where ≤ is a lexicographic ordering.

1.2. MATHEMATICAL BACKGROUND 11

Two additional ways to explicitly express a relation make use of tables and (0,1)-

matrices. In a table representation each row is a tuple and each column corresponds to

one component of the tuple. Each column is identified by the variable associated with that

component (in the database community, the names of columns are called attributes). The

ordering of the columns is inconsequential; two relations that differ only in the ordering

of their columns are considered the same.

1.2.3 Propositional Theories

Propositional variables take only two values {true, false} or “1” and “0.” We denote

propositional variables by uppercase letters P,Q,R, . . ., propositional literals (i.e., P,¬P)
stand for P = “true′′ or P = “false,′′ and disjunctions of literals, or clauses, are denoted

by α, β, A unit clause is a clause of size 1. The notation (α∨T), when α = (P ∨Q∨R)
is shorthand for the disjunction (P ∨Q ∨ R ∨ T). α ∨ β denotes the clause whose literal

appears in either α or β. The resolution operation over two clauses (α∨Q) and (β ∨¬Q)
results in a clause (α ∨ β), thus eliminating Q. A formula φ in conjunctive normal form

(CNF) is a set of clauses φ = {α1, . . . , αt} that denotes their conjunction. The set of

models or solutions of a formula φ is the set of all truth assignments to all its symbols

that do not violate any clause. Deciding if a theory is satisfiable is known to be NP-

complete [20].

Operations on relations

Having introduced the mathematical notion of a relation, lets now consider operations

on relations. First we discuss how general set operations apply to relations, and then we

focus on three operations specific to relations: selection, projection and join.

Intersection, union, and difference. Given two relations, R and R′, on the same scope,

the intersection of R and R′, denoted R∩R′, is the relation containing all tuples that are

in both R and R′; the union R ∪ R′ is the relation containing all the tuples that are in

either R or R′, or both, and; the difference R−R′ is the relation containing those tuples

that are in R but not in R′. The scope of the resulting relations is the same as the scope

of the relations R and R′.

12 CHAPTER 1. INTRODUCTION

x1 x2 x3

a b c

b b c

c b c

c b s

x1 x2 x3

b b c

c b c

c n n

x2 x3 x4

a a 1

b c 2

b c 3

(a) Relation R (b) Relation R′ (c) Relation R′′

Figure 1.1: Three relations.

Example 1.2.3 Let the relations R, R′ and R′′ be as shown in Figure 1.1. The relations

R and R′ have the same scopes {x1, x2, x3}, so the set operations intersection, union, and

difference are well-defined for these sets. Since the scope of R′′ is not the same, none of

these three operations is well-defined for R′′ in conjunction with either of the other two

relations. Figure 1.2 shows the relations R ∩R′, R ∪R′ and R−R′.

x1 x2 x3

b b c

c b c

x1 x2 x3

a b c

b b c

c b c

c b s

c n n

x1 x2 x3

a b c

c b s

(a) R ∩R′ (b) R ∪R′ (b) R−R′

Figure 1.2: Example of set operations intersection, union, and difference applied to rela-

tions.

Let us now consider operations specific to relations.

Selection. A selection takes a relation R and yields a new relation: the subset of tuples

of R, with specified values on specified variables. In a table representation of a relation,

selection chooses a subset of the rows. Let R be a relation, let x1, . . . , xk be variables in

the scope of R, and let ai be an element of Di, the domain of xi. We use the notation

1.2. MATHEMATICAL BACKGROUND 13

σx1=a1,...,xk=ak(R) to denote the selection of those tuples in R that have the value a1 for

variable x1, the value a2 for variable x2, and so on. An alternative and more succinct

notation is: if Y = {x1, . . . , xk} and t = (a1, . . . , ak), then σY=t(R). The scope of the

resulting relation is the same as the scope of R.

Projection. Projection takes a relation R and yields a new relation that consists of the

tuples of R with certain components removed. In a table representation of a relation,

projection chooses a subset of the columns. Let R be a relation, and let Y = {x1, . . . , xk}
be a subset of the variables in the scope of R. We use the notation πY (R) to denote the

projection of R onto Y . That is, the set of tuples obtained by taking in turn each tuple

in R and forming from it a smaller tuple, keeping only those components associated with

variables in Y . Projection specifies a subset of the variables of a relation, and so the scope

of the resulting relation is that subset of variables.

Join. The join operator takes two relations RS and RT , and yields a new relation that

consists of the tuples of RS and RT combined on all their common variables in S and T.

For illustration, let RS be a relation with scope S, and RT a relation with scope T . A

tuple r is in the join of RS and RT , denoted RS 1 RT , if it can be constructed according

to the following steps: (i) take a tuple s from RS, (ii) select a tuple t from RT such that

the components of s and t share the variables that RS and RT have in common (that is,

on the variables in S ∩ T), and, (iii) form a new tuple r by combining the components of

s and t, keeping only one copy of those components corresponding to variables in S ∩ T .
The scope of the resulting relation is the union of the scopes of R and S, that is S ∪ T .
We can see now that a join of two relations with the same scopes is equivalent to the

intersection of the two relations.

Example 1.2.4 Let the relations R, R′ and R′′ be as shown in Figure 1.1. Figure 1.3

shows examples of the selection, projection, and join operations applied to these relations.

The relation σx3=c(R
′) consists of those tuples in R′ that have the value c for variable

x3. The relation π{x2,x3}(R
′) consists of the tuples in R′, each with the component that

corresponds to the variable x1 removed; only the components that correspond to variables

x2 and x3 are kept. Duplicate entries are removed, since a relation is a set and sets do not

contain duplicate objects. The relation R′ 1 R′′ consists of tuples that are combinations

14 CHAPTER 1. INTRODUCTION

of pairs of tuples from R′ and R′′ which share common variables {x2, x3}. To construct

R′ 1 R′′, we consider each tuple in R′, match it up with all possible tuples in R′′ that

agree with it on the common variables, and delete duplicate components associated with

these variables. For example, the tuple (b, b, c) in R′ agrees with the tuples (b, c, 2) and

(b, c, 3) in R′′, resulting in the tuples (b, b, c, 2) and (b, b, c, 3). Similarly, the tuple (c,

b, c) in R′ results in the tuples (c, b, c, 2) and (c, b, c, 3). The tuple (c, n, n) in R′ does

not agree with any tuple in R′′ on variables x2 and x3, so no additional tuples are added

to R′ 1 R′′.

x1 x2 x3

b b c

c b c

x2 x3

b c

n n

x1 x2 x3 x4

b b c 2

b b c 3

c b c 2

c b c 3

(a) σx3=c(R
′) (b) π{x2,x3}(R

′) (c) R′ 1 R′′

Figure 1.3: Example of selection, projection, and join operations on relations.

1.2.4 Graphs: general concepts

Definition: a graph G = (V,E) is a structure which consists of a finite set of vertices

or nodes, V = {v1, ..., vn} and a set of edges or arcs, E = {e1, e2, ...el}. Each edge e is

incident to an unordered pair of vertices {u, v} which are not necessarily distinct (as in

the case of a loop). Although the vertices are unordered, they will often be written as an

ordered pair (u, v). If e = (u, v) ∈ E we say that e connects u and v and that u and v

are adjacent or neighbors. The degree d(u) of a vertex u in a graph is the number of its

adjacent vertices.

A path is a sequence of edges e1, e2, ..., ek such that ei and ei+1 share an endpoint.

Namely, if ei = (u1, v1) and ei+1 = (u2, v2), then v1 and u2 are the same. It is also

convenient to describe a path using its vertices v0, v1, ...vk, where ei = (vi−1, vi). In this

case node vo is called the start-vertex of the path, vk is called the end-vertex, and the

1.2. MATHEMATICAL BACKGROUND 15

A

B C

D
E

F

A

B C

D

E

F

(a) (b)

G
1

= G
2

=

Figure 1.4: Two graphs: (a) undirected and (b) directed.

length of the path is k. A cycle is a path whose start and end vertices are the same. A

path is simple if no vertex appears on it more than once. A cycle is simple if no vertex

other than the start-end vertex appears more than once and the start-end vertex does

not appear elsewhere in the cycle. If for every two vertices u and v in the graph there

exists a path from u to v, then the graph is said to be connected. An undirected graph

with no cycles is called a tree. Given a subset of the nodes S in the graph G, a subgraph

relative to S, denoted GS, is the graph whose nodes are in S and whose edges, all in G,

are incident only to nodes in S. A graph is complete if every two nodes is adjacent. A

clique in a graph is a complete subgraph.

A directed graph (digraph) is defined similarly to an undirected graph except that the

pair of endpoints of an edge is now ordered; the first endpoint is the start-vertex of the

edge and the second is the end-vertex. The edge e = (u, v), also denoted u → v, is said

to be directed from u to v. The outdegree of a vertex v is the number of edges which

have v as their start-vertex; the indegree of v is the number of edges which have v as their

end-vertex. The set of nodes that point to node u is its parents and is denoted pa(u).

Similarly, the set of vertices to which u points is called the set of child nodes of u and is

denoted ch(u). A directed path is a sequence of edges e1, e2, ..., ek such that the end-vertex

of ei−1 is the start-vertex of ei. A directed path is a a directed cycle if the start-vertex of

the path is the same as the end-vertex. A directed graph is strongly connected if for every

vertex u and every vertex v there is a directed path from u to v. A directed graph is

16 CHAPTER 1. INTRODUCTION

acyclic if it has no directed cycles. The following example illustrates the above definitions.

Example 1.2.5 The graphG1 in Figure 1.4a is an undirected graph over vertices {A,B,C,D,E, F}.
The edge e = (A,B) is in the graph while (B,C) is not. The sequence (A,B,D, F) is

a path whose start-vertex is A and whose end-vertex is F . The path (A,B,D,C,A) is

a simple cycle. The degree of vertex D is 3. The subgraph {A,B,E} is a clique. The

subgraph {A,B,E,D} contains four edges: {(A,B), (B,E), (A,E), (B,D)}. The graph

G2 in Figure 1.4b is an acyclic directed graph. The indegree of D is 2, and its outdegree

is 1; D in G2 has two parents and one child node.

Definition 1.2.6 (hypergraph) A hypergraph is a pair H = (X,S), where S = {S1, . . . , St}
is a set of subsets of V called hyperedges.

1.2.5 Background in complexity

Throughout the book we will analayze the complexity of algorithms by determining their

asymptotic efficiency. That is, we are concerned with how the running time of an algorithm

increases with the size of the input, as the size of the input increases without bound.

Usually, an algorithm that is asymptotically more efficient will be the best choice for all

but very small inputs to the algorithm. An excellent comprehensive introduction into

the asymptotic analysis of algorithms is given in [39] (Chapters 1 and 2). We briefly

summarize from Chapter 2 several relevant concepts used throughout this book:

In general, an algorithm’s complexity is its worst-case running time T (n) over all its

inputs of a fixed size n. The asymptotic analysis of algorithms use special notation for

characterizing the running time. We will use the O-notation. Intuitively, if we say that

an algorithm’s complexity is O(f(n)) we mean that for large enough inputs the number of

basic steps of the algorithm as a function of its input size n is bounded below by c · f(n)
for some constant c. Formally, the O-notation describes the asymptotic upper bound. For

a given function g(n), O(g(n)) denotes the set of functions

O(g(n)) = {f(n) : there exists positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

1.2. MATHEMATICAL BACKGROUND 17

For all values n greater than n0, the value of f(n) is on or below g(n). To indicate that

a function f(n) is a member of O(g(n)), we write f(n) = O(g(n)).

The asymptotic upper bound provided by O-notation is meant to be tight. The bound

2n2 = O(n2) is asymptotically tight, but the bound 2n = O(n2) is not. o-notation (small

”o”) is used to denote an upper-bound that is not asymptotically tight. Formally:

o(g(n)) = {f(n) : for any positive constant c and n0 such that

0 ≤ f(n) ≤ c · g(n) for all n ≥ n0}

The main difference between O-notation and o-notation is that in f(n) = O(g(n)), the

bound 0 ≤ f(n) ≤ c · g(n) holds for some constant c > 0, whereas in f(n) = o(g(n)), the

bound 0 ≤ f(n) ≤ c · g(n) holds for every constant c > 0. Intuitively, in the o-notation,

the function f(n) becomes insignificant relative to g(n) as n approaches infinity.

Additional notations commonly used for performance evaluation are Ω-notation which

is analogous to O-notation but denotes asymptotic lower bounds which are tight, and ω-

notation, where ω to Ω is like o to O. Finally, θ notation is used to denote an asymptotic

tight function that is both a lower and an upper bound. In the book we use O-notation

primarily, even when the claims can be strengthened using θ notations.

Two additional central concepts we use when discussing complexity is polynomial

complexity and exponential complexity. A polynomial of degree d is a function p(n) of the

form

p(n) =
d∑

i=1

ain
i

where the ai are constants. A polynomial is asymptotically positive iff ad > 0. We say

that a function f(n) is polynomially bounded if f(n) = O(nk) for some constant k.

For a constant a the function f(n) = an is an exponential function. The rate of growth

of exponential and polynomials can be related by the fact that for all a and b, such that

a > 1

limn→inf
nb

an
= 0

An algorithm is tractable if it has polynomial complexity. A class of problems is

tractable if there exist a polynomial algorithm to solve it and intractable if it is known

that there does not exists a polynomial algorithm for its solution.

18 CHAPTER 1. INTRODUCTION

NP-complete problems is a class of problems that are believed to be worst-case ex-

ponential. Namely, it is believed that for any algorithm that solves a problem in this

class, there is some instances for which the algorithm will take an exponential number

of steps in the problem size. Up to polynomial differences, the NP-complete problems

all have the same complexity. That is, if there is a polynomial time algorithm for any

NP-complete problem then this would yield a polynomial time algorithm for every NP-

complete problem. NP-complete problems have the property that a potential solution to

the problem can be verified in polynomial time. The class of NP-hard problems are at

least as difficult as NP-complete problems. For the NP-hard class, there is no known way

to verify a solution in polynomial time.

Constraint satisfaction problems, the focus of this book, are known to be NP-complete,

and therefore, general purpose polynomial algorithms are clearly unavailable. The trust

of all constraint processing is to develop algorithms that work well in a wide range of

problem classes.

An algorithm is complete if it is guaranteed to solve the problem it addresses, and is

otherwise incomplete. For the task of constraint satisfaction a complete algorithm will

find a solution if one exists, or otherwise determine that the problem is inconsistent.

Notations We denote variables or subsets of variables by uppercase letters (e.g.,X, Y, . . .)

and values of variables by lower case letters (e.g., x, y, . . .). Sets are usually denoted by

bold letters, for example X = {X1, . . . , Xn} is a set of variables. An assignment (X1 =

x1, . . . , Xn = xn) can be abbreviated as x = (⟨X1, x1⟩, . . . , ⟨Xn, xn⟩) or x = (x1, . . . , xn).

For a subset of variables Y, DY denotes the Cartesian product of the domains of variables

in Y. The projection of an assignment x = (x1, . . . , xn) over a subset Y is denoted by

xY or x[Y]. We will also denote by Y = y (or y for short) the assignment of values to

variables in Y from their respective domains. We denote functions by letters f , g, h etc.,

and the scope (set of arguments) of the function f by scope(f).

Chapter 2

Basics of Graphical Models

Our unifying perspective on graphical models is motivated by their various instantiations

and associated algorithms. In this section, we will begin by defining the most common

types of graphical models and provide examples of each type: these are constraint networks

[13], Bayesian networks, Markov networks [30] and cost networks. These examples will

be followed by a general framework for describing graphical models.

2.1 Classes of Graphical Models

There are two main divisions among the classes of graphical models. The first of these

has to do with the kind information represented by the graph, with the main division

being whether the information is deterministic or probabilistic. Constraint networks are,

for example, deterministic; an assignment of variables is either valid or it is not. Markov

networks and Bayesian networks, on the other hand, represent probabilistic relationships;

the nodes represent random variables and the graph as a whole encodes the probabil-

ity distribution of those random variables. There are Cost networks which represents

preferences and which can be grouped with probabilistic networks as they are defined by

real-valued functions as well. The second main division among graphical models has to do

with how the information is encoded in the graph, with the two main classes being graph-

ical models that have directed edges and graphical models that have undirected edges.

For example, Markov networks are probabilistic networks that have undirected edges; the

19

20 CHAPTER 2. BASICS OF GRAPHICAL MODELS

edges do not encode an explicit directional relationship between the variables. Bayesian

networks are similarly probabilistic, but they have directed edges, so they can explicitly

encode directional relationships in the graph structure. Cost and constraint networks are

primarily un-directional yet some constraints are functional and can be then associated

with a directed model.

To make these divisions more concrete, let’s take a very simple example of a relation-

ship between two variables. Say we want to represent the relationship A ∨ B using a

graphical model.

If nodes in this graph are logical binary variables, then the graph represents a con-

straint network. If we want to be able to control this A ∨B relation and allow it to hold

in some cases while we would not impose it in others, we can add another variable C that

will be assigned true when the ”OR” relation holds and false otherwise. The constraint

network between A,B and C can be a complete graph over A,B,C which can be param-

eterized by the relation C = A ∨ B. Alternatively, since C is a function of A and B we

can use a directed graph that has directed edges from A and B into C. This directed

graph mimics vividly the functional nature between the 3 variables which can be possibly

useful. Figure 2.1 shows that different graphs.

If, on the other hand, we want to make a probabilistic version of this relationship,

we might employ a NOISY-OR relationship. A noisy-or function is the nondeterministic

analog of the logical OR function and specifies that each input variable produces an output

of 1 with high probability 1 − ϵ for some small ϵ. If we specify the prior probability of

A as PA and that of B as PB, then we can assign the edge AB an appropriate function.

Using ϵA and ϵB determine how noisy the NOISY-OR function is our graphical model

could then be written in the following way, and would be a Markov Network:

f(A,B) = A(1−B)·PA(1−PB)(1−ϵA)+B(1−A)PB(1−PA)(1−ϵB)+ABPAPB(1−ϵA)(1−ϵB)

This network represents the idea that if A is false then it is very likely that B is true

and that if B is false then it is very likely that A is true. This relationship does not seem

to have an directionality to it, in the same way that the crisp A ∨B did not. The status

of A seems to influence B just as naturally as the status of B influences A.

2.1. CLASSES OF GRAPHICAL MODELS 21

Figure 2.1: A Bayesian network where A and B point to C

If we want to force a directed graph on this relationship, There are two possibilities.

The first is that we can arbitrarily pick a direction of influence, say, A influences B and

draw a directed edge from A to B. This edge would represent the likelihood of B being

true or false, given the value of A. This, however, seems somewhat ad hoc, especially

if the relationship is symmetric. Another reasonable thing to do is to introduce a third

variable C NOISY −OR(A,B) the has directed edges into it from A and B. The graph

that represents this, the Bayesian in Figure 2.1, explicitly suggests that A influences C

and B influences C and A and B influence each other only indirectly.

From an algorithmic perspective, the second division, between directed and undirected

graphical models, is more salient and received considerable treatment in the literature [30].

Indeed deterministic information seems to be merely a limiting case of nondeterministic

information where probability values are limited to 0 and 1. Yet, this book will be focused

on methods that are indifferent to the directionality aspect of the models, and be more

aware of the deterministic vs non-deterministic distinction. The main examples used in

this book will be constraint networks and Bayesian networks, since these are respective

examples of both undirected and directed graphical models, and numerical vs boolean

graphical models.

Graphical models include constraint networks [13] defined by relations of allowed tu-

ples, probabilistic networks [30], defined by conditional probability tables over subsets

of variables or by a set of potentials, cost networks defined by costs functions. Mixed

networks is a graphical model that distinguish between probabilistic information and de-

terministic constraints. Each graphical model comes with its typical queries, such as

finding a solution (over constraint networks), finding the most probable assignment or

updating the posterior probabilities given evidence, posed over probabilistic networks, or

finding optimal solutions for cost networks.

22 CHAPTER 2. BASICS OF GRAPHICAL MODELS

2.1.1 Constraint Networks

Constraint networks provide a framework for formulating real world problems as satisfying

a set of constraints among variables, and they are the simplest and most computationally

tractable of the graphical models we will be considering. Problems in scheduling, design,

planning and diagnosis are often encountered in real world scenarios and can be effectively

rendered as constraint networks problems.

Let’s take scheduling as an example: one approach to formulating a scheduling problem

as a constraint satisfaction problem is to create a variable for each combination resource

and time slice (e.g. the conference room at 3pm on Tuesday). The domain of each variable

is the set of tasks that need to be scheduled, and assigning a task to a variable means

that this task will begin at this resource at the specified time. In this model, various

physical constraints can be modeled as formal constraints between variables (e.g. that a

given task takes three hours to complete or that another task can be completed at most

once).

The constraint satisfaction task is to find a solution to the constraint network, that is,

an assignment of a value to each variable such that no constraint is violated. If no such

assignment can be found, we conclude that the problem is inconsistent. This is the most

basic question we can ask of the network. Other queries include finding all the solutions

and counting them or, if the problem is inconsistent, finding a solution that satisfies the

maximum number of constraints.

Definition 2.1.1 (constraint network, constraint satisfaction problem (CSP)) A

constraint network (CN) is a 4-tuple, R = ⟨X,D,C,1⟩, where X is a set of variables

X = {X1, . . . , Xn}, associated with a set of discrete-valued domains, D = {D1, . . . , Dn},
and a set of constraints C = {C1, . . . , Cr}. Each constraint Ci is a pair (Si, Ri), where

Ri is a relation Ri ⊆ DSi
defined on a subset of variables Si ⊆ X. The relation denotes

all compatible tuples of DSi
allowed by the constraint. The 1 simply note that the con-

straints can be combined to form a new constraint by the join operator. It will serve to

unify constraint networks within framework of graphical models. When it is clear that we

discuss constraints we will refer to the problem as a triplet R = ⟨X,D,C⟩
A solution is an assignment of values to all the variables, denoted x = (x1, . . . , xn),

xi ∈ Di, such that ∀ Ci ∈ C, xSi
∈ Ri. The constraint network represents its set of

2.1. CLASSES OF GRAPHICAL MODELS 23

C

A

B

D

E

F

G

(a) Graph coloring problem

Figure 2.2: A constraint network example of a map coloring

solutions, sol(R) =1i Ri. The minimal domain of a variable X is all its values that

participate in any solution. Using relational operations, MinDom(Xi) = πXi
1j Rj

The primary query over a constraint network is deciding if it has a solution. Other

relevant queries are enumerating or counting the solutions, or finding the minimal relations

over a subset of variables.

Definition 2.1.2 (constraint graph) The constraint graph of a constraint network is

an undirected graph in which each vertex corresponds to a variable in the network and in

which an edge connects any two vertices if the corresponding variables appear in the scope

of the same constraint.

Example 2.1.3 The map coloring problem in Figure 2.2(a) can be modeled by a con-

straint network: given a map of regions and three colors {red, green, blue}, the problem

is to color each region by one of the colors such that neighboring regions have different

colors. Each region is a variable, and each has the domain {red, green, blue}. The set

of constraints is the set of relations “different” between neighboring regions. Figure 2.2

overlays the corresponding constraint graph and one solution (A=red, B=blue, C=green,

D=green, E=blue, F=blue, G=red) is given. The set of constraints are A ̸= B, A ̸= D,

B ̸= D, B ̸= C, B ̸= G,D ̸= G, D ̸= F ,G ̸= F , D ̸= E.

Example 2.1.4 Constraint networks are also particularly useful for expressing and solv-

ing scheduling problems. Consider the problem of scheduling five tasks (T1, T2, T3, T4,

24 CHAPTER 2. BASICS OF GRAPHICAL MODELS

T1

T2

T3

T5

T4

Unary constraint

DT4 = {1:00, 3:00}
Binary constraints

R{T1,T2}: {(1:00,2:00), (1:00,3:00), (2:00,1:00),
(2:00,3:00), (3:00,1:00), (3:00,2:00)}

R{T1,T3}: {(2:00,1:00), (3:00,1:00),

(3:00,2:00)}
R{T2,T4}: {(1:00,2:00), (1:00,3:00), (2:00,1:00),

(2:00,3:00), (3:00,1:00), (3:00,2:00)}
R{T3,T4}: {(1:00,2:00), (1:00,3:00),

(2:00,3:00)}
R{T3,T5}: {(2:00,1:00), (3:00,1:00),

(3:00,2:00)}

Figure 2.3: The constraint graph and constraint relations of the scheduling problem in

Example 1.

T5), each of which takes one hour to complete. The tasks may start at 1:00, 2:00 or 3:00.

Tasks can be executed simultaneously subject to the restrictions that:

• T1 must start after T3,

• T3 must start before T4 and after T5,

• T2 cannot be executed at the same time as either T1 or T4, and

• T4 cannot start at 2:00.

We can model this scheduling problem by creating five variables, one for each task, where

each variable has the domain {1:00, 2:00, 3:00}. The corresponding constraint graph is

shown in Figure 2.3, and the relations expressed by the graph are shown beside the figure.

2.1. CLASSES OF GRAPHICAL MODELS 25

Propositional Satisfiability One special case of the constraint satisfaction problem

is what is called propositional satisifiability (usually referred to as SAT). Given a formula

φ in conjunctive normal form (CNF), the SAT problem is to determine whether there is

a truth-assignment of values to its variables such that the formula evaluates to true. A

formula is in conjunctive normal form if it is a conjunction of clauses α1, . . . , αt, where

each clause is a disjunction of literals (propositions or their negations). For example,

α = (P ∨ ¬Q ∨ ¬R) and β = (R) are both clauses, where P , Q and R are propositions,

and P , ¬Q and ¬R are literals. φ = α&β = (P∨¬Q∨¬R)&(R) is a formula in conjunctive

normal form.

Propositional satisfiability can be defined as a constraint satisfaction problem in which

each proposition is represented by a variable with domain {0, 1}, and a clause is repre-

sented by a constraint. For example, the clause (¬A∨B) is a relation over its propositional

variables that allows all tuples over (A,B) except (A = 1, B = 0).

2.1.2 Cost Networks

In constraint networks, the relations are always constraints, i.e., functions that assign a

boolean value to a set of inputs. However, it is straightforward to extend constraint net-

works to accommodate real-valued relations using a graphical model called a cost network.

In cost networks, each relation is a cost-component, and the sum of these cost-components

is the overall combined cost function of the network. The primary task is to find an as-

signment of the variables such that the combined cost function is optimized (minimized or

maximized). Cost networks enable one to express preferences among relations and their

assignments and therefore preferences among different solutions.

In the real world, problems are modeled using both constraints and cost functions.

The constraints can be expressed explicitly as being of a different type than the cost

functions, or they can be included as cost components themselves.

Superficially, optimization over constraint networks and cost networks is different.

However, as we show in the following definition, a single definition of optimization over a

graphical model can be used whether the underlying relations are boolean or real-values.

In fact, more complex extensions, in which constraints are combined not by sums but by

products or other algebraic expressions, can be handled using the same definition. In the

26 CHAPTER 2. BASICS OF GRAPHICAL MODELS

constraint community different types of cost networks are distinguished and called Valued

CSPs.

Definition 2.1.5 (cost network, combinatorial optimization) A cost network is a

4-tuple, ⟨X,D,F,
∑
⟩, where X is a set of variables X = {X1, . . . , Xn}, associated with

a set of discrete-valued domains, D = {D1, . . . , Dn}, and a set of cost functions F =

{f1, . . . , fr}. Each fi is a real-valued function defined on a subset of variables Si ⊆ X.

The cost components are combined into a global cost function via the
∑

operator.

The primary optimization task (which we will represent as a minimization, w.l.o.g)

is to find a solution for the global cost function F =
∑

i fi. Namely, finding a tuple x

such that F (x) = minx

∑
i fi(x). The graph of a cost networks associates a node with a

variable and any two variables that are included in a single scope are connected. Like in

the case of constraints, we will drop the
∑

notation whenever the nature of the functions

and their combination into a global function is clear from the context.

Weighted Constraint Satisfaction Problems A special class of cost networks that

has gained considerable interest in recent years is the Weighted Constraint Satisfaction

Problem (WCSP) [7]. These networks extends the classical constraint satisfaction problem

formalism with soft constraints, that is, positive integer-valued cost functions. Formally,

Definition 2.1.6 (WCSP) A Weighted Constraint Satisfaction Problem (wcsp) is a

triplet ⟨X,D,F⟩ where each of the functions fi ∈ F assigns ”0” (no penalty) to allowed

tuples and a positive integer penalty cost to the forbidden tuples. Namely, fi : DXi1
× ...×

DXit
→ N, where Si = {Xi1 , ..., Xit} is the scope of the function.

Many real-world problems can be formulated as cost networks and often fall into the

weighted csp class. This includes resource allocation problems, scheduling [5], bioinfor-

matics [11, 42], combinatorial auctions [34, 13] or maximum satisfiability problems [10].

Example 2.1.7 Figure 2.4 shows an example of a WCSP instance with boolean variables.

The cost functions are given in Figure 2.4(a), and the associated graph is shown in Figure

2.4(b). Note that a value of ∞ in the cost function denotes a hard constraint (i.e., high

penalty). You should check that the minimal cost solution of the problem is 5, which

corresponds to the assignment (A = 0, B = 1, C = 1, D = 0, E = 1).

2.1. CLASSES OF GRAPHICAL MODELS 27

2111

8

011
2101

8

001
2110

8

010

8

100

8

000

f1(ABC)CBA

5111
6011
5101
6001
2110
0010

8

100
1000

f2(ABD)DBA

4111

8

011
3101

8

001
4110

8

010
3100

8

000

f3(BDE)EDB

(a) Cost functions

A

E

B D

C

f2(ABD)

f1(ABC)

f3(BDE)

(b) Constraint graph

Figure 2.4: A cost network.

The task of MAX-CSP, namely of finding a solution that satisfies the maximum number

of constraints (when the problem is inconsistent), can be formulated as a cost network

by treating each relation as a cost function that assigns “0” to consistent tuples and “1”

otherwise. Since all violated constraints are penalized equally, the global cost function

will simply count the number of violations.

Definition 2.1.8 (MAX-CSP) A MAX-CSP is a WCSP ⟨X,D,F⟩ with all penalty

costs equal to 1. Namely, ∀fi ∈ F, fi : DXi1
× ...×DXit

→ {0, 1}, where scope(fi) = Si =

{Xi1 , ..., Xit}.

Maximum Satisfiability In the same way that propositional satisfiability (SAT) can

be seen as a constraint satisfaction problem over logical formulas in conjunctive normal

form, so can the problem of maximum satisfiability (MAX-SAT) be formulated as a

MAX-CSP problem. In this case, given a set of boolean variables and a collection of

clauses defined over subsets of those variables, the goal is to find a truth assignment that

violates the least number of clauses. Naturally, if each clause is associated with a positive

weight, then the problem can be described as a WCSP. The goal of this problem, called

weighted maximum satisfiability (Weighted MAX-SAT), is to find a truth assignment

such that the sum weight of the violated clauses is minimized.

28 CHAPTER 2. BASICS OF GRAPHICAL MODELS

2.1.3 Probability Networks

As mentioned previously, Bayesian networks and Markov networks are the two primary

formalisms for expressing probabilistic information via graphical models. A Bayesian

network [30] is defined by a directed acyclic graph over vertices that represent random

variables of interest (e.g., the temperature of a device, the gender of a patient, a feature

of an object, the occurrence of an event). The arc from one node to another is meant

to signify a direct causal influence between the respective variables, and this influence is

quantified by conditional probability of the child given all of its parents. Therefore, to

define a Bayesian network, one needs both a directed graph and the associated conditional

probability functions. To be consistent with our graphical models description we define

Bayesian network as follows.

Definition 2.1.9 (Bayesian networks) A Bayesian network (BN) is a 4-tuple P =

⟨X,D,PG,
∏
⟩. X = {X1, . . . , Xn} is a set of ordered variables defined over domains

D = {D1, . . . , Dn}, where o = {X1, . . . , Xn}. The set of functions PG = {P1, . . . , Pn}
consist of conditional probability tables (CPTs for short) Pi = {P (Xi |Yi) } where Yi ⊆
{Xi+1, ..., Xn}. These Pi define an associated directed acyclic graph G in which each node

represents a variable Xi and Yi = pa (Xi) are the parents of Xi. A Bayesian network

represents a probability distribution over X, P (x1, . . . , xn) =
∏n

i=1 P (xi|xpa(Xi)). where

xS is the projection of a tuple x, x = (x1, . . . , xn) over a subset S. We define an evidence

set e as an instantiated subset of the variables.

The parent/child relations of a Bayesian network, regardless of whether they actually

represent causal relationships, always yield a valid probabilistic network; that is, they

represent a valid joint probability distribution.

In addition to the directed graph G associated with a Bayesian network, it is often

useful to refer to another associated graph called the moral graph which is undirected.

The moral graph can be obtained from G by connecting the parents of each child node

and removing the arrows from all the edges. Therefore, the moral graph for a Bayesian

network has a node for each variable and any two nodes are connected by an edge if they

both appear in the scope of a single relation.

2.1. CLASSES OF GRAPHICAL MODELS 29

A

F

B C

D

G

Season

Sprinkler Rain

Watering Wetness

Slippery

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

Figure 2.5: Belief network P (g, f, c, b, a) = P (g|f)P (f |c, b)P (d|a, b)P (c|1)P (b|a)P (a)

Example 2.1.10 [30] Figure 2.5(a) is a Bayesian network over six variables, and Figure

2.5(b) shows the corresponding moral graph. The example expresses the causal rela-

tionship between variables “season” (A), “the automatic sprinkler system is ”on”’ (B),

“wheather it rains or not rain” (C), “manual watering is necessary” (D), “the wetness of

the pavement” (F), and “the pavement is slippery” (G). The Bayesian network is defined

by six conditional probability tables each associated with a node and its parents. For

example, the CPT of F describes the probability that the pavement is wet (F = 1) for

each status combination of the sprinkler and raining. Possible CPTs are given in Figure

2.6.

The conditional probability tables contain only half of the entries because the rest of

the information can be derived based on the property that all the conditional probabilities

sum to 1. This Bayesian network expresses the probability distribution P (A,B,C,D, F,G) =

P (A) · P (B|A) · P (C|A) · P (D|B,A) · P (F |C,B) · P (G|F).

Next, we define the main queries over Bayesian networks:

Definition 2.1.11 (queries over Bayesian networks) Let P = ⟨X,D,PG,
∏
⟩ be a

Bayesian network. Given evidence e and letting x denote a tuple over all variables, the

primary queries over Bayesian networks are to find the following quantities:

1. Marginals: The posterior marginals (or beliefs) of Xi = xi are bel(xi) = P (xi|e)
for each xi not in e.

30 CHAPTER 2. BASICS OF GRAPHICAL MODELS

B C F P (F |B,C)
false false true 0.1

true false true 0.9

false true true 0.8

true true true 0.95

B A = winter D P (D|A,B)

false false true 0.3

true false true 0.9

false true true 0.1

true true true 1

A C P (C|A)
Summer false 0.9

Fall false 0.6

Winter false 0.1

Spring false 0.7

A B P (B|A)
Summer false 0.2

Fall false 0.6

Winter false 0.9

Spring false 0.4

F G P (G|F)
false false 0.9

true false 0

Figure 2.6: Possible CPTs that accompany our example

2. Probability of evidence: The probability of the evidence P (e) given the probability

distribution defined by P.

3. Most probable explanation (mpe): The mpe an assignment xo = (xo1, ..., x
o
n)

such that P (xo) = maxx P (x|e).

4. Maximum a posteriori hypothesis (map): Given a set of hypothesized variables

A = {A1, ..., Ak}, A ⊆ X, the map task is to find an assignment ao = (ao1, ..., a
o
k)

such that P (ao) = maxāk P (āk|e). The mpe query is sometime also referred to as

map.

These queries are applicable to a variety of applications such as situation assessment,

diagnosis, probabilistic decoding and linkage analysis, to name a few.

Markov networks also called Markov Random Fields (MRF), Markov networks are

undirected probabilistic graphical models very similar to Bayesian networks. Unlike

2.1. CLASSES OF GRAPHICAL MODELS 31

A

D

B

E

C

F

G H I

H1(A,B) H2(B,C)
H

3(
A

,D
)

H
4(

B
,E

)

H
5(

C
,F

)

H
8(

D
,G

)

H
9(

E
,H

)

H
10

(F
,I

)

H6(D,E) H7(E,F)

H11(G,H) H12(H,I)

(a)

D E H6(D,E)

0 0 20.2

0 1 12

1 0 23.4

1 1 11.7

(b)

Figure 2.7: (a) An example 3× 3 square Grid Markov network (ising model) and (b) An

example potential H6(D,E)

Bayesian networks, however, they are defined over an undirected graph. Moreover,

whereas the relations in Bayesian networks are conditional probability tables of children

given their parents, in Markov networks the relations, called compatibility functions or

potentials, can be defined over any subset of variables in the graph that form a clique.

Definition 2.1.12 (Markov Networks) A Markov network is a graphical model T = ⟨
X,D,H⟩ where H= {H1, . . . , Hm} is a set of potential functions where each potential

Hi is a non-negative real-valued function defined over variables Si. The Markov network

represents a joint distribution over the variables X given by:

P (x) =
1

Z

m∏
i=1

Hi(x) where Z =
∑
x∈X

m∏
i=1

Hi(x)

where the normalizing constant Z is often referred to as the partition function.

The primary queries over Markov networks are computing the posterior marginal distri-

bution over all variables Xi ∈ X and finding the partition function.

Example 2.1.13 Figure 2.7 shows a 3× 3 square grid Markov network with 9 variables

{A,B,C,D,E, F,G,H, I}. The twelve potentials are: H1(A,B), H2(B,C), H3(A,D),

H4(B,E), H5(C,F), H6(C,D), H7(D,E), H8(D,G), H9(E,H), H10(F, I), H11(G,H)

32 CHAPTER 2. BASICS OF GRAPHICAL MODELS

and

H12(H, I). The Markov network represents the probability distribution formed by taking

a product of these twelve functions and then normalizing. Namely,

P (A,B, . . . , I) =
1

Z

12∏
i=1

Hi

where Z is the partition function.

2.1.4 Mixed networks

As we have seen that graphical models can accommodate both probabilistic and determin-

istic information. Probabilistic information typically associates a strictly positive number

with an assignment of variables, quantifying our expectation that the assignment may be

realized. The deterministic information has a different semantics, annotating assignments

with binary values, either valid or invalid. In this section, we introduce the mixed net-

work, a graphical model which allows for both probabilistic information and deterministic

constraints and which provides a coherent meaning to the combination.

Definition 2.1.14 (mixed networks) Given a belief network B = ⟨X,D,G,P⟩ that
expresses the joint probability PB and given a constraint network R = ⟨X,D,C⟩ that
expresses a set of solutions ρ, a mixed network based on B and R denoted M(B,R) =

⟨X,D,G,P,C⟩ is created from the respective components of the constraint network and

the belief network as follows: the variables X and their domains are shared, (we could

allow non-common variables and take the union), and the relationships include the CPTs

in P and the constraints in C. The mixed network expresses the conditional probability

PM(X):

PM (x̄) =

{
PB(x̄ | x̄ ∈ ρ), if x̄ ∈ ρ
0, otherwise.

Clearly, PB(x̄ | x̄ ∈ ρ) = PB(x̄)
PB(x̄∈ρ)

. When clarity is not compromised, we will abbreviate

⟨X,D,G,P,C⟩ to ⟨X,P,C⟩.

Belief updating, MPE and MAP queries can be extended to mixed networks straight-

forwardly. They are well defined relative to the mixed probability distribution PM. Since

2.1. CLASSES OF GRAPHICAL MODELS 33

PM is not well defined for inconsistent constraint networks we always assume that the

constraint network portion is consistent.

Mixed networks give rise to a new query, which is to find the probability of a consistent

tuple; namely, we want to determine PB(x̄ ∈ ρ(R)). We will call this a Constraint

Probability Evaluation (CPE). Note that evidence is a special type of constraint. We will

elaborate on this next.

Definition 2.1.15 (queries on mixed networks) We have the following 2 new queries:

• CPE: Given a mixed networkM(B,R), where the belief network is defined over vari-

ables X = {X1, ..., Xn} and the constraint portion is a either a set of relational

constraints over a set of subsets Q = {Q1, ...Qr}, where Qi ⊆ X, the constraint,

Probability Evaluation (CPE) task is to find the probability PB(x̄ ∈ ρ(R)). If R is

a CNF expression, the cnf probability evaluation seeks PB(x̄ ∈ m(φ)), where m(φ)

are the models (solutions of φ).

• Belief assessment of a constraint or on a CNF expression is the task of assessing

PB(X|φ) for every variable X. Since P (X|φ) = α·P (X∧φ) where α is a normalizing

constant relative to X, computing PB(X|φ) reduces to a CPE task over B for the

query ((X = x) ∧ φ). More generally, PB(φ|ψ) = αφ · PB(φ ∧ ψ) where αφ is a

normalization constant relative to all the models of φ.

Popular queries over Mixed un-directional networks are the following.

Definition 2.1.16 (The Weighted Counting Task) Given a mixed network M = ⟨
X, D, F, C⟩, the weighted counting task is to compute the normalization constant given

by:

Z =
∑

x∈Sol(C)

m∏
i=1

Fi(x) (2.1)

where sol(C) is the set of solutions of the constraint portion C. Equivalently, if we

represent the constraints in C as 0/1 functions, we can rewrite Z as:

Z =
∑
x∈X

m∏
i=1

Fi(x)

p∏
j=1

Cj(x) (2.2)

34 CHAPTER 2. BASICS OF GRAPHICAL MODELS

We will refer to Z as weighted counts.

Definition 2.1.17 (Marginal task) Given a mixed network M = ⟨X,D,F,C⟩, the

marginal task is to compute the marginal distribution at each variable. Namely, for each

variable Xi and xi ∈ Di, compute:

P (xi) =
∑
x∈X

δxi
(x)PM(x), where δxi

(x) =

{
1 if Xi is assigned the value xi in x

0 otherwise

To be able to use the constraint portion of the mixed network more effectively, for the

remainder of the thesis, we require that all zero probabilities in the mixed network are also

represented as constraints. It is easy to define such a network as we show below. The new

constraints are redundant though.

Definition 2.1.18 (Modified Mixed network) Given a mixed networkM = ⟨X,D,F,C⟩,
a modified mixed network is a four-tuple M′ = ⟨X,D,F,C′⟩ where C′ = C ∪ {FCi}mi=1

where

FCi(Si = si) =

{
0 if Fi(si) = 0

1 Otherwise
(2.3)

FCi can be expressed as a relation. It is sometimes called the flat constraints of the

probability function.

Clearly, the modified mixed networkM ′ and the original mixed networkM are equivalent

in that PM′ = PM.

It is easy to see that the weighted counts over a mixed network specialize to (a) the

probability of evidence in a Bayesian network, (b) the partition function in a Markov

network and (c) the number of solutions of a constraint network. The marginal problem

can express the posterior marginals in a Bayesian or Markov network.

2.2 General Graphical models

In the previous section we defined and explored several classes of graphical models, en-

compassing the different kinds of information and the various queries that we might want

2.2. GENERAL GRAPHICAL MODELS 35

to represent. Often, these models are treated separately, but we have intentionally at-

tempted to describe them in a common language and to draw connections between them.

In this section, we will go a step beyond this and provide a general formulation of graphi-

cal models and reasoning problems that unifies the previously described models and tasks

into a single framework.

To do this, we will define a graphical model as a collection of function over a set of

variables that conveys probabilistic, deterministic or preferential information and whose

structure is captured by a graph.

Definition 2.2.1 (graphical model) A graphical modelM is a 4-tuple,M = ⟨X,D,F,⊗⟩,
where:

1. X = {X1, . . . , Xn} is a finite set of variables;

2. D = {D1, . . . , Dn} is the set of their respective finite domains of values;

3. F = {f1, . . . , fr} is a set of positive real-valued discrete functions, each defined over

a subset of variables Si ⊆ X, called its scope, and denoted by scope(fi).

4. ⊗ is a combination operator1 (e.g., ⊗ ∈ {
∏
,
∑
,1} (product, sum, join)).

The graphical model represents the combination of all its functions: ⊗r
i=1fi.

Definition 2.2.2 (a reasoning problem) A reasoning problem over a graphical model

M = ⟨X,D,F,⊗⟩ is defined by a marginalization operator ⇓Y and a set of subsets of

X that are of interest. It is therefore a triplet, P = ⟨M,⇓Y, {Z1, . . . ,Zt}⟩, where Z =

{Z1, . . . ,Zt} is a set of subsets of variables of X. If S is the scope of function f and

Y ⊆ X, then ⇓Y f ∈ { max
S−Y

f, min
S−Y

f,ΠYf,
∑

S−Y
f} is a marginalization operator. The

reasoning problem P can be written as a vector-valued function over the scopes Z1, . . . ,Zt

where the goal is to compute PZ1,...,Zt(M) = (⇓Z1 ⊗r
i=1fi, . . . ,⇓Zt ⊗r

i=1fi) . r is the number

of functions.

We will focus often on reasoning problems defined by Z = {∅}. The marginalization

operator is sometimes called elimination operator because it removes some arguments

1The combination operator can also be defined axiomatically [37].

36 CHAPTER 2. BASICS OF GRAPHICAL MODELS

from the scope of the input function. Specifically, ⇓Y f is a function whose scope is Y.

It therefore removes variables S−Y from S = scope(f). Note that in our definition ΠYf

is the relational projection operator and unlike the rest of the marginalization operators

the convention is that it is defined by the scope of variables that are not eliminated.

We will now go back and indicate how each of the framework mentioned earlier fits

the general graphical model definition.

Constraint satisfaction is a reasoning problem P = ⟨R,Π,Z⟩, where R = ⟨X,D,C,1⟩
is a constraint network, the marginalization operator ⇓Y is the projection operator ΠY,

and Z = {∅}. Therefore, the task is to evaluate P{∅} = ⇓∅ ⊗ifi = Π∅(1ifi). This

corresponds to enumerating all the solutions of the constraint network.

If we want to count the number of solutions instead, we merely change the marginal-

ization operator to be summation. If on the other hand we want merely to query whether

the constraint network has a solution, we can let the combination operator be a product

over the cost-based representation of the relations and let the marginalization operator

be logical summation. We let Z = {∅}, so that the the summation occurs over all the

variables. We will get “1” if the constraint problem has a solution and “0” otherwise.

Finding a minimum solution for a cost network can be expressed by letting the

marginalization operator be minimization. Therefore, the task is to evaluate ⇓∅ ⊗ifi =

minX

∑
i fi. Naturally, Max-CSP can be defined in the same way.

In a Bayesian network the combination operator ⊗ =
∏

is the product operator as

in P = ⟨X,D,PG,
∏
⟩, where PG = {P1, . . . , Pn}, are the set of functions F . The query

of finding the probability of the evidence is defined by Z = {∅}. An MPE reasoning task

is defining by letting ⇓∅ ⊗ifi = maxX
∏

i Pi, i.e., by letting the marginalization operator

be maximization and letting be Z = {∅}. Given evidence e, the belief updating task can

be formulated using the marginalization operator ⇓Y=
∑

X−Y, and Zi = {Xi}. Namely,

∀Xi,⇓Xi
⊗kfk =

∑
{X−Xi|E=e}

∏
k Pk.

Definition 2.2.3 (Flat functions) If a function in a graphical model assigns the value

“0” to some tuple in it scope, then that function implicitly expresses a constraint, namely,

that the tuple assigned a zero is never consistent. Therefore, for each function fi in a

graphical model we can define an associated flat constraint Ri which includes all tuples in

the domain of fi that are not assigned the value “0”. In this way, a general graphical model

2.3. EXAMPLE OF REAL APPLICATIONS AND BENCHMARKS 37

can be associated with a flattened version, i.e., a constraint network. In the following

chapters, when we refer to the constraint network of a general graphical model, we will be

referring to the flattened version of the model. When all tuples are consistent in a graphical

model’s flat constraint network, we say that the graphical model strictly positive.

2.3 Example of Real applications and Benchmarks

2.3.1 Linkage analysis

We describe next the problem of genetic linkage analysis [29], which is usually formu-

lated as a belief network, but can be represented as a mixed network to leverage the

deterministic information abundantly present.

Human cells contain 23 pairs of chromosomes, which are sequences of DNA containing

the genetic makeup of an individual and are inherited from a persons parents. Each pair

consists of one chromosome inherited from the persons father and one from their mother.

Locations on these chromosomes are referred to as loci (singular: locus). A locus which

has a specific function is known as a gene. These functions, which can be a result of a

combination of multiple genes, can determine a persons blood type, hair color, or their

susceptibility to a disease. The actual state of the genes is called the genotype and the

observable outcome of the genotype (e.g., trait) is called the phenotype. A genetic marker

is a locus with a known DNA sequence which can be found in each person in the general

population. These markers are used to help locate disease genes.

Each parent contains 23 pairs of chromosomes, however they each pass on 23 chromo-

somes, each resulting from a combination of their own pair, resulting in the child having

23 pairs. It is possible for the transferred copy to be entirely a duplicate of the chro-

mosome from the parents father or from the parents mother (the offsprings grandfather

or grandmother), however more likely it contains non-overlapping sequences from both.

The locations on the chromosome where the sequences switch between the two chromo-

somes of the parents are known as crossover or recombination events. The recombination

frequency, θ, (also called the recombination fraction) between two consecutive markers

is defined as the probability of a recombination event occurring between them. This

38 CHAPTER 2. BASICS OF GRAPHICAL MODELS

21

3

(a) Pedigree

pG 1,1
mG 1,1

pG 1,3
pS 1,3

(b) Constraint

pG 1,1
mG 1,1

1,1P

pG 1,2
mG 1,2

1,2P

pG 1,3
mG 1,3

1,3P

pS 1,3
mS 1,3

pG 2,1
mG 2,1

2,1P

pG 2,2
mG 2,2

2,2P

pG 2,3
mG 2,3

2,3P

pS 2,3
mS 2,3

Locus 1

Locus 2

(c) Mixed network

Figure 2.8: Genetic linkage analysis

frequency is related to the physical distance between them.

Figure 2.8(a) shows the simplest pedigree, with two parents (denoted by 1 and 2) and

an offspring (denoted by 3). Square nodes indicate males and circles indicate females.

Figure 2.8(c) shows the usual belief network that models this small pedigree for two

particular loci (locations on the chromosome). There are three types of variables, as

follows. The G variables are the genotypes (the values are the specific alleles, namely

the forms in which the gene may occur on the specific locus), the P variables are the

phenotypes (the observable characteristics). Typically these are evidence variables, and

for the purpose of the graphical model they take as value the specific unordered pair of

2.3. EXAMPLE OF REAL APPLICATIONS AND BENCHMARKS 39

alleles measured for the individual. The S variables are selectors (taking values 0 or 1)

are auxiliary variables representing gene flow in the pedigree. The upper script p stands

for paternal, and the m for maternal. The first subscript number indicates the individual

(the number from the pedigree in 2.8(a)), and the second subscript number indicates the

locus. The interactions between all these variables are indicated by the arcs in Figure

2.8(c).

Due to the genetic inheritance laws, many of these relationships are actually deter-

ministic. For example, the value of a selector variable determines the genotype variable.

Formally, if a is the father and b is the mother of x, then:

Gp
x,j =

{
Gp

a,j, if Sp
x,j = 0

Gm
a,j, if Sp

x,j = 1

and,

Gm
x,j =

{
Gp

b,j, if Sm
x,j = 0

Gm
b,j, if Sm

x,j = 1

The CPTs defined above are deterministic and functional, and can be captured by a

constraint, whose constraint graph is depicted graphically in Figure 2.8(b). The only real

probabilistic information is defined by the CPTs between selector variables and the prior

probabilities of the founders, namely the individuals having no parents in the pedigree.

Figure 2.8c provides description across 2 markers of the 3-member family. The transition

probabilities between selectors in different loci capturing the probability of recombination

is given by:

P (Sp
x,j|S

p
x,j−1) =

{
1− θ, θ

θ, 1− θ

Figure 2.9 provides the mixed network formulation of a founder variable (top of Fig-

ure), on the bottom left we have the probabilistic subnetwork that consists of three inde-

pendent variables and on the right there is a constraint subnetwork. Figure ?? describes

the 3 member family formulation as a mixed network.

Genetic linkage analysis is an example of a belief network that contains many deter-

ministic or functional relations that can be exploited as constraints. The typical reasoning

40 CHAPTER 2. BASICS OF GRAPHICAL MODELS

Figure 2.9: A non-founder mixed network: Figure should be redone

tasks are equivalent either to computing the probability of the evidence, or to maximum

probable explanation (e.g., haplotyping).

2.3.2 Probabilistic decoding

The purpose of channel coding is to provide reliable communication through a noisy chan-

nel. Transmission errors can be reduced by adding redundancy to the information source.

For example, a systematic error-correcting code [26] maps a vector of K information bits

u = (u1, ..., uK), ui ∈ {0, 1}, into an N -bit codeword c = (u, x), adding N −K code bits

x = (x1, ..., xN−K), xj ∈ {0, 1}. The code rate R = K/N is the fraction of the information

bits relative to the total number of transmitted bits. A broad class of systematic codes

includes linear block codes. Given a binary-valued generator matrix G, an (N,K) linear

block code is defined so that the codeword c = (u, x) satisfies c = uG, assuming summation

modulo 2. The bits xi are also called the parity-check bits. For example, the generator

matrix

1 0 0 0 1 1 0

2.3. EXAMPLE OF REAL APPLICATIONS AND BENCHMARKS 41

u u u1 2 3 u4

x x x1 2 3

y y y y1 2 3 4

y y y5 6 7

Figure 2.10: Belief network for a (7,4) Hamming code

G = 0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

defines a (7,4) Hamming code.

The codeword c = (u, x), also called the channel input, is transmitted through a noisy

channel. A commonly used Additive White Gaussian Noise (AWGN) channel model

assumes that independent Gaussian noise with variance σ2 is added to each transmitted

bit, producing a real-valued channel output y. Given y, the decoding task is to restore the

input information vector u [24, 26, 9].

The decoding problem can be formulated as a probabilistic inference task over a

Bayesian network [26]. For example, a (7,4) Hamming code can be represented by the

belief network in Figure 2.10, where the bits of u, x, and y vectors correspond to the

nodes, the parent set for each node xi is defined by non-zero entries in the (K + i)th

column of G, and the (deterministic) conditional probability function P (xi|pai) equals 1
if xi = uj1 ⊕ ... ⊕ ujp and 0 otherwise, where ⊕ is addition modulo 2. Each output bit

yj has exactly one parent, the corresponding channel input bit. The conditional density

function P (yj|xj) is a Gaussian (normal) distribution N(xj;σ), where the mean equals

the value of the transmitted bit, and σ2 is the noise variance.

The probabilistic decoding task can be formulated in two ways. Given the observed

output y, the task of bit-wise probabilistic decoding is to find the most probable value of

42 CHAPTER 2. BASICS OF GRAPHICAL MODELS

each information bit, namely:

u∗k = arg max
uk∈{0,1}

P (uk|y), for 1 ≤ k ≤ K.

The block-wise decoding task is to find a maximum a posteriori (maximum-likelihood)

information sequence

u′ = argmax
u

P (u|y).

Block-wise decoding is sometimes formulated as finding a most probable explanation

(MPE) assignment (u′, x′) to the codeword bits, namely, finding

(u′, x′) = argmax
(u,x)

P (u, x|y).

Accordingly, bit-wise decoding, which requests the posterior probabilities for each infor-

mation bit, can be solved by belief updating algorithms, while the block-wise decoding

translates to the MAP or MPE tasks, respectively.

In the coding community, decoding error is measured by the bit error rate (BER),

defined as the average percentage of incorrectly decoded bits over multiple transmitted

words (blocks). It was proven by Shannon [36] that, given the noise variance σ2, and

a fixed code rate R = K/N , there is a theoretical limit (called Shannon’s limit) on the

smallest achievable BER, no matter which code is used. Unfortunately, Shannon’s proof

is non-constructive, leaving open the problem of finding an optimal code that achieves

this limit. In addition, it is known that low-error (i.e., high-performance) codes tend to

be long [33], and thus intractable for exact (optimal) decoding algorithms [26]. [26].

Linear block codes can be represented by four-layer belief networks having K nodes

in each layer (see Figure 2.11). The two outer layers represent the channel output y =

(yu, yx), where yu and yx result from transmitting the input vectors u and x, respectively.

The input nodes are binary (0/1), while the output nodes are real-valued.

2.3.3 Networks from optimization and constraints

SPOT5 benchmark contains a collection of large real scheduling problems for the daily

management of Earth observing satellites [7]. These problems can be described as follows:

Given a set P of photographs which can be taken the next day from at least one of the

2.3. EXAMPLE OF REAL APPLICATIONS AND BENCHMARKS 43

x x x x x

u u u u u0 1 2 3 4

0 1 2 3 4

y y y y y

y y y y y

u u u u u
0

0

1 2 3 4

1 2 3 4

Figure 2.11: Belief network for structured (10,5) block code with P=3.

three instruments, w.r.t. the satellite trajectory; Given, for each photograph, a weight

expressing its importance; Given a set of imperative constraints: non overlapping and

minimal transition time between two successive photographs on the same instrument,

limitation on the instantaneous data flow through the satellite telemetry; The goal is

to find an admissible subset P0 of P which maximizes the sum of the weights of the

photographs in P0 when all imperative constraints are satisfied.

The can be modeled as a weighted CSP by:

• Associating a variable Xi with each photograph pi 2 P;

• Associating with Xi a domain Di to express the different ways of achieving pi and

adding to Di a special value, called rejection value, to express the possibility of not

selecting the photograph pi;

• Associating with every Xi an unary constraint forbidding the rejection value, with

a valuation equal to the weight of pi;

• Translating as imperative constraints (binary or ternary) the constraints of non

overlapping and minimal transition time between two (or three) photographs on the

same instrument, and of limitation on the instantaneous data flow. Each imperative

constraint is defined over a subset of two or three photographs and for each value

combination of its scope variables it associates a high penalty cost (106) if the

corresponding photographs cannot be taken simultaneously, on the same instrument.

44 CHAPTER 2. BASICS OF GRAPHICAL MODELS

The task is to compute: minX

∑r
i=1 fi, where r is the number of unary, binary and

ternary cost functions in the problem.

2.4 Bibliographical notes

2.5 Exercises

Chapter 3

Inference: Bucket-elimination for

Deterministic Networks

NOTE: What is a scheme? Is this a technical term? A scheme is another loose word for

an algorithm but hint on being more general. It may be a principle for many algorithms

This chapter is the first of three chapters in which we introduce the bucket elimina-

tion inference scheme. This scheme characterizes all inference algorithms over graphical

models, where by inference we mean algorithms that solve queries by inducing equivalent

model representations according to some set of inference rules. We will see that the bucket

elimination scheme is applicable to most, if not all, of the types of queries and graphical

models we discussed in Chapter 2, but its general structure and properties are most readily

understand in the context of constraint networks. Therefore, this chapter will introduce

bucket elimination in its application to constraint networks. In the next chapter, we will

apply this scheme to probabilistic inference and combinatorial optimization.

Bucket-elimination algorithms are knowledge-compilation methods: they generate an

equivalent representation of the input problem from which various queries are answerable

in polynomial time. In this chapter, this target query is whether or not an input network

is consistent.

To illustrate the basic idea behind bucket elimination, let’s walk through a simple

constraints problem. Consider the graph coloring problem in Figure 3.1. The task is to

assign a color (green or red) to each node in the graph so that adjacent nodes will have

different colors. Here is one way to solve this problem: consider node E first. It can be

45

46CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

C

A B

D

E
{green,red}

{green,red}

{green,red}{green,red}

{green,red}

Figure 3.1: A graph coloring example

colored either green or red. Since only two colors are available it follows that D and C

must have identical colors; thus, C = D can be inferred, and we can add this as a new

constraint in our network. We focus on variable C next. Together, the inferred constraint

C = D and the input constraint C ̸= B imply that D ̸= B, and we add this constraint

to the problem. Having taken into account the effect of E and C on the other variables

in the network, we can ignore them from now on. Continuing in this fashion with node

D, we infer A = B. However, since there is an input constraint A ̸= B we have reached

a contradiction and can conclude that the original set of constraints is inconsistent.

The algorithm which we just executed, is known as Adaptive-consistency in the con-

straint literature [15] and it can solve any constraint satisfaction problem. The algorithm

works by processing and eliminating variables one by one, while deducing the effect of the

eliminated variable on the rest of the problem. The elimination operation first joins all

the relations that are defined on the current variable and then projects out the variable.

Adaptive-consistency can be described using a data structure called buckets as follows:

given an ordering ordering of the variables, we process the variables from last to first. In

the previous example, the ordering was d = A,B,D,C,E, and we processed the variables

from E to A. The first step is to partition the constraints into ordered buckets, so that the

bucket for the current variable contains all constraints that mention the current variable

and that have not been placed in a previous bucket. In our example, all the constraints

47

mentioning the last variable E are put in a bucket designated as bucketE. Subsequently,

all the remaining constraints mentioning D are placed in D’s bucket, and so on. The ini-

tial partitioning of the constraints is depicted in Figure 3.2a. In general, each constraint

is placed in the bucket of its latest variable.

After this initialization step, the buckets are processed from last to first. This means

that we compute the constraint that the bucket-variable induce on the variables that

precede it in the ordering. As we saw, processing bucket E produces the constraint

D = C, which is placed in bucket C. By processing bucket C, the constraint D ̸= B is

generated and placed in bucket D. While processing bucket D, we generate the constraint

A = B and put it in bucket B. When processing bucket B inconsistency is discovered

between the inferred A ̸= B and the input constraint A = B. The buckets’ final contents

are shown in Figure 3.2b. The new inferred constraints are displayed to the right of the

bar in each bucket.

Observe that at each step, one variable and all its related constraints are, in fact,

solved, and a constraint is inferred on all of the rest of the participating variables. It can

be shown that once all the buckets are processed, and if no inconsistencies were discovered,

a solution can be generated in a backtrack-free manner. This means that a solution can

be assembled by assigning values to the variables progressively, starting with the first

variable in ordering d and proceeding to the last. It is guaranteed that this process will

continue until all the variables are assigned a value from their respective domains, thus

yielding a solution to the problem.

In general, the input to a bucket elimination algorithm is a graphical model and

a query. The graphical model is specified by a collection of functions over subsets of

variables. The algorithm partitions these functions into buckets, with each bucket indexed

by a single variable. The partition depends only on the ordering of the variables and

their scopes: a bucket contains a function if the function has the bucket’s variable as an

argument and if the function has no later variable as an argument. Once the partitioning

is completed, buckets are processed from last to first. When a specific bucket, say bucketX ,

is processed, an “elimination procedure” is applied to the functions in bucketX that results

in a new function that does not have X as an argument. We say that the function does

not ”mention” X. This function summarizes the “effect” of X on the remainder of the

48CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

Bucket(E): E ̸= D, E ̸= C

Bucket(C): C ̸= B

Bucket(D): D ̸= A,

Bucket(B): B ̸= A,

Bucket(A):

(a)

Bucket(E): E ̸= D, E ̸= C

Bucket(C): C ̸= B || D = C

Bucket(D): D ̸= A, || , D ̸= B

Bucket(B): B ̸= A, || B = A

Bucket(A): ||
(b)

Figure 3.2: A schematic execution of adaptive-consistency

problem and is placed in on the unprocessed buckets, according to the function placement

rule.

3.1 The case of Constraint Networks

We have encountered an informal definition of the bucket elimination algorithm on con-

straint networks called Adaptive-consistency. Here we will provide a formal definition

of the algorithm, using the formalism of constraint networks introduced in the previous

chapter and utilizing the the following operations:

Definition 3.1.1 (operations on constraints:select,project,join) Let R be a rela-

tion on a set S of variables, let Y ⊆ S be a subset of the variables, and let YI be an

instantiation of the variables in Y . We denote by σYI
(R) the selection of those tuples in

R that agree with YI . We denote by ΠY (R) the projection of the relation R on the subset

Y ; that is, a tuple over Y appears in ΠY (R) if and only if it can be extended to a full

tuple in R. Let RS1 be a relation on a set S1 of variables and let RS2 be a relation on a

set S2 of variables. We denote by RS1 1 RS2 the natural join of the two relations. The

join of RS1 and RS2 is a relation defined over S1∪S2 containing all the tuples t, satisfying

t[S1] ∈ RS1 and t[S2] ∈ RS2.

3.1. THE CASE OF CONSTRAINT NETWORKS 49

Adaptive-Consistency (AC)

Input: a constraint network R = (X ,D,R), an ordering d = (x1, . . . , xn)

output: A backtrack-free network, denoted Ed(R), along d, if the empty constraint

was not generated. Else, the problem is inconsistent

1. Partition constraints into bucket1, . . . , bucketn as follows:

for i ← n downto 1, put in bucketi all unplaced constraints

mentioning xi.

2. for p← n downto 1 do

3. for all the constraints RS1 , . . . , RSj
in bucketp do

4. A←
∪j

i=1 Si − {xp}
5. RA ← ΠA(1

j
i=1 RSi

)

6. if RA is not the empty relation then add RA to the bucket of the

latest variable in scope A,

7. else exit and return the empty network

8. return Ed(R) = (X,D, bucket1 ∪ bucket2 ∪ · · · ∪ bucketn)

Figure 3.3: Adaptive-Consistency as a bucket-elimination algorithm

50CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

Using these operations, Adaptive-consistency can be specified as in Figure 3.3. In

step 1 the algorithm partitions the constraints into buckets whose structure depends on

the variable ordering used. The main bucket operation is given in steps 4 and 5.

The adaptive-consistency algorithm specifies that it returns a “backtrack-free” network

along the ordering d. A common approach to finding a solution in a constraint satisfaction

problem is to perform backtracking search, that is, to assign values to the variables in

a certain order, checking the relevant constraints, until an assignment is made to all

the variables or a dead-end is reached where no consistent values exist. If a dead-end

is reached, backtracking search will return to a previous variable, change its value, and

proceed again along the ordering. We say that a network is backtrack-free along an

ordering d of its variables if it is guaranteed that a dead-end will never occur.

Theorem 3.1.2 (Correctness and Completeness of Adapative-consistency) [15]

Given a set of constraints and an ordering of variables, Adaptive-consistency decides if a

set of constraints is consistent, and, if it is, the algorithm generates an equivalent repre-

sentation that is backtrack-free along the input variable ordering. 2

Proof: see exercises

What is the complexity of adaptive-consistency? It is clearly linear in the number of

buckets and the time to process each bucket. However, since processing a bucket amounts

to solving a constraint-satisfaction subproblem (generating the join of all relations) its

complexity is exponential in the number of variables mentioned in a bucket. Conveniently,

the number of variables appearing in a bucket using a given ordering, can be obtained using

the induced-width of the graph along that ordering. The induced-width is an important

graph parameter that is instrumental to all bucket-elimination algorithms, and we define

it here.

Definition 3.1.3 (induced-width) Given an undirected graph G = (V,E), an ordered

graph is a pair (G, d), where V = {v1, ..., vn} is the set of nodes, E is a set of arcs over

V , and d = (v1, ..., vn) is an ordering of the nodes. The nodes adjacent to v that precede

it in the ordering are called its parents. The width of a node in an ordered graph is its

number of parents. The width of an ordering d, denoted w(d), is the maximum width over

all nodes. The width of a graph is the minimum width over all the orderings of the graph.

3.1. THE CASE OF CONSTRAINT NETWORKS 51

Example 3.1.4 Consider the graph coloring problem depicted in Figure 3.4 (domains

are numbers). The figure shows a schematic execution of adaptive-consistency using the

bucket data structure for the two orderings d1 = (E,B,C,D,A) and d2 = (A,B,D,C,E).

The initial constraints, partitioned into buckets for both orderings, are displayed in the

figure to the left of the double bars, while the constraints generated by the algorithm are

displayed to the right of the double bar, in their respective buckets. Let’s focus first on

ordering d2: as shown in 3.5, adaptive-consistency proceeds from E to A and imposes

constraints on the parents of each processed variable, which are those variables appearing

in its bucket. To process E’s bucket all three constraints in the buckets are solved

and the set of solutions is projected over D,C, and B, recording the ternary constraint

RDCB which is placed in the bucket of C (see Figure 3.5 for details). Next, the algorithm

processes C’s bucket which contains C ̸= A and the new constraint RDCB. (For the

explicit constraint see Figure 3.5). Joining these two constraints and projecting out D

yields a constraint RDB that is placed in the bucket of D, and so on.

Applying adaptive-consistency along ordering d1 generates a different set of con-

straints. Note that while ordering d1 generates only binary constraints, ordering d2 gen-

erates a ternary constraint.

A couple of notes on our presentation of bucket-elimination: notice that for the order-

ing d1, the constraint B ̸= E generated in the bucket of D is displayed – for illustration

only – in the bucket of B (in parentheses), since there is already an identical original

constraint. So the constraint is redundant. Also, the constraint RBE, recorded when

processing bucket C, is the universal constraint and should therefore not be recorded at

all; we chose to display it only to illustrate the general case.

An alternative graphical illustration of the algorithm’s performance along d2 is given in

Figure 3.5. The figure shows, through the changing graph, how constraints are generated

in ordering d2 = A,B,D,C,E, and how a solution is created in the reverse order.

Generating the induced-graph along the orderings d1 = E,B,C,D,A and d2 = A,B,D,C,E

leads to the two graphs in Figure 3.6. The broken arcs are the newly added arcs. The

induced width along d1 and d2 are 2 and 3 respectively. They suggest different perfor-

mance bounds for adaptive-consistency because the number of variables in a bucket is

bounded by the number of parents of the corresponding variable in the induced ordered

graph which is equal to its induced-width.

Theorem 3.1.5 The time and space complexity of Adaptive-Consistency is O(n·(2k)w∗(d)+1)

and O(n · kw∗(d)) respectively, where n is the number of variables, k bounds the domain

52CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

C

A B

D

E

{1,2}

{1,2,3}{1,2}

{1,2} {1,2}

Ordering d1

Bucket(A): A ̸= D, A ̸= B

Bucket(D): D ̸= E || RDB

Bucket(C): C ̸= B C ̸= E

Bucket(B): B ̸= E || R1
BE , R

2
BE

Bucket(E): || RE

Ordering d2
Bucket(E): E ̸= D, E ̸= C, E ̸= B

Bucket(c): C ̸= B || RDCB

Bucket(D): D ̸= A || RDB(= D = B)

Bucket(B): B ̸= A || RAB(= R ̸= B)

Bucket(A): || RA

Figure 3.4: A modified graph coloring problem

3.1. THE CASE OF CONSTRAINT NETWORKS 53

E D B C
1 2 2 2
1 2 2 3
2 2 2 2
2 1 1 3

2 2 3
1 1 3

D B C

E

D

E

D

C

C

C

eliminating E

{1,2}

{1,2,3}

{1,2}

{1,2}

= R

D B C
2 2 2
2 2 3
1 1 3

DBC

E

A
A

D

B

B

D
DBC

R

A
B

{1,2}

D = B

A =1 B = 2 D = 2

C =3

= 1

{1,2,3}

eliminating C

BA
{1,2}

{1,2}

A
{1,2}

{1,2}B

{1,2}

{1,2,3}

Figure 3.5: A schematic variable-elimination and solution genration process is backtrack-

free (comment: change the order of d2)

54CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

E

D

A

D

C

B

A

C

B

E

W*(D)= 3

W*(D)= 2

W*(d) = 3 W*(d) = 2

Figure 3.6: The induced width along the orderings: d1 = A,B,C,D,E and d2 =

E,B,C,D,A

size and w∗(d) is the induced-width along the order of processing d. If r is the number of

the problems’ constraints, the complexity can also be bounded by O((r + n)kw
∗(d)+1).

Proof: The number of constraints (relations) in each bucket will increase to at most

2w
∗(d)+1 relations, because there are at most w∗(d) + 1 variables in a bucket. Therefore

testing that many constraints over all O((k)w
∗(d)+1) tuples yields the overall complexity

of O(n · (2k)w∗(d)+1). Alternatively, since the total number of input functions plus those

generated is bounded by 2r and since the computation in a bucket is O(rik
w∗(d)+1), where

ri is the number of functions in bucket i, the total over all buckets is O((r + n)kw
∗(d)+1)

2

The above analysis suggests that problems having bounded induced width (w∗ ≤ b)

for some constant b can be solved in polynomial time. In particular, observe that when

the graph is cycle-free its width and induced width are 1. Consider, for example, ordering

d = (A,B,C,D,E, F,G) for Figure 3.7. As demonstrated by the schematic execution

along d in Figure 3.7, adaptive-consistency generates only unary relationships in this

cycle-free graph.

It is interesting to note that on trees the algorithm can be accomplished in a distributed

manner as a message passing algorithm which converges to exact solution. We will come

back to this point later in Chapter ??.

3.2. BUCKET ELIMINATION FOR PROPOSITIONAL CNFS 55

A

B C

D E F G
bucket(G)

bucket(F)

Bucket(E)

bucket(C)

bucket(B)

R
CG

R CF

R
EB

R
DB

R
CA

R
BA D B

D
A

D
A

CD

bucket(A)

bucket(D)

D
C

DB

1 2

1 2

21

Figure 3.7: Schematic execution of adaptive-consistency on a tree network. DX denotes

unary constraints over X

.

3.2 Bucket elimination for Propositional CNFs

Since propositional CNF formulas, discussed in Chapter 2, are special case of constraint

networks, we might wonder what adaptive consistency looks like when applied to them.

Propositional variables take only two values {true, false} or “1” and “0.” We de-

note propositional variables by uppercase letters P,Q,R, . . ., propositional literals (i.e.,

P =“true” or P =“false”) by P and ¬P and disjunctions of literals, or clauses, are

denoted by α, β, A unit clause is a clause of size 1. The notation (α ∨ T), when
α = (P ∨Q∨R) is shorthand for the disjunction (P ∨Q∨R∨T). α∨β denotes the clause

whose literal appears in either α or β. The resolution operation over two clauses (α ∨Q)
and (β ∨¬Q) results in a clause (α ∨ β), thus eliminating Q. A formula φ in conjunctive

normal form (CNF) is a set of clauses φ = {α1, . . . , αt} that denotes their conjunction.

The set of models or solutions of a formula φ is the set of all truth assignments to all its

symbols that do not violate any clause in φ. Deciding if a theory is satisfiable is known

to be NP-complete [20].

It turns out that the join-project operation used to process and eliminate a variable

by adaptive-consistency over relational constraints translates to pair-wise resolution when

56CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

applied to clauses [18].

Definition 3.2.1 (extended composition) The extended composition of relation RS1,

. . . , RSm relative to a subset of variables A ⊆
∪m

i=1 Si, denoted ECA(RS1 , . . . , RSm), is

defined by

ECA(RS1 , . . . , RSm) = πA(1
m
i=1 RSi

)

When the operator is applied to m relations, it is called extended m-composition. If

the projection operation is restricted to subsets of size i, it is called extended (i,m)-

composition.

Extended composition is the operation applied in each bucket by adaptive-consistency.

We next show that the notion of resolution is equivalent to extended 2-composition.

Example 3.2.2 Consider the two clauses α = (P ∨ ¬Q ∨ ¬O) and β = (Q ∨ ¬W).

Now let the relation RPQO = {000, 100, 010, 001, 110, 101, 111} be the models of α and

the relation RQW = {00, 10, 11} be the models of β. Resolving these two clauses over

Q generates the resolvent clause γ = res(α, β) = (P ∨ ¬O ∨ ¬W). The models of

γ are {(000, 100, 010, 001, 110, 101, 111}. It is easy to see that ECPQW (RPQO, RQW) =

πRQW (RPQO 1 RQw) yields the models of γ.

Indeed,

Lemma 3.2.3 The resolution operation over two clauses, (α ∨Q) and (β ∨ ¬Q), results
in a clause (α ∨ β) satisfying models(α ∨ β) = ECQ′(models(α ∨ Q),models(β ∨ ¬Q)),
where Q′ is the union of scopes of both clauses excluding Q. 2

Replacing extended decomposition by resolution in adaptive consistency yields a bucket-

elimination algorithm for propositional satisfiability which we call directional resolution

(DR).

We call the output theory of Directional Resolution, Ed(φ), the directional extension

of φ. Given an ordering d = (Q1, ..., Qn), all the clauses containing Qi that do not contain

any symbol higher in the ordering are placed in the bucket of Qi, denoted bucketi. The

algorithm processes the buckets in the reverse order of d. Processing of bucketi means

resolving over Qi all the possible pairs of clauses in the bucket and inserting the resolvents

into appropriate lower buckets.

3.2. BUCKET ELIMINATION FOR PROPOSITIONAL CNFS 57

Directional-Resolution (DR)

Input: A CNF theory φ, an ordering d = Q1, . . . , Qn of its variables.

Output:A decision of whether φ is satisfiable. If it is, a theory Ed(φ),

equivalent to φ, else an empty directional extension.

1. Initialize: generate an ordered partition of clauses into buckets

bucket1, . . . , bucketn, where bucketi contains all clauses whose

highest variable is Qi.

2. for i← n downto 1 process bucketi:

3. if there is a unit clause then (the instantiation step)

apply unit-resolution in bucketi and place the resolvents in their right buckets.

if the empty clause was generated, theory is not satisfiable.

4. else resolve each pair {(α ∨Qi), (β ∨ ¬Qi)} ⊆ bucketi.

if γ = α ∨ β is empty, return Ed(φ) = {}, the theory is not satisfiable

else determine the index of γ and add it to the appropriate bucket.

5. return Ed(φ)←
∪

i bucketi

Figure 3.8: Directional-resolution

58CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

Note that if the bucket contains a unit clause (Qi or ¬Qi), only unit resolutions are

performed. As implied by Theorem 3.1.5, DR is guaranteed to generate a backtrack-free

representation along the order of processing. Indeed, as already observed in the above

example, once all the buckets are processed, and if the empty clause was not generated,

a truth assignment (model) can be assembled in a backtrack-free manner by consulting

Ed(φ), using the order d.

Example 3.2.4 Given the input theory φ1 = {(¬C), (A∨B ∨C), (¬A∨B ∨E), (¬B ∨
C ∨D)}, and an ordering d = (E,D,C,B,A), the theory is partitioned into buckets and

processed by directional resolution in reverse order. Resolving over variable A produces a

new clause (B∨C∨E), which is placed in bucketB. Resolving over B then produces clause

(C∨D∨E), which is placed in bucketC . Finally, resolving over C produces clause (D∨E),
which is placed in bucketD. Directional resolution now terminates, since no resolution can

be performed in bucketD and bucketE. The output is a non-empty directional extension

Ed(φ1). Once the directional extension is available, model generation can begin. There

are no clauses in the bucket of E, the first variable in the ordering, and therefore E can

also be assigned any value (e.g., E = 0). Given E = 0, the clause (D ∨ E) in bucketD
implies D = 1, clause ¬C in bucketC implies C = 0, and clause (B ∨ C ∨ E) in bucketB,
together with the current assignments to C and E, implies B = 1. Finally, A can be

assigned any value since both clauses in its bucket are satisfied by previous assignments.

The initial partitioning into buckets along the ordering d as well as the buckets’ contents

generated by the algorithm following resolution over each bucket are depicted in Figure

3.9.

Not surprisingly, the complexity of directional-resolution is exponentially bounded

(time and space) in the induced width of the theory’s interaction graph along the order

of processing. Notice that the graph of theory φ1 along the ordering d depicted also in

Figure 3.9 has an induced width of 3.

Lemma 3.2.5 Given a theory φ and an ordering d = (Q1, ..., Qn), if Qi has at most k

parents in the induced graph along d, then the bucket of Qi in Ed(φ) contains no more

than 3k+1 clauses.

Proof: Given a clause α in the bucket of Qi, there are three possibilities for each parent

P of Qi: either P appears in α, ¬P appears in α, or neither of them appears in α. Since

3.3. BUCKET ELIMINATION FOR LINEAR INEQUALITIES 59

A

B

D

C

E

Bucket A

Input

A⁄B⁄C ¬A⁄B⁄E

Bucket B

Bucket D

Bucket C

Bucket E

¬B⁄C⁄D B⁄C⁄E

¬C C⁄D⁄E

D⁄E

Induced width w* = 3Directional extension EO

Figure 3.9: A schematic execution of directional resolution using ordering d =

(E,D,C,B,A)

Qi also appears in α, either positively or negatively, the number of possible clauses in a

bucket is no more than 2 · 3k < 3k+1.

Since the number of parents of each variable is bounded by the induced-width along

the order of processing we get:

Theorem 3.2.6 (complexity of DR)

Given a theory φ and an ordering of its variables d, the time complexity of algorithm DR

along d is O(n ·9w∗
d), and Ed(φ) contains at most n ·3w∗

d+1 clauses, where w∗
d is the induced

width of φ’s interaction graph along d. 2

3.3 Bucket elimination for linear inequalities

A special type of constraint is one that can be expressed by linear inequalities. The

domains may be the real numbers, the rationals or finite subsets. In general, a linear

constraint between r variables or less is of the form
∑r

i=1 aixi ≤ c, where ai and c are

rational constants. For example, (3xi+2xj ≤ 3)∧(−4xi+5xj ≤ 1) are allowed constraints

60CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

between variables xi and xj. In this special case, variable elimination amounts to the

standard Gaussian elimination. From the inequalities x− y ≤ 5 and x > 3 we can deduce

by eliminating x that y > 2. The elimination operation is defined by:

Definition 3.3.1 Let α =
∑(r−1)

i=1 aixi + arxr ≤ c, and β =
∑(r−1)

i=1 bixi + brxr ≤ d. Then

elimr(α, β) is applicable only if ar and br have opposite signs, in which case elimr(α, β) =∑r−1
i=1 (−ai

br
ar
+ bi)xi ≤ − br

ar
c+d. If ar and br have the same sign the elimination implicitly

generates the universal constraint.

It is possible to show that the pair-wise join-project operation applied in a bucket can

be accomplished by linear elimination as defined above. Applying adaptive-consistency

to linear constraints and processing each pair of relevant inequalities in a bucket by

linear elimination yields a bucket elimination algorithm Directional Linear Elimination

(abbreviated DLE), which is the well known Fourier elimination algorithm. (see [?]).

As in the case of propositional theories, the algorithm decides the solvability of any

set of linear inequalities over the Rationals and generates a problem representation which

is backtrack-free. The algorithm is summarized in Figure 3.10.

Theorem 3.3.2 Given a set of linear inequalities φ, algorithm DLE (Fourier elimina-

tion) decides the consistency of φ over the Rationals and the Reals, and it generates an

equivalent backtrack-free representation. 2

Example 3.3.3 Consider the set of inequalities over the Reals:

φ(x1, x2, x3, x4) = {(1) 5x4 + 3x2 − x1 ≤ 5, (2) x4 + x1 ≤ 2, (3) − x4 ≤ 0,

(4) x3 ≤ 5, (5) x1 + x2 − x3 ≤ −10, (6) x1 + 2x2 ≤ 0}.

The initial partitioning into buckets is shown in Figure 3.11. Processing bucket4, which

involves applying elimination relative to x4 over inequalities {(1),(3)} and {(2),(3)}, re-
spectively, results in 3x2 − x1 ≤ 5, placed into bucket2, and x1 ≤ 2, placed into bucket1.

Next, processing the two inequalities x3 ≤ 5, and x1 + x2 − x3 ≤ −10 in bucket3 elimi-

nates x3, yielding x1+x2 ≤ −5 placed into bucket2. When processing bucket2, containing

x1 + 2x2 ≤ 0, 3x2 − x1 ≤ 5, and x1 + x2 ≤ −5, no new inequalities are added. The final

set of buckets is displayed in Figure 3.12.

3.3. BUCKET ELIMINATION FOR LINEAR INEQUALITIES 61

Directional-Linear-Elimination (φ, d)

Input: A set of linear inequalities φ, an ordering d = x1, . . . , xn.

Output:A decision of whether φ is satisfiable. If it is, a backtrack-

free theory Ed(φ).

1. Initialize: Partition inequalities into ordered buckets.

2. for i← n downto 1 do

3. if xi has one value in its domain then

. substitute the value into each inequality in the bucket

and put the resulting inequality in the right bucket.

4. else,for each pair {α, β} ⊆ bucketi, compute γ = elimi(α, β)

if γ has no solutions, return Ed(φ) = {}, “inconsistency”
else add γ to the appropriate lower bucket.

5. return Ed(φ)←
∪

i bucketi

Figure 3.10: Fourier Elimination; DLE

bucket4 : 5x4 + 3x2 − x1 ≤ 5, x4 + x1 ≤ 2, − x4 ≤ 0,

bucket3 : x3 ≤ 5, x1 + x2 − x3 ≤ −10
bucket2 : x1 + 2x2 ≤ 0.

bucket1 :

Figure 3.11: initial buckets

bucket4 : 5x4 + 3x2 − x1 ≤ 5, x4 + x1 ≤ 2, − x4 ≤ 0,

bucket3 : x3 ≤ 5, x1 + x2 − x3 ≤ −10
bucket2 : x1 + 2x2 ≤ 0 || 3x2 − x1 ≤ 5, x1 + x2 ≤ −5
bucket1 : || x1 ≤ 2.

Figure 3.12: final buckets

62CHAPTER 3. INFERENCE: BUCKET-ELIMINATION FORDETERMINISTIC NETWORKS

Once the algorithm is applied, we can generate a solution in a backtrack-free manner

as usual. Select a value for x1 from its domains that satisfies the unary inequalities in

bucket1. From there on, after selecting assignments for x1, . . . , xi−1, select a value for xi

that satisfies all the inequalities in bucketi. This is an easy task, since all the constraints

are unary once the values of x1, . . . , xi−1 are determined.

The complexity of Fourier elimination is not, however, bounded exponentially by the

induced width. The reason is that the number of linear inequalities that can be specified

over a scope of size i cannot be bounded exponentially by i.

Chapter 4

Inference: Bucket-Elimination for

Probablistic Networks

Having investigated bucket-elimination in the deterministic constraint networks in the

previous chapter, we now present the bucket-elimination algorithm for the three primary

queries defined over probabilistic networks: 1) belief-updating or computing posterior

marginals as well as finding the probability of evidence 2) finding the most probable

explanation (mpe) and 3) finding the maximum a posteriori hypothesis (map).

4.1 Belief Assessment and Probability of Evidence

Belief updating is the primary inference task over belief networks. The task is to update

the posterior probability of singleton variables once new evidence arrives. For instance,

if we are interested in likelihood that the sprinkler was last night (as we were in a belief

network example in Chapter 2), then will need to update this likelihood if we observe

that the pavement near the sprinkler is slippery. More generally, we are sometime asked

to compute the posterior marginals of a subset of variables. The second primary query

over belief networks, computing the probability of the evidence, is tightly related to belief

updating; namely, it is to update the joint likelihood of a specific subset of variable

assignments. We will show in this chapter how these tasks can be computed by the

bucket-elimination scheme. We will use the following notations:

Notation 4.1.1 (elimination functions) Given a function h defined over scope S (a

63

64CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

subset of variables and an X ∈ S, the functions (minXh), (maxXh), (meanXh), and

(
∑

X h) are defined over U = S − {X} as follows: (NOTE: the U = u notation is really

confusing in the context. We were just thinking of U as a set and now we’re making it

a random variable without an warning). for every assignment U = u, (minXh)(u) =

minx h(u, x), (maxXh)(u) = maxx h(u, x), (
∑

X h)(u) =
∑

x h(u, x). meanXh(u) =
1

|X|
∑

x h(u, x). (NOTE: there should probably be a better way to write this than h(u, x)

which makes it seem like the function h is of 2 variables rather than len(S) variables.

Maybe: h(u, x1, . . . , xn)?) Given a set of functions h1, ..., hj defined over the subsets

S1, ..., Sj, the product function (Πjhj) and
∑

j hj are defined over the scope U = ∪jSj as

follows. For every U = u, (Πjhj)(u) = Πjhj(uSj
), and (

∑
j hj)(u) =

∑
j hj(uSj

).

We will distinguish probabilistic functions (i.e., CPTs) given in the input of the

Bayesian networks from probabilistic functions generated during computation. So, as

we did so far, by P (X|Y) we denote an input CPT of variable X given its parent set

Y , while derived probability functions will be denoted by Prs or λs. Same goes for the

specific parameters P (x|y) or Pr(x|y) for specific values in the domains of the respective

variables X and Y .

4.1.1 Deriving BE-bel

We next present a step by step derivation of a general variable-elimination algorithm

for belief updating. This algorithm is similar to adaptive-consistency, but the join or

project operators of adaptive-consistency are replaced, respectively, with the operations

of product and summation. We begin with an example and then proceed to describe the

general case.

Let X = x1 be an atomic proposition (e.g., pavement = slippery). The problem is

to compute both the conditional probability of x1 given evidence e, Pr(x1|e), and the

probability of the evidence Pr(e). By Bayes rule P (x1|e) = α · P (x1, e), where α is the

normalization constant 1
P (e)

.

To develop the algorithm in a specific case, we will use a previous example of belief

networks, 2.1.10 (Figure 2.5), and assume the evidence is g = 1.

Consider the variables in the order d1 = A,C,B, F,D,G. We want to compute Pr(A =

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 65

a|g = 1) or Pr(A = a, g = 1). By definition

Pr(a, g = 1) =
∑

c,b,e,d,g=1

Pr(a, b, c, d, e, g) =
∑

c,b,f,d,g=1

P (g|f)P (f |b, c)P (d|a, b)P (c|a)P (b|a)P (a).

We can now apply some simple symbolic manipulation, migrating each conditional prob-

ability table to the left of the summation variables which it does not reference. We get

Pr(a, g = 1) = P (a)
∑
c

P (c|a)
∑
b

P (b|a)
∑
f

P (f |b, c)
∑
d

P (d|b, a)
∑
g=1

P (g|f). (4.1)

Carrying the computation from right to left (from G to A), we first compute the right-

most summation, which generates a function over f that we denote by λG(f), defined by:

λG(f) =
∑

g=1 P (g|f) and place it as far to the left as possible, yielding

Pr(a, g = 1) = P (a)
∑
c

P (c|a)
∑
b

P (b|a)
∑
f

P (f |b, c)λG(f)
∑
d

P (d|b, a). (4.2)

(We index a generated function by the variable that was summed over to create it; for

example, we created λG(f) by summing over G.) Summation removes or eliminates a

variable from the calculation.

As shown, for emphasis we index a function generated by the variable (in our case G)

which is summed out. By summation we remove or eliminate a variable. Summing next

over D (generating a function denoted λD(b, a), defined by λD(a, b) =
∑

d P (d|a, b)), we
get

Pr(a, g = 1) = P (a)
∑
c

P (c|a)
∑
b

P (b|a)λD(a, b)
∑
f

P (f |b, c)λG(f) (4.3)

Next, summing over F (generating λF (b, c) =
∑

f P (f |b, c)λG(f)), we get,

Pr(a, g = 1) = P (a)
∑
c

P (c|a)
∑
b

P (b|a)λD(a, b)λF (b, c) (4.4)

Summing over B (generating λB(a, c)), we get

Pr(a, g = 1) = P (a)
∑
c

P (c|a)λB(a, c) (4.5)

Finally, summing over C (generating λC(a)), we get

P (a)λC(a) (4.6)

66CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

bucketG = P (g|f), g = 1

bucketD = P (d|b, a)
bucketF = P (f |b, c)
bucketB = P (b|a)
bucketC = P (c|a)
bucketA = P (a)

Figure 4.1: Initial partitioning into buckets using d1 = A,C,B, F,D,G

The answer to the query Pr(a|g = 1) can be computed by normalizing the last prod-

uct. Namely, Pr(A = a|g = 1) = αP (a) · λC(a) where α = 1
Pr(g=1)

and Pr(g = 1) =∑
a P (a)λC(a) is the probability of the evidence g = 1.

We can create a bucket-elimination algorithm for this same calculation by mimicking

the above algebraic manipulation, using buckets as the organizational device for the various

sums. First, we partition the conditional probability tables (CPTs, for short) into buckets

relative to the given order, d1 = A,C,B, F,D,G. In bucket G we place all functions

mentioning G. From the remaining CPTs we place all those mentioning D in bucket D,

and so on. This precisely the partition rule we used in the adaptive-consistency algorithm

for constraint networks. This results in the initial partitioning given in Figure 4.1. Note

that observed variables are also placed in their corresponding bucket.

Initializing the buckets corresponds to deriving the expression in Eq. (4.1). Now we

process the buckets from last to first (or top to bottom in the figures), implementing

the right to left computation in Eq. (4.1). Processing a bucket amounts to eliminating

the variable in the bucket from subsequent computation. bucketG is processed first. We

eliminate G by summing over all values of g, but since we have observed that g = 1, the

summation is over a singleton value. The function λG(f) =
∑

g=1 P (g|f) = P (g = 1|f), is
computed and placed in bucketF . In our calculations above, this corresponds to deriving

Eq. (4.2) from Eq. (4.1)). Once we have have created a new function, it is placed a lower

bucket in accordance with the same rule we used to partition in the original CPTs.

Following order d1, we proceed by processing bucketD, summing over D all the func-

tions that are in its bucket. The resulting function λD(b, a) =
∑

d P (d|b, a) is placed in

bucketB. Subsequently, we process the buckets for variables F,B, and C in order, each

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 67

sum B

Bucket G

Bucket D

Bucket F

Bucket B

Bucket C

Bucket A

P(b | a)

P(c | a)

P(a)

P(d | b, a)

P(f | b, c)
G

(f)

D
(b,a) F

(b, c)

B
(a, c)

C
(a)

P(g | f) g = 1

Figure 4.2: Bucket elimination along ordering d1 = A,C,B, F,D,G.

time summing over the relevant variable and moving the generated function into a lower

bucket according to the placement rule. Since the query here is to compute the posterior

marginal on A given g = 1, and bucketA contains P (a) and λC(a), we normalize that

product of those two functions to get the answer: P (a|g = 1) = α · P (a) · λC(a). Figure

4.2 summarizes the flow of this computation.

In this example, the generated λ functions were at most two-dimensional; thus, the

complexity of the algorithm using ordering d1 is (roughly) time and space quadratic in the

domain sizes. But is this also the case if we use a different variable ordering? Consider

ordering d2 = A,F,D,C,B,G. To enforce this ordering in our algebraic calculations we

require that the summations remain in order d2 from right to left, yielding:

P (a, g = 1) = P (a)
∑

f

∑
d

∑
c P (c|a)

∑
b P (b|a) P (d|a, b)P (f |b, c)

∑
g=1 P (g|f)

= P (a)
∑

f λG(f)
∑

d

∑
c P (c|a)

∑
b P (b|a) P (d|a, b)P (f |b, c)

= P (a)
∑

f λG(f)
∑

d

∑
c P (c|a)λB(a, d, c, f)

= P (a)
∑

f λg(f)
∑

d λC(a, d, f)

= P (a)
∑

f λG(f)λD(a, f)

= P (a)λF (a)

The analogous bucket elimination process for this ordering is shown in Figure 4.3a.

As before, we finish by calculating P (A = a|g = 1) according to P (A = a|g = 1) =

αP (a)λF (a).

We conclude this section with a general derivation of the bucket elimination algorithm

68CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

G

B

C

D

A

F

(b)

B

bucket

bucket

bucket

bucket

bucket

bucket

G

B

C

D

F

A

= P(g|f), g = 1

P(c | a)

λ (a, f, d)
C

D
(a, f)λ

λP(a)
F

(a)

= P(f | b,c), P(d | a,b), P(b|a)

λ (f, c, a, d)=

=

=

=

(a)

λ
G

(f)

Figure 4.3: The bucket’s output when processing along d2 = A,F,D,C,B,G

for probabilistic networks, called BE-bel. As a byproduct, this algorithm yields the prob-

ability of the evidence. Consider an ordering of the variables d = (X1, ..., Xn) and assume

we seek P (X1|e). Using the notation x̄i = (x1, ..., xi) and x̄
j
i = (xi, xi+1, ..., xj), where Fi

is the family of variable Xi, we want to compute:

P (x1, e) =
∑
x=x̄n

2

P (x̄n, e) =
∑
x̄
(n−1)
2

∑
xn

ΠiP (xi, e|xpai)

Separating Xn from the rest of the variables results in:

=
∑

x=x̄
(n−1)
2

ΠXi∈X−FnP (xi, e|xpai) ·
∑
xn

P (xn, e|xpan)ΠXi∈chnP (xi, e|xpai)

=
∑

x=x̄
(n−1)
2

ΠXi∈X−FnP (xi, e|xpai) · λn(xUn)

where

λn(xUn) =
∑
xn

P (xn, e|xpan)ΠXi∈chnP (xi, e|xpai) (4.7)

and Un denotes all the variables appearing withXn in a probability component, (excluding

Xn). The process continues recursively with Xn−1.

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 69

Thus, the computation performed in bucket Xn is captured by Eq. (4.7). Given

ordering d = X1, ..., Xn, where the queried variable appears first, the CPT s are partitioned

using the rule described earlier. Then buckets are processed from last to first. To process

each bucket, all the bucket’s functions, which we now refer to uniformly as λ1, ..., λj and

defined over scopes S1, ..., Sj are multiplied and the bucket’s variable is eliminated by

summation. The computed function is λp : Up → R, λp =
∑

Xp
Πj

i=1λi, where Up =

∪iSi −Xp. This function is placed in the bucket of its largest-index variable in Up. Once

all the buckets but the first are processed, the answer is available in the first bucket. If

we also process the first bucket we get the probability of the evidence. Algorithm BE-bel

is described formally in Figure 4.4. We conclude:

Theorem 4.1.2 When algorithm BE-Bel is applied along any ordering that starts with

X1 it computes the belief Pr(X1|e). It also computes the probability of evidence Pr(e) as

the inverse of the normalizing constant in the first bucket. 2

The bucket’s operations for BE-Bel

Processing a bucket requires two types of operations on the functions in those buckets; one

type is a combination operation, in this case product, which generates a function whose

scope is the union of the scopes of the bucket’s functions. The other type is an elimination

operation, in this case marginalization, which sums out the bucket’s variable. Let’s look

at an example of both these operations in one of the buckets used previously. Consider

the computation performed when processing the bucket of variable B along ordering d2.

The bucket will include three functions: P (F |B,C), P (D|A,B) and P (B|A). These

functions are displayed in Figure 4.5. To take the product of the functions P (F |B,C)
and P (B|A) we create a function of F,B,C,A where for each assignment the function

value is the product of the respective entries in the input functions. To eliminate variable

C by summation, or marginalize over C, we sum the function generated by the product

over all values in C ′s domain. Both the product and summation are depicted in Figure

4.6.

In general, the exact algorithm used to perform these operations can have a significant

impact on the performance. In particular, much depends on how the CPTs; if, for

70CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

Algorithm BE-bel

Input: A belief network B =< X ,D,G,P > where P =

{P1, ..., Pn}; an ordering of the variables, d = X1, ..., Xn; evidence

e.

Output: The belief Pr(x1|e) and Pr(e).
1. Initialize: Generate an ordered partition of the conditional

probability matrices, bucket1, ..., bucketn, where bucketi contains

all matrices whose highest variable is Xi. Put each observed vari-

able in its bucket. Let S1, ..., Sj be the subset of variables in the

processed bucket on which matrices (new or old) are defined.

2. Backward: For p← n downto 1, do

for all the matrices λ1, λ2, ..., λj in bucketp, do

• If (observed variable) Xp = xp appears in bucketp, assign

Xp = xp to each λi and then put each resulting function in

appropriate bucket.

• else, Up ←
∪j

i=1 Si − {Xp}. Generate λp =
∑

Xp
Πj

i=1λi and

add λp to the largest-index variable in Up.

3. Return: Pr(x1|e) = 1
α
Πjλ1j(x1) (where the λ1j are in bucket1),

Pr(e) = α =
∑

x1
Πλ1j is the normalizing constant.

Figure 4.4: Algorithm BE-bel

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 71

B C F P (F |B,C)
false false true 0.1

true false true 0.9

false true true 0.8

true true true 0.95

B A = winter D P (D|A,B)

false false true 0.3

true false true 0.9

false true true 0.1

true true true 1

A B P (B|A)
Summer false 0.2

Fall false 0.6

Winter false 0.9

Spring false 0.4

Figure 4.5: Processing the functions in the bucket of B

example, the CPTs are represented as matrixes, then we can exploit efficient matrix

multiplication algorithms.

4.1.2 Complexity

We saw that although BE-Bel can be applied along any ordering, its complexity varies

considerably across different orderings. Using ordering d1 we recorded functions on pairs of

variables only, while using d2 we had to record functions on four variables (see BucketC in

Figure 4.3a). The arity of the function generated during processing in a bucket equals the

number of variables appearing in that processed bucket, excluding the bucket’s variable

itself. Since computing and recording a function of arity r is time and space exponential

in r we conclude that the complexity of the algorithm is exponential in the size (number

of variables) of the largest bucket. The base of the exponent is a bound on a variable’s

domain size.

Fortunately, as was observed earlier for adaptive-consistency, the bucket sizes can be

easily predicted from an order associated with the elimination process. Consider the

moral graph of a given belief network. This graph has a node for each variable and any

two variables appearing in the same CPT are connected. The moral graph of the network

72CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

A B C F f(A,B,C, F) = P (F |B,C) · P (B|A)
summer false false true 0.2 × 0.1 =0.02

summer false true true 0.2 × 0.8 =0.16

fall false false true 0.6 × 0.1 = 0.06

fall false true true 0.6 × 0.8 = 0.46

winter false false true 0.9 × 0.1 = 0.09

winter false true true 0.9 × 0.8 = 0.72

spring false false true 0.4 × 0.1 =0.04

spring false true true 0.4 × 0.8 =0.32

summer true false true 0.8 × 0.9 =0.72

summer true true true 0.8 × 0.95 =0.76

fall true false true 0.4 × 0.9 =0.36

fall true true true 0.4 × 0.95 =0.38

winter true false true 0.1 × 0.9 =0.09

winter true true true 0.1 × 0.95 =0.095

spring true false true 0.6 × 0.9 =0.42

spring true true true 0.6 × 0.95 =0.57

A B F fC(A,B, F) =
∑

C f(A,B,C, F)

summer false true 0.02+0.16 = 0.18

fall false true 0.06 + 0.46 = 0.52

winter false true 0.09 +0.72 = 0.81

spring false true 0.04 + 0.32 = 0.36

summer true true 0.72 + 0.76 = 1.48

fall true true 0.36 + 0.38 = 0.74

winter true true 0.09 + 0.95 = 1.04

spring true true 0.42 + 0.57 = 0.99

Figure 4.6: Processing the functions in the bucket of B

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 73

G

B

C

D

F

A

G

B

C

D

F

A

G

D

F

B

C

A

(a) (b) (c)

Figure 4.7: Two orderings of the moral graph of our example problem

in Figure 2.5(a) is given in Figure 2.5(b). Let us take this moral graph and impose an

ordering on its nodes. Figures 4.7a and 4.7b depict the ordered moral graph using the

two orderings d1 = A,C,B, F,D,G and d2 = A,F,D,C,B,G. As before, the induced-

width of the ordered graph of each nodes captures the number of variables which would

be processed in that bucket.

Example 4.1.3 The induced moral graph of Figure 2.5b, relative to ordering d1 =

A,C,B, F,D,G is depicted in Figure 4.7a. In this case, the ordered graph and its in-

duced ordered graph are identical, since all the earlier neighbors of each node are already

connected. The maximum induced width is 2. Indeed, in this case, the maximum arity of

functions recorded by the elimination algorithms is 2. For ordering d2 = A,F,D,C,B,G,

the ordered moral graph is depicted in Figure 4.7b and the induced graph in Figure 4.7c.

In this ordering, the induced width is not the same as the width. For example, the width

of C is initially 2, but its induced width is 3. The maximum induced width over all the

variables in this ordering is 4.

Theorem 4.1.4 (Complexity of BE-bel) Let w∗ be the induced width of G along or-

dering d and k the maximum domain size of a variable. Let r be the number of input

CPTs. The time complexity of BE-bel is O(r·kw∗+1) and its space complexity is O(n·kw∗
).

Proof. During BE-bel, each bucket sends a λ message to its parent and since it computes

a function defined on all the variables in the bucket, the number of which is bounded by

w∗, the size of the computed function is exponential in w∗. Recording the generated

74CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

lambda function requires consulting all the original functions in its generating bucket, rXi

for Xi’s bucket, and also all the messages received from its children, which is bounded by

degi. Therefore, summing over all the buckets, the algorithm’s computation is bounded

by ∑
i

(rXi
+ degi − 1) · kw∗+1.

Since
∑

i degi ≤ n on a (bucket) tree of size n, the total complexity can be bound by

O((r+n) ·kw∗+1). Assuming r > n, this becomes O(r ·kw∗+1). The size of each λ message

is O(kw
∗
). Since the total number of λ messages is n − 1, the total space complexity is

O(n · kw∗
). 2

4.1.3 Handling Observations by Conditioning

Observed variables (evidence) needs to be handled in a special way when processing of

buckets. Take our belief network example with ordering d1: suppose we wish to compute

the belief in A, having observed B = b0. When the algorithm arrives at that bucket,

the bucket contains the three functions P (b|a), λD(b, a), and λF (b, c), as well as the

observation B = b0 (see Figure 4.2). (Note that b0 represent a specific value in the

domain of B while b stands for an arbitrary value in its domain.

The processing rule dictates computing λB(a, c) = P (b0|a)λD(b0, a)λF (b0, c). Namely,

generating and recording a two-dimensioned function. It would be more effective, however,

to apply the assignment b0 to each function in the bucket separately and then put the

individual resulting functions into lower buckets. In other words, we can generate λ1(a) =

P (b0|a) and λ2(a) = λD(b0, a), each of which will be placed in bucket A, and λF (b0, c),

which will be placed in bucket C. By doing so, we avoid increasing the dimensionality of

the recorded functions. Avoiding this increased dimensionality is the basis of the cutset

property of conditioning, a property we will discuss later. Therefore we introduce a

special rule for processing buckets with observations: the observed value is assigned to

each function in a bucket, and each function generated by this assignment is moved to

the appropriate lower bucket.

Note that if bucket B had been last in the ordering, as in d2, the virtue of conditioning

on B could have been exploited earlier. During its processing along ordering d2, bucketB

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 75

G

B

C

D

F

A

G

B

C

D

F

A

G

B

C

D

F

A

(a)
(b)

(c) (d)

G

B

C

D

F

A

Figure 4.8: Adjusted induced graph relative to observing B

contains P (b|a), P (d|b, a), P (f |c, b), and B = b0 (see Figure 4.3a). The special rule for pro-

cessing buckets holding observations will place the function P (b0|a) in bucketA, P (d|b0, a)
in bucketD, and P (f |c, b0) in bucketF . In subsequent processing only one-dimensional

functions will be recorded. Thus, we see that the presence of observations often reduces

complexity: buckets of observed variables are processed in linear time and their recorded

functions do not create functions on new subsets of variables. Therefore, we do not add

arcs between the parents of observed variables when computing the induced graph.

To capture this refinement we use the notion of adjusted induced graph which is defined

recursively.

Definition 4.1.5 Given a graph G and an ordering d and given a set of observed nodes

E, the adjusted induced graph relative to d and E is generated (processing the ordered

graph from last to first) by connecting the earlier neighbors of unobserved nodes only. The

adjusted induced width is the width of the adjusted induced graph, disregarding observed

nodes.

For example, in Figure 4.8(a,b) we show the ordered moral graph and the induced

ordered moral graph of the graph in Figure 2.5. In Figure 4.8(c) the arcs connected to

the observed nodes are marked by broken lines, resulting in the adjusted induced-graph

given in Figure 4.8(d). In summary,

Theorem 4.1.6 Given a belief network having n variables, algorithm BE-bel when using

ordering d and evidence e, is (time and space) exponential in the adjusted induced width

w∗(d, e) of the network’s ordered moral graph. 2

76CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

4.1.4 Relevant subnetworks

The belief-updating task has special semantics which allows restricting the computation

to relevant portions of the belief network. Since summation over all values of a probability

function is 1, the recorded functions of some buckets will degenerate to the constant 1.

If we can predict these cases in advance, we can avoid needless computation by skipping

some buckets. If we use a topological ordering of the belief network’s acyclic graph (where

parents precede their child nodes), and assume that the queried variable initiates the

ordering, we can identify skippable buckets dynamically during the elimination process.

Proposition 4.1.7 Given a Bayesian network and a topological ordering X1, ..., Xn, that

is initiated by a query variable X1, algorithm BE-bel, computing P (x1|e), can skip a bucket

if during processing the bucket contains no evidence variable and no newly computed

function.

Proof: If topological ordering is used, each bucket of a variable X contains initially at

most one function, P (X|pa(X)). Clearly, if there is neither evidence nor new functions

in the bucket summation,
∑

x P (x|pa(X)) will yield the constant 1. 2

Example 4.1.8 Consider again the belief network whose acyclic graph is given in Figure

2.5(a) and the ordering d1 = A,C,B, F,D,G. Assume we want to update the belief in

variable A given evidence on F . Obviously the buckets of G and D can be skipped and

processing should start with bucketF . Once bucketF is processed, the remaining buckets

are not skippable.

Alternatively, the relevant portion of the network can be pre-computed by using a

recursive marking procedure applied to the ordered moral graph. Since topological

ordering initiated by the query variables are not always feasible (when query nodes are

not root nodes) we will define a marking scheme applicable to an arbitrary ordering.

Definition 4.1.9 Given an acyclic graph and an ordering o that starts with the queried

variable, and given evidence e, the marking process proceeds as follows.

• Initial marking: an evidence node is marked and any node having a child appearing

earlier in o (namely violate the ”parent preceding child rule”), is marked.

4.1. BELIEF ASSESSMENT AND PROBABILITY OF EVIDENCE 77

• Secondary marking: Processing the nodes from last to first in o, if a node X is

marked, mark all its earlier neighbors.

The marked belief subnetwork obtained by deleting all unmarked nodes can now be

processed by BE-bel to answer the belief-updating query.

Theorem 4.1.10 Let P =< X,D,G, P > be a Bayesian network, an ordering o =

X1, ..., Xn and e set of evidence. Then Pr(x1|e) can be obtained by applying BE-bel over

the marked subnetwork relative to evidence e and ordering o, denoted M(P|e, o).

Proof: We need to show that if BE-bel is applied to the network along ordering o, any

unmarked node is irrelevant; in other words, a processing an unmarked node’s bucket

yields the constant 1. Let R = (G,P) be a belief network processed along o by BE-bel,

assuming evidence e. Assume the theorem is incorrect, and let X be the first unmarked

node (going from last to first along o) such that when BE-bel processes P the X’s bucket

does not yield the constant 1 and is therefore relevant. Since X is unmarked, 1) X is

not an evidence node, 2) X does not have an earlier child relative to o, and 3) X does

not have a later neighbor which is marked. Since X is not evidence, and since all its

child nodes appear later in o, then, in the initial marking it cannot be marked and in the

initial bucket partitioning its bucket includes its family P (X|pa) only. Since the bucket

is relevant, it must be the case that during the processing of prior buckets (of variables

appearing later in o), a computed function is inserted to bucket X. Let Y be the variable

during whose processing a function was placed in the bucket of X. This implies that X

is connected to Y . Since Y is clearly relevant and is therefore marked (we assumed X

was the first variable violating the claim, and Y appears later than X), X must also be

marked, yielding a contradiction. 2.

Corollary 4.1.11 The complexity of algorithm BE-bel along ordering o given evidence e

is exponential in the adjusted induced width of the marked ordered moral subgraph. 2

Finally, another possible approach is to prune the network before committing to any

order of processing, as follows. Given a set of query nodes and a set of evidence nodes,

we can remove from the network any leaf node that is not queried and is not part of

the evidence and we can do this node removal recursively until no node can be removed.

78CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

Once we have a restricted Bayesian network, we can answer the query over the restricted

network. (You should prove that this process is sound).

Theorem 4.1.12 Given a Bayesian B =< X ,D,G,P > and a query P (Y |e), when

Y ⊆ X and E is a subset of evidence variables, we can compute P (Y |e) over the reduced

Bayesian network obtained by recursively removing leaf nodes that are not in Y ∪ E and

their incident edges.

Proof: The proof is left as an exercise.

4.2 Bucket elimination for optimization tasks

Having examined the task of belief-updating in the framework of the bucket elimination,

we will now focus on another primary query we often have of a belief network, that

is, finding the most probable explanation for the evidence. Belief-updating answers the

question “what is the likelihood of a given explanation for the observed data?” Answering

that question, however, is often not enough; we want to be able to find the most likely

explanation for the data we encounter. This, then, is an optimization problem, and while

we pose the problem here on a probabilistic network, it is a problem that is representative

of optimization tasks on any type of graphical model.

4.2.1 An Elimination Algorithm for mpe

Given a Bayesian network B =< X,D,G,P >, the mpe task is to find x0 such that

P (x0) = maxx Pr(x, e), where, by definition, Pr(x, e) = maxx ΠiP (xi, e|xpai). Let x =

(x1, ..., xn) and e be a set of observations on subsets of the variables. Given a variable

ordering d = X1, ..., Xn, we can accomplish this task by performing the maximization

operation along the ordering from right to left, migrating to the left all components that

do not mention the maximizing variable. We will derive this algorithm in a similar way

to that in which we derived BE-bel. Using the notation defined earlier for operations on

functions, our goal is to find M , s.t.

M = max
x̄n

P (x̄n, e) = max
x̄(n−1)

max
xn

ΠiP (xi, e|xpai)

4.2. BUCKET ELIMINATION FOR OPTIMIZATION TASKS 79

= max
x̄n−1

ΠXi∈X−FnP (xi, e|xpai) ·max
xn

P (xn, e|xpan)ΠXi∈chnP (xi, e|xpai)

= max
x=x̄n−1

ΠXi∈X−FnP (xi, e|xpai) · hn(xUn)

where

hn(xUn) = max
xn

P (xn, e|xpan)ΠXi∈chnP (xi, e|xpai)

and Un are the variables appearing in components defined over Xn. Clearly, the algebraic

manipulation of the above expressions is the same as the algebraic manipulation for belief

assessment where summation is replaced by maximization. Consequently, the bucket-

elimination procedure BE-mpe is identical to BE-bel except for this change.

Given ordering X1, ..., Xn, the conditional probability tables are partitioned as before.

To process each bucket, we multiply all the bucket’s matrices, which in this case are

cost functions denoted h1, ..., hj and defined over subsets S1, ..., Sj, and then eliminate

the bucket’s variable by maximization. The generated function in the bucket of Xp is

hp : Up → R, hp = maxXp Π
j
i=1hi, where Up = ∪iSi − Xp. The function obtained by

processing a bucket is placed in the bucket of its largest-index variable in Up. If the

function is constant, we can place it in the preceding bucket as usual or directly place

it in the first bucket; constant functions are not necessary to determine the exact mpe

value.

We define the function xop(u) = argmaxXphp(u), which provides the optimizing value

of the bucket variable given its family assignments; this function can be recorded and

placed in the bucket of Xp
1.

The procedure continues recursively, processing the bucket of the next variable, pro-

ceeding from the last to the first variable. Once all buckets are processed, the mpe value,

M , can be extracted as the maximizing product of functions in the first bucket.

At this point we know the mpe value but we still did not generate an optimizing

tuple. This requires a forward phase, which was not needed when we computed the

posterior marginal. The algorithm initiates this forwards phase to compute an mpe tuple

by assigning values along the ordering from X1 to Xn, consulting the information recorded

in each bucket. Specifically, once the partial assignment x = (x1, ..., xi−1) is determined,

the value of Xi appended to this tuple is xoi (x), where x
o is the function recorded in the

1This step is optional; the maximizing values can be recomputed from the information in each bucket.

80CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

backward phase. Alternatively, if the functions xo were not recorded in the backwards

phase, the value xi of Xi is selected to maximize the product in bucketi given the partial

assignment x. The algorithm is presented in Figure 4.14. Observed variables are handled

as in BE-bel.

Example 4.2.1 Consider again the belief network in Figure 2.5(a). Given the ordering

d = A,C,B, F,D,G and the evidence g = 1, we process variables from last to first

after partitioning the conditional probability matrices into buckets, as shown in Figure

4.1. To process G, assign g = 1, get hG(f) = P (g = 1|f), and place the result in

bucketF . The function Go(f) = argmax hG(f) may be computed and placed in bucketG
as well. In this case it is just Go(f) = 1. Process bucketD by computing hD(b, a) =

maxd P (d|b, a) and put the result in bucketB. Bucket F , next to be processed, now contains

two matrices: P (f |b, c) and hG(f). Compute hF (b, c) = maxf p(f |b, c) · hG(f), and place

the resulting function in bucketB. To eliminate B, we record the function hB(a, c) =

maxb P (b|a) · hD(b, a) · hF (b, c) and place it in bucketC . To eliminate C, we compute

hC(a) = maxc P (c|a) · hB(a, c) and place it in bucketA. Finally, the mpe value given in

bucketA,M = maxa P (a) ·hC(a), is determined. Next the mpe tuple is generated by going

forward through the buckets. First, the value a0 satisfying a0 = argmaxaP (a)hC(a) is

selected. Subsequently the value of C, c0 = argmaxcP (c|a0)hB(a0, c) is determined. Next

b0 = argmaxbP (b|a0)hD(b, a0)hF (b, c0) is selected, and so on. A schematic computation is

provided by Figure 4.2 where λ is simply replaced by h. (As an exercise, explicitly derive

the h functions in this example.)

The backward process can be viewed as a compilation phase in which we compile

information regarding the most probable extension of partial tuples to variables higher in

the ordering.

As in the case of belief updating, the complexity of BE-mpe is bounded exponentially

by the dimension of the recorded functions, and those functions are bounded by the

induced width w∗(d, e) of the ordered moral graph.

Theorem 4.2.2 Algorithm BE-mpe is complete for the mpe task. Its time and space

complexity is O(n · exp(w∗(d, e))), where n is the number of variables and w∗(d, e) is the

adjusted induced width of the ordered moral graph.

4.2. BUCKET ELIMINATION FOR OPTIMIZATION TASKS 81

Algorithm BE-mpe

Input: A belief network B =< X,D,G,P >, where P =

{P1, ..., Pn}; an ordering of the variables, d = X1, ..., Xn; obser-

vations e.

Output: The most probable assignment.

1. Initialize: Generate an ordered partition of the conditional

probability matrices, bucket1, . . ., bucketn, where bucketi contains

all matrices whose highest variable is Xi. Put each observed vari-

able in its bucket. Let S1, ..., Sj be the subset of variables in the

processed bucket on which matrices (new or old) are defined.

2. Backward: For p← n downto 1, do

for all the matrices h1, h2, ..., hj in bucketp, do

• If (observed variable) bucketp contains Xp = xp, assign Xp =

xp to each hi and put each in appropriate bucket.

• else, Up ←
∪j

i=1 Si − {Xp}. Generate functions hp =

maxXp Π
j
i=1hi and xop = argmaxXphp. Add hp to bucket of

largest-index variable in Up.

3. Forward: The mpe value is obtained by maximizing over X1,

the product in bucket1.

An mpe tuple is obtained by assigning values in the ordering d

consulting recorded functions in each bucket as follows.

Given the assignment x = (x1, ..., xi−1) choose xi = xoi (x) (x
o
i is in

bucketi), or Choose xi = argmaxXi
Π{hj∈ bucketi| x=(x1,...,xi−1)}hj

Figure 4.9: Algorithm BE-mpe

82CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

4.2.2 An Elimination Algorithm for MAP

The map task is a generalization of both mpe and belief assessment. It asks for the max-

imal belief associated with a subset of unobserved hypothesis variables and the associated

tuple and is likewise widely applicable especially for diagnosis tasks. Since it is a mixture

of the previous two tasks, some of the variables are eliminated by summation, others by

maximization.

Given a Bayesian network, a subset of hypothesized variables A = {A1, ..., Ak}, and
some evidence e, the problem is to find an assignment to the hypothesized variables that

maximizes their probability given the evidence, namely to find ao = argmaxa1,...,akPr(a1, ..., ak, e).

So, we wish to compute maxāk Pr(a1, ..., ak, e) = maxāk
∑

x̄n
k+1

Πn
i=1P (xi, e|xpai) where

x = (a1, ..., ak, xk+1, ..., xn). Algorithm BE-map in Figure 4.10 considers only orderings

in which the hypothesized variables start the ordering. Like BE-mpe, it has a backward

phase and a forward phase, but the forward phase extends to the hypothesized variables

only. Because of the strict restriction on the legitimate orderings, the algorithm may be

forced to have far higher induced-width than it would otherwise allow. To alleviate this

problem, the maximizations and summations can be interleaved to allow more efficient

orderings, as long as some constraints are obeyed. For the sake of simplicity, we will leave

the discussion of the flexible ordering criteria to the exercises. The proof of BE-map will

also be left as an exercise.

Theorem 4.2.3 Algorithm BE-map is complete for the map task for orderings where

the hypothesis variables are at the beginning of the sequence. Its complexity is O(n ·
exp(w∗(d, e)), where n is the number of variables in the relevant marked graph and w∗(d, e)

is the adjusted induced width of its moral graph.

4.3 Cost Networks and Dynamic Programming

As we have mentioned at the outset, bucket-elimination algorithms are variations of dy-

namic programming. Here we make the connection explicit, observing that BE-mpe is

dynamic programming with some simple transformation.

That BE-mpe is dynamic programming becomes apparent once we transform the mpe’s

cost function, which has a product function, into the traditional additive function using the

4.3. COST NETWORKS AND DYNAMIC PROGRAMMING 83

Algorithm BE-map

Input: A Bayesian network B =< X,D,G,P > P = {P1, ..., Pn};
a subset of hypothesis variables A = {A1, ..., Ak}; an ordering of the

variables, d, in which the A’s are first in the ordering; observations

e.

Output: A most probable assignment A = a.

1. Initialize: Generate an ordered partition of the conditional

probability matrices, bucket1, . . ., bucketn, where bucketi contains

all matrices whose highest variable is Xi.

2. Backwards For p← n downto 1, do

for all the matrices β1, β2, ..., βj in bucketp, do

• If (observed variable) bucketp contains the observation Xp =

xp, assign Xp = xp to each βi and put each in appropriate

bucket.

• else, Up ←
∪j

i=1 Si − {Xp}. If Xp is not in A, then

βp =
∑

Xp
Πj

i=1βi; else, Xp ∈ A, and βp = maxXp Π
j
i=1βi and

a0 = argmaxXpβp. Add βp to the bucket of the largest-index

variable in Up.

3. Forward: Assign values, in the ordering d = A1, ..., Ak, using

the information recorded in each bucket.

Figure 4.10: Algorithm BE-map

84CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

Algorithm BE-opt

Input: A cost network C = {C1, ..., Cl}; ordering o; assignment e.

Output: The minimal cost assignment.

1. Initialize: Partition the cost components into buckets.

2. Process buckets from p← n downto 1

For costs h1, h2, ..., hj in bucketp, do:

• If (observed variable) Xp = xp, assign Xp = xp to each hi and

put in buckets.

• Else, (sum and minimize)

hp = minXp

∑j
i=1 hi. Add hp to its bucket.

3. Forward: Assign minimizing values in ordering o, consulting func-

tions in each bucket.

Figure 4.11: Dynamic programming as BE-opt

log function. For example, P (a, b, c, d, f, g) = P (a)P (b|a)P (c|a)P (f |b, c)P (d|a, b)P (g|f)
becomes C(a, b, c, d, e) = −logP = C(a)+C(b, a)+C(c, a)+C(f, b, c)+C(d, a, b)+C(g, f)

where each Ci = − logPi.

Indeed, the general dynamic programming algorithm is defined over cost networks. As

we showed earlier a cost network is a tuple C =< X,D,C,
∑

>, where X = {X1, ..., Xn}
are variables over domains D = {D1, ..., Dn}, C are real-valued cost functions C1, ..., Cl.

defined over subsets Si = {Xi1 , ..., Xir}, Ci :1
r
j=1 Dij → R+. The cost graph of a cost

network has a node for each variable and connects nodes denoting variables appearing

in the same cost component. The task is to find an assignment to the variables that

minimizes
∑

iCi.

A straightforward elimination process similar to that of BE-mpe, (where the product is

replaced by summation and maximization by minimization) yields the non-serial dynamic

programming algorithm [6]. The algorithm, called BE-opt, is given in Figure 4.11.

A schematic execution of our example along ordering d = G,A, F,D,C,B is depicted

in Figure 4.12. Clearly,

Theorem 4.3.1 Given a cost network, BE-opt generates a representation from which the

optimal solution can be generated in linear time by a greedy procedure. The algorithm’s

4.4. MIXED NETWORKS 85

Width
Induced width

w = 4
*w = 4

E

D

C

B

A

D

C

Bbucket

bucket

bucket

bucket C

B

D

A

,

(a,d,e)h

h

h

h

B
min

bucket F

bucket G

C(f,g) (a, f)

(a,d,c,f)C(a,c) C(c,f)

C(a,b,d), C(b,f) C(b,c)

F

OPT

(a , g)

h(g) G

Figure 4.12: Schematic execution of BE-opt

complexity is time and space exponential in the cost-graph’s adjusted induced-width. 2

4.4 Mixed Networks

We will focus on the CPE task of computing P (φ) where φ is the constraint or CNF

formula. A number of related tasks can be easily derived by changing the appropriate

operator (e.g. using maximization for maximum probable explanation - MPE, or summa-

tion and maximization for maximum a posteriori hypothesis - MAP). The results in this

section are based for the most part on the work in [14].

Given a mixed network M(B,φ), where φ is a CNF formula defined on a subset of

variables Q, the CPE task is to compute:

PB(φ) =
∑

x̄Q∈models(φ)

P (x̄Q).

Using the belief network product form we get:

P (φ) =
∑

{x̄|x̄Q∈models(φ)}

n∏
i=1

P (xi|xpai).

We assume that Xn is one of the CNF variables, and we separate the summation over Xn

and X \ {Xn}. We denote by γn the set of all clauses that are defined on Xn and by βn

86CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

all the rest of the clauses. The scope of γn is denoted by Qn, we define Sn = X \Qn and

Un is the set of all variables in the scopes of CPTs and clauses that are defined over Xn.

We get:

P (φ) =
∑

{x̄n−1|x̄Sn∈models(βn)}

∑
{xn|x̄Qn∈models(γn)}

n∏
i=1

P (xi|xpai).

Denoting by tn the set of indices of functions in the product that do not mention Xn and

by ln = {1, . . . , n} \ tn we get:

P (φ) =
∑

{x̄n−1|x̄Sn∈models(βn)}

∏
j∈tn

Pj ·
∑

{xn|x̄Qn∈models(γn)}

∏
j∈ln

Pj.

Therefore:

P (φ) =
∑

{x̄n−1|x̄Sn∈models(βn)}

(
∏
j∈tn

Pj) · λXn ,

where λXn is defined over Un − {Xn}, by

λXn =
∑

{xn|x̄Qn∈models(γn)}

∏
j∈ln

Pj. (4.8)

The case of observed variables When Xn is observed, or constrained by a literal,

the summation operation reduces to assigning the observed value to each of its CPTs and

to each of the relevant clauses. In this case Equation (4.8) becomes (assume Xn = xn and

P=xn is the function instantiated by assigning xn to Xn):

λxn =
∏
j∈ln

Pj=xn
, if x̄Qn ∈ m(γn ∧ (Xn = xn)). (4.9)

Otherwise, λxn = 0. Since x̄Qn satisfies γn ∧ (Xn = xn) only if x̄Qn−Xn satisfies γxn =

resolve(γn, (Xn = xn)), we get:

λxn =
∏
j∈ln

Pj=xn
if x̄Qn−Xn ∈ m(γxn

n). (4.10)

Therefore, we can extend the case of observed variable in a natural way: CPTs are assigned

the observed value as usual while clauses are individually resolved with the unit clause

(Xn = xn), and both are moved to appropriate lower buckets.

4.4. MIXED NETWORKS 87

A

F

B C

D

G

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral

graph

Figure 4.13: Belief network

Therefore, in the bucket of Xn we should compute λXn . We need to place all CPTs and

clauses mentioningXn and then compute the function in Equation (4.8). The computation

of the rest of the expression proceeds withXn−1 in the same manner. This yields algorithm

Elim-CPE (described in Algorithm ?? and Procedure Process-bucketp). The elimination

operation is denoted by the general operator symbol ⇓ that instantiates to summation

for the current query. Thus, for every ordering of the propositions, once all the CPTs

and clauses are partitioned (each clause and CPT is placed in the bucket of the latest

variable in their scope), we process the buckets from last to first, in each applying the

following operation. Let λ1, ...λt be the probabilistic functions in bucket P over scopes

S1, ..., St and α1, ...αr be the clauses over scopes Q1, ..., Qr. The algorithm computes a

new function λP over Up = S ∪Q− {Xp} where S = ∪iSi, and Q = ∪jQj, defined by:

λP =
∑

{xp|x̄Q∈models(α1,...,αr)}

∏
j

λj

Example 4.4.1 Consider the belief network in Figure 4.13, which is similar to the one

in Figure 2.5, and the query φ = (B ∨C)∧ (G∨D)∧ (¬D∨¬B). The initial partitioning

into buckets along the ordering d = A,C,B,D, F,G, as well as the output buckets are

given in Figure 4.14. We compute:

In bucket G: λG(f, d) =
∑

{g|g∨d=true} P (g|f)
In bucket F : λF (b, c, d) =

∑
f P (f |b, c)λG(f, d)

In bucket D: λD(a, b, c) =
∑

{d|¬d∨¬b=true} P (d|a, b)λF (b, c, d)
In bucket B: λB(a, c) =

∑
{b|b∨c=true} P (b|a)λD(a, b, c)λF (b, c)

In bucket C: λC(a) =
∑

c P (c|a)λB(a, c)

88CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

Bucket G: P(G|F,D)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket B: P(B|A)

Bucket C: P(C|A)

Bucket A: P(A)

)(CB ∨),,(CBADλ

)(DG ∨

)(BD ¬∨¬

),(CABλ

)(ACλ

),,(DCBfλ

),(DFGλ

)(ϕP

(a)

Figure 4.14: Execution of Elim-CPE

Bucket G: P(G|F,D)

Bucket D: P(D|A,B)

Bucket B: P(B|A),P(F|B,C),

Bucket C: P(C|A)

Bucket F:

Bucket A:

)(CB ∨),(BADλ

),(CFBλ

)(1 ABλ

G)(¬∨ DG

D),(), (DFBD Gλ¬∨¬

)(FCλ

)(2 ABλ)(ACλ Fλ

C

)(ϕP

B¬

)(FDλ

(b)

Figure 4.15: Execution of Elim-CPE

(evidence ¬G)

In bucket A: λA =
∑

a P (a)λ
C(a)

P (φ) = λA.

For example λG(f, d = 0) = P (g = 1|f), because if d = 0 g must get the value “1”,

while λG(f, d = 1) = P (g = 0|f) + P (g = 1|f). In summary,

Theorem 4.4.2 (Correctness and Completeness) Algorithm Elim-CPE is sound and

complete for the CPE task.

Notice that algorithm Elim-CPE also includes a unit resolution step whenever possible

(see Procedure Process-bucketp) and a dynamic reordering of the buckets that prefers

processing buckets that include unit clauses. This may have a significant impact on

efficiency because treating observations (namely unit clauses) specially can avoid creating

new dependencies. In fact, there exists a spectrum of feasible bounded inference schemes

that can be applied to the clauses in the buckets and can enhance efficiency considerably.

Example 4.4.3 Let’s now extend the example by adding ¬G to the query. This will place

¬G in the bucket of G. When processing bucket G, unit resolution creates the unit clause

D, which is then placed in bucket D. Next, processing bucket F creates a probabilistic

function on the two variables B and C. Processing bucket D that now contains a unit

clause will assign the value D to the CPT in that bucket and apply unit resolution,

4.5. THE GENERAL BUCKET ELIMINATION 89

Procedure Process-bucket-RELp(⇓, (λ1, . . . , λj),(R1, . . . , Rr))

if bucketp contains evidence Xp = xp then
1. Assign Xp = xp to each λi and put each resulting function in the bucket of

its latest variable

2. Apply arc-consistency (or any constraint propagation) over the constraints in

the bucket. Put the resulting constraints in the buckets of their latest variable

and move any bucket with single domain to top of processing

else

Generate λp =
∑

{xp|x̄Up∈◃▹jRj}
∏j

i=1 λi
Add λp to the bucket of the latest variable in Up, where

Up =
∪j

i=1 Si

∪r
i=1Qi − {Xp}

generating the unit clause ¬B that is placed in bucket B. Subsequently, in bucket B we

can apply unit resolution again, generating C placed in bucket C, and so on. In other

words, aside from bucket F , we were able to process all buckets as observed buckets,

by propagating the observations. (See Figure 4.15.) To incorporate dynamic variable

ordering, after processing bucket G, we move bucket D to the top of the processing list

(since it has a unit clause). Then, following its processing, we process bucket B and then

bucket C, then F , and finally A.

Since unit resolution increases the number of buckets having unit clauses, and since

those are processed in linear time, it can improve performance substantially. Such buck-

ets can be identified a priori by applying unit resolution on the CNF formula or arc-

consistency on the constraint expression. In general, any level of resolution can be applied

in each bucket. This can yield stronger CNF expressions in each bucket and may help

improve the computation of the λ products. We will discuss some more details later on.

4.5 The general bucket elimination

In the following paragraphs we summarize and generalize the bucket elimination al-

gorithm using the two operators of combination and marginalization. As defined in

Chapter 2, the general task can be defined over a graphical model M = ⟨X,D,F,⊗⟩,
where: X = {X1, ..., Xn} is a set of variables having domain of values {D1, ..., Dn}. and

90CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

Algorithm bucket-elimination

Input: A set of functions F = {f1, ..., fn} over scopes S1, ..., Sn; an ordering

of the variables, d = X1, ..., Xn; A subset Y .

Output: A new compiled set of functions

from which ⇓Y ⊗n
i=1fi can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into

bucket1, ..., bucketn, where bucketi contains all the functions whose highest

variable in their scope is Xi. Let S1, ..., Sj be the subset of variables in the

processed bucket on which functions (new or old) are defined.

2. Backward: For p← n downto 1, do

for all the functions λ1, λ2, ..., λj in bucketp, do

• If (observed variable) Xp = xp appears in bucketp, assign Xp = xp to

each λi and then put each resulting function in appropriate bucket.

• else, Up ←
∪j

i=1 Si−{Xp}. Generate λp =⇓Up ⊗
j
i=1λi and add λp to the

largest-index variable in Up.

3. Return: all the functions in each bucket.

Figure 4.16: Algorithm bucket-elimination

F = {f1, ..., fk} is a set of functions, where each fi is defined over a scope Si ⊆ X. Given

a function h defined over scope S ⊆ X, and given Y ⊆ S, the (generalized) projection op-

erator ⇓Y f is defined by enumeration as ⇓Y h ∈ {maxS−Y h,minS−Y h,ΠS−Y h,
∑

S−Y h}
and the (generalized) combination operator ⊗jfj is defined over U = ∪jSj. ⊗k

j=1fj ∈
{Πk

j=1fj,
∑k

j=1 fj, 1j fj}.
The problem is to compute

⇓Y ⊗n
i=1fi

such problems can be solved by the bucket-elimination algorithm, stated using this

general form in Figure 4.16. For example, BE-bel is obtained when ⇓Y=
∑

S−Y and

⊗j = Πj, BE-mpe is obtained when ⇓Y= maxS−Y and ⊗j = Πj, and adaptive consis-

tency corresponds to ⇓Y= ΠS−Y and ⊗j =1j. Similarly, Fourier elimination, directional

resolution as well as BE-meu can be shown to be expressible in terms of such operators.

4.6. SUMMARY 91

4.6 Summary

In the last two chapters, we have seen how the bucket-elimination framework can be

used to unify variable elimination algorithms on graphical models for both deterministic

and probabilistic reasoning. The chapter describes the bucket-elimination framework

which unifies variable elimination algorithms appearing for deterministic and probabilistic

reasoning as well as for optimization tasks. In this framework, the algorithms exploit the

structure of the relevant network without conscious effort on the part of the designer. Most

bucket-elimination algorithms2 are time and space exponential in the induced-width of

the underlying dependency graph of the problem.

4.7 Chapter Notes

Among the early bucket elimination algorithms we find the peeling algorithm for genetic

trees [8], Zhang and Poole’s VE1 algorithm [43] which is identical to elim-bel, SPI al-

gorithm by D’Ambrosio et.al., [32] which preceded both elim-bel and VE1 and provided

the principle ideas in the context of belief updating. Decimation algorithms in statistical

physics are also related and were applied to Boltzmann trees [35]. We also made explicit

the observation that bucket elimination algorithms resemble tree-clustering methods, an

observation that was made earlier in the context of constraint satisfaction tasks [16].

The observation that a variety of tasks allow efficient algorithms of hyper-trees and

therefore can benefit from a tree-clustering approach was recognized by several works in

the last decade. In [31] the connection between optimization and constraint satisfaction

and its relationship to dynamic programming is explicated. In the work of [27, 37] and

later in [7] an axiomatic framework that characterize tasks that can be solved polynomi-

ally over hyper-trees, is introduced. Such tasks can be described using combination and

projection operators over real-valued functions, and satisfy a certain set of axioms. The

axiomatic framework [37] was shown to capture optimization tasks, inference problems in

probabilistic reasoning, as well as constraint satisfaction. Indeed, the tasks considered in

2all, except Fourier algorithm.

92CHAPTER 4. INFERENCE: BUCKET-ELIMINATION FOR PROBABLISTIC NETWORKS

this paper can be expressed using operators obeying those axioms and therefore their so-

lution by tree-clustering methods follows. Since, as shown in [16] and here, tree-clustering

and bucket elimination schemes are closely related, tasks that fall within the axiomatic

framework [37] can be accomplished by bucket elimination algorithms as well. In [7] a

different axiomatic scheme is presented using semi-ring structures showing that impotent

semi-rings characterize the applicability of constraint propagation algorithms. Most of

the tasks considered here do not belong to this class.

In contrast, the contribution of this paper is in making the derivation process of vari-

able elimination algorithms from the algebraic expression of the tasks, explicit. This

makes the algorithms more accessible and their properties better understood. The associ-

ated complexity analysis and the connection to graph parameters are also made explicit.

Task specific properties are also studied (e.g, irrelevant buckets in belief updating).

The work we show here also fits into the framework developed by Arnborg and Prosk-

ourowski [3, 2]. They present table-based reductions for various NP-hard graph problems

such as the independent-set problem, network reliability, vertex cover, graph k-colorability,

and Hamilton circuits. Here and elsewhere [17, 12] we extend the approach to a different

set of problems.

Tatman and Schachter [41] have published an algorithm for the general influence di-

agram that is a variation of elim-meu. Kjaerulff’s algorithm [22] can be viewed as a

variation of elim-meu tailored to dynamic probabilistic networks.

Chapter 5

The Graphs of Graphical Models

As we saw, and as we will see throughout the book, graphical models structure can be

described by graphs that capture dependencies and independencies in the knowledge-base.

The graph is useful because it conveys information regarding the interaction between

different variables and can allow efficient query processing. In this chapter we provide

general overview of graph properties that will be used. We will focus on graph parameter

called induced-width or tree-width that captures the complexity of reasoning algorithms

for graphical models.

A graphical model can be represented by a graph called a primal graph where each

node represents a variable and the arcs connect all nodes whose variables are included

in a function scope. The absence of an arc between two nodes indicates that there is no

direct function – the one specified in the input – between the corresponding variables.

We observed earlier primal graphs for a variety of graphical models, depicting constraints

and probabilistic functions.

Definition 5.0.1 (primal graph) The primal graph of a graphical model is an undi-

rected graph that has variables as its vertices and an edge connects any two variables that

appear in the scope of the same function.

The primal graph (also called moral graph for Bayesian networks) is an effective way

to capture the structure of the knowledge as expressed by the graphical model. In partic-

ular, graph separation is a sound way to capture conditional independencies (and there-

fore called i-maps [30]) relative to probability distributions over directed and undirected

93

94 CHAPTER 5. THE GRAPHS OF GRAPHICAL MODELS

graphical models. They also capture the notion of embeded multi-valued dependencies

(EMVDs) in relational databases [25]. All advanced algorithms for graphical models ex-

ploit the graphical structure. Additional graph representations that are used are the

hyper=graphs, dual graphs as well as factor graphs in the context of Markov networks.

5.1 Dual graphs and hypergraphs

While primal graph of a graphical model for binary and non-binary functions is well

defined, a hypergraph representation more accurately maintains the association between

arcs and functions scopes.

Definition 5.1.1 (hypergraph) A hypergraph is a structure H = (V, S) that consists

of vertices V = {v1, .., vn} and a set of subsets of these vertices S = {S1, ..., Sl}, Si ⊆ V ,

called hyperedges. The hyperedges differ from regular edges in that they ”connect” (or are

defined over) any number of variables.

In the hypergraph representation of a graphical model, nodes represent the variables,

and hyperarcs (drawn as regions) are the scopes of functions. The hyperarcs group those

variables that belong to the same scope. A related representation is the dual graph. A

dual graph represents each function scope by a node and associates a labeled arc with

any two nodes whose function scopes share variables. The arcs are labeled by the shared

variables.

Example 5.1.2 Figure 5.1 depicts the hypergraph (a), the primal (b) and the dual graph

(c) representations of a graphical model with variables A, B, C, D, E, F and with

functions on the scopes (ABC),(AEF), (CDE) and (ACE). The specific functions are

irrelevant to the current discussion; they can be arbitrary relations over domains of {0, 1},
such as C = A ∨B, F = A ∨ E, CPTs or cost functions.

As we already observed there is a tight relationship between the complexity of infer-

ence algorithms such as bucket elimination and the graph concept called induced width,

also known as treewidth. All inference algorithms are time and space exponential in the

induced-width along the order of processing. This motivates finding an ordering with a

smallest induced width, a task known to be hard [3]. However, useful greedy heuristics

algorithms are available as we briefly show in the next few paragraphs [13, 4, 38].

5.1. DUAL GRAPHS AND HYPERGRAPHS 95

D

C

BA

F

E D

C

BA

F

E

CE

AE

CDE

ABC

AC

CE

ACE

AEC

AEF
A

ACECDE

ABC AEF

ACE

(c) (d)

(a) (b)

Figure 5.1: (a)Hyper, (b)Primal, (c)Dual and (d)Join-tree constraint graphs of a CSP.

5.1.1 The induced width

Given an undirected graph G = (V,E), an ordered graph is a pair (G, d), where V =

{v1, ..., vn} is the set of nodes, E is a set of arcs over V , and d = (v1, ..., vn) is an ordering

of the nodes. The nodes adjacent to v that precede it in the ordering are called its

parents. The width of a node in an ordered graph is its number of parents. The width of

an ordering d, denoted w(d), is the maximum width over all nodes. The width of a graph

is the minimum width over all the orderings of the graph.

Example 5.1.3 Figure 5.2 presents a graph G over six nodes, along with three orderings

of the graph: d1 = (F,E,D,C,B,A), its reversed ordering d2 = (A,B,C,D,E, F), and

96 CHAPTER 5. THE GRAPHS OF GRAPHICAL MODELS

(d)

A

B

C

D

E

F

F

A

E

B

C

D

A

F

B

C

D

E

A

B C

D

E

F

(a) (b)
(c)

Figure 5.2: (a) Graph G, and three orderings of the graph; (b) d1 = (F,E,D,C,B,A),

(c) d2 = (A,B,C,D,E, F), and (d) d3 = (F,D,C,B,A,E). Broken lines indicate edges

added in the induced graph of each ordering.

d3 = (F,D,C,B,A,E). Note that we depict the orderings from bottom to top, so that

the first node is at the bottom of the figure and the last node is at the top. The arcs of

the graph are depicted by the solid lines. The parents of A along d1 are {B,C,E}. The
width of A along d1 is 3, the width of C along d1 is 1, and the width of A along d3 is 2.

The width of these three orderings are: w(d1) = 3, w(d2) = 2, and w(d3) = 2. The width

of graph G is 2.

The induced graph of an ordered graph (G, d) is an ordered graph (G∗, d) where G∗

is obtained from G as follows: the nodes of G are processed from last to first (top to

bottom) along d. When a node v is processed, all of its parents are connected. The

induced width of an ordered graph, (G, d), denoted w∗(d), is the width of the induced

ordered graph (G∗, d). The induced width of a graph, w∗, is the minimal induced width

over all its orderings.

Example 5.1.4 Consider again Figure 5.2. For each ordering, d, (G, d) is the graph

depicted without the broken edges, while (G∗, d) is the corresponding induced graph that

includes the broken edges. We see that the induced width of B along d1 is 3, and that the

overall induced width of this ordered graph is 3. The induced widths of the graph along

orderings d2 and d3 both remain 2, and, therefore, the induced width of the graph G is 2.

5.1. DUAL GRAPHS AND HYPERGRAPHS 97

A rather important observation is that a graph is a tree (has no cycles) if and only if

it has a width-1 ordering. The reason a width-1 graph cannot have a cycle is that for any

ordering, at least one node on the cycle would have two parents, thus contradicting the

width-1 assumption. And vice-versa: if a graph has no cycles, it can always be converted

into a rooted directed tree by directing all edges away from a designated root node. In such

a directed tree, every node has exactly one node pointing to it, – its parent. Therefore,

any ordering in which every parent node precedes its child nodes in the rooted tree has a

width of 1. Furthermore, given an ordering having width of 1, its induced-ordered graph

has no additional arcs, yielding an induced width of 1, as well. In summary,

Proposition 5.1.5 A graph is a tree iff it has both width and induced width of 1. 2

Finding a minimum-width ordering of a graph can be accomplished by the greedy

algorithm min-width (see Figure 5.3). The algorithm orders variables from last to first as

follows: in the first step, a variable with minimum number of neighbors is selected and put

last in the ordering. The variable and all its adjacent edges are then eliminated from the

original graph, and selection of the next variable continues recursively with the remaining

graph. Ordering d2 of G in Figure 5.2(c) could have been generated by a min-width

ordering.

min-width (mw)

input: a graph G = (V,E), V = {v1, ..., vn}
output: A min-width ordering of the nodes d = (v1, ..., vn).

1. for j = n to 1 by -1 do

2. r ← a node in G with smallest degree.

3. put r in position j and G← G− r.
(Delete from V node r and from E all its adjacent edges)

4. endfor

Figure 5.3: The min-width (MW) ordering procedure

Proposition 5.1.6 [19] Algorithm min-width (mw) finds a minimum width ordering of

a graph.

98 CHAPTER 5. THE GRAPHS OF GRAPHICAL MODELS

Though finding the min-width ordering of a graph is easy, finding the minimum induced

width of a graph is hard (NP-complete [3]). Nevertheless, deciding whether there exists

an ordering whose induced width is less than a constant k, takes O(nk) time.

A decent greedy algorithm, obtained by a small modification to the min-width al-

gorithm, is the min-induced-width (miw) algorithm (Figure 5.4). It orders the variables

from last to first according to the following procedure: the algorithm selects a variable

with minimum degree and places it last in the ordering. The algorithm next connects the

node’s neighbors in the graph to each other, and only then removes the selected node and

its adjacent edges from the graph, continuing recursively with the resulting graph. The

ordered graph in Figure 5.2(c) could have been generated by a min-induced-width order-

ing of G. In this case, it so happens that the algorithm achieves the minimum induced

width of the graph, w∗.

Another variation yields a greedy algorithm known as min-fill. Rather than order

the nodes in order of their min-degree, it uses the min-fill set, that is, the number of

edges needed to be filled so that the node’s parent set be fully connected, as an ordering

criterion. This min-fill heuristic described in Figure 5.5, was demonstrated empirically to

be somewhat superior to min-induced-width algorithm [?]. The ordered graph in Figure

5.2(c) could have been generated by a min-fill ordering of G while the ordering d1 or d3

in parts (a) and (d) could not.

min-induced-width (miw)

input: a graph G = (V,E), V = {v1, ..., vn}
output: An ordering of the nodes d = (v1, ..., vn).

1. for j = n to 1 by -1 do

2. r ← a node in V with smallest degree.

3. put r in position j.

4. connect r’s neighbors: E ← E ∪ {(vi, vj)|(vi, r) ∈ E, (vj, r) ∈ E},
5. remove r from the resulting graph: V ← V − {r}.

Figure 5.4: The min-induced-width (miw) procedure

5.2. CHORDAL GRAPHS 99

min-fill (min-fill)

input: a graph G = (V,E), V = {v1, ..., vn}
output: An ordering of the nodes d = (v1, ..., vn).

1. for j = n to 1 by -1 do

2. r ← a node in V with smallest fill edges for his parents.

3. put r in position j.

4. connect r’s neighbors: E ← E ∪ {(vi, vj)|(vi, r) ∈ E, (vj, r) ∈ E},
5. remove r from the resulting graph: V ← V − {r}.

Figure 5.5: The min-fill (min-fill) procedure

The notions of width and induced width and their relationships with various graph

parameters, have been studied extensively in the past two decades, and will be discussed

next.

5.2 Chordal graphs

For some special graphs such as chordal graphs, computing the induced-width is easy.

A graph is chordal if every cycle of length at least four has a chord, that is, an edge

connecting two nonadjacent vertices. For example, G in Figure 5.2(a) is not chordal since

the cycle (A,B,D,C,A) does not have a chord. The graph can be made chordal if we

add the edge (B,C) or the edge (A,D).

Many difficult graph problems become easy on chordal graphs. For example, finding

all the maximal (largest) cliques (completely connected subgraphs) in a graph – an NP-

complete task on general graphs – is easy for chordal graphs. This task (finding maximal

cliques in chordal graphs) is facilitated by using yet another ordering procedure called the

max-cardinality ordering [40]. A max-cardinality ordering of a graph orders the vertices

from first to last according to the following rule: the first node is chosen arbitrarily. From

this point on, a node that is connected to a maximal number of already ordered vertices

is selected, and so on. (See Figure 5.6.)

A max-cardinality ordering can be used to identify chordal graphs. Namely, a graph

100 CHAPTER 5. THE GRAPHS OF GRAPHICAL MODELS

is chordal iff in a max-cardinality ordering each vertex and all its parents form a clique.

One can thereby enumerate all maximal cliques associated with each vertex (by listing

the sets of each vertex and its parents, and then identifying the maximal size of a clique).

Notice that there are at most n cliques: each vertex and its parents is one such clique. In

addition, when using a max-cardinality ordering of a chordal graph, the ordered graph is

identical to its induced graph, and therefore its width is identical to its induced width. It

is easy to see that,

Proposition 5.2.1 If G∗ is the induced graph of a graph G, along some ordering, then

G∗ is chordal. 2

Example 5.2.2 We see again that G in Figure 5.2(a) is not chordal since the parents of

A are not connected in the max-cardinality ordering in Figure 5.2(d). If we connect B

and C, the resulting induced graph is chordal.

max-cardinality (mc)

input: a graph G = (V,E), V = {v1, ..., vn}
output: An ordering of the nodes d = (v1, ..., vn).

1. Place an arbitrary node in position 0.

2. for j = 1 to n do

3. r ← a node in G that is connected to a largest subset of nodes

in positions 1 to j − 1, breaking ties arbitrarily.

4. endfor

Figure 5.6: The max-cardinality (mc) ordering ordering procedure

k-trees. A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose

maximal cliques are of size k + 1, and it can be defined recursively as follows: (1) A

complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended

to r + 1 vertices by connecting the new vertex to all the vertices in any clique of size k.

Bibliography

[1] Darwiche A. Modeling and Reasoning with Bayesian Networks. Cambridge University

Press, 2009.

[2] S. Arnborg and A. Proskourowski. Linear time algorithms for np-hard problems

restricted to partial k-trees. Discrete and Applied Mathematics, 23:11–24, 1989.

[3] S. A. Arnborg. Efficient algorithms for combinatorial problems on graphs with

bounded decomposability - a survey. BIT, 25:2–23, 1985.

[4] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal

junction trees. In Uncertainty in AI (UAI’96), pages 81–89, 1996.

[5] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management.

Constraints, 4(3):293–299, 1999.

[6] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and

optimization. Journal of the Association of Computing Machinery, 44, No. 2:165–201,

1997.

[8] C. Cannings, E.A. Thompson, and H.H. Skolnick. Probability functions on complex

pedigrees. Advances in Applied Probability, 10:26–61, 1978.

[9] R. McEliece D. C. MacKay and J. Cheng. Turbo decoding as an instance of pearl’s

“belief propagation” algorithm. 1996.

101

102 BIBLIOGRAPHY

[10] S. de Givry, J. Larrosa, and T. Schiex. Solving max-sat as weighted csp. In Principles

and Practice of Constraint Programming (CP-2003), 2003.

[11] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex. Mendelian error detection in com-

plex pedigree using weighted constraint satisfaction techniques. In ICLP Workshop

on Constraint Based Methods for Bioinformatics, 2005.

[12] R. Dechter. Mini-buckets: A general scheme of generating approximations in au-

tomated reasoning. In IJCAI-97: Proceedings of the Fifteenth International Joint

Conference on Artificial Intelligence, pages 1297–1302, 1997.

[13] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[14] R. Dechter and D. Larkin. Hybrid processing of belief and constraints. Proceeding

of Uncertainty in Artificial Intelligence (UAI01), pages 112–119, 2001.

[15] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-

lems. Artificial Intelligence, 34:1–38, 1987.

[16] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-

gence, pages 353–366, 1989.

[17] R. Dechter and P. van Beek. Local and global relational consistency. In Principles

and Practice of Constraint programming (CP-95), pages 240–257, 1995.

[18] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical

Computer Science, pages 283–308, 1997.

[19] E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,

29(1):24–32, 1982.

[20] M. R Garey and D. S. Johnson. Computers and intractability: A guide to the theory

of np-completeness. In W. H. Freeman and Company, San Francisco, 1979.

[21] F.V. Jensen. Bayesian networks and decision graphs. Springer-Verlag, New-York,

2001.

BIBLIOGRAPHY 103

[22] U. Kjæaerulff. A computational scheme for reasoning in dynamic probabilistic net-

works. In Uncertainty in Artificial Intelligence (UAI’93), pages 121–149, 1993.

[23] D. Koller and N. Friedman. Probabilistic Graphical Models. MIT Press, 2009.

[24] F. R. Kschischang and B.H. Frey. Iterative decoding of compound codes by proba-

bility propagation in graphical models. submitted, 1996.

[25] D. Maier. The theory of relational databases. In Computer Science Press, Rockville,

MD, 1983.

[26] R.J. McEliece, D.J.C. MacKay, and J.-F.Cheng. Turbo decoding as an instance

of Pearl’s belief propagation algorithm. To appear in IEEE J. Selected Areas in

Communication, 1997.

[27] L. G. Mitten. Composition principles for the synthesis of optimal multistage pro-

cesses. Operations Research, 12:610–619, 1964.

[28] R.E. Neapolitan. Learning Bayesian Networks. Prentice hall series in Artificial

Intelligence, 2000.

[29] Jurg Ott. Analysis of Human Genetics. Cambridge University Press, 1999.

[30] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[31] A. Dechter R. Dechter and J. Pearl. Optimization in constraint networks. In Influence

Diagrams, Belief Nets and Decision Analysis, pages 411–425. John Wiley & Sons,

1990.

[32] B. D’Ambrosio R.D. Shachter and B.A. Del Favero. Symbolic probabilistic inference

in belief networks. In National Conference on Artificial Intelligence (AAAI’90), pages

126–131, 1990.

[33] R.G.Gallager. A simple derivation of the coding theorem and some applications.

IEEE Trans. Information Theory, IT-11:3–18, 1965.

104 BIBLIOGRAPHY

[34] T. Sandholm. An algorithm for optimal winner determination in combinatorial auc-

tions. Proc. IJCAI-99, pages 542–547, 1999.

[35] L. K. Saul and M. I. Jordan. Learning in boltzmann trees. Neural Computation,

6:1173–1183, 1994.

[36] C.E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423,623–656, 1948.

[37] P.P. Shenoy. Valuation-based systems for bayesian decision analysis. Operations

Research, 40:463–484, 1992.

[38] K. Shoiket and D. Geiger. A proctical algorithm for finding optimal triangulations. In

Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 185–190,

1997.

[39] C.E. Leiserson T. H. Cormen and R.L. Rivest. In Introduction to algorithms. The

MIT Press, 1990.

[40] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality

of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.

SIAM Journal of Computation., 13(3):566–579, 1984.

[41] J.A. Tatman and R.D. Shachter. Dynamic programming and influence diagrams.

IEEE Transactions on Systems, Man, and Cybernetics, pages 365–379, 1990.

[42] P. Thbault, S. de Givry, T. Schiex, and C. Gaspin. Combining constraint processing

and pattern matching to describe and locate structured motifs in genomic sequences.

In Fifth IJCAI-05 Workshop on Modelling and Solving Problems with Constraints,

2005.

[43] N.L. Zhang and D. Poole. Exploiting causal independence in bayesian network in-

ference. Journal of Artificial Intelligence Research (JAIR), 1996.

