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Abstract

Bayesian learning is a probabilistic approach to

building models that combine prior knowledge with

new information extracted from data. In the past

few years, signi�cant progress has been made in

learning graphical models such as Bayesian net-

works. Bayesian networks provide a compact rep-

resentation for complex multivariate distributions

and accommodate e�cient inference algorithms.

Bayesian networks have been successfully used in

many practical applications including medical di-

agnosis, troubleshooting in computer systems, traf-

�c control, signal processing, bio-informatics and

web data analysis. This paper provides a brief

overview of state-of-the-art approaches to inference

and learning in Bayesian networks and discusses

further research opportunities.
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1 Introduction

Bayesian approach has a long successful his-
tory in statistics, machine learning and pattern
recognition (see, for example, [14] for a clas-
sical introduction into Bayesian techniques).
Bayesian reasoning is a probabilistic approach
to inference based on combining prior knowl-
edge with observed data using Bayes' rule:

P (H jD) =
P (DjH)P (H)

P (D)
; (1)

where P (H) is the prior probability of hypoth-
esis H , P (D) is the prior probability of ob-
serving data D, P (DjH) (called likelihood) is
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Figure 1: An example of a Bayesian network.

the probability of observing D if hypothesis H
holds, and P (H jD) is the posterior probability
of H after observing data D.

An increasingly popular framework for
Bayesian reasoning are graphical models such
as Bayesian networks. Bayesian networks
(also called belief networks) provide a graph-
ical framework for compact representation of
multivariate probabilistic distributions and for
e�cient reasoning techniques. A Bayesian net-
work is a directed acyclic graph, where the
nodes represent random variables of interest
(e.g., the temperature of a device, the gender
of a patient, a feature of an object, an occur-
rence of an event) and the edges denote proba-
bilistic dependencies. Since the directed edges
are often interpreted as direct causal in
uences
between the variables, Bayesian networks are
also called causal networks. Figure 1 shows a
sample Bayesian network for medical diagno-



sis, which relates diseases, such as tuberculosis
or lung cancer, to possible causes (e.g., smok-
ing) and to the symptoms (shortness of breath)
and test results (X-ray).

Bayesian networks are traditionally used for
representing uncertain expert knowledge and
for subsequent reasoning under uncertainty in
various applications, including medical diagno-
sis, computer troubleshooting, tra�c control,
speech recognition, and error-correcting codes,
among others. A variety of e�cient reason-
ing algorithms for inference in Bayesian net-
works has been developed over the last decade.
More recently, especially with increasing vol-
umes of data available in biomedical, Internet,
and e-business applications, the research focus
is shifting more towards learning Bayesian net-
works from data. In the past few years, sig-
ni�cant progress has been made in developing
techniques for Bayesian learning [16]. Exam-
ples include surprisingly successful applications
of simple naive Bayes model for classi�cation
tasks in real-life applications, such as text cate-
gorization [20], and its extensions to more com-
plex tree-augmented naive Bayes [15].

Learning in Bayesian networks has several
advantages. First of all, Bayesian networks
provide a natural framework for combining
prior (expert) knowledge with learning from
data. Also, learning in Bayesian networks is
incremental and does not require eliminating
a candidate hypothesis if it is found inconsis-
tent with an example; rather, its probability
is decreased (or increased, if the example sup-
ports the hypothesis). Second, Bayesian net-
works o�er a better way of handling missing
data than some standard statistical techniques
(e.g. regression), since they encode dependen-
cies among all variables and allow for tech-
niques such as the expectation-maximization
(EM) algorithm for handling incomplete data
sets. Third, since directed edges often have
causal interpretation, Bayesian networks can
be used for learning causal relationship rather
than simply dependencies among variables.

In this paper, we provide a brief introduc-
tion into existing techniques for inference and
learning in Bayesian networks. The paper

is organized as follows. Section 2 gives for-
mal de�nitions of Bayesian networks and de-
scribes probabilistic inference algorithms based
on variable-elimination approach. Section 3
discusses learning in Bayesian networks, which
can be separated into learning the graph struc-
ture and learning the parameters of the net-
work. Both learning from complete data and
learning from data with missing values are con-
sidered. Section 4 concludes the paper with a
summary and a discussion of future work.

2 Inference in Bayesian net-

works

Let X = fX1; :::; Xng be a set of random vari-
ables each having a set of possible states, or
values, denoted V al(Xi). Capital letters (with
indexes) such as Xi will denote variables and
lower-case letters such as xi will denote their
values. Boldface letters denote sets, e.g. X

denotes the set of variables, while x denotes
the corresponding assignment to the variables
in X. A directed graph is a pair G = fX;Eg,
where X = fX1; :::; Xng is a set of nodes and
E = f(Xi; Xj)jXi; Xj 2 X; i 6= jg is a set
of edges. A directed graph is called acyclic
if it has no directed cycles. Given an edge
(Xi; Xj) 2 E; Xi is called a parent of Xj , while
Xj is called a child of Xi. The set of parent
nodes of Xi is denoted Pai. A node and its
parents will be called a family.

A Bayesian network is a pair (G;�), where
G = (X;E) is a directed acyclic graph rep-
resenting the variables in X as nodes and
� = f�xi;paig is the set of parameters that rep-
resent conditional probabilities for each node
given its parents in G, i.e. �xi;pai = P (Xi =
xijPai = pai) (or, using a shorter notation,
P (xijpai)). The distributions P (XijPai), as-
sociated with each node Xi (as shown in Fig-
ure 2a), are called local probability distribu-
tions [16]. Typically, Bayesian networks are
de�ned for discrete variables with �nite num-
ber of states. Thus, the local probability distri-
butions are represented by (k+1)-dimensional
conditional probability tables (CPTs), where k
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Figure 2: (a) A belief network, (b) its induced
graph along o = (A;E;D; C;B), and (c) its
induced graph along o = (A;B; C;D;E).

is the number of parents, and each entry �xi;pai
corresponds to a particular value assignment to
Xi and its parents. A Bayesian network repre-
sents a joint probability distribution over X as
a product of local distributions:

P (x1; ::::; xn) = �n
i=1P (xijpai) (2)

The graph GM obtained from G by connect-
ing ("marrying") all the parents of each node
(e.g., the dotted line in Figure 2a represents
such an edge) and removing the directionality
of edges is called the moral graph of Bayesian
network. The moral graph is used by inference
algorithms. The set of arguments of a func-
tion f is called the scope of f . Thus the scope
of a CPT is its family, which corresponds to a
clique in a moral graph.

Probabilistic inference, or belief updating, in
Bayesian networks is de�ned as �nding the
posterior probability of a subset of variables
Y � X given the observed values of some
other variables (called evidence). For example,
using the network in Figure 1, we can assess
the probability that a patient has lung cancer
given that he su�ers from dyspnoea (shortness
of breath), but has normal X-ray results and
does not smoke.

Probabilistic inference in Bayesian networks
is NP-hard [7]. However, there exists a poly-
nomial belief-propagation algorithm for poly-
trees, also called singly-connected networks [21]
(i.e., the networks without undirected cycles).
The two main approaches to extending this al-

gorithm to general (multiply-connected) net-
works are the cycle-cutset approach, also called
conditioning, and join-tree algorithm [21, 19,
25], which is also closely related to variable-
elimination techniques [8, 27, 10]. When exact
inference is intractable, various approximation
methods, such as Monte Carlo methods, varia-
tional approximation, and local inference algo-
rithms can be used.

The following example illustrates a variable-
elimination approach on a simple network
shown in Figure 2a. Assume that we want
to update the belief in A given the evidence
E = 0, i.e. to �nd P (aje = 0) = P (a;e=0)

P (e=0) . It is

enough to compute P (a; e) since 1=P (e = 0) is
a normalizing constant independent of a. As-
suming a variable ordering o = A; E; D; C; B;

we get

P (a; e = 0) =
X

e=0;d;c;b

P (a; b; c; d; e) =

X

e=0;d;c;b

P (a)P (cja)P (ejb; c)P (dja; b)P (bja):

By the distributivity law, the summation over
each variable can be \pushed" to the right, as
far as possible, yielding the following expres-
sion for P (a; e = 0):

P (a)
X

e=0

X

d

X

c

P (cja)
X

b

P (ejb; c)P (dja; b)P (bja):

(3)
We can compute the sum in equation (3) se-
quentially, from right to left, by eliminating
variables (summing over them) from the last
to the �rst along the ordering o:
B: hB(a; d; c; e) =

P
b P (ejb; c)P (dja; b)P (bja)

C: hC(a; d; e) =
P

c P (cja)h
B(a; d; c; e)

D: hD(a; e) =
P

d h
C(a; d; e)

E: hE(a) = hd(a; E = 0)
A: Bel(a) = P (ajE = 0) = �P (a)hE(a);
where � is a normalizing constant, and hX

is an intermediate result of computation after
summing over the variable X and its succes-
sors in o. One of the most recent examples
of the variable-elimination approach to belief
updating is algorithm elim-bel [10], a bucket-
elimination scheme that uses the data struc-
ture called buckets for keeping the functions



associated with each variable. Since the ta-
ble representation (e.g., CPT) of a function
de�ned on k variables has O(exp(k)) entries,
the time and space complexity of variable-
elimination is exponential in the scope size of
largest function recorded. Recording a new
function amounts to inducing edges in the net-
work among the variables in the scope of the
function (Figure 2b shows the induced edges as
dotted lines). Thus, variable elimination along
a particular variable ordering results into the
corresponding induced graph. It was shown in
[11] that time and space complexity of vari-
able elimination is exponential in the graph
parameter called induced width [12] which de-
scribes the largest clique in the induced graph,
and which corresponds to the largest scope of
function recorded by the algorithm. The in-
duced width will vary depending on the vari-
able ordering. For example, Figures 2b and 2c
depict ordered induced graphs obtained from
the moral graph of the network in Figure 2a
along the orderings o = (A;E;D; C;B) and
o0 = (A;B; C;D;E), respectively. Clearly,
w�
o = 4 and w�

o0 = 2. Although �nding a
minimum-w� ordering is NP-hard [1], good
heuristic algorithms are available; for more de-
tails on bucket-elimination and induced width
see [11, 9].

3 Learning Bayesian networks

In this section, we give an overview of the state-
of-the-art methods for learning Bayesian net-
works from data. Learning a Bayesian network
is an unsupervised learning problem which can
be informally stated as follows: given a set
of observations D = fy1; : : : ;yNg (training
data), �nd a Bayesian network (G;�) that best
matches D. This is an optimization problem
with respect to a particular scoring function
de�ned on a Bayesian network.

Popular scoring functions include the
Bayesian score [6, 17], the Minimum Descrip-
tion Length (MDL) criterion [4, 18], and the
equivalent to it Bayesian information criterion
(BIC) [24] (often called BIC/MDL). These

scoring functions are asymptotically equivalent
and asymptotically correct, i.e., as the number
of samples increases, the distribution encoded
by the learned network converges with prob-
ability 1 to the true distribution the observa-
tions were sampled from [16, 3]. We will focus
on the commonly used BIC/MDL score.

MDL [22] is an information-theoretic crite-
rion that favors models that provide the short-
est description of the training data. This de-
scription includes both the description of the
model and the description of the data given
the model. Formally, given a Bayesian network
BN = (G;�), and a training data set D, the
MDL score of BN is de�ned as

MDL(G;�jD) =
logN

2
j�j � logP (Dj�; G);

(4)
where j�j is the number of parameters in the
network. Without going into details of MDL
derivation, we just note here that the �rst term
of the MDL score is the description length
of a Bayesian network, i.e. the number of
bits required to encode the network parame-
ters (each parameter can be encoded using logN

2
bits), while the second term, the negative log-
likelihood of the model BN given dataD, gives
the number of bits needed to describe D when
using BN .

Minimizing MDL is equivalent to maximiz-
ing another well-known score, the Bayesian
information criterion (BIC) [24], which is
exactly the negation of MDL. Intuitively,
both MDL and BIC favor models that pre-
dict data better (have higher log-likelihood
logP (Dj�; G)) and have lower representation
complexity ( logN2 j�j).

Thus, learning a Bayesian network from
data D can be formally stated as �nding

(G;�) = argmin
G;�

MDL(G;�): (5)

A common approach to this problem is to
search in the space of graph structures, using
MDL(G) = min�MDL(G;�) score for each
graph. Since the �rst term in the equation
4 does not depend �, we only need to mini-
mize the second one, i.e. to �nd � maximizing



the log-likelihood logP (Dj�; G) given D and
G. This task is addressed in the following sec-
tion.

3.1 Learning parameters

When learning parameters � for a given graph
structure G, the following two cases are usu-
ally considered: the case of complete training
data (i.e., all variables are observed), and the
case of missing data (i.e., some of the variables
may have missing values). The �rst problem
is straightforward statistical parameter estima-
tion, while the second one requires more so-
phisticated non-linear optimization techniques.

If the training set D is complete, it is easy
to show that the log-likelihood logP (Dj�; G) is
decomposable according to the graph structure
G using the product in equation 2:

logP (Dj�; G) =
X

xi;pai

Nxi;pailog�xijpai; (6)

whereNxi;pai are su�cient statistics represent-
ing the number of data instances matching the
instantiations Xi = xi and Pai = pai, and
�xijpai are the parameters of local distribution
for Xi. It is easy to show that this expression
is maximized by the frequencies (maximum-

likelihood estimates) �xi;pai =
Nxi;pai

Npai
, where

Npai is the number of samples matching the
assignment Pai = pai.

An alternative approach to parameter esti-
mation is to use Bayesian statistics rather than
classical statistical approach. Classical statis-
tical approach assumes that parameters are
�xed, although unknown, physical probabilities,
i.e. constants that can be estimated from a set
of training examples using the ML estimate.
On the other hand, Bayesian statistics views
the parameters as unknown variables governed
by probability distributions. These probabili-
ties are subjective, i.e. they represent our de-
grees of belief. We assume some prior belief
(e.g., based on historical information) in � that
is represented by the prior distribution P (�).
When new data D become available, this be-
lief is updated according to Bayes' rule P (�jD)

=
P (Dj�)P (�)

P (D) . Thus, the Bayesian approach

takes advantage of prior knowledge about the
parameters, which is especially useful when
data are scarce. How do we select prior distri-
bution P (�)? A commonly used approach, usu-
ally motivated by computational convenience,
is to use the so-called conjugate priors, which
have the property that the posterior P (�jD)
belongs to the same conjugate distribution fam-
ily as the prior P (�). The conjugate family for
priors is determined by the distribution fam-
ily of P (Dj�). A common approach to mod-
eling local distribution in Bayesian networks
with �nite-valued variables is to use the multi-
nomial distribution with the parameters �xi;pai
[16]. The conjugate prior for the multinomial
distribution is the Dirichlet distribution:

Dir(�j�1; :::; �m) �
�(�)

Qm
i=1 �(�i)

mY

i=1

��i�1
i ; (7)

where � =
Pm

i=1 �i and �(�) is the Gamma-
function which satis�es �(x + 1) = x�(x)
and �(1) = 1. Parameters �j are the often
called hyperparameters, in order to distinguish
them from the parameters of the corresponding
multinomial distribution. Given a set of obser-
vations DX of a multinomial m-valued variable
X with the parameters � = (�1; :::; �m), it is
easy to see that the posterior P (�jDX) is also
Dirichlet:

P (�jDX) / P (Dj�)P (�) /
mY

i=1

�Ni
i �

mY

i=1

��i�1
i

/
mY

i=1

�Ni+�i�1
i ;

and therefore (taking into account normaliza-
tion constant),

P (�jDX) = Dir(�j�1 +N1; :::; �m+Nm);

where Ni is the number of times X had its i-th
value in DX . The parameters of the Dirich-
let priors can be also interpreted as "imagi-
nary counts" obtained from � prior observa-
tions (� is called an equivalent sample size).
Thus, larger parameters re
ect higher con�-
dence in our prior. The maximum a posteriori



probability estimate of each �i is then

�MAP
i =

�i +Ni

�+N
; (8)

where N is the total number of samples.
Assuming multinomial distribution for each

family in a Bayesian network, we can obtain
the Bayesian parameter estimates (MAP) from
equation 8, whereNi = Nxi;pai; N = Npai, and
�i = �xi;pai. Note that we assumed that priors
for the parameters of each family are indepen-
dent, and that data samples are independent
given the parameters. It is easy to show that,
if there is no missing data, the posteriors on
parameters are also independent, and thus can
be computed separately for each family. For
more details on conjugate priors and Bayesian
parameter estimation, see [16].

We now consider the situation when some
variables have missing values in D. In this
case, the likelihood term in scoring functions is
replaced by marginal likelihood, i.e. the proba-
bility of the subset of the variables that was ob-
served in a given data instance (assuming that
data are missing at random [23]). However,
marginal likelihood does not decompose as the
likelihood does. Finding �xi;pai that maximize
marginal likelihood becomes a nonlinear op-
timization problem. Common approaches to
this problem include gradient descent [2] and
the Expectation-Maximization (EM) algorithm
[13, 16].

As its name suggests, the EM algorithm
consists of two steps, expectation and maxi-
mization. Initially, the expectation step assigns
some (e.g., random) values to the parameters
in �. Then, conditioned on G, �, and the data
setD where some observations are missing, the
expected su�cient statistics are computed:

E(Nxi;pai) =
NX

k=1

P (xi;paijy
k;�; G): (9)

When all variables are observed, the (empiri-
cal) probabilities in the summation above are
just zero or one. When some of the variables
(e.g., Xi or some of its parents Pai) are unob-
served, the corresponding probability can be

computed using any of the existing inference
techniques for Bayesian networks, such as vari-
able elimination or join-tree algorithms.

Once the expected su�cient statistics are
computed, they can be used as if they were ac-
tual su�cient statistics from a complete data
set D0, to compute the ML estimates of the pa-
rameters � (maximization step). The ML esti-
mates maximize P (D0j�; G) and can be writ-
ten as

�xi;pai =
E(Nxi;pai)P

xi2V al(Xi)E(Nxi;pai)
: (10)

The expectation and maximization steps are
repeated iteratively. As shown in [13], under
certain regularity conditions, EM converges to
a local maximum.

3.2 Learning Structure

Given a scoring function, and training data
D, let us consider the problem of �nding the
highest-score Bayesian network among the net-
works in which each node has no more than k

parents. In general, this is an intractable prob-
lem: it is NP-hard for k > 1 [5]. Therefore,
a commonly used approach to this problem
are heuristic search (e.g., greedy local search,
best-�rst search) and Monte-Carlo techniques
[6, 16].

Local greedy search (gradient descent) usu-
ally makes one of the following changes to the
network at a time: adding an arc, deleting an
arc, or reversing an arc. The network score
must be re-evaluated after each change. This
computation is greatly simpli�ed if the scoring
function is separable, i.e. it can be decomposed
into a sum or a product of scoring functions re-
stricted to each family (a variable Xi and its
parents Pai), which is the case for complete
training data.

Another approach to learning graph struc-
ture uses constraint-based techniques. The in-
dependence relations inferred from data are
used to constrain the space of possible graph
structures [26]. Learning the graph structure
is closely related to learning causal relation-
ships, since the directed edges may have causal



semantics. The current methods for learning
causal relationships are still \new and contro-
versial" as noted in [16]. See [21, 26, 16] for an
in-depth discussion on that topic.

4 Summary and discussion

Bayesian learning is a probabilistic approach to
building models which combines prior knowl-
edge with learning from data. This paper
gives an overview of probabilistic inference
and learning in a graphical framework called
Bayesian networks which encodes probabilis-
tic dependencies among variables of interest as
a directed acyclic graph where the nodes cor-
respond to the variables and edges represent
probabilistic (and often also causal) dependen-
cies.

Inference in Bayesian networks has been a
subject of extensive research for many years.
Probabilistic inference task is de�ned as �nd-
ing the posterior probability of a subset of
variables given observations. Well-known in-
ference algorithms include join-tree algorithm
[21, 19, 25], which is also closely related to
variable-elimination techniques [8, 27, 10]. The
complexity of such algorithms is exponential
in the size of the largest clique created in
a graph during inference (also called induced
width) which corresponds to the largest func-
tion recorded by an algorithm. When the in-
duced width is large, approximation algorithms
such as Monte-Carlo techniques, variational in-
ference, or local propagation, can be used.

Bayesian networks were traditionally used
for encoding expert knowledge in expert sys-
tems. Recently, increasing volumes of data
available in a variety of real-life applica-
tions, including web, e-commerce, and bio-
informatics, motivated an active research on
learning Bayesian networks from data. A nat-
ural way of combining prior knowledge with
data is one of the major advantages of Bayesian
networks. Besides, they provide a possibility
for learning causal relationships, for convenient
handling incomplete data, and for incremental
learning, among the other advantages.

Learning a Bayesian network is typically
viewed as a model selection problem based
on some scoring function associated with a
network. A popular score is the minimum-
description length (MDL) [22], an information-
theoretic criterion which casts learning as a
data-compression problem and favors models
that provide a shorter description of data. The
scoring function is used to search in the space
of graph structures. Computing this score for
a particular graph requires �nding a set of net-
work parameters that best �t the data. In the
presence of complete data this problem can be
decomposed into simple ML parameter estima-
tion for each local probability function. In the
presence of missing data, however, the problem
is not decomposable and requires non-linear
optimization techniques, such as EM algorithm
[13]. Common approaches to learning graph
structure include heuristic search techniques
and constraint-based approaches. For a sur-
vey of current approaches to learning Bayesian
networks see [16].

Learning Bayesian networks is a relatively
young �eld which has a variety of open research
directions. For example, learning causal rela-
tionships is still a new (and sometimes con-
troversial) area. While learning parameters
for a �xed graph structure is a relatively well-
known statistical task, better learning with in-
complete data is a direction for further re-
search (e.g., improving the e�ciency of EM
by using approximate inference techniques in
E-step). Learning graph structure, including
learning hidden variables not yet present in
the graph, is even more complex and generally
intractable problem requiring further investi-
gation on better search techniques and other
methods. Another important problem is learn-
ing dynamic Bayesian networks (DBNs) that
model stochastic processes. Finally, combin-
ing Bayesian network learning with other tech-
niques developed in statistics, machine learn-
ing, and data-mining is a promising direction
for further research.
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