
Chapter 1

Bounding Inference Approximations

This chapter presents a class of approximation algorithms that bound inference by bound-
ing the dimensionality of dependencies created by inference algorithms. This yields a pa-
rameterized scheme, called mini-buckets, that offers adjustable trade-off between accuracy
and efficiency. The mini-bucket approach to optimization problems, such as finding the
most probable explanation (MPE) in Bayesian networks, generates both an approximate
solution and a bound on the solution quality.

As noted, automated reasoning tasks over graphical models such as constraint satisfac-
tion and optimization, probabilistic inference, decision-making, and planning are generally
hard (NP-hard). This was the focus of Chapter ?? where we introduced algorithms that
are tractable if the problem’s graph has a small treewidth. When a problem has a high
treewidth we must resort to approximations.

Although approximation within given error bounds is also known to be NP-hard [58,
70], there are approximation strategies that work well in practice. One approach advocates
anytime algorithms. These algorithms can be interrupted at any time producing the best
solution found thus far [15, 8].

In this chapter we present a family of parameterized algorithms, called mini-bucket
approximations (or elimination) that allow a flexible trade-off between accuracy and effi-
ciency and that can be combined in an anytime algorithm. We provide conditions under
which the approximation algorithms find an exact solution and identify regions of good
performance.

The class of mini-bucket approximation algorithms we propose imports the idea of
local inference from constraint networks to probabilistic reasoning and combinatorial op-
timization using the bucket-elimination framework. As we showed in Chapter ?? Bucket-
elimination is a unifying algorithmic scheme that generalizes non-serial dynamic program-
ming to enable complex problem-solving and reasoning activities. Among the algorithms

1

2 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

E

A

B
C

D

E
F

G

A

B
C F

G

D

i=3

A

B
C

D

E
F

G

A

B
C

D

E
F

G

Global consistency

local consistency
approximations

A

B
C

D

E
F

i=4

G

i-CONSISTENCY

PATH-CONSISTENCY

i=2

ARC-CONSISTENCY

Figure 1.1: From global to local consistency: graph aspects of algorithm i-consistency and two
particular cases, path-consistency (i=3) and arc-consistency (i=2).

that can be expressed as bucket-elimination are directional-resolution for propositional sat-
isfiability [26], adaptive-consistency for constraint satisfaction [24], Fourier and Gaussian
elimination for linear inequalities [48], dynamic-programming for combinatorial optimiza-
tion [6], as well as many algorithms for probabilistic inference [18].

In all these areas problems are represented by a set of variables and by a set of
dependencies (e.g., constraints, cost functions, and probabilities) that can be captured
by a graph. The algorithms infer and record new dependencies which amounts to adding
new edges to the graph. Generally, representing a dependence among k variables (k is
called arity of a dependence) requires enumerating O(exp(k)) tuples. As a result, the
complexity of inference is time and space exponential in the arity of the largest dependence
recorded which corresponds to the size of largest clique created in the graph and is known
as induced-width.

1.1. MINI-BUCKET APPROXIMATION FOR MPE 3

>-

1 hn... ,hr+1 ,

hr, ... ,h1{ } hr+1 ... , hn{ , }
X i=1

h i
h = max

hr, ... ,

bucket (X) =

n

},{

g h

h

nr

. h imax()h i
 i=1

max()
i=r+1

g =
X X

Figure 1.2: The idea of mini-bucket approximation.

1.1 Mini-bucket approximation for MPE

We will introduce the idea of mini-bucket approximation using the combinatorial opti-
mization task of finding the most probable explanation, MPE.

Since the MPE task is NP-hard and since complete algorithms (such as the cycle cutset
technique, join-tree-clustering [60] and bucket elimination [16]) work well only on relatively
sparse networks, approximation methods are necessary. Researchers investigated several
approaches for finding MPE. The suitability of Stochastic Local Search (SLS) algorithms
for MPE was studied in the context of medical diagnosis applications [62] and, more
recently, in [41]. Best-First search algorithms were proposed [78] as well as algorithms
based on linear programming [71].

In this paper, we propose approximation algorithms based on bucket elimination.
Consider the bucket-elimination algorithm elim-mpe. Since the complexity of processing
a bucket depends on the number of arguments (arity) of the functions being recorded,
we propose to approximate these functions by a collection of smaller-arity functions. Let
h1, ..., ht be the functions in the bucket of Xp, and let S1, ..., St be their scopes. When
elim-mpe processes bucket(Xp), the function hp = maxXpΠ

t
i=1hi is computed. A simple

approximation idea is to compute an upper bound on hp by “migrating” the maximization
inside the multiplication. Since, in general, for any two non-negative functions Z(x) and
Y (x), maxx Z(x) · Y (x) ≤ maxx Z(x) · maxx Y (x), this approximation will compute an
upper bound on hp. For example, we can compute a new function gp = Πt

i=1 maxXp hi, that
is an upper bound on hp. Procedurally it means that maximization is applied separately
to each function, requiring less computation.

4 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

The idea of mini-bucket partitioning is demonstrated in Figure 1.2, where the bucket
of variable X having n functions is split into two mini-buckets of size r and (n − r),
r ≤ n, and it can be generalized to any partitioning of a set of functions h1, ..., ht into
subsets called mini-buckets. Let Q = {Q1, ..., Qr} be a partitioning into mini-buckets of
the functions h1, ..., ht in Xp’s bucket, where the mini-bucket Ql contains the functions
hl1 , ..., hlr . The complete algorithm elim-mpe computes hp = maxXp Πt

i=1hi, which can be
rewritten as hp = maxXp Πr

l=1Πlihli . By migrating maximization into each mini-bucket
we can compute: gp

Q = Πr
l=1 maxXp Πlihli . The new functions maxXp Πlihli are placed

separately into the bucket of the highest-variable in their scope and the algorithm proceeds
with the next variable. Functions without arguments (i.e., constants) are placed in the
lowest bucket. The maximized product generated in the first bucket is an upper bound
on the MPE probability. A lower bound can also be computed as the probability of
a (suboptimal) assignment found in the forward step of the algorithm. Clearly, as the
mini-buckets get smaller, both complexity and accuracy decrease.

Definition 1.1.1 Given two partitionings Q
′
and Q

′′
over the same set of elements, Q

′

is a refinement of Q
′′

if and only if for every set A ∈ Q
′
there exists a set B ∈ Q

′′
such

that A ⊆ B.

It is easy to see that:

Proposition 1.1.2 If Q
′′

is a refinement of Q
′
in bucketp, then hp ≤ gp

Q
′ ≤ gp

Q
′′ .

The mini-bucket elimination (mbe) algorithm for finding MPE, mbe-mpe(i,m), is de-
scribed in Figure 1.3. It can use two input parameters that control the mini-bucket
partitioning.

Definition 1.1.3 ((i,m)-partitioning) Let H be a collection of functions h1, ..., ht de-

fined on scopes S1, ..., St, respectively. We say that a function f is subsumed by a function

h if any argument of f is also an argument of h. A partitioning of h1, ..., ht is canonical

if any function f subsumed by another function is placed into the bucket of one of those

subsuming functions. A partitioning Q into mini-buckets is an (i,m)-partitioning if and

only if (1) it is canonical, (2) at most m non-subsumed functions are included in each

mini-bucket, (3) the total number of variables in a mini-bucket does not exceed i, and (4)

the partitioning is refinement-maximal, namely, there is no other (i,m)-partitioning that

it refines.

The parameters i (number of variables) and m (number of functions allowed per mini-
bucket) are not independent, and some combinations of i and m do not allow an (i,m)-
partitioning. However,

1.1. MINI-BUCKET APPROXIMATION FOR MPE 5

Algorithm mbe-mpe(i,m)
Input: A belief network BN = (G,P), an ordering o, evidence ē.
Output: An upper bound U and a lower bound L on the MPE = maxx̄ P (x̄, ē),
and a suboptimal solution x̄a that provides L = P (x̄a).
1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn,

where bucketp contains all CPTs h1, h2, ..., ht whose highest-index variable is Xp.
2. Backward: for p = n to 2 do
• If Xp is observed (Xp = a), assign Xp = a in each hj and put the result

in its highest-variable bucket (put constants in bucket1).
• Else for h1, h2, ..., ht in bucketp do

Generate an (i, m)-mini-bucket-partitioning, Q
′
= {Q1, ..., Qr}.

for each Ql ∈ Q
′
containing hl1 , ...hlt , do

compute hl = maxXpΠt
j=1hlj and place it in the bucket of the highest-index

variable in Ul ←
⋃t

j=1 Slj − {Xp}, where Slj is the scope of hlj

(put constants in bucket1).
3. Forward: for p = 1 to n, given xa

1, ..., x
a
p−1, do

assign a value xa
p to Xp that maximizes the product of all functions in bucketp.

4. Return the assignment x̄a = (xa
1, ..., x

a
n), a lower bound L = P (x̄a), and

an upper bound U = maxx1

∏
hj∈bucket1

hj on the MPE = maxx̄ P (x̄, ē).

Figure 1.3: Algorithm mbe-mpe(i,m).

Proposition 1.1.4 If the bound i on the number of variables in a mini-bucket is not

smaller than the maximum family size, then, for any value of m > 0, there exists an

(i,m)-partitioning of each bucket.

Exercise: Prove proposition 1.1.2.
Although the two parameters i and m are not independent they do allow a variety of

partitioning schemes reacher than using i or m alone. The properties of the mini-bucket
algorithms are summarized in the following theorem.

Theorem 1.1.5 (mbe-mpe complexity) Algorithm mbe-mpe(i,m) computes an up-

per bound on the MPE. its time and space complexity is O(n · exp(i)) where i ≤ n.

We will prove the theorem later (section 1.6) in a more general setting, common to all
mini-bucket elimination algorithms.

In general, as m and i increase, we get more accurate approximations. Note, however,
a monotonic increase in accuracy as a function of i can be guaranteed only for refinements
of a given partitioning.

6 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

A

E

D

C

B

Complexity: O(exp(5))

E

h

E = 0 h
D

h
C

h
B

MPE

max
B

P(e|b,c) P(d|a,b) P(b|a)

P(c|a)

P(a)

(a,d,c,e)

(a,d,e)

(a,e)

(a)

max
B

h B

h B

MPE()Upper boundU =

E = 0

3

3

2

2

1

P(b|a)P(d|a,b)P(e|b,c)

P(c|a)

P(a)

h C

DhhE

(e,c)

(d,a)

(e,a)

(a) (a)

Mini-buckets Max variables

Complexity:
O (exp(3))

in a mini-bucket

(a) A trace of elim-mpe (b) A trace of mbe-mpe(3,2).

Figure 1.4: Comparison between (a) elim-mpe and (b) mbe-mpe(3,2).

Example 1.1.6 Figure 1.4 compares algorithms elim-mpe and mbe-mpe(i,m) where i = 3

and m = 2 over the network in Figure ??a along the ordering o = (A, E, D, C, B). The

exact elim-mpe sequentially records the new functions (shown in boldface) hB(a, d, c, e),

hC(a, d, e), hD(a, e), and hE(a). Then, in the bucket of A, it computes M = maxa P (a)hE(a).

Subsequently, an MPE assignment (A = a′, B = b′, C = c′, D = d′, E = e′) where e′ = 0

is the evidence, is computed along o by selecting a value that maximizes the product

of functions in the corresponding buckets conditioned on the previously assigned values.

Namely, a′ = arg maxa P (a)hE(a), e′ = 0, d′ = arg maxd hC(a′, d, e = 0), and so on.

On the other hand, since bucket(B) includes five variables, mbe-mpe(3,2) splits it

into two mini-buckets {P (e|b, c)} and {P (d|a, b), P (b|a)}, each containing no more than

3 variables, as shown in Figure 1.4b (the (3,2)-partitioning is selected arbitrarily). The

new functions hB(e, c) and hB(d, a) are generated in different mini-buckets and are placed

independently in lower buckets. In each of the remaining lower buckets that still need

to be processed, the number of variables is not larger than 3 and therefore no further

partitioning occurs. An upper bound on the MPE value is computed by maximizing

over A the product of functions in A’s bucket: U = maxaP (a)hE(a)hD(a). Once all

the buckets are processed, a suboptimal MPE tuple is computed by assigning a value

to each variable that maximizes the product of functions in the corresponding bucket.

1.2. MINI-BUCKET APPROXIMATION FOR BELIEF UPDATING 7

By design, mbe-mpe(3,2) does not produce functions on more than 2 variables, while the

exact algorithm elim-mpe records a function on 4 variables.

In summary, algorithm mbe-mpe(i,m) computes an interval [L,U] containing the MPE
value where U is the upper bound computed by the backward phase and L is the proba-
bility of the returned assignment.

Remember that mbe-mpe computes the bounds on MPE = maxx̄ P (x̄, ē), rather than
on M = maxx̄ P (x̄|ē) = MPE/P (ē). Thus

L

P (ē)
≤ M ≤ U

P (ē)

Clearly the bounds U and L for MPE are very close to zero when the evidence ē is
unlikely, however the ratio between the upper and the lower bound is not dependent on
P (ē). As we will see next, approximating conditional probabilities using bounds on joint
probabilities is more problematic for belief updating.

1.1.1 The mini-bucket semantics

The Mini-Bucket computation can be viewed as relaxation in the following sense. For
each bucket and its partitioning into mini-buckets, a variable in the original problem is
replaced by a set of new variables in the relaxed problem, each corresponding to a single
mini-bucket, and each function in the original problem is associated with the copy of
the variable in the relaxed problem 40 corresponding to its mini-bucket in the original
problem. For example, the Mini-Bucket trace in Figure 5b, corresponds to solving exactly
by full bucket-elimination the following relaxation of the problem in Figure 2. Variable B
is replaced by two variables B1 and B2, and the functions P (e|b, c), P (d|a, b), and P (b|a)
are replaced by P (e|b1, c), P (d|a, b2) and P (b2|a). Thus the two mini-buckets correspond
to two full buckets in the relaxed problem. The relaxed problem has a smaller width and
can be solved more efficiently, yielding a bound (upper or lower) as expected.

1.2 Mini-bucket approximation for belief updating

As shown in Chapter ??, the bucket elimination algorithm elim-bel for belief assessment
is similar to elim-mpe except that maximization is replaced by summation and no value
assignment is generated. Algorithm elim-bel finds P (x1, ē) and then computes P (x1|ē) =
αP (x1, ē) where α is the normalization constant (see Figure ??).

The mini-bucket idea used for approximating MPE can be applied to belief updat-
ing in a similar way. Let Q′ = {Q1, ..., Qr} be a partitioning of the functions h1, ...ht

8 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Algorithm mbe-bel-max(i,m)
Input: A belief network BN = (G,P), an ordering o, and evidence ē.
Output: an upper bound on P (x1, ē).
1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn,

where bucketk contains all CPTs h1, h2, ..., ht whose highest-index variable is Xk.
2. Backward: for k = n to 2 do
• If Xp is observed (Xk = a), assign Xk ← a in each hj and put the result

in the highest-variable bucket of its scope (put constants in bucket1).
• Else for h1, h2, ..., ht in bucketk do

Generate an (i,m)-mini-bucket-partitioning, Q
′
= {Q1, ..., Qr}.

For each Ql ∈ Q
′
, containing hl1 , ...hlt , do

If l = 1 compute hl =
∑

Xk
Πt

j=1h1j

Else compute hl = maxXk
Πt

j=1hlj

Add hl to the bucket of the highest-index variable in Ul ←
⋃t

j=1 Slj − {Xk},
(put constant functions in bucket1).

3. Return the product of functions in the bucket of X1,
which is an upper bound on P (x1, ē) (denoted g(x1)).

Figure 1.5: Algorithm mbe-bel-max(i,m).

1.2. MINI-BUCKET APPROXIMATION FOR BELIEF UPDATING 9

(defined over scopes S1, ..., St, respectively) in Xp’s bucket. Algorithm elim-bel com-
putes hp : Up → <, where hp =

∑
Xp

Πt
i=1hi, and Up = ∪iSi − {Xp}. Note that

hp =
∑

Xp
Πt

i=1hi, can be rewritten as hp =
∑

Xp
Πr

l=1Πlihli . If we follow the MPE
approximation precisely and migrate the summation operator into each mini-bucket,
we will compute f p

Q′ = Πr
l=1

∑
Xp

Πlihli . This, however, is an unnecessarily large up-

per bound of hp in which each Πlihli is bounded by
∑

Xp
Πlihli . Instead, we rewrite

hp =
∑

Xp
(Π1i

h1i
) · (Πr

l=2Πlihli). Subsequently, instead of bounding a function of X

by its sum over X, we can bound (i > 1), by its maximum over X, which yields
gp

Q′ = (
∑

Xp
Π1i

h1i
) · (Πr

l=2 maxXp Πlihli). In summary, an upper bound gp of hp can
be obtained by processing one of Xp’s mini-buckets by summation and the rest by maxi-
mization.

We will have the same relationships between partitioning and their refinements as for
the mpe case.

A lower bound on the belief, or its mean value, can be obtained in a similar way.
Algorithm mbe-bel-max(i,m) that uses the max elimination operator is described in Figure
1.5. Algorithms mbe-bel-min and mbe-bel-mean can be obtained by replacing the operator
max by min and by mean, respectively.

1.2.1 Normalization

Note that aprox-bel-max computes an upper bound on P (x1, ē) but not on P (x1|ē). If an
exact value of P (ē) is not available, deriving a bound on P (x1|ē) from a bound on P (x1, ē)

is not easy, because g(x1)∑
x1

g(x1)
, where g(x) is the upper bound on P (x1, ē), is not necessarily

an upper bound on P (x1|ē). In principle, we can derive a lower bound, f , on P (ē) using
mbe-bel-min (in this case, the observed variables initiate the ordering), and then compute
g(x1)

f
as an upper bound on P (x1|ē). This however is likely to make the bound quite

weak due to compounded error. In many practical scenarios, however, we are interested
in the ratio between the belief in two competing values of X1. Since P (xi, e)/P (xj, e) =
P (xi|e)/P (xj|e), the ratio between the upper bounds of the respective join probabilities
can serve as a good comparative measure between the conditional probabilities as well.

Alternatively, let Ui and Li be the upper bound and lower bounding functions on
P (X1 = xi, ē) obtained by mbe-bel-max and mbe-bel-min, respectively. Then,

Li

P (ē)
≤ P (xi|ē) ≤ Ui

P (ē)

Therefore, although P (ē) is not known, the ratio of upper to lower bounds remains the
same. Yet, the difference between the upper and the lower bounds can grow substantially,
especially in cases of rare evidence. Note that if P (ē) ≤ Ui, we get Li

P (ē)
≤ P (X1|ē) ≤ 1,

10 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

so that the upper bound is trivial. Finally, note there is no bound for gmean(xi), and

therefore, the approximation of gmean(xi)∑
x1

gmean(x1)
can also be a lower or an upper bound of the

exact belief. Interestingly, the computation of gmean(X1=xi)∑
x1

gmean(x1)
is achieved when processing

all mini-buckets by summations, and subsequently normalizing.

1.3 Mini-bucket elimination for MAP

Algorithm elim-map for computing the MAP is a combination of elim-mpe and elim-bel as
we have shown in Chapter ??; some of the variables are eliminated by summation, while
the others by maximization. The MAP task is generally more difficult than MPE and
belief updating [?]. From variable elimination perspective it restricts the possible variable
orderings and therefore may require higher w∗ which implies higher complexity.

Given a belief network, a subset of hypothesis variables A = {A1, ..., Ak}, and evidence
ē, the problem is to find an assignment to the hypothesized variables that maximizes their
probability conditioned on ē. Formally, we wish to find

āmap
k = arg max

āk

P (āk|ē) = arg max
āk

∑
x̄n

k+1
Πn

i=1P (xi, ē| ¯xpai
)

P (ē)
(1.1)

where x̄ = (a1, ..., ak, xk+1, ..., xn) denotes an assignment to all variables, while āk =
(a1, ..., ak) and x̄n

k+1 = (xk+1, ..., xn) denote assignments to the hypothesis and non-
hypothesis variables, respectively. Since P (ē) is a normalization constant, the maximum
of P (āk|ē) is achieved at the same point as the maximum of P (āk, ē). Namely, as before,

we have P (āk|ē) = P (āk,ē)
P (ē)

. Thus, we define MAP = P (āk, ē) and derive an approximation

to this quantity which is easier than approximating P (āk|ē).
The bucket-elimination algorithm for finding the exact MAP, elim-map [16, 21], as-

sumes only orderings in which the hypothesized variables appear first and thus are pro-
cessed last by the algorithm (this restricted ordering implies increased complexity as
remarked above) . The algorithm has a backward phase as usual but its forward phase
is relative to the hypothesis variables only. The application of the mini-bucket scheme
to elim-map for deriving an upper bound is a straightforward extension of the algorithms
mbe-mpe and mbe-bel-max. We partition each bucket into mini-buckets as before. If the
bucket’s variable is eliminated by summation, we apply the rule we have in mbe-bel-max
in which one mini-bucket is approximated by summation and the rest by maximization.
When the algorithm reaches the hypothesis buckets, their processing is identical to that
of mbe-mpe. Algorithm mbe-map(i,m) is described in Figure 1.6.

Deriving a lower bound on the MAP is no longer a simple extension of mbe-map
as we observed for MPE. Once mbe-map terminates, we have an upper bound and we

1.3. MINI-BUCKET ELIMINATION FOR MAP 11

Algorithm mbe-map(i,m)
Input: A belief network BN = (G,P), a subset of variables A = {A1, ..., Ak},
an ordering of the variables, o, in which the A’s appear first, and evidence ē.
Output: An upper bound U on the MAP and a suboptimal solution A = āa

k.
1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn
where bucketP contains all CPTs, h1, ..., ht whose highest index variable is Xp.
2. Backward: for p = n to 1 do
• If Xp is observed (Xp = a), assign Xp = a in each hi and put the result

in its highest-variable bucket (put constants in bucket1).
• Else for h1, h2, ..., hj in bucketp do

Generate an (i,m)-partitioning, Q
′
of the matrices hi into mini-buckets Q1, ..., Qr.

• If XP 6∈ A /* not a hypothesis variable */
for each Ql ∈ Q

′
, containing hl1 , ...hlt , do

If l = 1, compute hl =
∑

Xp
Πt

i=1h1i

Else compute hl = maxXpΠ
t
i=1hli

Add hl to the bucket of the highest-index variable in Ul ←
⋃t

i=1 Sli − {Xp},
(put constants in bucket1).

• Else (Xp ∈ A) /* a hypothesis variable */
for each Ql ∈ Q

′
containing hl1 , ...hlt compute hl = maxXpΠt

i=1hli and place it
in the bucket of the highest-index variable in Ul ←

⋃t
i=1 Sli − {Xp},

(put constants in bucket1).
3. Forward: for p = 1 to k, given A1 = aa

1, ..., Ap−1 = aa
p−1,

assign a value aa
p to Ap that maximizes the product of all functions in bucketp.

4. Return An upper bound U = maxa1

∏
hi∈bucket1

hi on MAP , computed in the first bucket.
and the assignment āa

k = (aa
1, ..., a

a
k).

Figure 1.6: Algorithm mbe-map(i,m).

12 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

x x x x x

u u u u u0 1 2 3 4

0 1 2 3 4

y y y y y

y y y y y

u u u u u
0

0

1 2 3 4

1 2 3 4
x x x x x

Figure 1.7: Belief network for a linear block code.

can compute an assignment to the hypothesis variables. While the probability of this
assignment is a lower bound for the MAP, obtaining this probability is no longer possible
by a simple forward step over the generated buckets. It requires an exact inference, or a
lower bound approximation. We cannot use the functions generated by mbe-bel-max in the
buckets of summation variables since those serve as upper bounds. One possibility is, once
an assignment is obtained, to rerun the mini-bucket algorithm over the non-hypothesis
variables using the min operator (as in mbe-bel-min, and then compute a lower bound on
the assigned tuple in another forward step over the first k buckets that take into account
the original functions and only those computed by mbe-bel-min.

Example 1.3.1 We will next demonstrate the mini-bucket approximation for MAP on

an example inspired by probabilistic decoding [13, 46] 1. Consider a belief network which

describes the decoding of a linear block code, shown in Figure 1.7. In this network, Ui

are information bits and Xj are code bits, which are functionally dependent on Ui. The

vector (U,X), called the channel input, is transmitted through a noisy channel which adds

Gaussian noise and results in the channel output vector Y = (Y u, Y x) . The decoding

task is to assess the most likely values for the U ’s given the observed values Y = (ȳu, ȳx),

which is the MAP task where U is the set of hypothesis variables, and Y = (ȳu, ȳx) is the

evidence. After processing the observed buckets we get the following bucket configura-

tion (lower case y’s are observed values):

bucket(X0) = P (yx
0 |X0), P (X0|U0, U1, U2),

bucket(X1) = P (yx
1 |X1), P (X1|U1, U2, U3),

bucket(X2) = P (yx
2 |X2), P (X2|U2, U3, U4),

1Probabilistic decoding is discussed in more details in Section 1.8.4.

1.3. MINI-BUCKET ELIMINATION FOR MAP 13

bucket(X3) = P (yx
3 |X3), P (X3|U3, U4, U0),

bucket(X4) = P (yx
4 |X4), P (X4|U4, U0, U1),

bucket(U0) = P (U0), P (yu
0 |U0),

bucket(U1) = P (U1), P (yu
1 |U1),

bucket(U2) = P (U2), P (yu
2 |U2),

bucket(U3) = P (U3), P (yu
3 |U3),

bucket(U4) = P (U4), P (yu
4 |U4).

Processing by mbe-map(4,1) of the first top five buckets by summation and the rest by

maximization, results in the following mini-bucket partitionings and function generation:

bucket(X0) = {P (yx
0 |X0), P (X0|U0, U1, U2)},

bucket(X1) = {P (yx
1 |X1), P (X1|U1, U2, U3)},

bucket(X2) = {P (yx
2 |X2), P (X2|U2, U3, U4)},

bucket(X3) = {P (yx
3 |X3), P (X3|U3, U4, U0)},

bucket(X4) = {P (yx
4 |X4), P (X4|U4, U0, U1)},

bucket(U0) = {P (U0), P (yu
0 |U0), h

X0(U0, U1, U2)}, {hX3(U3, U4, U0)}, {hX4(U4, U0, U1)},
bucket(U1) = {P (U1), P (yu

1 |U1), h
X1(U1, U2, U3), h

U0(U1, U2)}, {hU0(U4, U1)},
bucket(U2) = {P (U2), P (yu

2 |U2), h
X2(U2, U3, U4), h

U1(U2, U3)},
bucket(U3) = {P (U3), P (yu

3 |U3), h
U0(U3, U4), h

U1(U3, U4), h
U2(U3, U4)},

bucket(U4) = {P (U4), P (yu
4 |U4), h

U1(U4), h
U3(U4)}.

The first five buckets are not partitioned at all and are processed as full buckets, since in

this case a full bucket is a (4,1)-partitioning. This processing generates five new functions,

three are placed in bucket U0, one in bucket U1 and one in bucket U2. Then bucket U0

is partitioned into three mini-buckets processed by maximization, creating two functions

placed in bucket U1 and one function placed in bucket U3. Bucket U1 is partitioned into

two mini-buckets, generating functions placed in bucket U2 and bucket U3. Subsequent

buckets are processed as full buckets. Note that the scope of recorded functions is bounded

by 3.

In the bucket of U4 we get an upper bound U satisfying U ≥ MAP = P (U, ȳu, ȳx)

where ȳu and , ȳx are the observed outputs for the U ’s and the X’s bits transmitted.

In order to bound P (U |ē), where ē = (ȳu, ȳx), we need P (ē) which is not available.

Yet, again, in most cases we are interested in the ratio P (U = ū1|ē)/P (U = ū2|ē) for

competing hypotheses U = ū1 and U = ū2 rather than in the absolute values. Since

P (U |ē) = P (U, ē)/P (ē) and the probability of the evidence is just a constant factor

independent of U , the ratio is equal to P (U1, ē)/P (U2, ē).

14 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

1.4 Mini-buckets for discrete optimization

The mini-bucket principle can also be applied to deterministic discrete optimization prob-
lems which can be defined over cost networks, yielding approximation to dynamic pro-
gramming for discrete optimization [6]. Cost networks is a general model encompassing
constraint-satisfaction, and constraint-optimization in general. In fact, the MPE task is
a special case of combinatorial optimization and its approximation via mini-buckets can
be straightforwardly extended to the general case. For an explicit treatment see [19].
For completeness sake we present the algorithm explicitly within the framework of cost
networks.

As defined earlier a cost network is a triplet (X,D,C), where X is a set of discrete
variables, X = {X1, ..., Xn}, over domains D = {D1, ..., Dn}, and C is a set of real-
valued cost functions C1, ..., Cl. The cost function is defined by C(X) =

∑l
i=1 Ci. The

optimization (minimization) problem is to find an assignment xopt = (x1
opt, ..., xn

opt) such
that C(xopt) = minx=(x1,...,xn) C(x).

Algorithm mbe-opt is described for the sake of completeness in Figure ??. Step 2
(backward step) computes a lower bound on the cost function while Step 3 (forward step)
generates a suboptimal solution which provides an upper bound on the cost function.

1.5 A unified presentation of mbe

[to complete]

1.6 Complexity and tractability

1.6.1 The case of low induced width

All mini-bucket algorithms have similar worst-case complexity bounds and completeness
conditions. We denote by mini-bucket-elimination(i,m), or simply mbe(i,m), a generic
mini-bucket scheme with parameters i and m, without specifying the particular task
it solves, which can be either one of probabilistic inference tasks defined above or a
general constrained optimization problem [19]2. Theorem 1.1.5 applies to all mini-bucket
algorithms:

Theorem 1.6.1 Algorithm mbe(i,m) takes O(r · exp(i)) time and space, where r is the

2Note that in case of optimization task, mbe(i,m) takes as an input a set of cost functions rather than
a set of probability functions [19].

1.6. COMPLEXITY AND TRACTABILITY 15

Algorithm mbe-opt(i,m)
Input: A cost network (X,D,C), C = {C1, ..., Cl}; ordering o, a set of assignments e.
Output: A lower and an upper bound on the optimal cost.
1. Initialize: Partition C and e into bucket1, . . ., bucketn, where bucketp

contains all components h1, h2, ..., ht whose highest-index variable is Xp.
2. Backward: for p = n to 2 do
• If Xp is observed (Xp = a), replace Xp by a in each hi and put the result

in its highest-variable bucket (put constants in bucket1).
• Else for h1, h2, ..., ht in bucketp do

Generate an (i, m)-mini-bucket-partitioning, Q
′
= {Q1, ..., Qr}.

For each Ql ∈ Q
′
containing hl1 , ...hlt , compute hl = minXp

∑t
i=1 hli and add it

to the bucket of the highest-index variable in Ul ←
⋃t

i=1 Sli − {Xp}, where Sli

is the set of arguments of hli (put constants in bucket1).
3. Forward: for p = 1 to n, given X1 = xopt

1 , ..., Xp−1 = xopt
p−1,

assign a value xopt
p to Xp that minimizes the sum of all functions in bucketp.

4. Return the assignment xopt = (xopt
1 , ..., xopt

n), an upper bound U = C(xopt),
and a lower bound L = minx1

∑
hi∈bucket1

hi on the optimal cost.

Figure 1.8: Algorithm mbe-opt(i,m).

number of input functions3, and where |F | is the maximum scope of any input function,

|F | ≤ i ≤ n. For m = 1, the algorithm is time and space O(r · exp(|F |)).

Proof: We can associate a bucket-elimination or a mini-bucket elimination algorithm
with a computation tree where leaf nodes correspond to the original input functions (CPTs
or cost functions), and each internal node v corresponds to the result of applying an
elimination operator (e.g., product followed by summation) to the set of node’s children,
ch(v) (children correspond to all functions in the corresponding bucket or mini-bucket).
We can compress the computation tree so that each node having a single child will be
merged into one node with its parent, so that the branching degree in the resulting tree is
not less than 2. Computing an internal node that is a compressed sequence of single-child
nodes takes O(exp(—F—) time and space since it only requires a sequence of elimination
operations over a single function which can be accomplished in one pass through the
tuples (accumulating appropriate running summations over the relevant variables). The

3Note that r = n for Bayesian networks, but can be higher or lower for general constraint optimization
tasks

16 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

cost of computing any other internal node v is O(|ch(v)| · exp(i)) where |ch(v)| ≤ m and
i bounds the resulting scope size of generated functions. Since the number of leaf nodes
is bounded by r, the number of internal nodes in the computation tree is bounded by r
as well (since the branching factor of each internal node is at least 2). Thus the total
amount of computation over all internal nodes in the computation tree is time and space
O(r · exp(i)) in general, which becomes to O(n · exp(i)) for belief networks.

The above proof, suggested in [?], refines the original proof given in [27].
We next identify cases for which the mini-bucket scheme coincides with the exact

algorithm, and is therefore complete.

Theorem 1.6.2 Given an ordering of the variables, o, algorithm mbe(i, n) applied along

o is complete for networks having w∗
o ≤ i.

Proof: The claim trivially follows from the observation that each full bucket satisfies
the condition of being an (i, n)-partitioning and it is the only one which is refinement-
maximal.

1.6.2 The case of mini-bucket(n,1)

Another case is mbe(n,1) which allows only one non-subsumed function in a mini-bucket.
It is easy to see that mini-bucket(n,1) is complete for polytrees if applied along some legal
orderings. A legal ordering of a polytree (see Figure 1.9) is one where (1) all evidence
nodes appear last in the ordering, and (2) among the remaining variables, each child node
appears before its parents and all the parents of the same family are consecutive in the
ordering. Such an ordering is always feasible for polytrees, and using this ordering, each
bucket contains only one non-subsumed function. Clearly, algorithm mini-bucket(n,1) is
complete along such orderings and is therefore complete for polytrees.

In summary,

Theorem 1.6.3 Given a polytree, there exists an ordering o such that algorithm mbe(n,1)

finds an exact solution in time and space O(n · exp(|F |)), where |F | is the largest scope

size of any input function.

Example 1.6.4 Consider a legal ordering o = (X1, U3, U2, U1, Y1, Z1, Z2, Z3) of the poly-

tree in Figure 1.9a, where the last four variables Y1, Z1, Z2, Z3 in the ordering are

observed. Processing the buckets from last to first, after the last four buckets were al-

ready processed as observation buckets, we get (observed values shown in low-case):

bucket(U1) = P (U1), P (X1|U1, U2, U3), P (z1|U1),

1.7. ANYTIME INFERENCE 17

3Z

2Z

1Z

Y1

1U

2U

3U

X1

1Z 2Z 3Z

2U 3U

X1

Y1

1U

(a) (b)

Figure 1.9: (a) A polytree and (b) a legal ordering, assuming that nodes Z1, Z2, Z3 and Y1 are
observed.

bucket(U2) = P (U2), P (z2|U2),

bucket(U3) = P (U3), P (z3|U3)

bucket(X1) = P (y1|X1).

It is easy to see that the only legal partitionings correspond to full buckets.

Note also that on polytrees, mbe(n,1) is similar to Pearl’s well-known propagation al-
gorithm. One difference, however, is that Pearl’s algorithm records only functions defined
on a single variable, while mini-bucket(n,1) may record functions whose scope is at most
the size of a family.

1.7 Anytime inference

An important property of the mini-bucket scheme is that it provides an adjustable trade-
off between accuracy of solution and computational complexity. Both the accuracy and
the complexity increase with increasing parameters i and m. While in general it may not
be easy to predict the algorithm’s performance for a particular parameter setting, it is
possible to use this scheme within the anytime framework.

Anytime algorithms can be interrupted at any time producing the best solution found
thus far [?, ?, 15, 8]. As more time is available, better solutions are guaranteed by such
algorithms. In the context of Bayesian networks, anytime algorithms were first considered
by the name of flexible computation under computational resource constraints [?, ?, ?].

18 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Algorithm anytime-mpe(ε)
Input: Initial values of i and m, i0 and m0; increments istep and mstep,
and desired approximation error ε.
Output: U and L
1. Initialize: i = i0,m = m0.
2. do
3. run mbe-mpe(i,m)
4. U ← upper bound of mbe-mpe(i,m)
5. L ← lower bound of mbe-mpe(i,m)
6. Retain best bounds U,L, and best solution found so far
7. if 1 ≤ U/L ≤ 1 + ε, return solution
8. else increase i and m: i ← i + istep and m ← m + mstep

9. while computational resources are available
10. Return the largest L

and the smallest U found so far.

Figure 1.10: Algorithm anytime-mpe(ε).

One of the first probabilistic anytime inference algorithms was bounded conditioning al-
gorithm [?] that works by conditioning on a small, high probability cutset instances,
including more of the instances as more computational resources become available.

In general, any inference algorithm that adapts to limited computational resources by
ignoring some information about the problem, and is able to recover that information
incrementally as more resources become available, can be called an anytime inference
algorithm [?, ?]. Many approximation schemes can be used by anytime methods since
they are based on exploiting only partial information about the problem, e.g. ignoring a
subset of ”weak” edges [45, ?], using partial variable assignments [?, ?] (including partial
cutset assignments [?]), using only a subset of nodes [30], or a subset of (relatively high)
probability entries in CPTs [31]. In particular, our mini-bucket scheme exploits partial
(bounded) dependencies among the variables. Clearly, an iterative application of such
schemes with less restrictions on the amount of information they use, results in anytime
inference algorithms that eventually become exact, if sufficient computational resources
are available.

Our idea of extending the mini-bucket scheme to an anytime algorithm is to run a
sequence of mini-bucket algorithms with increasing values of i and m until either a desired
level of accuracy is obtained, or until the computational resources are exhausted. The
anytime algorithm anytime-mpe(ε) for MPE is presented in Figure 1.10. The parameter ε
is the desired accuracy level. The algorithm uses initial parameter settings, i0 and m0, and

1.8. EMPIRICAL EVALUATION 19

increments istep and mstep. Starting with i = i0 and m = m0, mbe-mpe(i,m) computes a
suboptimal MPE solution and the corresponding lower bound L, and an upper bound (U)
for increasing values of i and m. The algorithm terminates when either 1 ≤ U/L ≤ 1 + ε,
or when the computational resources are exhausted, returning the largest lower bound and
the smallest upper bound found so far, as well as the current best suboptimal solution.
Note that the algorithm is complete when ε = 0.

Another anytime extension of the mini-bucket, is to embed it within a complete any-
time heuristic search algorithm such as branch-and-bound. Since, the mini-bucket approx-
imations computes bounds (upper or lower) of the exact quantities, these bounds can be
used as heuristic functions to guide search algorithms as well as for pruning the search
space. In other words, rather than stopping with the first solution found, as it is done in
the forward step of mbe-mpe, we can continue searching for better solutions, while using
the mini-bucket functions to guide and prune the search. This approach was explored
recently and demonstrated great promise both for probabilistic optimization tasks such
as MPE as well as for constraint satisfaction problems [42].

1.8 Empirical evaluation

In this section we present some empirical evidence obtained when evaluating the potential
of the mbe-mpe scheme. For more details see [?].

1.8.1 Methodology

Mbe-mpe(m) denotes the algorithm with an unrestricted i and a varying m, while mbe-
mpe(i) assumes an unrestricted m and a varying i. Both algorithms use the following
brute-force strategy for selecting a mini-bucket partitioning. First, a canonical partition-
ing is found, i.e. all subsumed functions are placed into mini-buckets of one of their
subsuming functions. Then, for mbe-mpe(m), each group of m successive mini-buckets is
combined into one mini-bucket. For mbe-mpe(i), we merge the successive canonical mini-
buckets into a new one until the total number of variables in that mini-bucket exceeds
i. Then the process is repeated for the next group of canonical mini-buckets, and so on.
Also, in our implementation, we use a slightly different interpretation of the parameter i.
We allow i < |F |, where |F | is maximum family size, and bound the number of variables
in a mini-bucket by max{i, |F |} rather than by i.

The accuracy of an approximation is measured by the error ratios MPE/L and
U/MPE, where U and L are, respectively, the upper and the lower bound on MPE
found by mbe-mpe, where MPE is the probability of the exact MPE solution found by
elim-mpe. When computing the exact MPE assignment is infeasible, we report only the

20 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

ratio U/L (note that U/L is an upper bound on the error ratios MPE/L and U/MPE).
The efficiency gain is represented by the time ratio TR = Te/Ta, where Te is the running
time for elim-mpe and Ta is the running time for mbe-mpe. Remember that for i > w∗,
mbe-mpe(i) coincides with elim-mpe.

Random problem generators

The uniform random problem generator takes as an input the number of nodes, n, the
number of edges, e, and the number of values per variable, v. An acyclic directed graph is
generated by randomly picking e edges and subsequently removing possible directed cycles,
parallel edges, and self-loops. Then, for each node xi and its parents xpai

, the conditional
probability tables (CPTs) P (xi|xpai

) are generated from the uniform distribution over
[0, 1]. Namely, each P (xi|xpai

) is replaced by P (xi|xpai
)/

∑
xi

P (xi|xpai
).

1.8.2 Random noisy-OR problems

Consider a set of experiments on randomly generated noisy-OR networks4. A noisy-OR
conditional probability table (CPT) is defined on binary-valued nodes as follows: given
a child node x, and its parents y1,...,yn, each yi is associated with a noise parameter
qi = P (x = 0|yi = 1, yk = 0), k 6= i. The conditional probabilities are defined as follows
[60]:

P (x|y1, . . . , yn) =

{ ∏
yi=1 qi if x = 0,

1−∏
yi=1 qi if x = 1.

(1.2)

Obviously, when all qi = 0, we have a logical OR-gate. The parameter 1 − qi = P (x =
1|yi = 1, yk = 0) for k 6= i is also called link probability.

We generated random noisy-OR networks using the random graph generator described
earlier, and randomly selecting the conditional probabilities for each CPT from the interval
[0, q], where q was the bound on the noise parameter.

We present results for mbe-mpe(i) on larger networks (Figure 1.11). Algorithm elim-
mpe was intractable on these problems. The most apparent phenomenon here is that the
approximation improves with decreasing noise q, i.e., U/L → 1 for q → 0. In Figure
1.11a, the percentage of instances for which U/L = 1 is plotted against q for mbe-mpe(8),
mbe-mpe(14), and mbe-mpe(20). When q = 0 (deterministic dependence x ⇔ y1 ∨ ...∨ yk

between a child x and its parents yi, i = 1, ..., k), we observe almost 100% accuracy, which
then decreases with increasing q for all values of i = 8, 14, 20. One possible explanation
is that in the absence of noise we get loosely connected constraint-satisfaction problems

4Noisy-OR is an example of causal independence [35] which implies that several causes (parent nodes)
contribute independently to a common effect (child node).

1.8. EMPIRICAL EVALUATION 21

0

20

40

60

80

100

0 0.10.20.30.40.50.60.70.80.9 1

%

o
f

i
n
s
t
a
n
c
e
s

U
/
L

=

1

Noise q

i=8
i=14
i=20

%
of

in
st

an
ce

s
U

/L
 in

 [x
1

,x
2] 0.1

q
q

0.5

X

74%

16%

48%

27%

4%

10%
15%

7%

1 2 3 4

10

30

40

70

80

20

50

60

90

100

0
[0,1] [1,2] [2,3] [3,4] [4,]

(a) (b)

Figure 1.11: Results on 200 random noisy-OR networks, each having 50 nodes, 150 edges, and
10 evidence nodes: (a) frequency of problems solved exactly (U/L=1) versus noise q for different
values of i; (b) a histogram of U/L for q = 0.1 and q = 0.5.

which can be easily solved by local constraint propagation techniques coinciding in this
case with the mini-bucket scheme.

Notice that the behavior of mbe-mpe(i) is “extreme”: it is either very accurate, or very
inaccurate (Figure 1.11b). This phenomenon is more noticeable for small q.

1.8.3 CPCS networks

We next show results on a set of CPCS networks used in medical diagnosis. CPCS net-
works are derived from the Computer-based Patient Case Simulation system [57, 64].
CPCS network representation is based on INTERNIST-1 [54] and Quick Medical Refer-
ence (QMR) [53] expert systems. The nodes of CPCS networks correspond to diseases
and findings. In the original knowledge base, the probabilistic dependencies between the
nodes are represented by frequency weights that specify the increase in the probability of
a finding (child node) given a certain disease (parent node). This representation was later
converted into a belief network using several simplifying assumptions: (1) conditional
independence of findings given diseases, (2) noisy-OR dependencies between diseases and
findings, and (3) marginal independence of diseases [80].

In CPCS networks, the noisy-OR CPTs may also include leak probabilities. Namely,
given a child node x and its parents y1,...,yn, the leak probability is defined as leak =
P (x = 1|y1 = 0, ..., yn = 0). The definition of a noisy-OR CPT is then modified as

22 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

follows:

P (x = 0|y1, . . . , yn) = (1− leak)
n∏

yi=1

qi, (1.3)

where qi are noise parameters defined earlier. Some CPCS networks include multivalued
variables and noisy-MAX CPTs, which generalize noisy-OR by allowing k values per node,
as follows:

li = P (x = i|y1 = 0, . . . , yn = 0), i = 1, . . . k − 1, and

P (x = i|y1, . . . , yn) = li

n∏
j=1

q
yj

j , i = 0, . . . k − 2,

P (x = k − 1|y1, . . . , yn) = 1−
i=k−2∑

i=0

li

n∏
j=1

q
yj

j , (1.4)

where q
yj

j is a noise coefficient for parent j and the parent’s value yj. This definition
coincides with the one given by the equation 1.3 for k = 2, assuming l0 = 1− leak, q0

j = 1,
and q1

j = qj.
We experimented with both binary (noisy-OR) and non-binary (noisy-MAX) CPCS

networks. The noisy-MAX network cpcs179 (179 nodes, 305 edges) has 2 to 4 values
per node, while the noisy-OR networks cpcs360b (360 nodes, 729 edges) and cpcs422b
(422 nodes, 867 edges) have binary nodes (the letter ’b’ in the network’s name stands
for “binary”). Since our implementation used standard conditional probability tables the
non-binary versions of the larger CPCS networks with 360 and 422 nodes did not fit into
memory. Each CPCS network was tested for different sets of evidence nodes.

Experiments without evidence

We present the results obtained on cpcs179, cpcs360b, and cpcs422b networks assuming
no evidence nodes (i.e. there is only one network instance in each case) and using a
min-degree elimination ordering.

The results are reorganized in Figure 1.12 from the perspective of algorithm anytime-
mpe(ε). Anytime-mpe(ε) runs mbe-mpe(i) for increasing i until U/L < 1 + ε. We started
with i = 1 and were incrementing it by 1. We present the results for ε = 0.0001 in Figure
1.12. The table compares the time of anytime-mpe(0.0001) and of anytime-mpe(0.1)
against the time of the exact algorithm. We see that the anytime approximation can be
an order of magnitude faster.

It is known that approximating posterior marginals is harder when the evidence is
unlikely. So, we show performance with likely evidence and random evidence. A random
evidence set of size k is generated by randomly selecting k nodes and assigning value 1

1.8. EMPIRICAL EVALUATION 23

Anytime-mpe(0.0001)

 U/L error vs time

Time and parameter i

1
 10
 100
 1000

U
p
p
e
r/

L
o
w

e
r

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

cpcs422b

cpcs360b

i=1
 i=21

Time (sec)
Algorithm cpcs360 cpcs422
elim-mpe 115.8 1697.6

anytime-mpe(ε), ε = 0.0001 70.3 505.2
anytime-mpe(ε), ε = 0.1 70.3 110.5

Figure 1.12: anytime-mpe(0.0001) on cpcs360b and cpcs422b networks for the case of no
evidence.

to all of them. This approach usually produces a highly unlikely evidence set that results
in low MPE probability. Alternatively, likely evidence can be generated via ancestral
simulation (forward sampling as follows. Starting with the root nodes and following an
ancestral ordering where parents precede children, we simulate a value of each node in
accordance with its conditional probability table. A given number of evidence nodes is
then selected randomly. Ancestral simulation results in relatively high-probability tuples,
which produce higher values of MPE than those for random evidence. As we demonstrate
below, this has a dramatic impact on the quality of the approximation.

Since the variance of U/L is high, we present histograms of log(U/L) in Figures 1.13
and 1.14, which summarize and highlight our main observations. The accuracy increases
for larger values of i (histograms in Figure 1.13 shift to the left with increasing i). As
before, we see a dramatic increase in accuracy in case of likely evidence (Figure 1.13), and
observe that the lower bound is often much closer to M than the upper bound: MPE/L

24 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

log(U/L) histogram for i=10 on

1000 instances of likely evidence

log(U/L)

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

0

100

200

300

400

500

600

700

800

900

1000

F
re

q
u

e
n

c
y

log(U/L)

0
 2
 4
 6
 8
 10
 12

0

100

200

300

400

500

600

700

800

900

1000

F
re

q
u
e
n
c
y

log(U/L) histogram for i=10 on

1000 instances of random evidence

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

0

100

200

300

400

500

600

700

800

900

1000

log(U/L)

F
re

q
u

e
n

c
y

log(U/L) histogram for i=20 on

1000 instances of likely evidence

log(U/L)

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

0

100

200

300

400

500

600

700

800

F
re

q
u
e
n
c
y

log(U/L) histogram for i=20 on

1000 instances of random evidence

(a) Likely evidence (b) Random evidence

Figure 1.13: Histograms of U/L for i = 10, 20 on the cpcs360b network with 1000 sets of likely
and random evidence, each of size 10.

1.8. EMPIRICAL EVALUATION 25

0
 2
 4
 6
 8
 10
 12

0

100

200

300

400

500

600

700

800

900

1000

F
re

q
u
e
n
c
y

log(MPE/L)

log(MPE/L) histogram for i=10 on

1000 instances of random evidence

log(U/L)

0
 2
 4
 6
 8
 10
 12

0

100

200

300

400

500

600

700

800

900

1000

F
re

q
u
e
n
c
y

log(U/L) histogram for i=10 on

1000 instances of random evidence

(a) MPE/L (b) U/L

Figure 1.14: Histograms of U/L and MPE/L for i = 10 and RANDOM evidence on the
cpcs360b network. Each histogram is obtained on 1000 randomly generated evidence sets, each
of size 10.

is closer to 1 than U/L (see Figure 1.14).

1.8.4 Probabilistic decoding

The purpose of channel coding is to provide reliable communication through a noisy chan-
nel. Transmission errors can be reduced by adding redundancy to the information source.
For example, a systematic error-correcting code [52] maps a vector of K information bits
u = (u1, ..., uK), ui ∈ {0, 1}, into an N -bit codeword c = (u, x), adding N −K code bits
x = (x1, ..., xN−K), xj ∈ {0, 1}. The code rate R = K/N is the fraction of the information
bits relative to the total number of transmitted bits. A broad class of systematic codes
includes linear block codes. Given a binary-valued generator matrix G, an (N,K) linear
block code is defined so that the codeword c = (u, x) satisfies c = uG, assuming summation
modulo 2. The bits xi are also called the parity-check bits. For example, the generator
matrix

1 0 0 0 1 1 0

G = 0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

26 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

u u u1 2 3 u4

x x x1 2 3

y y y y1 2 3 4

y y y5 6 7

Figure 1.15: Belief network for a (7,4) Hamming code

defines a (7,4) Hamming code.

The codeword c = (u, x), also called the channel input, is transmitted through a noisy
channel. A commonly used Additive White Gaussian Noise (AWGN) channel model
assumes that independent Gaussian noise with variance σ2 is added to each transmitted
bit, producing a real-valued channel output y. Given y, the decoding task is to restore the
input information vector u [46, 52, 13].

It was observed that the decoding problem can be formulated as a probabilistic in-
ference task over a belief network [52]. For example, a (7,4) Hamming code can be
represented by the belief network in Figure 1.15, where the bits of u, x, and y vectors
correspond to the nodes, the parent set for each node xi is defined by non-zero entries
in the (K + i)th column of G, and the (deterministic) conditional probability function
P (xi|pai) equals 1 if xi = uj1⊕ ...⊕ujp and 0 otherwise, where ⊕ is the summation modulo
2 (also, XOR, or parity-check operation). Each output bit yj has exactly one parent, the
corresponding channel input bit. The conditional density function P (yj|cj) is a Gaussian
(normal) distribution N(cj; σ), where the mean equals the value of the transmitted bit,
and σ2 is the noise variance.

The probabilistic decoding task can be formulated in two ways. Given the observed
output y, the task of bit-wise probabilistic decoding is to find the most probable value of
each information bit, namely:

u∗k = arg max
uk∈{0,1}

P (uk|y), for 1 ≤ k ≤ K.

The block-wise decoding task is to find a maximum a posteriori (maximum-likelihood)
information sequence

u′ = arg max
u

P (u|y).

1.8. EMPIRICAL EVALUATION 27

Block-wise decoding is sometimes formulated as finding a most probable explanation
(MPE) assignment (u′, x′) to the codeword bits, namely, finding

(u′, x′) = arg max
(u,x)

P (u, x|y).

Accordingly, bit-wise decoding, which requests the posterior probabilities for each infor-
mation bit, can be solved by belief updating algorithms, while the block-wise decoding
translates to the MAP or MPE tasks, respectively.

In the coding community, decoding error is measured by the bit error rate (BER),
defined as the average percentage of incorrectly decoded bits over multiple transmitted
words (blocks). It was proven by Shannon [76] that, given the noise variance σ2, and
a fixed code rate R = K/N , there is a theoretical limit (called Shannon’s limit) on the
smallest achievable BER, no matter which code is used. Unfortunately, Shannon’s proof
is non-constructive, leaving open the problem of finding an optimal code that achieves
this limit. In addition, it is known that low-error (i.e., high-performance) codes tend to
be long [69], and thus intractable for exact (optimal) decoding algorithms [52]. Therefore,
finding low-error codes is not enough; good codes must be also accompanied by efficient
approximate decoding algorithms.

In recent years, several high-performance coding schemes have been proposed (turbo
codes [4], low-density generator matrix codes [11], low-density parity-check codes [13]), that
outperform by far the best up-to-date existing codes and get quite close to Shannon’s limit.
This was considered in its time “the most exciting and potentially important development
in coding theory in many years” [52]. Surprisingly, it was observed that the decoding
algorithm employed by those codes is equivalent to an iterative application of Pearl’s belief
propagation algorithm [60] that is designed for polytrees and, therefore, performs only
local computations. This successful performance of iterative belief propagation (IBP) on
multiply-connected coding networks suggests that approximations by local computations
may be suitable for this domain. In the following section, we discuss iterative belief
propagation in more detail.

As noted in Chapter ??, iterative belief propagation (IBP) (also known as loopy be-
lief propagation computes an approximate belief for each variable in the network. It ap-
plies Pearl’s belief propagation [60], developed for singly-connected networks, to multiply-
connected networks, as if there are no cycles. Nodes are processed (activated) in accor-
dance with a variable ordering called an activation schedule. Processing all nodes along
the given ordering yields one iteration of belief propagation. Subsequent iterations update
the messages computed during previous iterations. Algorithm IBP(I) stops after I itera-
tions. If applied to polytrees, two iterations of the algorithm are guaranteed to converge
to the correct a posteriori beliefs [60]. For multiply-connected networks, however, the
algorithm may not even converge, or it may converge to incorrect beliefs.

28 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

In our implementation, we assumed an activation schedule that first updates the input
variables of the coding network and then updates the parity-check variables. Bel(x)
computed for each node can be viewed as an approximation to the posterior beliefs. The
tuple generated by selecting the most probable value for each node is the output of the
decoding algorithm.

We experimented with several types of (N, K) linear block codes, which include (7, 4)
and (15, 11) Hamming codes, randomly generated codes, and structured codes with rela-
tively low induced width. The code rate was R = 1/2, i.e. N = 2K. As described above,
linear block codes can be represented by four-layer belief networks having K nodes in each
layer (see Figure 1.7). The two outer layers represent the channel output y = (yu, yx),
where yu and yx result from transmitting the input vectors u and x, respectively. The
input nodes are binary (0/1), while the output nodes are real-valued.

Random codes are generated as follows. For each parity-check bit xj, P parents are
selected randomly out of the K information bits. Random codes are similar to the low-
density generator matrix codes [11], which randomly select a given number C of children
nodes for each information bit.

Structured codes are generated as follows. For each parity bit xi, P sequential parents
{u(i+j)modK , 0 ≤ j < P} are selected. Figure 1.7 shows a belief network of the structured
code with K=5 and P=3. Note that the induced width of the network is 3, given the
order x0,...,x4, u0,...,u4. In general, a structured (N,K) block code with P parents per
each code bit has induced width P , no matter how large K and N are.

Given K, P, and the channel noise variance σ2, a coding network instance is generated
as follows. First, the appropriate belief network structure is created. Then, an input
signal is simulated, assuming uniform prior distribution of information bits. The parity-
check bits are computed accordingly and the codeword is “transmitted” through the
channel. As a result, Gaussian noise with variance σ2 is added to each information and
parity-check bit yielding the channel output y, namely, a real-valued assignment to the
yu

i and yx
j nodes5. The decoding algorithm takes as an input the coding network and the

observation (evidence) y and returns the recovered information sequence u′.
For each Hamming code network and for each structured code network, we simulate

10,000 and 1,000 input signals, respectively, and report the corresponding BERs associated
with the algorithms. For the random code networks, the BER is computed over 1,000
random networks while using only one randomly generated signal per network .

The bit error rate, BER, is plotted as a function of the channel noise and is compared
to the Shannon limit and to the performance of a high-quality turbo-code reported in [46]

5Note that simulation of the channel output is akin to the simulation of likely evidence in a general
Bayesian network (i.e. forward sampling, or ancestral simulation). As observed in the previous sections,
mbe −mpe is more accurate, on average, when evidence is likely. Not surprisingly, similar results were
observed on coding networks.

1.9. MINI-CLUSTERING 29

and used as a reference here (this code has a very large block size K=65,536, code rate
1/2, and was decoded using 18 iterations of IBP until convergence [46]).

In Figure 1.16, we compare the algorithms on the structured linear block code networks
with N=50 and 100, K=25 and 50, and P=4 and P=7. The figures also displays the
Shannon limit and the performance of IBP(18) on a state-of-the-art turbo-code having
input block size K=65,536 and rate 1/2 (the results are copied from [46]). Clearly, our
codes are far from being optimal: even the exact elim-mpe decoding yields a much higher
error than the turbo-code. However, the emphasis of our preliminary experiments was
not on improving the state-of-the-art decoder but rather on evaluating the performance of
mbe-mpe and comparing it to the performance of IBP(i) and mbe-mpe on different types
of networks.

The experiments showed that

1. On a class of structured codes having low induced width the mini-bucket approxi-
mation mbe-mpe outperforms IBP ;

2. On a class of random networks having large induced width and on some Hamming
codes IBP outperforms mbe-mpe;

3. As expected, the exact MPE decoding (elim-mpe) outperforms approximate decod-
ing. However, on random networks, finding exact MPE was not feasible due to the
large induced width.

1.9 Mini-Clustering

Clearly the mini-bucket idea can be extended to any tree-decomposition scheme. In
this section we will describe such an extension called Mini-Clustering (MC) to general
tree decompositions. The benefit of this algorithm is that all single-variable beliefs are
computed (approximately) at once, using a two-phase message-passing process along the
cluster tree. The resulting approximation scheme allows adjustable levels of accuracy and
efficiency, in anytime style.

We will describe mini-clustering relative to a unifying tree-decomposition framework
which generalizes tree-decompositions to include join-trees, bucket-trees and other vari-
ants applicable to both constraint processing and probabilistic inference.

Definition 1.9.1 (tree-decomposition, cluster tree) Let BN =< X, D,G, P > be a

belief network. A tree-decomposition for BN is a triple < T, χ, ψ >, where T = (V,E)

is a tree, and χ and ψ are labeling functions which associate with each vertex v ∈ V two

sets, χ(v) ⊆ X and ψ(v) ⊆ P satisfying:

30 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Structured (50,25) code, P=4

dB

-2
 -1
 0
 1
 2
 3
 4
 5
 6

B
E

R

1e-5

1e-4

1e-3

1e-2

1e-1

IBP(1)

IBP(10)

elim-mpe,

approx-mpe(7)

approx-mpe(1)

Turbo

Shannon

-2
 -1
 0
 1
 2
 3
 4
 5
 6

1e-5

1e-4

1e-3

1e-2

1e-1

Shannon

IBP(1)

IBP(10)

approx-mpe(1)

elim-mpe,

approx-mpe(7)

Turbo

B
E

R

dB

Structured (100,50) code, P=4

(a) (b)

-2
 -1
 0
 1
 2
 3
 4
 5
 6

1e-5

1e-4

1e-3

1e-2

1e-1

Shannon

IBP(1)

IBP(10)

elim-mpe

approx-mpe(1),

approx-mpe(7)

Turbo

Structured (50,25) code, P=7

B
E

R

dB

-2
 -1
 0
 1
 2
 3
 4
 5
 6
 7

1e-5

1e-4

1e-3

1e-2

1e-1

Structured (100,50) code, P=7

B
E

R

dB

Shannon

IBP(1)

IBP(10)

elim-mpe

approx-mpe(1),

approx-mpe(7)

Turbo

(c) (d)
Figure 1.16: The average performance of elim-mpe, mbe-mpe(i), and IBP(I) on rate 1/2 struc-
tured block codes and 1000 randomly generated input signals. The induced width of the
networks is: (a),(b) w∗ = 6; (c),(d) w∗ = 12. The bit error rate (BER) is plotted versus the
channel noise measured in decibels (dB), and compared to the Shannon limit and to the per-
formance of IBP(18) on a high-quality code reported [46] (a turbo-code having input block size
K=65,536 and rate 1/2). Notice that mbe-mpe(7) coincides with elim-mpe in (a) and (b), while
in (c) and (d) it coincides with mbe-mpe(1).

1.9. MINI-CLUSTERING 31

-2
 -1
 0
 1
 2
 3
 4
 5
 6
 7

1e-5

1e-4

1e-3

1e-2

1e-1

Shannon

Turbo

IBP(1)

IBP(10)

approx-mpe(1)

approx-mpe(13)

approx-mpe(15)

Random (100,50) code, P=4

B
E

R

dB

(a)

-2
 -1
 0
 1
 2
 3
 4
 5
 6

1e-5

1e-4

1e-3

1e-2

1e-1

B
E

R

dB

(7,4) Hamming code

Shannon

IBP(1)

IBP(5)

approx-mpe(1)

Turbo

elim-mpe,

approx-mpe(7)

-2
 -1
 0
 1
 2
 3
 4
 5
 6

1e-5

1e-4

1e-3

1e-2

1e-1

B
E

R

dB

(15,11) Hamming code

Shannon

IBP(1)

IBP(5)

approx-mpe(1)

Turbo

elim-mpe,

approx-mpe(7)

(b) (c)
Figure 1.17: The average performance of elim-mpe, mbe-mpe(i), and IBP(I) on (a) 1000 in-
stances of rate 1/2 random block codes, one signal instance per code; and on (b) (7,4) and
(c) (15,11) Hamming codes, 1000 signal instances per each code. The induced width of the
networks is: (a) 30 ≤ w∗ ≤ 45; (b) w∗ = 3; (c) w∗ = 9. The bit error rate (BER) is plotted
versus the channel noise measured in decibels (dB), and compared to the Shannon limit and
to the performance of IBP(18) on a high-quality code reported [46] (a turbo-code having input
block size K=65,536 and rate 1/2). Notice that mbe-mpe(7) coincides with elim-mpe in (a) and
(b), while in (c) and (d) it coincides with mbe-mpe(1).

32 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v),

and scope(pi) ⊆ χ(v).

2. For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a connected subtree

of T . This is also called the running intersection property.

We will often refer to a node and its functions as a cluster and use the term tree-

decomposition and cluster tree interchangeably.

Definition 1.9.2 (treewidth, hypertreewidth, separator-width, eliminator) The

treewidth [2] of a tree-decomposition < T, χ, ψ > is maxv∈V |χ(v)|, and its hypertreewidth

is maxv∈V |ψ(v)|. Given two adjacent vertices u and v of a tree-decomposition, the sepa-

rator of u and v is defined as sep(u, v) = χ(u)∩χ(v), and the eliminator of u with respect

to v is elim(u, v) = χ(u)−χ(v). The separator-width is the maximum over all separators.

Join-Trees and Cluster Tree Elimination

In both Bayesian network and constraint satisfaction communities, the most used tree
decomposition method is called join-tree decomposition [50, 25] (also called junction-
trees). Such decompositions can be generated by embedding the network’s moral graph,
G, in a chordal graph, often using a triangulation algorithm and using its maximal cliques
as nodes in the join-tree. The triangulation algorithm assembles a join-tree by connecting
the maximal cliques in the chordal graph in a tree. Subsequently, every CPT pi is placed
in one clique containing its scope. A join-tree decomposition of a belief network (G,P) is
a tree T = (V, E), where V is the set of cliques of a chordal graph G

′
that contains G, and

E is a set of edges that form a tree between cliques, satisfying the running intersection
property [51].

There are a few variants for processing join-trees for belief updating [38, 75]. The
variant which we use here, is cluster-tree-elimination (CTE) (described in Chapter 2), is
applicable to any tree-decompositions and is geared toward space savings. It is a message
passing algorithm (either two-phase message passing, or in asynchronous mode), where
messages are computed by summation (or any combine operator) over the eliminator be-
tween the two clusters of the product of functions in the originating cluster. Algorithm
CTE for belief updating denoted CTE-BU is described again in Figure 1.19. The algo-
rithm pays a special attention to the processing of observed variables since the presence
of evidence is a central component in belief updating. When a cluster sends a message
to a neighbor, the algorithm operates on all the functions in the cluster except the mes-
sage from that particular neighbor. The message contains a single combined function
and individual functions that do not share variables with the relevant eliminator. All the
non-individual functions are combined in a product and summed over the eliminator.

1.9. MINI-CLUSTERING 33

1

2

3

4

)},|(),|(),({)1(

},,{)1(

bacpabpap

CBA

=
=

ψ
χ

},|(),|({)2(

},,,{)2(

dcfpbdp

FDCB

=
=

ψ
χ

)},|({)4(

},,{)4(

fegp

GFE

=
=

ψ
χ

)},|({)3(

},,{)3(

fbep

FEB

=
=

ψ
χ

G

E

F

C D

B

A

(a) (b)

),|()|()(),()2,1(bacpabpapcbh
a

⋅⋅= �

),(),|()|(),()2,3(
,

)1,2(fbhdcfpbdpcbh
fd

⋅⋅= �

),(),|()|(),()2,4(
,

)3,2(cbhdcfpbdpfbh
dc

⋅⋅= �

),(),|(),()3,4()2,3(fehfbepfbh
e

⋅= �

),(),|(),()3,2()4,3(fbhfbepfeh
b

⋅= �
),|(),()3,4(fegGpfeh e==

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

(c)

Figure 1.18: a) A belief network; b) A join-tree decomposition; c)Execution of CTE-BU;

no individual functions appear in this case

Example 1.9.3 Figure 1.18 describes a belief network (a) and a join-tree decomposition

for it (b). Figure 1.18c shows the trace of running CTE-BU. In this case no individual

functions appear between any of the clusters. To keep the figure simple, we only show the

combined functions h(u,v) (each of them being in fact the only element of the set H(u,v)

that represents the corresponding message between clusters u and v).

Theorem 1.9.4 (Complexity of CTE-BU) The time complexity of CTE-BU is O(deg·
(n+N) ·dw∗+1) and the space complexity is O(N ·dsep), where deg is the maximum degree

of a node in the tree, n is the number of variables, N is the number of nodes in the tree

decomposition, d is the maximum domain size of a variable, w∗ is the treewidth and sep

is the maximum separator size.

Proof: The number of cliques in the chordal graph G
′
corresponding to G is at most n,

so the number of nodes in the join-tree is at most n. The complexity of processing a node

34 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Algorithm CTE for Belief-Updating (CTE-BU)
Input: A tree decomposition < T, χ, ψ >, T = (V, E) for BN =< X, D,G, P >.
Evidence variables var(e).
Output: An augmented tree whose nodes are clusters containing the original CPTs
and the messages received from neighbors. P (Xi, e), ∀Xi ∈ X.

Denote by H(u,v) the message from vertex u to v, nev(u) the neighbors of u in T

excluding v.
cluster(u) = ψ(u) ∪ {H(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• Compute messages:
For every node u in T , once u has received messages from all nev(u), compute message
to node v:

1. Process observed variables:
Assign relevant evidence to all pi ∈ ψ(u)

2. Compute the combined function:

h(u,v) =
∑

elim(u,v)

∏

f∈A

f.

where A is the set of functions in clusterv(u) whose scope intersects elim(u, v).
Add h(u,v) to H(u,v) and add all the individual functions in clusterv(u)−A

Send H(u,v) to node v.

• Compute P (Xi, e):
For every Xi ∈ X let u be a vertex in T such that Xi ∈ χ(u). Compute P (Xi, e) =∑

χ(u)−{Xi}(
∏

f∈cluster(u) f)

Figure 1.19: Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU)

u in the join-tree is degu · (|ψ(u)|+ degu − 1) · exp(|χ(u)|), where degu is the degree of u.
By bounding degu by deg and χ(u) by w∗, and summing over all nodes, we can bound
the entire time complexity by O(deg · n · exp(w)).

For each edge JTC records functions. Since the number of edges in bounded by n and
the size of each message is bounded by exp(sep) we get space complexity of O(n·exp(sep)).
2

1.9. MINI-CLUSTERING 35

1.9.1 Mini-Clustering for Belief Updating

The time, and especially the space complexity of CTE-BU renders the algorithm in-
feasible for problems with large treewidth, and it seems natural extension of the mini-
bucket idea to tree-decompositions. Indeed, rather than computing the mini-bucket ap-
proximation n times, one for each variable as would be required by the mini-bucket
approach, the algorithm performs an equivalent computation with just two message
passings along each arc of the cluster tree. The idea is to partition each cluster into
mini-clusters having at most i variables, where i is an accuracy parameter. (We could
also use number of functions m as a bounding parameter similar to the mini-bucket
case.) Node u partitions its cluster into p mini-clusters mc(1), . . . , mc(p). Instead of
computing h(u,v) =

∑
elim(u,v)

∏p
k=1

∏
f∈mc(k) f as in CTE-BU, we can compute an up-

per bound by migrating the summation operator into each mini-cluster. However, this
would give

∏p
k=1

∑
elim(u,v)

∏
f∈mc(k) f which is an unnecessarily large upper bound on

h(u,v) in which each
∏

f∈mc(k) f is bounded by its sum over elim(u, v). Instead, we rewrite

h(u,v) =
∑

elim(u,v)(
∏

f∈mc(1) f) · (
∏p

i=2

∏
f∈mc(i) f). Subsequently, instead of bounding∏

f∈mc(i) f, (i ≥ 2) by summation over the eliminator, we bound it by its maximum over

the eliminator, which yields (
∑

elim(u,v)

∏
f∈mc(1) f) ·∏p

k=2(maxelim(u,v)

∏
f∈mc(k) f). There-

fore, if we are interested in an upper bound, we marginalize one mini-cluster by summation
and the others by maximization. Note that the summation in the first mini-cluster must
be over all variables in the eliminator, even if some of them might not appear in the scope
of functions in mc(1).

Consequently, the combined functions are approximated via mini-clusters, as follows.
Suppose u ∈ V has received messages from all its neighbors other than v (the message from
v is ignored even if received). The functions in clusterv(u) that are to be combined are
partitioned into mini-clusters {mc(1), . . . ,mc(p)}, each one containing at most i variables.
One of the mini-clusters is processed by summation and the others by maximization over
the eliminator, and the resulting combined functions as well as all the individual functions
are sent to v.

As in the mini-bucket case we can also derive a lower-bound on beliefs by replacing
the max operator with min operator (see above derivation for rationale). This allows,
in principle, computing both an upper bound and a lower bound on the joint beliefs.
Alternatively, if we yield the idea of deriving a bound (and indeed the empirical evaluation
encourages that) we can replace max by a mean operator (taking the sum and dividing
by the number of elements in the sum), deriving an approximation of the joint belief.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU by replacing step
2 of the main loop and the final part of computing the upper bounds on the joint belief
by the procedure given in Figure 1.20.

Example 1.9.5 Figure 1.21 shows the trace of running MC-BU(3) on the problem in

36 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Procedure MC for Belief Updating (MC-BU(i))

2. Compute the combined mini-functions:

Make an (i)-size mini-clusters partitioning of clusterv(u), {mc(1), . . . , mc(p)};
h1

(u,v) =
∑

elim(u,v)

∏
f∈mc(1) f

hi
(u,v) = maxelim(u,v)

∏
f∈mc(i) f i = 2, . . . , p

add {hi
(u,v)|i = 1, . . . , p} to H(u,v). Send H(u,v) to v.

Compute upper bounds on P (Xi, e):
For every Xi ∈ X let u ∈ V be a cluster such that Xi ∈ χ(u). Make (i) mini-clusters
from cluster(u), {mc(1), . . . , mc(p)}; Compute
(
∑

χ(u)−Xi

∏
f∈mc(1) f) · (∏p

k=2 maxχ(u)−Xi

∏
f∈mc(k) f).

Figure 1.20: Procedure Mini-Clustering for Belief Updating (MC-BU)

Figure 1.18. First, evidence G = ge is assigned in all CPTs. There are no individual

functions to be sent from cluster 1 to cluster 2. Cluster 1 contains only 3 variables,

χ(1) = {A,B,C}, therefore it is not partitioned. The combined function h1
(1,2)(b, c) =∑

a p(a) ·p(b|a) ·p(c|a, b) is computed and the message H(1,2) = {h1
(1,2)(b, c)} is sent to node

2. Now, node 2 can send its message to node 3. Again, there are no individual functions.

Cluster 2 contains 4 variables, χ(2) = {B,C,D, F}, and a partitioning is necessary: MC-

BU(3) can choose mc(1) = {p(d|b), h(1,2)(b, c)} and mc(2) = {p(f |c, d)}. The combined

functions h1
(2,3)(b) =

∑
c,d p(d|b) · h(1,2)(b, c) and h2

(2,3)(f) = maxc,d p(f |c, d) are computed

and the message H(4,3) = {h1
(2,3)(b), h

2
(2,3)(f)} is sent to node 3. The algorithm continues

until every node has received messages from all its neighbors. An upper bound on p(a,G =

ge) can now be computed by choosing cluster 1, which contains variable A. It doesn’t need

partitioning, so the algorithm just computes
∑

b,c p(a) · p(b|a) · p(c|a, b) ·h1
(2,1)(b) ·h2

(2,1)(c).

Notice that unlike CTE-BU which processes 4 variables in cluster 2, MC-BU(3) never

processes more than 3 variables at a time.

Theorem 1.9.6 Algorithm MC-BU(i) with max (respectively min) computes an upper

(respectively lower) bound on the joint probability P (X, e) of each variable and each of its

values.

Theorem 1.9.7 (Complexity of MC-BU(i)) [43] The time and space complexity of

MC-BU(i) is O(n ·hw∗ ·di) where n is the number of variables, d is the maximum domain

1.9. MINI-CLUSTERING 37

),|()|()(:),(1
)2,1(bacpabpapcbh

a

⋅⋅=�

),|(max:)(

),()|(:)(

,

2
)1,2(

1
)2,3(

,

1
)1,2(

dcfpch

fbhbdpbh

fd

fd

=

⋅=�

),|(max:)(

),()|(:)(

,

2
)3,2(

1
)2,1(

,

1
)3,2(

dcfpfh

cbhbdpbh

dc

dc

=

⋅=�

),(),|(:),(1
)3,4(

1
)2,3(fehfbepfbh

e

⋅=�

)()(),|(:),(2
)3,2(

1
)3,2(

1
)4,3(fhbhfbepfeh

b

⋅⋅=�

),|(:),(1
)3,4(fegGpfeh e==

)2,1(H

)1,2(H

)3,2(H

)2,3(H

)4,3(H

)3,4(H

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

Figure 1.21: Execution of MC-BU for i = 3

size of a variable and hw∗ = maxu|{f |scope(f) ∩ χ(u) 6= ϕ}|, which bounds the number

of functions that may travel to a neighboring cluster via message-passing.

Accuracy. For a given i, the accuracy of MC-BU(i) is not worse than that of executing the
mini-bucket algorithm MB(i) n times, once for each variable (an algorithm that we call
nMB(i)). Given a specific execution of MC-BU(i), we can show that for every variable
Xi, there exists an ordering of the variables and a corresponding partitioning such that
MB(i) computes the same approximation value for P (Xi, e) as does MC − BU(i). In
empirical analysis [40] it is shown that MC-BU has an up to linear speed-up over nMB(i).

The MC-BU algorithm using max operator computes an upper bound P (Xi, e) on
the joint probability P (Xi, e). However, as seen in the case of mini-bucket, deriving a
bound on the conditional probability P (Xi|e) is not easy when the exact value of P (e)
is not available. If we just try to divide (multiply) P (Xi, e) by a constant, the result
is not necessarily an upper bound on P (Xi|e). In principle, if we can derive a lower
bound P (e) on P (e), then we can compute P (Xi, e)/P (e) as an upper bound on P (Xi|e).
However, due to compound error, it is likely to be ineffective. In the empirical evaluation
we experimented with normalizing the upper bound as P (Xi, e)/

∑
Xi

P (Xi, e) over the
values of Xi. The result is not necessarily an upper bound on P(Xi|e). Similarly, we can
also normalize the values when using mean or min operators. It is easy to show that
normalization with the mean operator is identical to normalization of MC-BU output
when applying the summation operator in all the mini-clusters.

38 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Noisy-OR networks, N=50, P=3, evid=10, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Noisy-OR networks, N=50, P=3, evid=20, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Figure 1.22: Absolute error for noisy-OR networks

1.9.2 Empirical Evaluation

When evaluating MC-BU empirically it was immediately observed that the quality of MC-
BU in providing upper or lower bounds on the joint P (Xi, e) was ineffective. Although
the upper bound decreases as the accuracy parameter i increases, it still is in many cases
greater than 1. Therefore, following the ideas explained earlier we report the results with
normalizing the upper bounds (called max) and normalizing the mean (called mean). We
notice that MC-BU using the mean operator is doing consistently better.

In additional to the absolute and ratio accuracy measures we use Normalized Hamming
Distance (NHD) - We picked the most likely value for each variable for the approximate
and for the exact, took the ratio between the number of disagreements and the total
number of variables, and averaged over the number of problems that we ran for each
class. We show some of the main results here. For more details see [66].

We have experimented with random grid networks. The grid networks have the struc-
ture of a square, with edges directed to form a diagonal flow (all parallel edges have the
same direction). They were generated by specifying N (a square integer) and K (we used
K=2).

Random noisy-or networks results are summarized in Figure 1.22. For NHD, both
IBP and MC-BU gave perfect results. For the other measures, we noticed that IBP is
more accurate for no evidence by about an order of magnitude. However, as evidence is
added, IBP’s accuracy decreases, while MC-BU’s increases and they give similar results.
Clearly, MC-BU gets better as the accuracy parameter i increases, which shows its anytime
behavior.

General random networks results are summarized in Figure 1.23. They are in general
similar to those for random noisy-or networks. NHD is non-zero in this case. Again, IBP
has the best result only for few evidence variables. It is remarkable how quickly MC-BU

1.9. MINI-CLUSTERING 39

Random networks, N=50, P=2, k=2, evid=0, w*=10, 50 instances

i-bound

0 2 4 6 8 10

A
bs

ol
ut

e
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

Random networks, N=50, P=2, k=2, evid=10, w*=10, 50 instances

i-bound

0 2 4 6 8 10

A
bs

ol
ut

e
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

Figure 1.23: Absolute error for random networks

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it

E
rr

or
 R

at
e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

MC
IBP

Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it

E
rr

or
 R

at
e

0.06

0.08

0.10

0.12

0.14

0.16

0.18

MC
IBP

Figure 1.24: BER for coding networks

surpasses the performance of IBP as evidence is added.

Random coding networks results are given in Table Figure 1.24. The instances fall
within the class of linear block codes, (σ is the channel noise level). These are the only
problems that we experimented with where IBP outperformed MC-BU throughout.

Grid networks results are given in Figure ??. We only report results with mean
operator for a 15x15 grid for which the induced width is w*=22. We notice that IBP is
more accurate for no evidence and MC is better as more evidence is added. The same
behavior was consistently manifested for smaller grid networks (from 7x7 up to 14x14).

CPCS networks results. We also tested on three CPCS benchmark files. The results
are given Figure 1.25. It is interesting to notice that the MC scheme scales up even to
fairly large networks, like the real life example of CPCS422 (induced width 23). IBP is
again slightly better for no evidence, but is quickly surpassed by MC when evidence is
added.

40 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

CPCS 422, evid=0, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

CPCS 422, evid=10, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

Figure 1.25: Absolute error for CPCS422

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

0.06

MC
IBP

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

T
im

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

MC
IBP

Figure 1.26: Absolute error and time for grid networks

There are many potential ways for improving the MC scheme. Among the most im-
portant, the partitioning step can be further elaborated. One extension is called Iterative
Join-Graph Propagation (IJGP), which belongs to the class of generalized belief propa-
gation methods [37].

1.10 Iterative Join-Graph Propagation

Mini-clustering is an anytime algorithm but it works on tree-decompositions and it con-
verges in two passes, so iterating doesn’t change the messages. IBP is an iterative algo-
rithm that converges in many cases, and when it converges it does so very fast. Allowing
it more time doesn’t improve the accuracy. The immediate question is if we can combine
the anytime property of MC with the iterative qualities of IBP. Algorithm Iterative Join-
graph Propagation (IJGP) was designed to benefit from both these directions. It works
on a general join-graph which may contain cycles. The cluster size of the graph is user

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 41

adjustable by the i-bound (providing the anytime nature), and the cycles in the graph
allow iterating.

The algorithm applies message computation over a join-graph decomposition.

Definition 1.10.1 (join-graph decompositions) A join-graph decomposition for BN =<

X,D,G, P > is a triple D =< JG, χ, ψ >, where JG = (V, E) is a graph, and χ and

ψ are labeling functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and

ψ(v) ⊆ P such that:

1. For each pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and

scope(pi) ⊆ χ(v).

2. (connectedness) For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a

connected subgraph of G. The connectedness requirement is also called the running

intersection property.

We will refer to a node and its CPT functions as a cluster6 and use the term join-
graph-decomposition and cluster graph interchangeably. A join-tree-decomposition or a
cluster tree is the special case when the join-graph JG is a tree.

Join-Tree Propagation. The well known join-tree clustering algorithm first converts
the belief network into a cluster tree and then sends messages between clusters. We
call the second message passing phase join-tree propagation. The complexity of join-tree
clustering is exponential in the number of variables in a cluster (treewidth), and the
number of variables in the intersections between adjacent clusters (separator-width), as
defined below.

Definition 1.10.2 (arc-minimality) A join-graph decomposition D is arc-minimal if

none of its arcs can be removed while still satisfying the connectedness property of Defi-

nition 1.10.1.

If a graph-decomposition is not arc-minimal it is easy to remove some of its arcs
until it becomes arc-minimal. In our preliminary experiments we observed immediately
that when applying join-tree propagation on a join-graph iteratively, it is crucial to avoid
cycling messages relative to every single variable. The property of arc-minimality is not
sufficient to ensure such acyclicity though. What is required is that, for every variable X,
the arc-subgraph that contains X be a tree.

6Note that a node may be associated with an empty set of CPTs

42 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

1,2,4 2,3,4

1,3,4

2,4

3,41,4

A

B

C

1,2,4 2,3,4

1,3,4

2,4

31,4

A

B

C

a) b)

Figure 1.27: An arc-labeled decomposition

Example 1.10.3 The example in Figure 1.27a shows an arc minimal join-graph which

contains a cycle relative to variable 4, with arcs labeled with separators. Notice however

that if we remove variable 4 from the label of one arc we will have no cycles (relative to

single variables) while the connectedness property will still be maintained.

To allow more flexible notions of connectedness we refine the definition of join-graph
decompositions, when arcs can be labeled with a subset of their separator.

Definition 1.10.4 ((minimal) arc-labeled join-graph decompositions) An arc-

labeled decomposition for BN =< X, D, G, P > is a four-tuple D =< JG, χ, ψ, θ >,

where JG = (V, E) is a graph, χ and ψ associate with each vertex v ∈ V the sets χ(v) ⊆ X

and ψ(v) ⊆ P and θ associates with each edge (v, u) ⊂ E the set θ((v, u)) ⊆ X such that:

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and

scope(pi) ⊆ χ(v).

2. (arc-connectedness) For each arc (u, v), θ(u, v) ⊆ sep(u, v), such that ∀Xi ∈ X,

any two clusters containing Xi can be connected by a path whose every arc’s label

includes Xi.

Finally, an arc-labeled join-graph is minimal if no variable can be deleted from any label

while still satisfying the arc-connectedness property.

Definition 1.10.5 (separator, eliminator) Given two adjacent vertices u and v of

JG, the separator of u and v is defined as sep(u, v) = θ((u, v)), and the eliminator

of u with respect to v is elim(u, v) = χ(u)− θ((u, v)).

Arc-labeled join-graphs can be made minimal by deleting variables from the labels. It
is easy to see that a minimal arc-labeled join-graph does not contain any cycle relative to
any single variable. That is, any two clusters containing the same variable are connected
by exactly one path labeled with that variable.

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 43

The dual join-graph. The dual join-graph is an interesting special case where each
node contains a single function.

It is easy to see that a dual graph is a join-graph. Borrowing the notion of acyclic-
ity from relational databases, we define a belief network to be acyclic if its dual graph
has a join-tree, namely if it has an arc-minimal version that is a tree. Clearly, when
join-tree clustering is applied to such a join-tree it will converge to the correct val-
ues. Note that while polytrees are a special case of acyclic belief networks, acyclic net-
works include more than just polytrees. For example, the simple network that contains
{P (A), P (B|A), P (C|A,B)} is acyclic. The tree connecting P (A) to P (B|A) and P (B|A)
to P (C|B, A) is a join-tree. When join-tree clustering is applied to this network along an
arc-minimal dual graph decomposition, it is guaranteed to compute the exact values. On
the other hand, if belief propagation is applied to this network, it will neither necessarily
converge nor be exact. While this observation is a side issue, it is worthwhile summarizing,

Proposition 1.10.6 Algorithm join-tree propagation is tractable and exact for every

acyclic belief network.

If the network is not acyclic, join-tree propagation can be applied to an arc-minimal
dual decomposition, iteratively. More generally, we can consider applying join-tree prop-
agation iteratively, to join-graphs decompositions whose clusters may include more than
one CPT. This leads to the definition of join-tree propagation over join-graphs, an algo-
rithm which we call Iterative Join-Graph Propagation (IJGP).

1.10.1 Algorithm IJGP

Applying CTE propagation iteratively to join-graphs yields algorithm Iterative Join-
Graph Propagation (IJGP) described in Figure 1.28. One iteration of the algorithm applies
message-passing in a topological order over the join-graph, forward and back.

When node i sends a message (or messages) to a neighbor node j it operates on all
the CPTs in its cluster and on all the messages sent from its neighbors excluding the ones
received from j. First, all individual functions that share no variables with the eliminator
are collected and sent to j. All the rest of the functions are combined in a product and
summed over the eliminator between i and j.

Clearly

Theorem 1.10.7 1. [50] If IJGP is applied to a join-tree decomposition it reduces to

CTE and it therefore is guaranteed to compute the exact beliefs in one iteration.

2. [47] The time complexity of one iteration of IJGP is O(deg · (n + N) · dw∗+1) and

its space complexity is O(N · dθ), where deg is the maximum degree of a node in

44 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Algorithm Iterative Join Graph Propagation (IJGP)

Input An arc-labeled join-graph decomposition < JG, χ, ψ, θ >, JG = (V, E) for BN =<

X, D,G, P >. Evidence variables var(e).
Output An augmented graph whose nodes are clusters containing the original CPTs and the

messages received from neighbors. Approximations of P (Xi|e), ∀Xi ∈ X.

Denote by h(u,v) the message from vertex u to v, nev(u) the neighbors of u in JG excluding v.
cluster(u) = ψ(u) ∪ {h(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• One iteration of IJGP:
For every node u in JG in some topological order d and back,do

1. Process observed variables:
Assign relevant evidence to all pi ∈ ψ(u) χ(u) := χ(u)− var(e), ∀u ∈ V

2. Compute individual functions:
Include in H(u,v) each function in clusterv(u) whose scope does not contain variables in
elim(u, v). Denote by A the remaining functions.

3. Compute and send to v the combined function: h(u,v) =
∑

elim(u,v)

∏
f∈A f .

Send h(u,v) and the individual functions H(u,v) to node v.

Endfor
• Compute P (Xi, e):

For every Xi ∈ X let u be a vertex in T such that Xi ∈ χ(u).
Compute P (Xi|e) = α

∑
χ(u)−{Xi}(

∏
f∈cluster(u) f)

Figure 1.28: Algorithm Iterative Join-Graph Propagation (IJGP)

the join-graph, n is the number of variables, N is the number of nodes in the graph

decomposition, d is the maximum domain size, w∗ is the maximum cluster size and

θ is the maximum label size.

Proof: The number of cliques in the chordal graph G
′
corresponding to G is at most n, so

the number of nodes in the join-tree is at most n. The complexity of processing a node u in
the join-tree is degu ·(|ψ(u)|+degu−1) ·d|χ(u)|, where degu is the degree of u. By bounding
degu by deg, |ψ(u)| by n and χ(u) by w∗ + 1 and knowing that deg < N , by summing
over all nodes, we can bound the entire time complexity by O(deg · (n + N) · dw∗+1).

For each edge JTC records functions. Since the number of edges in bounded by n and
the size of each message is bounded by dsep we get space complexity of O(n · dsep).

Note however that when applied to a join-graph the algorithm is neither guaranteed
to converge nor to find the exact posterior.

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 45

1.10.2 I-Mappness of Arc-Labeled Join-Graphs

The effectiveness of IJGP, no doubt, will depend on the choice of cluster graphs it operates
on. The following paragraphs provide some rationale to our choice of minimal arc-labeled
join-graphs. First, we are committed to the use of an underlying graph structure that
captures as many of the distribution independence relations as possible, without introduc-
ing new ones. That is, we restrict attention to cluster graphs that are I-maps of P [59].
Second, we wish to avoid cycles as much as possible in order to minimize computational
over-counting.

It can be shown that any join-graph of a belief network is an I-map of the underlying
probability distribution relative to node-separation. It turns out that arc-labeled join-
graphs display a richer set of independencies relative to arc-separation.

Definition 1.10.8 (arc-separation in (arc-labeled) join-graphs) Let D =< JG, χ, ψ, θ >,

JG = (V,E) be an arc-labeled decomposition. Let NW , NY ⊆ V be two sets of nodes, and

EZ ⊆ E be a set of edges in JG. Let W,Y, Z be their corresponding sets of variables

(W = ∪v∈NW
χ(v), Z = ∪e∈EZ

θ(e)). EZ arc-separates NW and NY in D if there is no

path between NW and NY in the graph JG with the edges in EZ removed. In this case

we also say that W is separated from Y given Z in D, and write < W |Z|Y >D. Arc-

separation in a regular join-graph is defined relative to its separators.

Theorem 1.10.9 Any arc-labeled join-graph decomposition D =< JG, χ, ψ, θ > of a

belief network BN =< X, D, G, P > is an I-map of P relative to arc-separation.

Proof: Exercise

Interestingly however, removing arcs or labels from arc-labeled join-graphs whose clus-
ters are fixed will not increase the independencies captured by arc-labeled join-graphs.

Theorem 1.10.10 Any arc-labeled join-graph decomposition of a belief network BN =<

X,D,G, P > is a minimal I-map of P relative to arc-separation.

Hence, the issue of minimizing computational over-counting due to cycles appears to
be orthogonal to maximizing independencies via minimal I-mappness. Nevertheless, to
avoid over-counting as much as possible, we still prefer join-graphs that minimize cycles
relative to each variable. That is, we prefer to apply IJGP to minimal arc-labeled join-
graphs.

46 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Algorithm Join-Graph Structuring(i)

1. Apply procedure schematic mini-bucket(i).

2. Associate each resulting mini-bucket with a node in the join-graph, the vari-
ables of the nodes are those appearing in the mini-bucket, the original func-
tions are those in the mini-bucket.

3. Keep the arcs created by the procedure (called out-edges) and label them by
the regular separator.

4. Connect the mini-bucket clusters belonging to the same bucket in a chain by
in-edges labeled by the single variable of the bucket.

Figure 1.29: Algorithm Join-Graph Structuring(i)

1.10.3 Generating Bounded Join-Graphs

Since we want to control the complexity of IJGP we will define it on decompositions
having bounded cluster size. If the number of variables in a cluster is bounded by i, the
time and space complexity of one full iteration of IJGP(i) is exponential in i. How can
good graph-decompositions of bounded cluster size be generated?

Since we want the join-graph to be as close as possible to a tree, and since a tree has a
treewidth 1, we may try to find a join-graph JG of bounded cluster size whose treewidth
(as a graph) is minimized. While we will not attempt to optimally solve this task, we
will present one method for generating i-bounded graph-decompositions. The question
of finding a minimal ”outer treewidth” decomposition is obviously hard and should be
investigated.

Definition 1.10.11 (external and internal widths) Given an arc-labeled join-graph

decomposition D =< JG, χ, ψ, θ > of a network < G, P >, the internal width of D is

maxv∈V |χ(v)|, while the external width of D is the treewidth of JG as a graph.

Clearly, if D is a tree-decomposition its external width is 1 and its internal width
equals its treewidth. For example, an edge minimal dual decomposition has an internal
width equal to the maximum scope of each function, m, and external width w∗ which
is the treewidth of the moral graph of G. On the other hand, a tree-decomposition has
internal width of w∗ and external width of 1.

Using this terminology we can now state the desired decompositions more clearly.
Given a graph G, and a bounding parameter i we wish to find a join-graph decomposition
of G whose internal width is bounded by i and whose external width is minimized. The
bound i controls the complexity of one iteration of IJGP while the external width provides
some intuitive measure of its accuracy.

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 47

Procedure Schematic Mini-Bucket(i)

1. Order the variables from X1 to Xn minimizing (heuristically) induced-width,
and associate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. For j = n to 1 do:
Partition the functions in bucket(Xj) into mini-buckets having at most i vari-
ables.
For each mini-bucket mb create a new scope-function (message) f where
scope(f) = {X|X ∈ mb} − {Xi} and place scope(f) in the bucket of its
highest variable. Maintain an arc between mb and the mini-bucket (created
later) of f .

Figure 1.30: Procedure Schematic Mini-Bucket(i)

Example 1.10.12 Consider our original example. Figure 1.31c shows a join-graph de-

composition based on the dual graph and 1.31b just another join-graph decomposition.

A join-tree decomposition was given in Figure 1.18b. The cluster sizes of decompositions

1.31b and 1.31c are 3 while their width is 2. The cluster size of the tree-decomposition is

4 and its width is 1.

The implied optimization task is: given a constant i, find an arc-labeled join-graph
decomposition whose cluster size is bounded by i such that its join-graph has a minimal
induced width.

One class of such decompositions is partition-based. It starts from a given tree-
decomposition of the network and then partitions the clusters until the decomposition
has clusters bounded by i. The problem we get can be characterize by duplicating a vari-
able for each partition as we have seen before. The opposite approach is grouping-based.
It starts from an arc-minimal dual-graph decomposition (where each cluster contains a
single CPT) and groups clusters into larger clusters as long as the resulting clusters do
not exceed the given bound. In both methods we should attempt to reduce the external
treewidth of the generated graph-decomposition. Jon-Graph structuring is a partition-
based approach inspired by the mini-bucket idea.

Given a bound i, algorithm join-graph structuring(i) applies procedure schematic mini-
bucket(i), described in Figure 1.30. The procedure only traces the scopes of the functions
that would be generated by the full mini-bucket procedure, avoiding actual computation.
The algorithm then connects the mini-buckets’ scopes minimally to obtain the running
intersection property, as described in Figure 1.29.

Example 1.10.13 Figure 1.31a shows the trace of procedure schematic mini-bucket(3)

48 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

(b)(a)

CDB

CAB

BA

A

CB

P(D|B)

P(C|A,B)

P(A)

BA

P(B|A)

FCD

P(F|C,D)

GFE

EBF

BF

EF

P(E|B,F)

P(G|F,E)

B

CD

BF

A

F

G: (GFE)

E: (EBF) (EF)

F: (FCD) (BF)

D: (DB) (CD)

C: (CAB) (CB)

B: (BA) (AB) (B)

A: (A) (A)

Figure 1.31: Join-graph decompositions

applied to the problem described in Figure 1.18a. The decomposition in Figure 1.31b is

created by the algorithm graph structuring. The only cluster partitioned is that of F into

two scopes (FCD) and (BF), connected by an in-edge labeled with F.

Procedure schematic mini-bucket ends with a collection of trees rooted in mini-buckets
of the first variable. Each of these trees is minimally arc-labeled. Then, in-edges are
labeled with only one variable, and they are added only to obtain the running intersection
property between branches of these trees. It can be shown that:

Proposition 1.10.14 Algorithm join-graph structuring(i), generates a minimal arc-labeled

join-graph decomposition having bound i.

Example 1.10.15 Figure 1.32 shows a range of arc-labeled join-graphs. On the left

extreme we have a graph with smaller clusters, but more cycles. This is the type of

graph IBP works on. On the right extreme we have a tree decomposition, which has no

cycles but has bigger clusters. In between, there could be a number of join-graphs where

maximum cluster size can be traded for number of cycles. Intuitively, the graphs on the

left present less complexity for IJGP because the cluster size is small, but they are also

likely to be less accurate. The graphs on the right side are computationally more complex,

because of larger cluster size, but are likely to be more accurate.

MC(i) vs. IJGP(i). As can be hinted by our structuring of a bounded join-graph,
there is a close relationship between MC(i) and IJGP(i). In particular, one iteration of
IJGP(i) is similar to MC(i) (MC(i) is an algorithm that approximates join-tree clustering
and was shown to be competitive with IBP and Gibbs Sampling [67]). Indeed, while
we view IJGP(i) as an iterative version of MC(i), the two algorithms differ in several

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 49

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F
H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity

Figure 1.32: Join-graphs

technical points, some may be superficial, due to implementation, others may be more
principled. We will leave the discussion at that and will observe the comparison of the
two approaches in the empirical section.

1.10.4 Empirical Evaluation

We tested the performance of IJGP(i) on random networks, on M-by-M grids, on two
benchmark CPCS files with 54 and 360 variables, respectively (these are belief networks
for medicine, derived from the Computer based Patient Case Simulation system, known
to be hard for belief updating) and on coding networks. On each type of networks, we
ran Iterative Belief Propagation (IBP), MC(i) and IJGP(i), while giving IBP and IJGP(i)
the same number of iterations.

We use the partitioning method described in Section 1.10.3 to construct a join-graph.
To determine the order of message computation, we recursively pick an edge (u,v), such
that node u has the fewest incoming messages missing.

For each network except coding, we compute the exact solution and compare the
accuracy of algorithms using: 1. Absolute error - the absolute value of the difference
between the approximate and the exact, averaged over all values, all variables and all
problems. 2. Relative error - the absolute value of the difference between the approximate
and the exact, divided by the exact, averaged over all values, all variables and all problems.
3. KL (Kullback-Leibler) distance - Pexact(X = a) · log(Pexact(X = a)/Papproximation(X =

50 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Table 1.1: Random networks: N=50, K=2, C=45, P=3, 100 instances, w*=16

Absolute error Relative error KL distance Time

IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8

0 0.02988 0.03055 0.02623 0.02940 0.06388 0.15694 0.05677 0.07153 0.00213 0.00391 0.00208 0.00277 0.0017 0.0036 0.0058 0.0295

1 5 0.06178 0.04434 0.04201 0.04554 0.15005 0.12340 0.12056 0.11154 0.00812 0.00582 0.00478 0.00558 0.0013 0.0040 0.0052 0.0200

10 0.08762 0.05777 0.05409 0.05910 0.23777 0.18071 0.14278 0.15686 0.01547 0.00915 0.00768 0.00899 0.0013 0.0040 0.0036 0.0121

0 0.00829 0.00636 0.00592 0.00669 0.01726 0.01326 0.01239 0.01398 0.00021 0.00014 0.00015 0.00018 0.0066 0.0145 0.0226 0.1219

5 5 0.05182 0.00886 0.00886 0.01123 0.12589 0.01967 0.01965 0.02494 0.00658 0.00024 0.00026 0.00044 0.0060 0.0120 0.0185 0.0840

10 0.08039 0.01155 0.01073 0.01399 0.21781 0.03014 0.02553 0.03279 0.01382 0.00055 0.00042 0.00073 0.0048 0.0100 0.0138 0.0536

0 0.00828 0.00584 0.00514 0.00495 0.01725 0.01216 0.01069 0.01030 0.00021 0.00012 0.00010 0.00010 0.0130 0.0254 0.0436 0.2383

10 5 0.05182 0.00774 0.00732 0.00708 0.12590 0.01727 0.01628 0.01575 0.00658 0.00018 0.00017 0.00016 0.0121 0.0223 0.0355 0.1639

10 0.08040 0.00892 0.00808 0.00855 0.21782 0.02101 0.01907 0.02005 0.01382 0.00028 0.00024 0.00029 0.0109 0.0191 0.0271 0.1062

0 0.04044 0.04287 0.03748 0.08811 0.09342 0.08117 0.00403 0.00435 0.00369 0.0159 0.0173 0.0552

MC 5 0.05303 0.05171 0.04250 0.12375 0.11775 0.09596 0.00659 0.00636 0.00477 0.0146 0.0158 0.0532

10 0.06033 0.05489 0.04266 0.14702 0.13219 0.10074 0.00841 0.00729 0.00503 0.0119 0.0143 0.0470

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

(a) Performance vs. i-bound

Random networks, N=50, K=2, P=3, evid=5, w*=16

Number of iterations

0 5 10 15 20 25 30 35

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IBP
IJGP(2)
IJGP(10)

(b) Convergence with iterations

Figure 1.33: Random networks: KL distance

a)) averaged over all values, all variables and all problems. We also report the time taken
by each algorithm. For coding networks we report Bit Error Rate (BER) computed as
follows: for each approximate algorithm we pick the most likely value for each variable,
take the number of disagreements with the exact input, divide by the total number of
variables, and average over all the instances of the problem. We also report time.

The random networks were generated using parameters (N,K,C,P), where N is the
number of variables, K is their domain size, C is the number of conditional probability
tables (CPTs) and P is the number of parents in each CPT. Parents in each CPT are
picked randomly and each CPT is filled randomly. In grid networks, N is a square number
and each CPT is filled randomly. In each problem class, we also tested different numbers
of evidence variables. The coding networks are from the class of linear block codes, where
σ is the channel noise level. Note that we are limited to relatively small and sparse
problem instances since our evaluation measured are based on comparing against exact

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 51

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0
IJPG 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 20 it

Figure 1.34: Random networks: Time

Table 1.2: 9x9 grid, K=2, 100 instances, w*=12

Absolute error Relative error KL distance Time

IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8

0 0.03524 0.05550 0.04292 0.03318 0.08075 0.13533 0.10252 0.07904 0.00289 0.00859 0.00602 0.00454 0.0010 0.0053 0.0106 0.0426

1 5 0.05375 0.05284 0.04012 0.03661 0.16380 0.13225 0.09889 0.09116 0.00725 0.00802 0.00570 0.00549 0.0016 0.0041 0.0092 0.0315

10 0.07094 0.05453 0.04304 0.03966 0.23624 0.14588 0.12492 0.12202 0.01232 0.00905 0.00681 0.00653 0.0013 0.0038 0.0072 0.0256

0 0.00358 0.00393 0.00325 0.00284 0.00775 0.00849 0.00702 0.00634 0.00005 0.00006 0.00007 0.00010 0.0049 0.0152 0.0347 0.1462

5 5 0.03224 0.00379 0.00319 0.00296 0.11299 0.00844 0.00710 0.00669 0.00483 0.00006 0.00007 0.00010 0.0053 0.0131 0.0309 0.1127

10 0.05503 0.00364 0.00316 0.00314 0.19403 0.00841 0.00756 0.01313 0.00994 0.00006 0.00009 0.00019 0.0036 0.0127 0.0271 0.0913

0 0.00352 0.00352 0.00232 0.00136 0.00760 0.00760 0.00502 0.00293 0.00005 0.00005 0.00003 0.00001 0.0090 0.0277 0.0671 0.2776

10 5 0.03222 0.00357 0.00248 0.00149 0.11295 0.00796 0.00549 0.00330 0.00483 0.00005 0.00003 0.00002 0.0096 0.0246 0.0558 0.2149

10 0.05503 0.00347 0.00239 0.00141 0.19401 0.00804 0.00556 0.00328 0.00994 0.00005 0.00003 0.00001 0.0090 0.0223 0.0495 0.1716

0 0.05827 0.04036 0.01579 0.13204 0.08833 0.03440 0.00650 0.00387 0.00105 0.0106 0.0142 0.0382

MC 5 0.05973 0.03692 0.01355 0.13831 0.08213 0.03001 0.00696 0.00348 0.00099 0.0102 0.0130 0.0342

10 0.05866 0.03416 0.01075 0.14120 0.07791 0.02488 0.00694 0.00326 0.00075 0.0099 0.0116 0.0321

figures.

Random network results with networks of N=50, K=2, C=45 and P=3 are given
in Table 1.1 and Figures 1.33 and 1.34. For IJGP(i) and MC(i) we report 3 different
values of i-bound: 2, 5, 8; for IBP and IJGP(i) we report 3 different values of number of
iterations: 1, 5, 10; for all algorithms we report 3 different values of number of evidence:
0, 5, 10. We notice that IJGP(i) is always better than IBP (except when i=2 and number
of iterations is 1), sometimes as much as an order of magnitude, in terms of absolute and
relative error and KL distance. IBP rarely changes after 5 iterations, whereas IJGP(i)
solution can be improved up to 15-20 iterations. As we predicted, IJGP(i) is about equal
to MC(i) in terms of accuracy for one iteration. But IJGP(i) improves as the number
of iterations increases, and is eventually better than MC(i) by as much as an order of
magnitude, although it clearly takes more time when the i-bound is large.

Figure 1.33a shows a comparison of all algorithms with different numbers of iterations,

52 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

Grid network, N=81, K=2, evid=5, w*=12

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

a) Performance vs. i-bound

Grid network, N=81, K=2, evid=5, w*=12

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5
IJGP 20 iterations
 (at convergence)

b) Fine granularity for KL

Figure 1.35: Grid 9x9: KL distance

using the KL distance. Because the network structure changes with different i-bounds, we
do not see monotonic improvement of IJGP with i-bound for a given number of iterations
(as is the case with MC). Figure 1.33b shows how IJGP converges with iteration to
smaller KL distance than IBP. As expected, the time taken by IJGP (and MC) varies
exponentially with the i-bound (see Figure 1.34).

Grid network results with networks of N=81, K=2, 100 instances are very similar to
those of random networks. They are reported in Table 1.2 and in Figure 1.35, where we
can see the impact of having evidence (0 and 5 evidence variables) on the algorithms.
IJGP at convergence gives the best performance in both cases, while IBP’s performance
deteriorates with more evidence and is surpassed by MC with i-bound 5 or larger.

CPCS network results with CPCS54 and CPCS360 are given in Table ?? and Figure
1.36, and are even more pronounced than those of random and grid networks. When
evidence is added, IJGP(i) is more accurate than MC(i), which is more accurate than
IBP, as can be seen in Figure 1.36a.

Coding network results are given in Table 1.3. We tested on large networks of 400
variables, with treewidth w*=43, with IJGP and IBP set to run 30 iterations (this is more
than enough to ensure convergence). IBP is known to be very accurate for this class of
problems and it is indeed better than MC. It is remarkable however that IJGP converges
to smaller BER than IBP even for small values of the i-bound. Both the coding network
and CPCS360 show the scalability of IJGP for large size problems. Notice that here the
anytime behavior of IJGP is not clear.

1.10. ITERATIVE JOIN-GRAPH PROPAGATION 53

CPCS360, evid=10, w*=20

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
IJGP 1 it
IJGP 10 it
IJGP 20 it
MC
IBP 1 it
IBP 10 it
IBP 20 it

a) Performance vs. i-bound

CPCS360, evid=10, w*=20

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0

1e-6

2e-6

3e-6

4e-6

5e-6

6e-6
IJGP 20 iterations
 (at convergence)

b) Fine granularity for KL

Figure 1.36: CPCS360: KL distance

Table 1.3: Coding networks: N=400, P=4, 500 instances, 30 iterations, w*=43

Bit Error Rate

i-bound

σ 2 4 6 8 10 IBP

0.22 IJGP 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

MC 0.00501 0.00800 0.00586 0.00462 0.00392

0.28 IJGP 0.00062 0.00062 0.00062 0.00062 0.00062 0.00064

MC 0.02170 0.02968 0.02492 0.02048 0.01840

0.32 IJGP 0.00238 0.00238 0.00238 0.00238 0.00238 0.00242

MC 0.04018 0.05004 0.04480 0.03878 0.03558

0.40 IJGP 0.01202 0.01188 0.01194 0.01210 0.01192 0.01220

MC 0.08726 0.09762 0.09272 0.08766 0.08334

0.51 IJGP 0.07664 0.07498 0.07524 0.07578 0.07554 0.07816

MC 0.15396 0.16048 0.15710 0.15452 0.15180

0.65 IJGP 0.19070 0.19056 0.19016 0.19030 0.19056 0.19142

MC 0.21890 0.22056 0.21928 0.21904 0.21830

Time

IJGP 0.36262 0.41695 0.86213 2.62307 9.23610 0.019752

MC 0.25281 0.21816 0.31094 0.74851 2.33257

1.10.5 Summary

In this section we presented an iterative anytime approximation algorithm called Iterative
Join-Graph Propagation (IJGP(i)), that applies the message passing algorithm of join-
tree clustering to join-graphs rather than join-trees, iteratively. The algorithm borrows
the iterative feature from Iterative Belief Propagation (IBP) on one hand and is inspired
by the anytime virtues of mini-clustering MC(i) on the other.

The empirical results are extremely encouraging. We experimented with randomly
generated networks, grid-like networks, medical diagnosis CPCS networks and coding
networks. We showed that IJGP is almost always superior to both IBP and MC(i) and is
sometimes more accurate by an order of several magnitudes. One should note that IBP
cannot be improved with more time, while MC(i) requires a large i-bound for many hard
and large networks to achieve reasonable accuracy. There is no question that the iterative

54 CHAPTER 1. BOUNDING INFERENCE APPROXIMATIONS

application of IJGP is instrumental to its success. In fact, IJGP(2) in isolation appears
to be the most cost effective variant.

Bibliography

[1] S. Arnborg and A. Proskourowski. Linear time algorithms for np-hard problems
restricted to partial k-trees. Discrete and Applied Mathematics, 23:11–24, 1989.

[2] S. A. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability - a survey. BIT, 25:2–23, 1985.

[3] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal
junction trees. In Uncertainty in AI (UAI’96), pages 81–89, 1996.

[4] G. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding: turbo codes. In Proc. 1993 International Conf. Comm. (Geneva, May 1993),
pages 1064–1070, 1993.

[5] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

[6] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, New
York, 1972.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and
optimization. Journal of the Association of Computing Machinery, 44, No. 2:165–201,
1997.

[8] M. Boddy and T.L. Dean. Solving time-dependent planning problems. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, pages 979–
984, 1989.

[9] C. Boutilier. Context-specific independence in bayesian networks. In Uncertainty in
Artificial Intelligence (UAI’96), pages 115–123, 1996.

[10] C. Cannings, E.A. Thompson, and H.H. Skolnick. Probability functions on complex
pedigrees. Advances in Applied Probability, 10:26–61, 1978.

[11] J.-F. Cheng. Iterative decoding. PhD Thesis, 1997.

55

56 BIBLIOGRAPHY

[12] G.F. Cooper. Nestor: A computer-based medical diagnosis aid that integrates causal
and probabilistic knowledge. Technical report, Computer Science department, Stan-
ford University, Palo-Alto, California, 1984.

[13] R. McEliece D. C. MacKay and J. Cheng. Turbo decoding as an instance of pearl’s
“belief propagation” algorithm. 1996.

[14] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the Association of Computing Machinery, 7(3), 1960.

[15] T.L. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings
of the Seventh National Conference on Artificial Intelligence, pages 49–54, 1988.

[16] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference
algorithms. In Uncertainty in Artificial Intelligence (UAI’96), pages 211–219, 1996.

[17] R. Dechter. Topological parameters for time-space tradeoffs. In Uncertainty in Ar-
tificial Intelligence (UAI’96), pages 220–227, 1996.

[18] R. Dechter. Bucket elimination: a unifying framework for processing hard and soft
constraints. CONSTRAINTS: An International Journal, 2:51 – 55, 1997.

[19] R. Dechter. Mini-buckets: A general scheme for generating approximations in au-
tomated reasoning. In Proc. Fifteenth International Joint Conference of Artificial
Intelligence (IJCAI-97), Japan, pages 1297–1302, 1997.

[20] R. Dechter. Mini-buckets: A general scheme of generating approximations in au-
tomated reasoning. In IJCAI-97: Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 1297–1302, 1997.

[21] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113:41–85, 1999.

[22] R. Dechter. A new perspective on algorithms for optimizing policies under un-
certainty. In International Conference on Artificial Intelligence Planning Systems
(AIPS-2000), pages 72–81, 2000.

[23] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[24] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-
lems. Artificial Intelligence, 34:1–38, 1987.

[25] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, pages 353–366, 1989.

BIBLIOGRAPHY 57

[26] R. Dechter and I. Rish. Directional resolution: The davis-putnam procedure, re-
visited. In Principles of Knowledge Representation and Reasoning (KR-94), pages
134–145, 1994.

[27] R. Dechter and I. Rish. A scheme for approximating probabilistic inference. In Proc.
Thirteenth Conf. on Uncertainty in Artificial Intelligence (UAI97), 1997.

[28] R. Dechter and P. van Beek. Local and global relational consistency. In Principles
and Practice of Constraint programming (CP-95), pages 240–257, 1995.

[29] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical
Computer Science, pages 283–308, 1997.

[30] D. Draper. Localized partial evaluation of belief networks. Technical report, Phd
thesis, University of Washington, 1995.

[31] F.Jensen and S.K.Andersen. Approximations in Bayesian belief universes for
knowledge-based systems. In Proc. Sixth Conf. on Uncertainty in Artificial Intel-
ligence, 1990.

[32] E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24–32, 1982.

[33] M. R Garey and D. S. Johnson. Computers and intractability: A guide to the theory
of np-completeness. In W. H. Freeman and Company, San Francisco, 1979.

[34] D. Geiger, T. Verma, and J. Pearl. Identifying independence in bayesian networks.
Networks, 20:507–534, 1990.

[35] D. Heckerman and J. Breese. Causal independence for probability assessment and
inference using Bayesian networks. Technical Report MSR-TR-94-08, Microsoft Re-
search, 1995.

[36] R. A. Howard and J. E. Matheson. Influence diagrams. 1984.

[37] W.T. Freeman J. S. Yedidia and Y. Weiss. Generalized belief propagation. In Ad-
vances in Neural Information Processing Systems 13, 2001.

[38] F.V. Jensen, S.L Lauritzen, and K.G. Olesen. Bayesian updating in causal probabilis-
tic networks by local computation. Computational Statistics Quarterly, 4:269–282,
1990.

[39] J. Larrosa K. Kask, R. Dechter and A. Dechter. Unifying tree-decompositions for
reasoning in graphical models. Artificial Intelligence, 166(1-2):165–193, 2005.

58 BIBLIOGRAPHY

[40] K. Kask. Approximation algorithms for graphical models. Technical report, Ph.D.
thesis, Information and Computer Science, University of California, Irvine, Califor-
nia, 2001.

[41] K. Kask and R. Dechter. Stochastic local search for bayesian networks. In Workshop
on AI and Statistics (AISTAT’99), pages 113–122, 1999.

[42] K. Kask, R. Dechter, J. Larrosa, and G. Fabio. Bucket-tree elimination for automated
reasoning. Submitted -2001, 2001.

[43] R. Dechter K. Kask and J. Larrosa. A general scheme for multiple lower bound
computation in constraint optimization. Principles and Practice of Constraint Pro-
gramming (CP2001), pages 346–360, 2001.

[44] U. Kjæaerulff. A computational scheme for reasoning in dynamic probabilistic net-
works. In Uncertainty in Artificial Intelligence (UAI’93), pages 121–149, 1993.

[45] U. Kjaerulff. Reduction of computational complexity in Bayesian networks through
removal of week dependencies. In Proc. Tenth Conf. on Uncertainty in Artificial
Intelligence, 1994.

[46] F. R. Kschischang and B.H. Frey. Iterative decoding of compound codes by proba-
bility propagation in graphical models. submitted, 1996.

[47] J Larrosa, K. Kask, and R. Dechter. Up and down mini-bucket: a scheme for ap-
proximating combinatorial optimization tasks. Submitted, 2001.

[48] J.-L. Lassez and M. Mahler. On fourier’s algorithm for linear constraints. Journal
of Automated Reasoning, 9, 1992.

[49] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Statistical
Society, Series B, 50(2):157–224, 1988.

[50] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Statistical
Society, Series B, 50(2):157–224, 1988.

[51] D. Maier. The theory of relational databases. In Computer Science Press, Rockville,
MD, 1983.

[52] R.J. McEliece, D.J.C. MacKay, and J.-F.Cheng. Turbo decoding as an instance
of Pearl’s belief propagation algorithm. To appear in IEEE J. Selected Areas in
Communication, 1997.

BIBLIOGRAPHY 59

[53] R.A. Miller, F.E. Masarie, and J. Myers. Quick medical reference (QMR) for diag-
nostic assistance. Medical Computing, 3(5):34 – 38, 1986.

[54] R.A. Miller, H.E. Pople, and et al. Internist-1: An experimental computer-based di-
agnostic consultant for general internal medicine. New England Journal of Medicine,
307:468 – 476, 1982.

[55] L. G. Mitten. Composition principles for the synthesis of optimal multistage pro-
cesses. Operations Research, 12:610–619, 1964.

[56] R. Qi N. L. Zhang and D. Poole. A computational theory of decision networks.
International Journal of Approximate Reasoning, pages 83–158, 1994.

[57] R. Parker and R. Miller. Using causal knowledge to create simulated patient cases:
the CPCS project as an extension of INTERNIST-1. In Proc. 11th Symp. Comp.
Appl. in Medical Care, pages 473 – 480, 1987.

[58] P.Dagum and M.Luby. Approximating probabilistic inference in Bayesian belief net-
works is NP-hard. Artificial Intelligence, 60(1):141–155, 1993.

[59] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[60] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, San Mateo, California, 1988.

[61] Y. Peng and J.A. Reggia. Plausability of diagnostic hypothesis. In National Confer-
ence on Artificial Intelligence (AAAI’86), pages 140–145, 1986.

[62] Y. Peng and J.A. Reggia. A connectionist model for diagnostic problem solving.
IEEE Transactions on Systems, Man and Cybernetics, 1989.

[63] D. Poole. Probabilistic partial evaluation: Exploiting structure in probabilistic infer-
ence. In IJCAI-97: Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, 1997.

[64] M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge engineering for
large belief networks. In Proc. Tenth Conf. on Uncertainty in Artificial Intelligence,
1994.

[65] A. Dechter R. Dechter and J. Pearl. Optimization in constraint networks. In Influence
Diagrams, Belief Nets and Decision Analysis, pages 411–425. John Wiley & Sons,
1990.

60 BIBLIOGRAPHY

[66] R. Mateescu R. Dechter and K. Kask. Iterative join-graph propagation. In Uncer-
tainty in Artificial Intelligence (UAI02), pages 128–138, 2002.

[67] R Dechter R. Mateescu and K. Kask. Tree approximation for belief updating. In
National Conference of Artificial Intelligence (AAAI-2002), pages 553–559, 2002.

[68] B. D’Ambrosio R.D. Shachter and B.A. Del Favero. Symbolic probabilistic inference
in belief networks. In National Conference on Artificial Intelligence (AAAI’90), pages
126–131, 1990.

[69] R.G.Gallager. A simple derivation of the coding theorem and some applications.
IEEE Trans. Information Theory, IT-11:3–18, 1965.

[70] D. Roth. On the hardness of approximate reasoning. 82(1-2):273–302, April 1996.

[71] E. Santos. On the generation of alternative explanations with implications for belief
revision. In Uncertainty in Artificial Intelligence (UAI’91), pages 339–347, 1991.

[72] E. Santos, S.E. Shimony, and E. Williams. Hybrid algorithms for approximate belief
updating in bayes nets. International Journal of Approximate Reasoning, in press.

[73] L. K. Saul and M. I. Jordan. Learning in boltzmann trees. Neural Computation,
6:1173–1183, 1994.

[74] R. D. Shachter. An ordered examination of influence diagrams. Networks, 20:535–563,
1990.

[75] G. R. Shafer and P.P. Shenoy. Probability propagation. Anals of Mathematics and
Artificial Intelligence, 2:327–352, 1990.

[76] C.E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423,623–656, 1948.

[77] P.P. Shenoy. Valuation-based systems for bayesian decision analysis. Operations
Research, 40:463–484, 1992.

[78] S.E. Shimony and E. Charniak. A new algorithm for finding map assignments to
belief networks. In P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer (Eds.),
Uncertainty in Artificial Intelligence, volume 6, pages 185–193, 1991.

[79] K. Shoiket and D. Geiger. A proctical algorithm for finding optimal triangulations. In
Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 185–190,
1997.

BIBLIOGRAPHY 61

[80] M. Shwe, B.F. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H. Lehmann,
and G.F. Cooper. Probabilistic diagnosis using a reformulation of the Internist-
1/QMR knowledge base: I. The probabilistic model and inference algorithms. Meth-
ods of Information in Medicine, 30:241 – 255, 1991.

[81] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM Journal of Computation., 13(3):566–579, 1984.

[82] J.A. Tatman and R.D. Shachter. Dynamic programming and influence diagrams.
IEEE Transactions on Systems, Man, and Cybernetics, pages 365–379, 1990.

[83] N.L. Zhang and D. Poole. Exploiting causal independence in bayesian network in-
ference. Journal of Artificial Intelligence Research (JAIR), 1996.

