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Notation

R a constraint network

x1,...,T,variables

n the number of variables in a constraint network
D; the domain of variable x;

X,Y,Z sets of variables
R, S, T relations
r, s, t tuples in a relation
< X1, a1 >< Lo, Qg >, ..., < Tp,a, > an assignment tuple
Ozy=dy,...,zp=dy (R)
the selection operation on relations
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Chapter 1

Introduction

Graphical models, including constraint networks, belief networks, Markov random fields
and influence diagrams, are knowledge representation schemes that capture independen-
cies in the knowledge base and support efficient, graph-based algorithms for a variety
of reasoning tasks, including scheduling, planning, diagnosis and situation assessment,
design, and hardware and software verification.

Algorithms for processing graphical models are of two primary types: inference-based
and search-based. Inference-based algorithms (e.g., variable-elimination, join-tree cluster-
ing) are time and space exponentially bounded by the tree-width of the problem’s graph.
Search-based algorithms can be executed in linear space and often outperform their worst-
case predictions. The thrust of advanced schemes is in combining inference and search
yielding a spectrum of memory-sensitive algorithms universally applicable across graphical
models.

Graphical models are a widely used knowledge representation framework that cap-
tures independencies in the data and allowing a concise representation and efficient query
processing. Essential to a graphical model is the underlying graph that captures the
problem structure. The vertices are the variables of interest, and the edges represent
the interactions and dependencies between them (e.g., propositional clauses, constraints,
probabilities, and utilities). Known examples include Bayesian (or belief) networks, con-
straint networks, Markov random fields and influence diagrams. There are numerous
examples of problems defined as graphical models, including design, scheduling, planning,
diagnosis, decision making or genetic linkage analysis. The class notes is focused on rea-
soning in graphical frameworks such as constraint and belief networks. Some reasoning
tasks can be formulated as combinatorial optimization or constraint satisfaction problems,
while others can be viewed as knowledge compilation, counting or likelihood computa-
tion. We approach those tasks using a general graph-based algorithmic framework that
combines dynamic-programming techniques or wvariable elimination, often referred to as
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3 CHAPTER 1. INTRODUCTION

inference with conditioning or search, and investigate the effect of problem structure on
the performance of such algorithms.

In this section we will define the frameworks of belief networks, constraint networks
as well as cost networks and their associated tasks. we will subsequently generalize it all
to the graphical model framework. We will use the following notations and definitions
throughout the book.

Notations We denote variables or subsets of variables by uppercase letters (e.g., X,Y,...)
and values of variables by lower case letters (e.g., x,y,...). Sets are usually denoted by
bold letters, for example X = {Xy,..., X, } is a set of variables. An assignment (X; =

x1,...,X, = x,) can be abbreviated as x = ((X1,21),..., (Xp,xn)) or © = (21,...,2,).
For a subset of variables Y, Dy denotes the Cartesian product of the domains of variables
in Y. The projection of an assignment x = (xy,...,x,) over a subset Y is denoted by

xy or z[Y]. We will also denote by Y = y (or y for short) the assignment of values to
variables in Y from their respective domains. We denote functions by letters f, g, h etc.,
and the scope (set of arguments) of the function f by scope(f).

1.1 Example Graphical Models

Graphical models include constraint networks [14] defined by relations of allowed tuples,
(directed or undirected) probabilistic networks [30], defined by conditional probability
tables over subsets of variables, cost networks defined by costs functions and influence
diagrams [23] which include both probabilistic functions and cost functions (i.e., utilities)
[13]. Each graphical model comes with its typical queries, such as finding a solution,
or an optimal one (over constraint networks), finding the most probable assignment or
updating the posterior probabilities given evidence, posed over probabilistic networks, or
finding optimal solutions for cost networks. The task for influence diagrams is to choose
a sequence of actions that maximizes the expected utility. Markov random fields are the
undirected counterparts of probabilistic networks. They are defined by a collection of
probabilistic functions called potentials, over arbitrary subsets of variables.

Throughout the book, we will use the two examples of graphical models: constraint
networks and belief networks. In the case of constraint networks, the functions can be
understood as relations. In other words, the functions (also called constraints) can take
only two values, {0,1} (or {true, false}). A 0 value indicates that the corresponding as-
signment to the variables is inconsistent (not allowed), and a 1 value indicates consistency.
Belief networks are an example of the more general case of graphical models (sometime
called weighted graphical models). The functions are conditional probability tables, so
the values of a function are any real number in the interval [0, 1].
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A directed graph is a pair G = {V, E'}, where V = {Xj,..., X, } is a set of vertices,
and E = {(X;, X;)|X;, X; € V} is the set of edges (arcs). If (X;, X;) € E, we say that
X; points to X;. The degree of a variable is the number of arcs incident to it. For each
variable X;, pa(X;) or pa;, is the set of variables pointing to X; in G, while the set of child
vertices of X, denoted ch(X;), comprises the variables that X; points to. The family
of X;, F;, includes X; and its parent variables. A directed graph is acyclic if it has no
directed cycles. An undirected graph is defined similarly to a directed graph, but there is
no directionality associated with the edges.

Definition 1.1.1 (hypergraph) A hypergraph is a pair H = (X, S), where S = {Si,..., S}
15 a set of subsets of V' called hyperedges.

1.1.1 Constraint Networks

Constraint networks provide a framework for formulating real world problems, such as
scheduling and design, planning and diagnosis, and many more as a set of constraints
between variables. For example, one approach to formulating a scheduling problem as a
constraint satisfaction problem (CSP) is to create a variable for each resource and time
slice. Values of variables would be the tasks that need to be scheduled. Assigning a task
to a particular variable (corresponding to a resource at some time slice) means that this
resource starts executing the given task at the specified time. Various physical constraints
(such as that a given job takes a certain amount of time to execute, or that a task can be
executed at most once) can be modeled as constraints between variables. The constraint
satisfaction task is to find an assignment of values to all the variables that does not
violate any constraint, or else to conclude that the problem is inconsistent. Other tasks
are finding all solutions and counting the solutions.

Definition 1.1.2 (constraint network, constraint satisfaction problem) A constraint
network (CN) is a 4-tuple, (X, D, C,X), where X is a set of variables X = {X1,..., X},
associated with a set of discrete-valued domains, D = {D,...,D,}, and a set of con-
straints C = {C4,...,C.}. Each constraint C; is a pair (S;, R;), where R; is a relation

R; C Dg, defined on a subset of variables S; C X. The relation denotes all compatible
tuples of Dg, allowed by the constraint. The X simply note that the combination operator

s join. T and will serve to unify constraint networks within graphical models. A solution

s an assignment of a value to each variable that does not violate any constraint. A solu-
tion is an assignment of values to all the variables x = (x1,...,2,), x; € D;, such that

V C; € C, zg, € R;. The constraint network represents its set of solutions, M, C;.
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(a) Graph coloring problem (b) Constraint graph

Figure 1.1: Constraint network

Definition 1.1.3 (constraint graph) The constraint graph of a graphical model is an
undirected graph that has variables as its vertices and an edge connects any two variables
that appear in the scope of the same function.

Example 1.1.4 Figure 1.1(a) shows a graph coloring problem that can be modeled by a
constraint network. Given a map of regions, the problem is to color each region by one
of the given colors {red, green, blue}, such that neighboring regions have different colors.
The variables of the problems are the regions, and each one has the domain {red, green,
blue}. The constraints are the relation “different” between neighboring regions. Figure
1.1(b) shows the constraint graph, and a solution (A=red, B=blue, C=green, D=green,
E=blue, F=blue, G=red) is given in Figure 1.1(a). O

Cost Networks An immediate extension of constraint networks are cost networks where
the constraints are replaces by cost components which are real-valued cost functions, and
the primary task is optimization.

Definition 1.1.5 (cost network, combinatorial optimization) A cost network is a
4-tuple, (X, D, C,>), where X is a set of variables X = {X1,...,X,}, associated with
a set of discrete-valued domains, D = {Dy,...,D,}, and a set of cost functions C =
{C1,...,C.}. Each C; is a real-valued function defined on a subset of variables S; C X.
The cost components are combined into a global cost function via the Y. combination
operator. The reasoning problem is to find a minimum cost solution for F' =", C;.

The task of MAX-CSP, namely finding a solution that satisfies the maximum number
of constraints (when the problem is inconsistent), can be formulated as a cost network
task by treating each relation as a cost function that assigns “0” to consistent tuples and
“1” otherwise.
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Propositional Satisfiability A special case of a CSP is propositional satisfiability

(SAT). A formula ¢ in conjunctive normal form (CNF) is a conjunction of clauses oy, . . . , oy,
where a clause is a disjunction of literals (propositions or their negations). For example,

a = (PV-QV-R) is a clause, where P, @) and R are propositions, and P, =@ and =R

are literals. The SAT problem is to decide whether a given CNF theory has a model, i.e.,

a truth-assignment to its propositions that does not violate any clause. Propositional

satisfiability (SAT) can be defined as a CSP, where propositions correspond to variables,

domains are {0, 1}, and constraints are represented by clauses, for example the clause

(A V B) is a relation over its propositional variables that allows all tuples over (A, B)

except (A=1,B =0).

1.1.2 Belief Networks

Belief networks [30], also known as Bayesian networks, provide a formalism for reasoning
about partial beliefs under conditions of uncertainty. They are defined by a directed
acyclic graph over vertices representing random variables of interest (e.g., the temperature
of a device, the gender of a patient, a feature of an object, the occurrence of an event).
The arcs can signify the existence of direct causal influences between linked variables
quantified by conditional probabilities that are attached to each cluster of parents-child
vertices in the network. But these relationships need not necessarily be causal and we
can still have a perfectly well defined belief network.

Definition 1.1.6 (belief networks) A belief network (BN) is a graphical model P =
(X,D,Pg,[]), where X = {X1,...,X,,} is a set of variables over multi-valued domains
D ={Ds,...,D,}. Given a directed acyclic graph G over X as nodes, P = { P, ..., P,},
where P; = {P(X;|pa(X;))} are conditional probability tables (CPTs for short) associ-
ated with each X;, where pa(X;) are the parents of X; in a given acyclic graph G. A belief
network represents a probability distribution over X, P(x1,...,x,) = [[1; P(@i|Tpa(x,))-
where xg is the projection of v = (x1,...,x,) over a subset S. An evidence set e is an
instantiated subset of variables. The argument set of a function h is called the scope of h
and is denoted scope(h).

Example 1.1.7 Figure 1.2(a) gives an example of a belief network over 6 variables, and
Figure 1.2(b) shows its moral graph . The example expresses the causal relationship
between variables “Season” (A), “The configuration of an automatic sprinkler system”
(B), “The amount of rain expected” (C'), “The amount of manual watering necessary”
(D), “The wetness of the pavement” (F') and “Whether or not the pavement is slippery”
(G). The belief network expresses the probability distribution P(A, B,C,D,F,G) =
P(A)-P(B|A)- P(C|A)- P(D|B,A)- P(F|C,B) - P(G|F). |
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Figure 1.2: Belief network

The following queries are defined over belief networks:

Definition 1.1.8 (queries) Given a belief network over X = {Xi,...,X,} and given
evidence e (z is a tuple over all variables):

1. Belief assessment: The belief assessment task of X; = z; is to find bel(x;) =
P(x;le).

2. Most probable explanation (mpe): The mpe task is to find an assignment x° =
(x°1, ..., 2%,) such that P(xz°) = max, P(xl|e).

3. Maximum a posteriori hypothesis (map): Given a set of hypothesized variables
A={A, ..., A}, AC X, the map task is to find an assignment a® = (a°, ..., a°)
such that P(a®) = maxg, >, P(zle).

4. Maximum expected utility (meu): Given a real-valued utility function u(x) that
is additively decomposable relative to Qq,...,Q;, Qi C X, u(x) = ZQJEQ fi(zq,),
and given a subset of decision variables D = { Dy, ..., Dy} that are root variables in
the belief network, the meu task is to find an assignment d° = (d°q, ..., d°) such that

(d°) = argmaxy )y p P(x|d)u(z).

These queries are applicable to tasks such as situation assessment, diagnosis and prob-
abilistic decoding, as well as planning and decision making.

Markov networks are graphical models very similar to belief networks. The only
difference is that the set of compatibility functions P;, called potentials, can be defined
over any subset of variables. An important reasoning task for Markov networks is to
find the partition function which is equivalent to finding the probability of evidence in a
directed probabilistic network.
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1.2 General Graphical models

Next we provide a general formulation of graphical models and of reasoning problems that
unifies all the previous models and tasks.

A graphical model is defined by a collection of functions F', over a set of variables
X, conveying probabilistic, deterministic or preferential information, whose structure is
captured by a graph.

Definition 1.2.1 (graphical model) A graphical model M is a 4-tuple, M = (X, D, F,®),
where:

1. X ={Xy,...,X,} is a finite set of variables;
2. D={Ds,...,D,} is the set of their respective finite domains of values;

3. F={f1,..., [} is a set of positive real-valued discrete functions, each defined over
a subset of variables S; C X, called its scope, and denoted by scope(f;).

4. ® is a combination operator' (e.g., @ € {[[,>.,X} (product, sum, join)).

The graphical model represents the combination of all its functions: ®i_, f;.

Definition 1.2.2 (primal graph) The primal graph of a graphical model is an undi-
rected graph that has variables as its vertices and an edge connects any two variables that
appear in the scope of the same function.

The primal graph captures the structure of the knowledge expressed by the graph-
ical model. In particular, graph separation indicates independency of sets of variables
given some assignments to other variables. As we will see all of the advanced algorithms
for graphical models exploit the graphical structure. There are many additional graph
representations that are used.

The hypergraph of a graphical models has the set of variables as its nodes and the set
of scopes of functions as its edges.

Definition 1.2.3 (reasoning problem) A reasoning problem over a graphical model
M = (X,D,F,®) , is defined by a marginalization operator |y, and a set of subsets
of X that are of interest. It is therefore a triplet, P = (M, vy, {Z1,...,2Z}), where
Z ={Zy,...,Z;} is a set of subsets of variables of X. If S is the scope of function f
andY C X, then y f € {JV [, Smfgl{ , gf, sngf} is a marginalization operator. P can
be viewed as a vector function over the scopes 4y, ...,2;. The reasoning problem is to
compute Pz, .. z,(M) =z, Q1 fi,... . Yz, ®i_1[i) .

!The combination operator can also be defined axiomatically [41].
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We will focus primarily on reasoning problems defined by Z = (). The marginalization
operator is sometimes called elimination operator because it removes some arguments
from the scope of the input function. Specifically, v f is a function whose scope is Y. It
therefore removes variables S —Y from S = scope(f). Note that here g f is the relational
projection operator and unlike the rest of the marginalization operators the convention
is that is defined by the scope of variables that are not eliminated. We will now go back
and show how each of the framework mentioned earlier fits the general graphical model
definition.

Constraint satisfaction is a reasoning problem P = (R, 1, Z), where R = (X, D, C, X)
is a constraint network, and the marginalization operator is the projection operator II.
Namely, for constraint satisfaction Z = {(}}, and |} is ITy. So the task is to find |}y ®;f; =
[Ty (X; f;) which corresponds to enumerating all solutions. When the combination operator
is a product over the cost-based representation of the relations, and the marginalization
operator is logical summation we get “1” if the constraint problem has a solution and “0”
otherwise. For counting, the marginalization operator is summation and Z = {(}} too.

The task of MAX-CSP, namely finding a solution that satisfies the maximum number of
constraints (when the problem is inconsistent), can be defined by treating each relation as
a cost function that assigns “0” to consistent tuples and “1” otherwise. The combination
operator is summation and the marginalization operator is minimization. Namely, the
task is to find |y ®;f; = minx (>, fi).

Max-CSP can be expressed as minimizing the number of constraints that are violated.
Its set of functions F’ is the set of cost functions assigning 0 to all allowed tuples and 1 to all
non-allowed tuples. It can be formalized as a reasoning task P = (X, D, F,>  min, Z =
0y, where (X, D, F) is a constraint network, the combination operator is summation and
the marginalization operator is the minimization operator. Namely, the task is to find
Jp ®ifi = miny ), fi.

A belief network is a graphical model. When belief networks are formulated as a
graphical model, functions in F' denote conditional probability tables and the scopes of
these functions are determined by the directed acyclic graph G: each function f; ranges
over variable X; and its parents in G. The combination operator is product, ® = []. The
primal graph of a belief network is called a moral graph. It connects any two variables
appearing in the same CPT.

Given a belief network and evidence e, the belief updating task of computing the
posterior marginal probability of variable X;, conditioned on the evidence. can be
formulated using the marginalization operator is y= > x v, and Z; = {X;}. Namely,
VX, dx, @cfr =0 (X—X;|Fee} [1; Px- The query of finding the probability of the evidence
is defined by Z = 0.

As a reasoning problem, an MPE task is to find {p ®; f; = maxx [[, /. Namely, the
marginalization operator is max and Z = {(}. Other queries can be formulated as...
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In the rest of the chapters in this book we will describe inference algorithms, search al-
gorithms and their hybrids. We start with inference algorithms such as bucket elimination
in Chapter 2.

Flat functions Fach function in a graphical model having a “0” element expresses
implicitly a constraint. The flat constraint of function f; is a constraint R; over its scope
that includes all and only the consistent tuples. In the following chapters, when we
talk about a constraint network, we refer also to the flat constraint network that can be
extracted from the general graphical model. When all the full assignments are consistent
we say that the graphical model is strictly positive.
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Chapter 2

Bucket-elimination Algorithms

In this chapter we introduce the first Inference algorithm for graphical models focusing
on probabilistic networks.

2.1 Introduction

Bucket elimination is a unifying algorithmic framework that generalizes dynamic program-
ming and to accommodate algorithms for many complex problem-solving and reasoning
activities, including directional resolution for propositional satisfiability [9], adaptive con-
sistency for constraint satisfaction [15], Fourier and Gaussian elimination for linear equal-
ities and inequalities, and dynamic programming for combinatorial optimization [4]. The
bucket elimination framework will be demonstrated by presenting reasoning algorithms for
processing both deterministic knowledge-bases such as constraint networks and cost net-
works as well as probabilistic databases such as belief networks and influence diagrams.
Normally, an input to a bucket elimination algorithm is a knowledge-base theory and
a query specified by a collection of functions or relations over subsets of variables (e.g.,
clauses for propositional satisfiability, constraints, or conditional probability matrices for
belief networks). The algorithm initially partitions these functions into buckets, and
each is associated with a single variable. Given a variable ordering, the bucket of a
particular variable contains the functions defined on that variable, provided the function
is not defined on variables higher in the order. Subsequently, buckets are processed from
last to first. When the bucket of variable X is processed, an “elimination procedure” is
performed over the functions in its bucket yielding a new function that does not “mention”
X. This function summarizes the “effect” of X on the remainder of the problem. The

! Adapted from[12]
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new function is placed in a lower bucket. Bucket-elimination algorithms are knowledge-
compilation methods, since they generate not only an answer to a query, but also an
equivalent representation of the input problem from which various queries are answerable
in polynomial time.

We begin (Section 2) with briefly describing some algorithms for deterministic net-
works, phrased as bucket elimination algorithms. These include adaptive-consistency for
constraint satisfaction, directional resolution for propositional satisfiability and the Fourier
elimination algorithm for solving a set of linear inequalities over real numbers. We show
that their performance can be bounded exponentially by the induced-width of the graph.

We will then provide a detailed derivation of bucket elimination algorithms for proba-
bilistic tasks. Following additional preliminaries (Section 3), we will develop the bucket-
elimination algorithm for belief updating and probability of evidence and analyze its
performance in Section 4. The algorithm is extended to find the most probable expla-
nation (Section 5), the maximum aposteriori hypothesis (Section 6) and the maximum
expected utility (Section 7). Its relationship to dynamic programming is given in Section

8.

2.2 Adaptive-consistency; Bucket Elimination for Con-
straint Networks

This section describes algorithms for reasoning with deterministic relationships, empha-
sizing their syntactic description as bucket elimination algorithms.

2.2.1 Bucket elimination for constraints

Consider the following graph coloring problem in Figure 2.1. The task is to assign a color
to each node in the graph so that adjacent nodes will have different colors. Here is one
way to solve this problem. Consider node E first. It can be colored either green or red.
Since only two colors are available it follows that D and C' must have identical colors,
thus, C = D can be added to the constraints of the problem. We focus on variable C'
next. ;From the inferred C' = D and from the input constraint C' # B we can infer
that D # B and add this constraint to the problem, disregarding C' and E from now on.
Continuing in this fashion with node D, we will infer A = B. However, since there is an
input constraint A # B we can conclude that the original set of constraints is inconsistent.

The algorithm which we just executed, called Adaptive-consistency [15] can solve any
constraint satisfaction problem. It works by eliminating variables one by one, while deduc-
ing the effect of the eliminated variable on the rest of the problem. Adaptive-consistency
can be described using the bucket data-structure as follows. Given a variable ordering
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Figure 2.1: A graph coloring example

such as d = A, B,D,C, E in our example, we process the variables from last to first,
namely, from E to A. Step one is to partition the constraints into ordered buckets. All
the constraints mentioning the last variable E are put in a bucket designated as bucketg.
Subsequently, all the remaining constraints mentioning D are placed in D’s bucket, and
so on. The initial partitioning of the constraints is depicted in Figure 2.2a. In general,
each constraint is placed in the bucket of its latest variable.

After this initialization step, the buckets are processed from last to first. Processing
bucket E produces the constraint D = C', which is placed in bucket C. By processing
bucket C', the constraint D # B is generated and placed in bucket D. While processing
bucket D, we generate the constraint A = B and put it in bucket B. When processing
bucket B inconsistency is discovered. The buckets’ final contents are shown in Figure
2.2b. The new inferred constraints are displayed to the right of the bar in each bucket.

At each step the algorithm generates a reduced but equivalent problem with one less
variable expressed by the union of unprocessed buckets. Once the reduced problem is
solved its solution is guaranteed to be extendible to a full solution since it accounted for
the deduced constraints generated by the rest of the problem. Therefore, once all the
buckets are processed, and if there are no inconsistencies, a solution can be generated in
a backtrack-free manner. Namely, a solution is assembled progressively assigning values
to variables from the first variable to the last. A value of the first variable is selected
satisfying all the current constraints in its bucket. A value for the second variable is then
selected which satisfies all the constraints in the second bucket, and so on. Processing
a bucket amounts to solving a subproblem defined by the constraints appearing in the
bucket, and then projecting the solutions to all but the current bucket’s variable. A more



20 CHAPTER 2. BUCKET-ELIMINATION ALGORITHMS

Bucket(E): E# D, E #C
Bucket(C): C # B
Bucket(D): D # A,
Bucket(B): B # A,
Bucket(A):

(a)
Bucket(E): E# D, E #C
Bucket(C): C#B || D=C
Bucket(D): D # A, ||, D # B
Bucket(B): B# A, || B=A
Bucket(A): ||

(b)

Figure 2.2: A schematic execution of adaptive-consistency

formal description requires additional definitions and notations.
We assume that constraints are described by relations and the use of the following
operations.

Definition 2.2.1 ((operations on constraints)) Let R be a relation on a set S of
variables, let Y C S be a subset of the variables, and let Y; be an instantiation of the
variables in Y. We denote by oy,(R) the selection of those tuples in R that agree with
Y;. We denote by Iy (R) the projection of the relation R on the subset Y'; that is, a tuple
over Y appears in Ily (R) if and only if it can be extended to a full tuple in R. Let Rg,
be a relation on a set Sy of variables and let Rg, be a relation on a set Sy of variables.
We denote by Rg, M Rg, the natural join of the two relations. The join of Rs, and Rg,
is a relation defined over Sy U Sy containing all the tuples t, satisfying t[S1] € Rs, and
t[SQ] € RS2.

The computation in a bucket can be described in terms of the above relational op-
erators of join followed by projection. The join of two relations R4p and Rpc denoted
Rag X Rpe is the largest set of solutions over A, B, C' satisfying the two constraints
Rap and Rpc. Projecting out a variable A from a relation Rapc, written as [po(Rapc)
removes the assignment to A from each tuple in R4pc and eliminates duplicate rows from
the resulting relation. For instance, the computation in the bucket of E of our example of
Figure 2.1 is Rgcp < Rep X Rpc followed by Rop < Hep(Reep), where Rgp denotes
the relation F # D, namely Rgp = {(green,red)(red, green)} and Rgc stands for the
relation £ # C'. Algorithm Adaptive-consistency is described in Figure 2.3.
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Algorithm Adaptive consistency

1. Input: A constraint problem Ry,...R;, ordering d = X1, ..., X,,.

2. Output: An equivalent backtrack-free set of constraints and a solution.
3. Initialize: Partition constraints into bucketq, ...bucket,,. bucket; contains
all relations whose scope include X; but no higher indexed variable.

4. For p = n downto 1, process bucket, as follows

for all relations Ry, ...R,, defined over Si,...5,, € bucket, do
(Find solutions to bucket, and project out X,:)

A—UL S —{Xi}
RA — RA N HA(Mgnzl Rj>

5. If R4 is not empty, add it to the bucket of its latest variable.
Else, the problem is inconsistent.

6. Return Ujbucket; and generate a solution: for p =1 to n do
assign a value to X, that is consistent with previous assignments and satisfies
all the constraints in bucket,,.

Figure 2.3: Algorithm Adaptive consistency

The complexity of adaptive-consistency is linear in the number of buckets and in the
time to process each bucket. However, since processing a bucket amounts to solving a
constraint-satisfaction subproblem its complexity is exponential in the number of variables
mentioned in a bucket. If the constraint graph is ordered along the bucket processing,
then the number of variables appearing in a bucket is bounded by the induced-width of
the constraint graph along that ordering [15].

Definition 2.2.2 (induced-width,tree-width) Given an undirected graph G and an
ordering d = Xy, ..., X,, of its nodes, the induced graph of G relative to ordering d s
obtained by processing the nodes in reverse order from last to first. For each node all
its earlier neighbors are connected, while taking into account old and new edges created
during processing. The induced width of an ordered graph, denoted w*(d), is the mazimum
number of earlier neighbors over all nodes, in the induced graph. The induced width of a
graph, w*, is the minimal induced width over all its ordered graphs.

Consider for example, a slightly different graph coloring problem as depicted in Fig-
ure 2.4. Generating the induced-graph along the ordering dy = A, B,C, D, E or dy =
E,B,C, D, A leads to the two graphs in Figure 2.5. Note that in all drawings from now
on, later nodes in the ordering appear on top of earlier ones. The broken arcs are the
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Figure 2.4: A modified graph coloring problem

new added arcs. The induced-width along d; and dy are 2 and 3 respectively, suggesting
different complexity bounds for adaptive-consistency. We can show that,

Theorem 2.2.3 (correctness) [15] Adaptive-consistency decides if a set of constraints
are consistent, and if they are, generates an equivalent representation that is backtrack-
free. O

Theorem 2.2.4 (complexity) The time and space complexity of Adaptive-consistency
along d is O(r - exp(w*(d))), when r is the number of input constraints. O

As a result, problems having bounded induced-width (w* < b) for some constant
b, can be solved in polynomial time. In particular, Adaptive-consistency is linear for
trees because trees have induced-width of 1, as demonstrated in Figure 2.6. The Figure
depicts a constraint graph that has no cycles. When the graph is ordered along d =
A, B,C,D,E, F,G its width and induced width, equal 1. Indeed as is demonstrated by
the schematic execution of adaptive-consistency along d, the algorithm generates only
unary relationships and is therefore very efficient.

2.3 Bucket Elimination for Belief Assessment

Notation 2.3.1 (elimination functions) Given a function h defined over a subset of

variables S, called its scope and an X € S, the functions (minxh), (maxxh), (meanxh),
and (> h) are defined over U = S — {X} as follows. For every U = u, (minxh)(u) =
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W*(D)=3

W (d) =3 WH(d) =2

Figure 2.5: The induced-width along the orderings: dy = A,B,C,D,E and dy =
E.B,C,D,A
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Figure 2.6: Schematic execution of adaptive-consistency on a tree network. Dy denotes
unary constraints over X
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min, h(u, z), (marxh)(u) = max, h(u, x),

O -xh)(w) = > h(u,z). Given a set of functions hy,...,h; defined over the subsets
Sty ..., S5, the product function (11;h;) and Zj h; are defined over the scope U = U;S; as
follows. For every U = u, (IL;h;)(u) = ILh;(us;), and (3_; h;)(u) = 3_; hj(us;)-

Belief updating is the primary inference task over belief networks. The task is to
maintain the probability of singleton propositions once new evidence arrives. For instance,
if we observe that the pavement is slippery, we want to assess the likelihood that the
sprinkler was on in our example.

2.3.1 Deriving elim-bel

Belief updating was developed first for belief networks having no loops. The algorithm de-
veloped by Pearl is know as a belief Following propagation algorithm for singly-connected
networks [30]. Subsequently researchers have investigated various general approaches to
belief updating. The most common inference approaches are join-tree clustering [27] and
variable-eliminations schemes [29, 10]. We next present a step by step derivation of a
general variable-elimination algorithm for belief updating. This process is typical for any
derivation of elimination algorithms.

Let X = x be an atomic proposition. The problem is to assess and update the belief
in x; given evidence e and t o also compute P(e). We wish to compute P(X = x|e) =
a-P(X = x,e), where «a is a normalization constant P(e). We will develop the algorithm
using example 1.1.7 (Figure ??). Assume we have the evidence g = 1. Consider the
variables in the order dy = A, C, B, F, D, G. By definition we need to compute

Pla,g=1)= Y Pglf)P(flb,c)P(d]a,b)P(c|a)P(bla) P(a)
c,b, f,d,g=1

We can now apply some simple symbolic manipulation, migrating each conditional prob-
ability table to the left of the summation variables which it does not reference. We get

= P(a) ) P(cla) Y P(bla) Y P(flb,c) Y P(dlb,a) Y P(glf) (2.1)
c b f d g=1

Carrying the computation from right to left (from G to A), we first compute the rightmost
summation, which generates a function over f, Ag(f) defined by: Aa(f) = >_,_, P(g]f)
and place it as far to the left as possible, yielding

= P(a) Y P(cla) Y P(bla) Y P(flb,)Aa(f) Y P(d]b,a) (2.2)
c b f d
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Summing next over d (generating a function denoted Ap(a,b), defined by Ap(a,b) =

> 4 P(d|a,b)), we get
= P(a) Y Plela) Y P(bla)Ao(a.b) Y P(S b)) (2.9
c b f
Next, summing over f ( generating Ar(b,c) = >_; P(f|b,c)Ac(f)), we get,
=P(a)» _P(cla) ) P(bla)Ap(a,b)Ap(b,c) (2.4)
c b
Summing over b (generating Ag(a,c)), we get
= P(a) ) P(cla)rs(a,c) (2.5)

Finally, summing over ¢ (generating Ac(a)), we get
Pa)Ac(a) (2.6)

The answer to the query P(a|g = 1) can be computed by normalizing the last product.
The probability of the evidence P(g = 1) is the normalizing constant itself.

The bucket-elimination algorithm mimics the above algebraic manipulation by the or-
ganizational device of buckets, as follows. First, the conditional probability tables (C'PT's,
for short) are partitioned into buckets relative to the order used, d; = A,C, B, F, D,G.
In bucket G we place all functions mentioning GG. From the remaining CPTs we place all
those mentioning D in bucket D, and so on. The partitioning rule shown earlier for con-
straint processing and cnf theories can be alternatively stated as follows. In X;’s bucket
we put all functions that mention X; but do not mention any variable having a higher
index. The resulting initial partitioning for our example is given in Figure 2.18. Note
that the observed variables are also placed in their corresponding bucket.

This initialization step corresponds to deriving the expression in Eq. (2.1). Now we
process the buckets from last to first (or top to bottom in the figures), implementing
the right to left computation of Eq. (2.1). Processing a bucket amounts to eliminating
the variable in the bucket from subsequent computation. Buckets is processed first. To
eliminate G we sum over all values of g. Since in this case we have an observed value
g = 1, the summation is over a singleton value. The function Ag(f) = >_,_, P(gf), is
computed and placed in buckety (this corresponds to deriving Eq. (2.2) from Eq. (2.1)).
New functions are placed in lower buckets using the same placement rule.

Bucketp is processed next. We sum-out D getting Ap(b,a) = >, P(d|b,a), which
is placed in bucketp, (which corresponds to deriving Eq. (2.3) from Eq. (2.2)). The
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bucketg = P(glf),g=1
bucketp = P(d|b,a)
bucketp = P(fl|b,c)
bucketp = P(bla)
buckete = P(c|a)
buckety = P(a)

Figure 2.7: Initial partitioning into buckets using dy = A,C, B, F, D, G

sum gl

Bucket G P@lf) 9=1

Bucket D  P(d |N

Bucket F P(f|b,c) XG(f)

Bucket B PbBla)  Nyba) Nl PO
3
Bucket C P(cla) N B( ac)
.
Bucket A P(a) Xc(a)

Figure 2.8: Bucket elimination along ordering d; = A,C, B, F, D, G.

next variable is F'. Bucketr contains two functions P(f|b,c¢) and Ag(f), and follows
Eq. (2.4) we generate the function Ap(b,c) = >, P(f|b,c) - Ag(f), which is placed in
bucketp (this corresponds to deriving Eq. (2.4) from Eq. (2.3)). In processing the next
bucket g, the function Ag(a,c) =Y, P(bla) - Ap(b,a) - Ap(b, ¢) is computed and placed in
bucketc (deriving Eq. (2.5) from Eq. (2.4)). In processing the next buckets, Ac(a) =
Y o Plcla) - Ap(a,c) is computed (which corresponds to deriving Eq. (2.6) from Eq.
(2.5)). Finally, the belief in a can be computed in bucket 4, P(alg =1) = a- P(a) - A¢(a).
Figure 2.8 summarizes the flow of computation. Throughout this process we recorded
two-dimensional functions at the most; the complexity of the algorithm using ordering d;
is (roughly) time and space quadratic in the domain sizes.

What will occur if we use a different variable ordering? For example, let’s apply the
algorithm using dy, = A, F, D, C, B, G. Applying algebraic manipulation from right to left
along d, yields the following sequence of derivations:

Pla,g=1) = Pla) 3 ;34> Plcla) 3, P(bla) Pd|a,b)P(f[b,c) >, P(glf)=
Pla) >y Aa(f) 2020 Plcla) X2, P(bla) P(d|a, b)P(f[b, c)=
Pla) 325 Aa(f) 220 22 Plela)As(a,d,c, f) =
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bucket G =P(glf),g=1
bucket B P(f | b,c), P(d] a,b), P(bla)
Al Rl i

bucket . = P(c|a) Ag(ficad)
\
bucket = )\C(?f, )
bucket = Ay@f) A
bucket 5 = P(a) AFV(a)/
(a) (b)

Figure 2.9: The bucket’s output when processing along do = A, F, D,C, B, G

P(a) 5, () Sy Aoland, ) =
Pla) S Al An(a, f) =
P(a)\r(a)

The bucket elimination process for ordering ds is summarized in Figure 2.9a. Each
bucket contains the initial C PT's denoted by Ps, and the functions generated throughout
the process, denoted by As.

We conclude with a general derivation of the bucket elimination algorithm, called
elim-bel, which yields as a byproduct also the probability of the evidence. Consider an
ordering of the variables X = (X, ..., X;,) and assume we seek P(z;]e). Using the notation
z; = (21, ...,x;) and T = (z4, Tit1, ..., T;), where F; is the family of variable X;, we want

to compute:
P(zy,e) =Y P(Tne)= > > TLP(xi elzpa,)

= _(n—1
=Ty :cg" ) Tn

Separating X,, from the rest of the variables results in:

= Z HX,-EX—FnP(l‘he'xpai) : Zp(xme|$pan)HXi€cth($iae|xpai)

_~(n=1) Tn
Cﬂ—$2

= Y Ixex-p P el2p,) - Malav,)
x:a’céﬂil)

where

An(zU,) = Zp(xm €|Zpa, ) 1L x,ech, P(Ti, €|Tpa,) (2.7)

Tn
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Algorithm elim-bel
Input: A belief network BN = {P,..., P,}; an ordering of the
variables, d = X1, ..., X,,; evidence e.
Output: The belief P(x]e).
1. Inmitialize: Generate an ordered partition of the conditional
probability matrices, buckety, ..., bucket,,, where bucket; contains all
matrices whose highest variable is X;. Put each observed variable in
its bucket. Let Sy, ..., .S; be the subset of variables in the processed
bucket on which matrices (new or old) are defined.
2. Backward: For p < n downto 1, do
for all the matrices A1, Ao, ..., A; in bucket,, do
e If (observed variable) X, = z, appears in bucket,, assign
X, = x, to each )\; and then put each resulting function in
appropriate bucket.

o else, U, — (J_, S; — {X,}. Generate \, = >ox, II_,\; and
add A, to the largest-index variable in U,.
3. Return: Bel(z;) = all;\;(x;)(where the \; are in bucket),
P(e) = « is the normalizing constant.

Figure 2.10: Algorithm elim-bel

and U, denotes the variables appearing with X,, in a probability component, (excluding
X,,). The process continues recursively with X,,_;.

Thus, the computation performed in bucket X, is captured by Eq. (2.7). Given
ordering d = X4, ..., X,,, where the queried variable appears first, the C'PT's are partitioned
using the rule described earlier. Then buckets are processed from last to first. To process
each bucket, all the bucket’s functions, denoted Ay, ..., A; and defined over subsets S, ..., S;
are multiplied. Then the bucket’s variable is eliminated by summation. The computed
functionis A\, : U, — R, A\, = pr ngl)\i, where U, = U;5; — X,,. This function is placed
in the bucket of its largest-index variable in U,. Once all the buckets are processed, the
answer is available in the first bucket. If we also process the first bucket we get the
probability of the evidence. Algorithm elim-bel is described in Figure 2.10. We conclude:

Theorem 2.3.2 Algorithm elim-bel computes the posterior belief P(x1|e) for any given
ordering of the variables which is initiated by X, and the probability of the evidence as
the normalizing constant in the first bucket. O
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Figure 2.11: Two orderings of the moral graph of our example problem

The bucket’s operation

[to be completed]

2.3.2 Complexity

We see that although elim-bel can be applied using any ordering, its complexity varies
considerably. Using ordering d; we recorded functions on pairs of variables only, while
using dy we had to record functions on four variables (see Bucketc in Figure 2.9a). The
arity of the function recorded in a bucket equals the number of variables appearing in
that processed bucket, excluding the bucket’s variable. Since computing and recording a
function of arity r is time and space exponential in  we conclude that the complexity of
the algorithm is exponential in the size (number of variables) of the largest bucket.

Fortunately, as was observed earlier for adaptive-consistency, the bucket sizes can be
easily predicted from an order associated with the elimination process. Consider the
moral graph of a given belief network. This graph has a node for each variable and any
two variables appearing in the same C'PT are connected. The moral graph of the network
in Figure 1.2(a) is given in Figure 1.2(b). Let us take this moral graph and impose an
ordering on its nodes. Figures 2.11a and 2.11b depict the ordered moral graph using the
two orderings dy = A,C, B, F,D,G and dy = A, F,D,C, B,G. The ordering is pictured
with the first variable at the bottom and the last variable at the top.

The width of each variable in the ordered graph is the number of its earlier neighbors
in the ordering. Thus, the width of G in the ordered graph along d; is 1 and the width
of F'is 2. Notice now that when using ordering d;, the number of variables in the initial
buckets of G and F, are 1 and 2, respectively. Indeed, the number of variables mentioned
in a bucket in their initial partitioning (excluding the bucket’s variable) is always identical
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to the width of that node in the ordered moral graph.

During processing we wish to maintain the correspondence that any two nodes in the
graph are connected if there is a function (new or old) defined on both. Since, during
processing, a function is recorded on all the variables appearing in a bucket of a variable
(which is the set of earlier neighbors of the variable in the ordered graph) these nodes
should be connected. If we perform this graph operation recursively from last node to
first, (for each node connecting its earliest neighbors) we get the the induced graph. The
width of each node in this induced graph is identical to the bucket’s sizes generated during
the elimination process (Figure 2.9b).

Example 2.3.3 The induced moral graph of Figure ?7b, relative to ordering d; =
A, C,B,F,D,G is depicted in Figure 2.11a. In this case, the ordered graph and its
induced ordered graph are identical, since all the earlier neighbors of each node are al-
ready connected. The maximum induced width is 2. In this case, the maximum arity
of functions recorded by the elimination algorithms is 2. For dy = A, F, D,C, B,G the
induced graph is depicted in Figure 2.11c. The width of C' is initially 2 (see Figure 2.11b)
while its induced width is 3. The maximum induced width over all variables for ds is 4,
and so is the recorded function’s dimensionality. |

A formal definition of all these graph concepts is given next, partially reiterating
concepts defined in Section 2.

Definition 2.3.4 (induced width) An ordered graph is a pair (G,d) where G is an
undirected graph and d = X, ..., X,, is an ordering of the nodes. The width of a node in
an ordered graph is the number of the node’s neighbors that precede it in the ordering. The
width of an ordering d, denoted w(d), is the mazimum width over all nodes. The induced
width of an ordered graph, w*(d), is the width of the ordered graph obtained by processing
the nodes from last to first. When node X is processed, all its preceding neighbors are
connected. The resulting graph is called Induced-graph or triangulated graph. The induced
width of a graph, wx, is the minimal induced width over all its orderings. The induced
graph suggests a hyper-tree embedding of the original graph whose tree-width equals the
induced-width. Thus, the tree-width of a graph is the minimal induced width plus one [2].

Theorem 2.3.5 (Complexity of elim-bel) Let w* be the induced width of G along
ordering d and k the maximum domain size of a variable. The time complexity of elim—bel
is O(r - k") and its space complexity is O(n - k*").

Proof. During elim-bel, each bucket sends a A message to its parent and since it computes
a function defined on all the variables in the bucket, the number of which is bounded by w*,
the size of the computed function is exponential in w*. Since the number of functions that
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need to be consulted for each tuple in the generated function is bounded by the number
of original functions in the bucket, ry, plus the messages received from its children, which
is bounden by deg;, the overall computation, summing over all buckets, is bounded by

Z(rxi +deg; — 1) - kT

X;

The total complexity can be bound by O((r +n) - k" *1). Assuming r > n, this becomes
O(r - k¥"*1). The size of each \ message is O(k*"). Since the total number of A messages
is n — 1, the total space complexity is O(n - k¥"). O

In summary, the complexity of algorithm elim-bel is dominated by the time and space
needed to process a bucket. Recording a function on all the bucket’s variables is time and
space exponential in the number of variables mentioned in the bucket. The induced width
bounds the arity of the functions recorded: variables appearing in a bucket coincide with
the earlier neighbors of the corresponding node in the ordered induced moral graph.

2.3.3 On finding small induced-width

The established connection between buckets’ sizes and induced width motivates finding
an ordering with a smallest induced width, a task known to be hard [2]. However, useful
greedy heuristics as well as approximation algorithms are available as we briefly show in
the next few paragraphs [14, 3, 43].

A rather important observation is that a graph is a tree (has no cycles) if and only if
it has a width-1 ordering. The reason a width-1 graph cannot have a cycle is that for any
ordering, at least one node on the cycle would have two parents, thus contradicting the
width-1 assumption. And vice-versa: if a graph has no cycles, it can always be converted
into a rooted directed tree by directing all edges away from a designated root node. In such
a directed tree, every node has exactly one node pointing to it, — its parent. Therefore,
any ordering in which every parent node precedes its child nodes in the rooted tree has a
width of 1. Furthermore, given an ordering having width of 1, its induced-ordered graph
has no additional arcs, yielding an induced width of 1, as well. In summary,

Proposition 2.3.6 A graph is a tree iff it has both width and induced width of 1. O

Finding a minimum-width ordering of a graph can be accomplished by the greedy
algorithm min-width (see Figure 2.13). The algorithm orders variables from last to first
as follows: in the first step, a variable with minimum number of neighbors is selected
and put last in the ordering. The variable and all its adjacent edges are then eliminated
from the original graph, and selection of the next variable continues recursively with the
remaining graph. Ordering ds of G in Figure 2.12(c) could have been generated by a
min-width ordering.



32 CHAPTER 2. BUCKET-ELIMINATION ALGORITHMS

F E

B E A ‘
D B ‘
|
I

O C ‘ C
E w ‘

I
OF B =
A F O

@
® © (ch

Figure 2.12: (a) Graph G, and three orderings of the graph; (b) d; = (F, E, D,C, B, A),
(¢)dy = (A, B,C,D,E,F), and (d) d3 = (F,D,C, B, A, E'). Broken lines indicate edges
added in the induced graph of each ordering.

Proposition 2.3.7 [20] Algorithm min-width (MW) finds a minimum width ordering of
a graph.

Though finding the min-width ordering of a graph is easy, finding the minimum nduced
width of a graph is hard ( NP-complete [2]). Nevertheless, deciding whether there exists
an ordering whose induced width is less than a constant k, takes O(n*) time.

A decent greedy algorithm, obtained by a small modification to the min-width algo-
rithm, is the min-induced-width (Miw) algorithm (Figure 2.14). It orders the variables
from last to first according to the following procedure: the algorithm selects a variable
with minimum degree and places it last in the ordering. The algorithm next connects the

MIN-WIDTH (MW)

input: a graph G = (V, E), V = {vy,...,v,}
output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r < a node in G with smallest degree.
3. put r in position j and G «— G —r.

(Delete from V node r and from £ all its adjacent edges)
4. endfor

Figure 2.13: The min-width (MW) ordering procedure
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node’s neighbors in the graph to each other, and only then removes the selected node and
its adjacent edges from the graph, continuing recursively with the resulting graph. The
ordered graph in Figure 2.12(c) could have been generated by a min-induced-width or-
dering of G. In this case, it so happens that the algorithm achieves the minimum induced
width of the graph, w*.

Another variation yields a greedy algorithm known as min-fill. Rather than order the
nodes in order of their min-degree, it uses the min-fill set, that is, the number of edges
needed to be filled so that its parent set be fully connected, as an ordering criterion. This
min-fill heuristic described in Figure 2.15, was demonstrated empirically to be somewhat
superior to min-induced-width algorithm. The ordered graph in Figure 2.12(c) could have
been generated by a min-fill ordering of G' while the ordering d; or d3 in parts (a) and (d)
could not.

MIN-INDUCED-WIDTH (MIW)

input: a graph G = (V, E), V = {vy,...,v,}

output: An ordering of the nodes d = (vy, ..., vy,).

1. for j=nto1lby-1do

2. r «— a node in V with smallest degree.

3. put r in position j.

4 connect r’s neighbors: E «— E U {(v;,v;)|(vi,7) € E, (vj,7) € E},
5 remove r from the resulting graph: V « V — {r}.

Figure 2.14: The min-induced-width (MI1w) procedure

MIN-FILL (MIN-FILL)

input: a graph G = (V, E), V = {vy, ..., v, }

output: An ordering of the nodes d = (vy, ..., vy,).

1. for j =nto1lby-1do

2. r «— a node in V' with smallest fill edges for his parents.

3. put 7 in position j.

4 connect r’s neighbors: E «— E U {(v;,v;)|(vi,7) € E, (vj,7) € E},
5 remove r from the resulting graph: V «— V — {r}.

Figure 2.15: The min-fill (MIN-FILL) procedure
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The notions of width and induced width and their relationships with various graph
parameters, have been studied extensively in the past two decades.

Chordal graphs

Computing the induced width for chordal graphs is easy. A graph is chordal if every cycle
of length at least four has a chord, that is, an edge connecting two nonadjacent vertices.
For example, G in Figure 2.12(a) is not chordal since the cycle (A, B, D,C, A) does not
have a chord. The graph can be made chordal if we add the edge (B,C) or the edge
(A, D).

Many difficult graph problems become easy on chordal graphs. For example, finding
all the maximal (largest) cliques (completely connected subgraphs) in a graph — an NP-
complete task on general graphs — is easy for chordal graphs. This task (finding maximal
cliques in chordal graphs) is facilitated by using yet another ordering procedure called the
maz-cardinality ordering [44]. A maz-cardinality ordering of a graph orders the vertices
from first to last according to the following rule: the first node is chosen arbitrarily. From
this point on, a node that is connected to a maximal number of already ordered vertices
is selected, and so on. (See Figure 2.16.)

A max-cardinality ordering can be used to identify chordal graphs. Namely, a graph
is chordal iff in a max-cardinality ordering each vertex and all its parents form a clique.
One can thereby enumerate all maximal cliques associated with each vertex (by listing
the sets of each vertex and its parents, and then identifying the maximal size of a clique).
Notice that there are at most n cliques: each vertex and its parents is one such clique. In
addition, when using a max-cardinality ordering of a chordal graph, the ordered graph is
identical to its induced graph, and therefore its width is identical to its induced width. It
is easy to see that,

Proposition 2.3.8 If G* is the induced graph of a graph G, along some ordering, then
G* is chordal. O

Example 2.3.9 We see again that G in Figure 2.12(a) is not chordal since the parents
of A are not connected in the max-cardinality ordering in Figure 2.12(d). If we connect
B and | the resulting induced graph is chordal. |

k-trees. A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose
maximal cliques are of size k + 1, and it can be defined recursively as follows: (1) A
complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended
to r 4 1 vertices by connecting the new vertex to all the vertices in any clique of size k.
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MAX-CARDINALITY (MC)

input: a graph G = (V, E), V = {vy, ..., v, }
output: An ordering of the nodes d = (vy, ..., vy,).
1. Place an arbitrary node in position 0.

2. for j=1tondo

3. r «— a node in G that is connected to a largest subset of nodes
in positions 1 to j — 1, breaking ties arbitrarily.
4. endfor

Figure 2.16: The max-cardinality (MC) ordering ordering procedure

2.3.4 Handling observations

Evidence should be handled in a special way during the processing of buckets. Continuing
with our example using elimination order d;, suppose we wish to compute the belief in a,
having observed b = 1. This observation is relevant only when processing bucketz. When
the algorithm arrives at that bucket, the bucket contains the three functions P(ba),
Ap(b,a), and Ap(b, c), as well as the observation b =1 (see Figure 2.8).

The processing rule dictates computing Ag(a,c) = P(b = 1|a)Ap(b=1,a)A\p(b=1,¢).
Namely, generating and recording a two-dimensioned function. It would be more effective,
however, to apply the assignment b = 1 to each function in the bucket separately then
put the individual resulting functions into lower buckets. In other words, we can generate
P(b = 1]a) and Ap(b = 1,a), each of which will be placed in bucket A, and Ap(b =1, ¢),
which will be placed in bucket C'. By doing so, we avoid increasing the dimensionality
of the recorded functions. Processing buckets containing observations in this manner
automatically exploits the conditioning effect [30]. Therefore, the algorithm has a special
rule for processing buckets with observations. The observed value is assigned to each
function in the bucket, and each resulting function is individually moved to a lower bucket.

Note that if bucket B had been last in ordering, as in ds, the virtue of condition-
ing on B could have been exploited earlier. During its processing, bucketp contains
P(bla), P(d|b,a), P(f|c,b), and b = 1 (see Figure 2.9a). The special rule for processing
buckets holding observations will place P(b = 1]a) in bucket s, P(d|b = 1,a) in bucketp,
and P(f|c,b = 1) in bucketr. In subsequent processing only one-dimensional functions
will be recorded. Thus, the presence of observations reduces complexity: Buckets of
observed variables are processed in linear time, their recorded functions do not create
functions on new subsets of variables, and therefore for observed variables no new arcs
should be added when computing the induced graph.

To capture this refinement we use the notion of adjusted induced graph which is defined
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Figure 2.17: Adjusted induced graph relative to observing B

recursively. Given an ordering and given a set of observed nodes, the adjusted induced
graph is generated (processing the ordered graph from last to first) by connecting only
the earlier neighbors of unobserved nodes. The adjusted induced width is the width of the
adjusted induced graph, whose observed nodes. For example, in Figure 2.17(a,b) we show
the ordered moral graph and the induced ordered moral graph of Figure 1.2. In 2.17(c)
the arcs connected to the observed nodes are marked by broken lines, resulting in the
adjusted induced-graph given in (d). In summary,

Theorem 2.3.10 Given a belief network having n wvariables, algorithm elim-bel when
using ordering d and evidence e, is (time and space) exponential in the adjusted induced
width w*(d, e) of the network’s ordered moral graph. O

2.3.5 Relevant subnetworks

The belief-updating task has special semantics which allows restricting the computation
to relevant portions of the belief network.

Since summation over all values of a probability function is 1, the recorded functions of
some buckets will degenerate to the constant 1. If we can predict these cases in advance,
we can avoid needless computation by skipping some buckets. If we use a topological
ordering of the belief network’s acyclic graph (where parents precede their child nodes),
and assume that the queried variable initiates the ordering, we can identify skippable
buckets dynamically during the elimination process.

Proposition 2.3.11 Given a belief network and a topological ordering X1, ..., X,,, that is
initiated by a query variable Xy, algorithm elim-bel, computing P(x1|e), can skip a bucket
if during processing the bucket contains no evidence variable and no newly computed
function.
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Proof: If topological ordering is used, each bucket of a variable X contains initially at
most one function, P(X|pa(X)). Clearly, if there is no evidence nor new functions in the
bucket summation, ) P(z|pa(X)) will yield the constant 1. O

Example 2.3.12 Consider again the belief network whose acyclic graph is given in Figure
1.2(a) and the ordering d; = A,C, B, F, D,G. Assume we want to update the belief in
variable A given evidence on F. Obviously the buckets of G and D can be skipped and
processing should start with bucketr. Once bucketrp is processed, the remaining buckets
are not skippable. O

Alternatively, the relevant portion of the network can be precomputed by using a
recursive marking procedure applied to the ordered moral graph. (see also [46]). Since
topological ordering initiated by the query variables are not always feasible (when query
nodes are not root nodes) we will define a marking scheme applicable to an arbitrary
ordering.

Definition 2.3.13 Given an acyclic graph and an ordering o that starts with the queried
variable, and given evidence e, the marking process proceeds as follows.

e Initial marking: an evidence node is marked and any node having a child appearing
earlier in o (namely violate the “parent preceding child rule”), is marked.

e Secondary marking: Processing the nodes from last to first in o, if a node X is
marked, mark all its earlier neighbors.

The marked belief subnetwork obtained by deleting all unmarked nodes can now be
processed by elim-bel to answer the belief-updating query.

Theorem 2.3.14 Let R = (G, P) be a belief network, o = X1,..., X, and e set of evi-
dence. Then P(xi|e) can be obtained by applying elim-bel over the marked network relative
to evidence e and ordering o, denoted M(R|e, o).

Proof: We will show that if elim-bel was applied to the original network along ordering
o, then any unmarked node is irrelevant, namely processing its bucket yields the constant
1. Let R = (G, P) be a belief network processed along o by elim-bel, assuming evidence
e. Assume the claim is incorrect and let X be the first unmarked node (going from last
to first along o) such that when elim-bel process R the bucket of X does not yield the
constant 1, and is therefore relevant. Since X is unmarked, it means that it is: 1) not
an evidence, and 2) X does not have an earlier child relative to o, and 3) X does not
have a later neighbor which is marked. Since X is not evidence, and since all its child
nodes appear later in o, then, in the initial marking it cannot be marked and in the
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initial bucket partitioning its bucket includes its family P(X|pa) only. Since the bucket
is relevant, it must be the case that during the processing of prior buckets (of variables
appearing later in o), a computed function is inserted to bucket X. Let Y be the variable
during whose processing a function was placed in the bucket of X. This implies that X
is connected to Y. Since Y is clearly relevant and is therefore marked (we assumed X
was the first variable violating the claim, and Y appears later than X), X must also be
marked, yielding a contradiction. O.

Corollary 2.3.15 The complexity of algorithm elim-bel along ordering o given evidence
e is exponential in the adjusted induced width of the marked ordered moral subgraph. O

2.4 Bucket-Tree Elimination

The bucket-elimination algorithm, elim-bel, for belief updating can be viewed as one phase
message propagation from leaves to root along a bucket-tree. The algorithm computes
the belief of the first node in the ordering, given all the evidence (or, we can just compute
the probablity of evidence). Often, it is desirable to get the belief of every variable in
the network. A brute-force approach will require running elim-bel n times, each time
with a different variable order. We will show next that this is unnecessary. By viewing
bucket-elimination as message passing (of a function computed by variable elimination)
from leaves to root along a rooted bucket-tree, we can augment it with a second message
passing from root to leaves which is equivalent to running the algorithm for each variable
separately. This yields a two-phase variable elimination algorithm up and down the
bucket-tree, which can also be viewed as two-phase message passing (or propagation)
along the tree.

Let G be a moral graph of a Bayesian network P, d an ordering of its variables
X1,...,X,,. We denote by By, ..., B,, the buckets of variables X, ...X,, relative to ordering
d. Each such bucket includes the functions in the initial partitioning, called the bucket’s
functions and the set of all variables that it mentions when its bucket is processed, called
the bucket’s cluster. A bucket-tree can then be formed by directing an edge from bucket B;
to B; if the function computed at B; is placed in B;. It is easy to see that this definition
is equivalent to the following graphical definition.

Definition 2.4.1 (buckets) Let P =< X, D, P,Il > be a Bayesian network and d an
ordering of its variables d = (X1, ..., X,). Let Bx,,..., Bx, be a set of buckets, one for
each variable. The bucket By, contains the CPTs whose latest variable with respect to d
is X;. The variable set (or cluster) of Bx, are variable X and its induced-parents.

Definition 2.4.2 (bucket tree) Let G4 be the induced moral graph along d of a Bayesian
network. FEach bucket Bx points to By (or, By is the parent of Bx ) if variable Y is the
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| G
Bucket G: P(G|F)\ F y

Bucket F: P(F|B,C) > A% (F)
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Figure 2.18: Execution of BE along the bucket-tree

latest earlier neighbor of X in G4 (namely it is the closest earlier neighbor to X in Gg).
If By is the parent of Bx in the bucket-tree, then the separator of Bx and By, denoted
sepX,Y is Bx N By. Note that by Bx we denote both the bucket name and its set of
cluster variables.

It is easy to show that
Theorem 2.4.3 The bucket-tree of a Bayesian network G is an i-map of G.

Example 2.4.4 Consider the Bayesian network defined over the DAG in Figure 1.2(a).
Figure 2.18a shows the initial buckets along the ordering d = A, B,C, D, F,G, and the
messages (labeled A in this case) that will be passed by elim — bel from top to bottom.
Figure 2.18b displays the same computation as a message-passing along its bucket-tree.
(|

Given a bucket tree, whose buckets are denoted by the integers {1,...n} and given a
directed edge (i, j), elim(i, j) is the set of variables in B; and not in B;, namely elim(i, j) =
B; — sep(i, 7).

Assume now that we computed the belief for variable A as in the previous example and
that we now wants to compute the belief in D. Instead of doing all the computation from
scratch using a different variable ordering we can take the bucket tree and reorient the
edges towards D, making it the root. Then we can pass messages from the leaves to this
new root when the computation in each bucket is basically the same variable elimination
computation, when the eliminated variables are the eliminator sets.

The BTE algorithm bucket-tree-elimination (BTE) in figure 2.19 includes the two
phases of message passing computations along the bucket-tree. The top down phase is
identical to the elim-bel computation. The bottom-up message from the bucket of X to a
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child bucket Y takes the product of all the bucket functions, the m message from its parent
and all the A\ messages from it other child buckets and summing out over the eliminator
from X to Y.

Theorem 2.4.5 Algorithm BTE is sound. When terminates, each Bx has )\f received
from each child Z; in the tree, its own original P functions and the w5 sent from its

parent Y. Then,
P(Bx,e)=a]] P [N =
k J

Proof: follows from the bucket-tree i-mapness. A full proof will be given later. O

Example 2.4.6 Figure 2.20 shows the complete execution of BT'E' along the linear order
of buckets and along the bucket-tree. The 7w and A messages are viewed as messages placed
on the outgoing arcs.

The 7 functions computed in the up phase are:

w4 (a) = P(a)

(¢, a) = P(bla)Ap(a, b)m(a)
5 (a,b) = P(bla)Ac(a, b)nE (a,b)
mi(eb) = 32, Pcla)mi(a, b)
Ti(f) = 2 P(fIb. o)l (e, )

U

Theorem 2.4.7 (Complexity of BTE) Let w* be the induced width of G along order-
ing d and k the maximum size of a domain of a variable. The time complexity of BT E

is O(r - deg - k"), where deg is the mazimum degree in the bucket-tree. The space
complezity of BTE is O(n - k¥").

Proof: complete

In theory the speedup expected from running BT E vs running n-BE (BE n times) is
at most n. This may seem insignificant compared with the exponential complexity in w*,
however in practice it can be very significant. The actual speedup of BTE relative to n-BE
may be smaller than n, however. We know that the complexity of n-BE is O(n-r- k¥ 1),
whereas the complexity of BTE is O(deg - r - k" *1).

2.4.1 Bucket-tree propagation, an asynchronous version

The BTE algorithm can be described in an asynchronous manner when viewing the bucket-
tree as an undirected tree and passing only one type of messages. Each bucket receives A
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Algorithm bucket-tree elimination (BTE)
Input: A problem P =< X, D, F,II >, ordering d.
Output: Augmented buckets containing the original functions and all the 7 and
A functions received from neighbors in the bucket-tree.
0. Pre-processing:
Place each function in the latest bucket, along d, that mentions a variable in its
scope. Connect two buckets B, and B, if variable Y is the latest earlier neighbor
of X in the induced graph G.
1. Top-down phase: \ messages (BE)
For ¢+ = n to 1, process bucket Bx;:
Let Aq,...A; be all the functions in By, at the time By, is processed, including
the original functions of P. The message )‘}/Q sent from X; to its parent Y, is
computed by

M (sep(Xi,Y)) = > T\

elim(X;,Y")

where sep(X;,Y) is the separator of X; and Y
2. bottom-up phase: ™ messages
For 2 = 1 to n, process bucket By;:
Let A1, ..., A; be all the functions in By, at the time By, is processed, including
the original functions of P. By, takes the m message received from its parent Y,

T, and computes a message W)Z(J for each child bucket Z; by
Zj X X
Ty, (sep(Xi, Z;)) = Z Ty - (Hksﬁj)‘zk)

elzm(XZ,Z])

3. Deriving beliefs

The joint probabilities P(Bx, F = e) in bucket By is computed by taking the
product of all the functions in By (the original Ps, the A functions and 7 function):
Namely, given the functions fi, ..., f; in By at termination,

P(Bx) :aHfi

and the belief of X is computed by

Bel(z) = o Z Hfj

Bx—{X} J

Figure 2.19: Algorithm Bucket-Tree Elimination

41
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Figure 2.20: Propagation of 7’s and \’s along the bucket-tree

A(AB)
o

messages from each of its neighbors and each sends a A message to every neighbors. The
algorithm executed by node By is described next. We distinguish between the original P
functions placed in bucket B; and the messages that its received from its neighbors. The
algorithm is described in Figure 2.21.

Let {P;},7 = 1,...j be the original functions in By, let Y7, ...Ys. It is easy to see that
algorithm BT P is guaranteed to converge, and when converged each Bx and its incoming
messages will have the same content at the buckets Bx in BTE.

Bucket-Tree Propagation (BTP)
Input: For each node X, its bucket By and its neighboring buckets. Let /\{fj be the

message sent to X from its neighbor Y;.
The message X sends to a neighbor Yj is:

NSy = > (IR -(qIM

Bx—=Sxy; @ i#£]

Figure 2.21: The Bucket-tree propagation (BTP) for X
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2.4.2 From Buckets to Super-Buckets to Join-Tree Algorithm

The BTE and BT P algorithms are special cases of a wider class of algorithms all based
on an underlying cluster-tree decomposition. We saw that in a chordal graph the maxi-
mal cliques form a tree which obeys the running intersection property (r.i.p), also called
connectedness.. This property guarantees that the clique-tree is an i-map of the original
Bayes network.

In fact, given a chordal graph embedding of the original moralized Bayesian networks’
dag, (which can be obtained by generating the induced graph along an ordering), there are
many cluster-trees that have the desired running intersection property. The join-tree and
the bucket-tree are just the two most popular candidates. another candidate. We next
define cluster-tree decompositions as a generalization that captures all viable cluster-trees
that support message propagation along a tree of clusters as described in BTE and BTP.

Definition 2.4.8 (tree-decomposition) A tree decomposition of a Bayesian network
is a set of subsets of variables, called clusters, Cy,...,C; connected by a tree structure, T
that satisfies the following two properties:

1. BEvery function (CPT) has at least one cluster that contains its scope.

2. The tree-decomposition obeys the connectedness property, (running intersection prop-
erty) namely for every variable Y, the set of clusters that contain y are connected in
T.

A bucket-tree is a tree-decomposition because, by construction, each CPT fits into a
bucket using the initial partitioning. Proving connectedness is a little more involved and
we leave it as an exercise.

Theorem 2.4.9 A bucket tree of a probabilistic network P is a tree-decomposition of P.

Also,

Proposition 2.4.10 If T is a tree-decomposition, then any tree obtained by merging ad-
jacent clusters is also a tree-decomposition.

Proof: Exercise.

So, to obtain a cluter-tree decomposition we can start from the bucket-tree and merge
adjacent buckets, yielding super-buckets. The maximal cliques in the induced-order graph
are a special kind of super-buckets which form a tree-decomposition which is called join-
tree (see 2.22).

Both BTE and BTP can be immediately extended to any cluster-tree decomposition
by applying the function computation defined originally for buckets to arbitrary clusters.
When the tree-decomposition happens to be a join-tree, the BTE is often called join-tree
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Figure 2.22: From a bucket-tree to join-tree to a super-bucket-tree

Algorithm Cluster-Tree Elimination (CTE)

Input: we assume a tree-decomposition 7" whose nodes are clusters of variables
(1, ...C; and each node has a collection of neighbors.

Output: Each cluster will have all input messages received from all its neighbors.
Initialize: put each original function in any cluster that contains its scope.

The algorithm for cluster C'is: Let {P;},i = 1,...j be the original functions in C| let
(1, ...Cy be its neighbors, let )\g" be the message sent to C' from its neighbor Cj.
When C' receives all messages from its neighbors except C;, the message C' sends to
OZ' 1s:

M (Sepee) = > (]P)- (™ (2.8)

C—Sepc,c; @ i#]j

Figure 2.23: Algorithm Cluster tree elimination (CTE)

clustering or junction-tree clustering (JTC) [15, 27]. The term we will use when moving
from bucket-trees to arbitrary tree-decompositions is cluster-tree elimination or CTE.
Algorithm cluster-tree elimination is presented in Figure 2.23.

We could clearly define the algorithm for synchronous execution from leaves to the
root and back.

Theorem 2.4.11 Algorithm cluster-tree clustering, CTE, is sound.

Once the algorithm converged, each product of the cluster’s functions provide the
marginal probabilities over the cluster’s scope, joint with the evidence.

Theorem 2.4.12 The time complexity of CTE is exponential in the largest cluster size.
The space complexity of CTE is exponential in the separator sizes
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proof: Clearly the time complexity is exponential in the cluster size since we consider
all the assignments to all variables in each cluster, and there are k/°! tuples, when |C|
is the size of the cluster and £ is the domain size. The space complexity however can
be restricted to the output of the recorded function (the message). For each tuple of
the recorded function we accumulate the running sum of probabilities over all the rest
of the variables, and each such probability (of a tuple ) can be computed in linear time.
For example, this computation can be done by traversing the search space of all possible
assignments in a depth-first manner. O

A more refined analysis of the CTE algorithm is described in the following theorem
which uses the notion of a tree-width of a tree-decomposition.

Definition 2.4.13 (tree-width,seperator) The treewidth of a tree-decomposition T is
the maximum number of variables in one of its clusters minus 1. The separator of a
tree-decomposition is the mazximum size of any intersection set over its tree edges.

Theorem 2.4.14 [2/] [Complexity CTE] Let N be the number of vertices in the tree
decomposition, w its tree-width, sep its mazximum separator size, r be the number of input
functions in F, deg be the mazimum degree in T, and k be the maximum domain size of

a variable. The time complexity of CTE is O((r + N) -deg - k") and its space complexity
is O(N - k®P).

The separator sizes in the bucket-tree are equal to the cluster sizes ( minus 1) and
therefore the time complexity and space complexity for BTE/BTP are the same. In
general however, for any cluster tree or, in particular, for the join-tree, the separators
sizes may be far smaller than the maximal cliques sizes. Furthermore, it is sometimes
worthwhile to combine two adjacent clusters having a wide separator in order to save
space, as we will discuss in the sequel.

2.4.3 Pearl’s Belief Propagation over Polytrees

It is clear that whenever we have a tree network its moral graph is also a tree having
induced-width of 1. Consequently all the algorithms we discussed can be accomplished in
linear time and space.

When the belief network is a polytree we have another interesting special case where
belief assessment, and any other query, as we are about to see, can be accomplished
efficiently as show by Pearl [30]. Indeed if we apply BTE to a polytree-based tree-
decomposition we obtain Pearl’s well known belief propagation algorithm [30].

Definition 2.4.15 (polytree) A polytree is a directed acyclic graph whose underlying
undirected graph has no cycles (see Figure 2.24(a)).
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Figure 2.24: (a) A polytree and (b) a legal processing ordering

A polytree decomposition. Given a polytree Bayesian network, its set of families
form a cluster tree-decomposition whose separators are singleton variables as follows. For
each variable X and its parents pa(X) we form a cluster C'y that includes the family of X
and its CPT, P(X|pa(X)). Note, that the separators of this cluster tree are all singleton
variables.

Proposition 2.4.16 Given a polytree, a polytree-based tree-decomposition is a cluster
tree-decomposition.

It can be shown that if we direct the edges of the polytree decomposition from a
cluster of a parent node X to the cluster of its child, the 7 and A messages that propagate
along the polytree tree decomposition using BTE (or CTE) are identical to Pearl’s belief
propagation messages applied along the original polytree. Indeed,

Theorem 2.4.17 Given a polytree and its tree-decomposition, algorithms CTE or CTP
(cluster tree propagation) applied along the polytree’s tree-decomposition is time and space
linear in the network’s size. O

Note that although the above theorem is also exponential in the size of the largest
family, it does not contradict linearity in the input since the CPTs are assumed to be
exponential in their family size.

2.4.4 The semantic of the messages

Their meaning in Pearl’s belief propagation, and their general meaning in BE and BTE.
[to complete]
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Figure 2.25: a) A belief network; b) A dual join-graph with singleton labels; ¢) A dual
join-graph which is a join-tree

2.4.5 [Iterative Belief Propagation over Dual Join-Graphs

Since Pearl’s belief propagation algorithm over singly-connected networks is defined dis-
tributedly, it is still well defined if executed over a network with loops.

Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm that
was defined for poly-trees [30]. In this section we will present IBP as an instance of
join-graph propagation over variants of the dual graph.

Consider a Bayesian network B =< X, D, G, P >. The dual graph Dg of the Belief
network B, is an arc-labeled graph defined over the CPTs as its functions. Namely, it has
a node for each CPT and a labeled arc connecting any two nodes that share a variable
in the CPT’s scope. The nodes are labeled by the scopes of their CPTs. The arcs are
labeled by the shared variables. A dual join-graph is a labeled arc subgraph of Dg whose
arc labels are subsets of the labels of Dg such that the running intersection property, also
called connectedness property, is satisfied. The running intersection property requires that
any two nodes that share a variable in the dual join-graph be connected by a path of arcs
whose labels contain the shared variable. Clearly the dual graph itself is a dual join-graph
because any two nodes that share a variable are directly connected. An arc-minimal dual
join-graph is a dual join-graph for which none of its labels can be further reduced while
maintaining the connectedness property.

Interestingly, there are many dual join-graphs of the same dual graph and many of
them are arc-minimal. We define Iterative Belief Propagation on a dual join-graph. Each
node sends a message over an arc whose scope is identical to the label on that arc. Since
Pearl’s algorithm sends messages whose scopes are singleton variables only, we highlight
arc-minimal singleton dual join-graph. One such graph can be constructed directly from
the graph of the Bayesian network, labeling each arc with the parent variable. It can be
shown that:

Proposition 2.4.18 The dual graph of any Bayesian network has an arc-minimal dual
join-graph where each arc is labeled by a single variable.
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Algorithm IBP
Input: An arc-labeled dual join-graph DJ = (V,E, L) for a Bayesian network BN =<
X,D,G, P >. Evidence e.
Output: An augmented graph whose nodes include the original CPTs and the messages
received from neighbors.  Approximations of P(X;le), VX; € X. Approximations of
f:)(F7|€)7 VF; € B.
Denote by: hY the message from u to v; ne(u) the neighbors of u in V; ne,(u) = ne(u) — {v};
lyy the label of (u,v) € E; elim(u,v) = scope(u) — scope(v).
e One iteration of IBP
For every node u in DJ in a topological order and back, do:
1. Process observed variables
Assign evidence variables to the each p; and remove them from the labeled arcs.
2. Compute and send to v the function:

W= > (u- I A

elim(u,v) {h¥i€ne, (u)}

Endfor
e Compute approximations of P(Fjle), P(X;|e):
For every X; € X let u be the vertex of family F; in DJ,
P(File) = O‘(Hh'y,uene(i) hi') - pus
P(Xile) = a ) cope(uy—(x,) P(File).

Figure 2.26: Algorithm Iterative Belief Propagation

Example 2.4.19 Consider the belief network on 3 variables A, B, C' with CPTs 1.P(C|A, B),
2.P(B|A) and 3.P(A), given in Figure 2.25a. Figure 2.25b shows a dual graph with sin-
gleton labels on the arcs. Figure 2.25¢ shows a dual graph which is a join tree, on which
belief propagation can solve the problem exactly in one iteration (two passes up and down
the tree). O

We will next present IBP algorithm that is applicable to any dual join-graph (Figure
2.26). The algorithm is a special case of IJGP introduced in [35]. It is easy to see
that one iteration of IBP is time and space linear in the size of the belief network, and
when IBP is applied to the singleton labeled dual graph it coincides with Pearl’s belief
propagation applied directly to the acyclic graph representation. Also, when the dual
join-graph is a tree IBP converges after one iteration (two passes, up and down the tree)
to the exact representation, from which beliefs can be computed.
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P(d=1|b,a)P(g=0[f=0)
P(d=1|b,a)P(g=0lf=1)

P(d=1]b,a)P(g=0|f=0)

P(d=1|b,a)P(g=0lf=1)

Figure 2.27: probability tree

2.5 Combining Elimination and Conditioning

A serious drawback of elimination and clustering algorithms is that they require consider-
able memory for recording the intermediate functions. Conditioning search, on the other
hand, requires only linear space. By combining conditioning and elimination, we may be
able to reduce the amount of memory needed while still having performance guarantee.

Full conditioning for probabilistic networks is search, namely, traversing the tree of
partial value assignments and accumulating the appropriate sums of probabilities. (It
can be viewed as an algorithm for processing the algebraic expressions from left to right,
rather than from right to left as was demonstrated for elimination). For example, we can
compute the expression for belief updating or the probability of evidence in the network
of Figure 77:

Bel(A=a)= Y P(g|f)P(f|b,c)P(d]a,b)P(c|la)P(bla) P(a)

c,b, f,d,g
= P(a) ) Plcla) Yy P(bla) Y P(f[b,c) Y P(dlb,a) Y P(glf), (2.9)
c b f d g

by traversing the tree in Figure 2.27, going along the ordering from first variable to last
variable.
The tree can be traversed either breadth-first or depth-first resulting in algorithms such
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Algorithm elim-cond-bel

Input: A belief network BN = {P,..., P,}; an ordering of the
variables, d; a subset C' of conditioned variables; observations e.
Output: Bel(A).

Initialize: \ = 0.

1. For every assignment C' = ¢, do
e \; «— The output of elim-bel with ¢ U e as observations.
e A\ — A+ \;. (update the sum).

2. Return ).

Figure 2.28: Algorithm elim-cond-bel

as best-first search and branch and bound, respectively. The sum can be accumulated for
each value of variable A.

Notation: Let X be a subset of variables and V' = v be a value assignment to V. f(X)|,
denotes the function f where the arguments in XNV are assigned the corresponding values
in v.

Let C' be a subset of conditioned variables, C' C X, and V = X — C'. We denote by v
an assignment to V' and by ¢ an assignment to C. Obviously,

ZP(x,e) = ZZP(C,U,G) = ZHiP(xi|$pai)

c,v

(e,v,e)

Therefore, for every partial tuple ¢, we can compute ) P(v,c,e) using variable elimi-
nation, while treating the conditioned variables as observed variables. This basic compu-
tation will be enumerated for all value combinations of the conditioned variables, and the
sum will be accumulated. This straightforward algorithm is presented in Figure 2.28.

Given a particular value assignment c, the time and space complexity of computing
the probability over the rest of the variables is bounded exponentially by the induced
width w*(d, e U ¢) of the ordered moral graph along d adjusted for both observed and
conditioned nodes. Therefore, the induced graph is generated without connecting earlier
neighbors of both evidence and conditioned variables.

Theorem 2.5.1 Given a set of conditioning variables, C', the space complexity of algo-
rithm elim-cond-bel is O(n-exp(w*(d, cUe)), while its time complezity is O(n-exp(w*(d, eU
c) +|C|)), where the induced width w*(d,cU e), is computed on the ordered moral graph
that was adjusted relative to e and c. O
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When the variables in e U ¢ constitute a cycle-cutset of the graph, the graph can be
ordered so that its adjusted induced width equals 1 and elim-cond-bel reduces to the
known loop-cutset algorithm (see Pearl, chapter 4).

Definition 2.5.2 Given an undirected graph, G a cycle-cutset is a subset of the nodes
that breaks all its cycles. Namely, when removed, the graph has no cycles.

In general Theorem 2.5.1 calls for a secondary optimization task on graphs:

Definition 2.5.3 (secondary-optimization task) Given a graph G = (V,E) and a
constant r, find a smallest subset of nodes C,, such that Gt = (V — C,., El), where E/
includes all the edgs in E that are not incident to nodes in C,., has induced-width less or
equal 1.

Clearly, the minimal cycle-cutset corresponds to the case where the induced-width is
r = 1. The loop-cutset corresponds to the case when conditioning creates a poly-tree.
The general task is clearly NP-complete.

Clearly, algorithm elim-cond-bel can be implemented more effectively if we take ad-
vantage of shared partial assignments to the conditioned variables. There are a variety
of possible hybrids between conditioning and elimination that can refine this basic pro-
cedure. One method imposes an upper bound on the arity of functions recorded and
decides dynamically, during processing, whether to process a bucket by elimination or
by conditioning Another method which uses the super-bucket approach collects a set of
consecutive buckets into one super-bucket that it processes by conditioning, thus avoiding
recording some intermediate results

2.6 Bucket elimination for optimization tasks

2.6.1 An Elimination Algorithm for mpe

In this section we focus on finding the most probable explanation. This task appears
in applications such as diagnosis and design as well as in probabilistic decoding. For
example, given data on clinical findings, it may suggest the most likely disease a patient
is suffering from. In decoding, the task is to identify the most likely input message which
was transmitted over a noisy channel, given the observed output. Although the relevant
task here is finding the most likely assignment over a subset of hypothesis variables (known
as map and analyzed in the next section), the mpe is close enough and is often used in
applications. Researchers have investigated various approaches to finding the mpe in a
belief network [30, 8, 31, 32]. Recent proposals include best first-search algorithms [42]
and algorithms based on linear programming [37].
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The problem is to find 2° such that P(z°) = max, P(z,e) = max, [L;P(x;, e|zp,)
where x = (21, ..., z,,) and e is a set of observations, on subsets of the variables. Computing
for a given ordering X1, ..., X,,, can be accomplished as previously shown by performing
the maximization operation along the ordering from right to left, while migrating to the
left all components that do not mention the maximizing variable. We get,

M = max P(Z,,e) = max max II; P(z;, €|z, )
Tn j(nfl) Tn

= I,naXHXiGX—FnP(xiv €|xpai) ' Il}jaXP(ZL‘n, e|$pan)HXi€cth($i’ e|$17ai)
n

Tn—1

= max Ily,ex—r, P(2i, €[Tp,) - hn(zv,)
T=Tpn—1
where
hn(mUn) = Hiaxp(xn7 e|xpan)HXzeCth(x'L7 e|xpaz)
n

and U, are the variables appearing in components defined over X,. Clearly, the alge-
braic manipulation of the above expressions is the same as the algebraic manipulation
for belief assessment where summation is replaced by maximization. Consequently, the
bucket-elimination procedure elim-mpe is identical to elim-bel except for this change.
Given ordering X7, ..., X,,, the conditional probability tables are partitioned as before. To
process each bucket, we multiply all the bucket’s matrices, which in this case are denoted
hi, ..., h; and defined over subsets Si,...,.S;, and then eliminate the bucket’s variable by
maximization as dictated by the algebraic derivation previously noted. The computed
function in this case is h, : U, — R, h, = maxy, H{Zlhi, where U, = U;S; — X,. The
function obtained by processing a bucket is placed in an earlier bucket of its largest-index
variable in U,,. In addition, a function zj(u) = argmawx,h,(u), which relates an optimiz-
ing value of X, with each tuple of U,, may be recorded and placed in the bucket of X,.?
Constant functions can be placed either in the preceding bucket or directly in the first
bucket?.

This procedure continues recursively, processing the bucket of the next variable, pro-
ceeding from the last to the first variable. Once all buckets are processed, the mpe value
can be extracted as the maximizing product of functions in the first bucket. When this
backwards phase terminates, the algorithm initiates a forwards phase to compute an mpe
tuple by assigning values along the ordering from X; to X,,, consulting the information
recorded in each bucket. Specifically, once the partial assignment = = (1, ..., z;_1) is se-
lected, the value of X; appended to this tuple is 2(x), where x° is the function recorded in
the backward phase. Alternatively, if the functions z° were not recorded in the backwards

2This step is optional; the maximizing values can be recomputed from the information in each bucket.
3Those are necessary to determine the exact mpe value.
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Algorithm elim-mpe

Input: A belief network BN = {P,..., P,}; an ordering of the
variables, d; observations e.

Output: The most probable assignment.

1. Inmitialize: Generate an ordered partition of the conditional
probability matrices, buckety, ..., bucket,,, where bucket; contains
all matrices whose highest variable is X;. Put each observed vari-
able in its bucket. Let Si,...,S5; be the subset of variables in the
processed bucket on which matrices (new or old) are defined.

2. Backward: For p < n downto 1, do

for all the matrices hy, ho, ..., h; in bucket,, do

e If (observed variable) bucket, contains X, = z,, assign X, =
x, to each h; and put each in appropriate bucket.

e else, U, « U_,S: — {X,}. Generate functions h, =
maxy, II]_h; and z = argmaxx,h,. Add h, to bucket of
largest-index variable in U,,.

3. Forward: The mpe value is obtained by the product in bucket;.
An mpe tuple is obtained by assigning values in the ordering d
consulting recorded functions in each bucket as follows.

Given the assignment z = (1, ...,x;_1) choose z; = x¢(z) (z¢ is in
bucket;), or Choose z; = argmaxx in e vucket;| e=(x1,....z:1)} 1

Figure 2.29: Algorithm elim-mpe

phase, the value x; of X is selected to maximize the product in bucket; given the partial
assignment x. This algorithm is presented in Figure 2.29. Observed variables are handled
as in elim-bel. The notion of irrelevant buckets is not applicable here.

Example 2.6.1 Consider again the belief network in Figure ??7. Given the ordering
d = A, C,B,F,D,G and the evidence g = 1, process variables from last to first af-
ter partitioning the conditional probability matrices into buckets, such that buckets =
{P(g|f),g = 1}, bucketp = {P(d|b,a)}, bucketr = {P(f|b,c)}, bucketg = {P(bla)},
bucketc = {P(c|a)}, and bucket4 = {P(a)}. To process G, assign g = 1, get ha(f) =
P(g = 1|f), and place the result in bucketp. The function G°(f) = argmaxheg(f) may
be computed and placed in buckets as well. Process bucketp by computing hp(b,a) =
max, P(d|b,a) and put the result in bucketp. Bucket F', next to be processed, now con-
tains two matrices: P(f|b,c) and hg(f). Compute hp(b,c) = maxyp(f|b,c) - ha(f),
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and place the resulting function in bucketg. To eliminate B, we record the function
hg(a,c) = maxy, P(bla)-hp(b,a)-hp(b, c) and place it in buckete. To eliminate C, we com-
pute ho(a) = max, P(c|a) - hp(a, c) and place it in bucket 4. Finally, the mpe value given
in buckets, M = max, P(a) - hc(a), is determined. Next the mpe tuple is generated by
going forward through the buckets. First, the value a° satisfying a® = argmaz,P(a)hc(a)
is selected. Subsequently the value of C, ¢ = argmaz.P(c|a®)hp(a’,c) is determined.
Next v° = argmax, P(bla®)hp(b, a®)hp (b, ?) is selected, and so on. The schematics com-
putation is summarized by Figure 2.8 where A is replaced by h. O

The backward process can be viewed as a compilation phase in which we compile
information regarding the most probable extension of partial tuples to variables higher in
the ordering (see also section 7.2).

As in the case of belief updating, the complexity of elim-mpe is bounded exponentially
in the dimension of the recorded functions, and those functions are bounded by the induced
width w*(d, e) of the ordered moral graph. In summary,

Theorem 2.6.2 Algorithm elim-mpe is complete for the mpe task. Its complezity (time
and space) is O(n - exp(w*(d, e))), where n is the number of variables and w*(d,e) is the
adjusted induced width of the ordered moral graph.

2.6.2 An Elimination Algorithm for M AP

The map task is a generalization of both mpe and belief assessment. It asks for the
maximal belief associated with a subset of unobserved hypothesis variables and is likewise
widely applicable to diagnosis tasks. Since the map task by its definition is a mixture of
the previous two tasks, in its corresponding algorithm some of the variables are eliminated
by summation, others by maximization.

Given a belief network, a subset of hypothesized variables A = {Ay, ..., Ax}, and some
evidence e, the problem is to find an assignment to the hypothesized variables that maxi-
mizes their probability given the evidence, namely to find a® = argmax,, . ., P(ai, ..., ax,€).
We wish to compute max,, P(ay,...,ar, ) = maxg, Zi‘zﬂ 7, P(x;, e|xp,,) where z =
(@1, .oy Oy Tyt -y Tpy).  Algorithm elim-map in Figure 2.30 considers only orderings in
which the hypothesized variables start the ordering. The algorithm has a backward phase
and a forward phase, but the forward phase is relative to the hypothesized variables
only. Maximization and summation may be somewhat interleaved to allow more effective
orderings, however for simplicity of exposition we do not incorporate this option here.
Note that the “relevant” graph for this task can be restricted by marking the summation
variables as was done for belief updating.
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Algorithm elim-map

Input: A belief network BN = {Py, ..., P, }; a subset of variables
A ={Ay, ..., Ax}; an ordering of the variables, d, in which the A’s
are first in the ordering; observations e.

Output: A most probable assignment A = a.

1. Initialize: Generate an ordered partition of the conditional
probability matrices, buckety, ..., bucket,, where bucket; contains
all matrices whose highest variable is X;.

2. Backwards For p < n downto 1, do

for all the matrices 31, B2, ..., B in bucket,, do

e If (observed variable) bucket, contains the observation X, =
xp, assign X, = x, to each 3; and put each in appropriate
bucket.

eelse, U, — (J_, S — {X,}. If X, is not in A, then
By =Y x, TH_,B;; else, X, € A, and 5, = maxy, IT/_, 3 and
a’ = argmax x, 0. Add (3, to the bucket of the largest-index
variable in U,.

3. Forward: Assign values, in the ordering d = Ay, ..., A, using
the information recorded in each bucket.

Figure 2.30: Algorithm elim-map

95
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Theorem 2.6.3 Algorithm elim-map is complete for the map task. Its complezity is
O(n - exp(w*(d, e)), where n is the number of variables in the relevant marked graph and
w*(d, e) is the adjusted induced width of its marked moral graph.

2.6.3 An Elimination Algorithm for M EU

The last and somewhat more complicated task is finding the maximum expected utility.
Given a belief network, evidence e, a real-valued utility function u(z) additively decom-
posable relative to functions fi, ..., f; defined over @ = {Q1,...,Q;}, Q; C X, such that
u(x) =3 g,eq fi(zq,;), and given a subset of decision variables D = {D;,...Dy} that are
assumed to be root nodes,* the meu task is to find a set of decisions d° = (d°4, ..., d°)
(d; € D;), that maximizes the expected utility. We assume that variables not appearing
in D are indexed X1, ..., X,. We want to compute

and
d’ = argmaxpE

As in previous tasks, we will begin by identifying the computation associated with X,
from which we will extract the computation in each bucket. We denote an assignment
to the decision variables by d = (dy, ...,d;) and, as before, :EfC = (T, ...,z;). Algebraic
manipulation yields

E = InélX Z ZH?:lp(miﬂdxpawd) Z fj(‘ij)

—-n—1 T QjGQ

Tt

We can now separate the components in the utility functions into those mentioning X,,,
denoted by the index set t,, and those not mentioning X,,, labeled with indexes [, =
{1,...,n} — t,,. Accordingly we produce

E = mgx Z ZH?:lp(l’i;d«xpaza ij TQ; +Zf3 IQJ

(=1 an JE€ln JE€tn
k+1
E = max g E 117, P(x, e]xpq,, d) E fi( $Q]
(=1 T J€ln
k+l

4We make this assumption for simplicity of presentation. The general case can be easily handled as is
done for general influence diagrams.
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+ 30 S P ey, d) Y filwg,)]

,56111 Tn ]etn

By migrating to the left of X, all of the elements that are not a function of X,,, we get

IIlCEliX[Z HXiEX_FnP(xi7€’xpaz7 Zf] $Qg ZHX €eF, xz,e|xpa, ) (210)

i‘z_‘__ll J€ln
+ § HX eX—F, x176|xpa ) E HX cr, Izae‘xpa ) E f] xQJ
jZ+11 J€tn

We denote by U, the subset of variables that appear with X,, in a probabilistic component,
excluding X, itself, and by W,, the union of variables that appear in probabilistic and
utility components with X,,, excluding X,, itself. We define A\, over U, as (x is a tuple
over U, U X,,)

)\n(xUn‘d) = Z HXiGFnP(xia eyxpaiy d) (211)
We define 6,, over W,, as
an|d ZHX er, xlue|xpaz7 ij «TQJ (212)
jEtn

After substituting Eqs. (2.11) and (2.12) into Eq. (2.10), we get

On(zw, |d)

/\n(ngJd)] (2.13)

E= mgx Z HXiEX—FnP(mD €|xpaw d) ’ An(‘rUn|d) [Z fj(ij) +

—n—1 ]
Tr41 J€ln

The functions 6,, and A, compute the effect of eliminating X,,. The result (Eq. (2.13))
is an expression which does not include X,,, where the product has one more matrix A,
and the utility components have one more element =, = 3>. Applying such algebraic ma-
nipulation to the rest of the variables in order, yields the ehmmatlon algorithm elim-meu
in Figure 2.31. Each bucket contains utility components, #;, and probability components,
A;. Variables can be marked as relevant or irrelevant as in the elim-bel case. If a bucket
is irrelevant A, is a constant. Otherwise, during processing, the algorithm generates the
A; of a bucket by multiplying all its probability components and summing over X;. The
0; of bucket X; is computed as the average utility of the bucket; if the bucket is marked,
the average utility of the bucket is normalized by its A. The resulting 6; and \; are placed
into the appropriate buckets.

Finally, the maximization over the decision variables can now be accomplished using
maximization as the elimination operator. We do not include this step explicitly; given
our simplifying assumption that all decisions are root nodes, this step is straightforward.
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Algorithm elim-meu

Input: A belief network BN = { P, ..., P,}; a subset of decision
variables Dy, ..., Dy that are root nodes; a utility function over X,
u(z) = Zj fi(zq,); an ordering of the variables, o, in which the
D’s appear first; observations e.

Output: An assignment di,...,d; that maximizes the expected
utility.

1. Initialize: Partition components into buckets, where bucket;
contains all matrices whose highest variable is X;. Call probability
matrices Ai, ..., \; and utility matrices 6y, ...,0;. Let Si,...,.S; be
the scopes of probability functions and @)1, ..., Q; be the scopes of
the utility functions.

2. Backward: For p < n downto k + 1, do

for all matrices Ay, ..., Aj, 01, ..., 0; in bucket,, do

e If (observed variable) bucket, contains the observation X, =
xp, then assign X, = x, to each \;, §; and puts each resulting
matrix in appropriate bucket.

o else, U, — J_, S — {X,} and W, « U, U (Ui:1 Q: —
{Xp)}. If X, is marked then A, = >y TI;A; and 6, =
3 T A S0, 055 else, 0, = 3o T A 320 0. Add
0, and A, to the bucket of the largest-index variable in W,
and U,, respectively.

3. Forward: Assign values in the ordering o = Dy, ..., Dy using
the information recorded in each bucket of the decision variables.

Figure 2.31: Algorithm elim-meu
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Example 2.6.4 Consider the network of Figure 7?7 augmented by utility components and
two decision variables Dy and Dy. Assume that there are utility functions u(f, g), u(b, ¢), u(d)
such that the utility of a value assignment is the sum u(f, g) +u(b, ¢) +u(d). The decision
variables D; and D, have two options. Decision D, affects the outcome at GG as specified
by P(g|f, D1), while D, affects variable A as specified by P(a|Dy). The modified belief
network is shown in Figure 2.32. The bucket’s partitioning and the schematic computa-
tion of this decision problem is given in Figure 2.33. Initially, buckets contains P(g|f, D1),
u(f,g) and g = 1. Since the bucket contains an observation, we generate Ag(f, D1) =
P(g = 1|f,Dy) and 0¢(f) = u(f,g = 1) and put both in bucket F. Next, bucket D,
which contains only P(d|b,a) and u(d), is processed. Since this bucket is not marked, it
will not create a probabilistic term. The utility term: 6p(b,a) = )", P(d|b, a)u(d) is cre-
ated and placed in bucket B. Subsequently, when bucket F' is processed, it generates the
probabilistic component Ap(b, ¢, D1) = >, P(f[b,c)Ac(f, D1) and the utility component

0r(b,c. D1) = ———— 5" P(flb. el f, D)oo (f)
f

)\F(bv c, Dl)
Both new components are placed in bucket B. When bucketg is processed next, it creates
the component A\g(a,c, D1) =, P(bla)\p(b,c, D1) and

! ) > " P(bla)Ap(b, c, Dy)[u(b, ¢) + Op(b, a) + O (b, ¢, Dy)).
b

nla-e D) =S e D)

Processing bucketc generates Ao (a, D1) = >, P(cla)A\p(a, ¢, D1) and 0c(a, Dy) = m > Plcla)Ag(
while placing the two new components in bucket 4. Processing bucket 4 yields: Aa(Dy, Ds) =
Y o PlalD2)Ac(a, Dy) and 04(Dq, Ds) = mza P(a|D2)Ac(a, Dy)0c(a, Dy), both
placed in bucketp,. Bucketp, is processed next by maximization generating 0p, Dy =
mazp,04(D1, Dy) which is placed in bucketp,. Now the decision of Dy that maximizes
0p,(Ds), is selected. Subsequently, the decision that maximizes 04(D;, Ds) tabulated in
bucketp,, is selected.
|

As before, the algorithm’s performance can be bounded as a function of the structure
of its augmented graph. The augmented graph is the moral graph augmented with arcs
connecting any two variables appearing in the same utility component f;, for every i.

Theorem 2.6.5 Algorithm elim-meu computes the meu of a belief network augmented

with utility components (i.e., an influence diagram) in O(n-exp(w*(d,e)) time and space,

where w*(d, e) is the adjusted induced width along d of the augmented moral graph. O
Tatman and Schachter [45] have published an algorithm for the general influence di-

agram that is a variation of elim-meu. Kjaerulff’s algorithm [25] can be viewed as a
variation of elim-meu tailored to dynamic probabilistic networks.
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G

e
.

@ u(f,g)

@

Figure 2.32: An influence diagram

bUCketG : P(f‘gaDl>7 g = 17 U(f, g)

bucketp: P(d|b,a), u(d)

bucketp: P(f|b,c) || Aa(f, D1), 0c(f)

bucketg: P(bla), wu(b,c) || Ap(b,c,Dy), Op(b,a), 0p(b,c, Dy)
bucketc: P(cla) || Ag(a,c, D), 0p(a,c, D)

buckets: P(alDs) || Ac(a,Dy), 0c(a, Dy)

bUCketDII H )\A(Dl,DQ), HA(Dl,DQ)

bucketp,: || O0p,(Ds)

Figure 2.33: A schematic execution of elim-meu
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Algorithm elim-opt

Input: A cost network C' = {C1, ..., C}}; ordering o; assignment e.
Output: The minimal cost assignment.

1. Initialize: Partition the cost components into buckets.

2. Process buckets from p «+ n downto 1

For costs h1, ha, ..., hj in bucket,, do:

o If (observed variable) X, = z,, assign X, = z,, to each h; and
put in buckets.

¢ Else, (sum and minimize)
WP = minx, Y 1_; hi. Add h? to its bucket.

3. Forward: Assign minimizing values in ordering o, consulting func-
tions in each bucket.

Figure 2.34: Dynamic programming as elim-opt

2.6.4 Cost Networks and Dynamic Programming

As we have mentioned at the outset, bucket-elimination algorithms are variations of dy-
namic programming. Here we make the connection explicit, observing that elim-mpe is
dynamic programming with some simple transformation.

That elim-mpe is dynamic programming becomes apparent once we transform the
mpe’s cost function, which has a product function, into the traditional additive function
using the log function. For example, P(a,b,¢,d, f,g9) = P(a)P(bla)P(c|la)P(f|b,c)P(d|a,b)P(g|f)
becomes C(a, b, c,d,e) = —logP = C(a)+C(b,a)+C(c,a)+C(f,b,c)+C(d,a,b)+C (g, f)
where each C; = —logP;.

Indeed, the general dynamic programming algorithm is defined over cost networks. A
cost network is a triplet (X, D,C), where X = {Xj,..., X,,} are variables over domains
D ={Dy,....D,}, C are real-valued cost functions (1, ...,C). defined over subsets S; =
{Xiys oo X by G X0y Dy — R*™. The cost graph of a cost network has a node for each
variable and connects nodes denoting variables appearing in the same cost component.
The task is to find an assignment to the variables that minimizes ), C;.

A straightforward elimination process similar to that of elim-mpe, (where the prod-
uct is replaced by summation and maximization by minimization) yields the non-serial
dynamic programming algorithm [4]. The algorithm, called elim-opt, is given in Figure
2.34.

A schematic execution of our example along ordering d = G, A, F, D,C, B is depicted
in Figure 2.35. Clearly,

Theorem 2.6.6 Given a cost network, elim-opt generates a representation from which
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min
Y
(
bucket B C(ab,d), C(b,f) C(b,c)

T\

bucketc C(ac)C(cf) h? (a/,d,c,f) c
bucket D h¢(a,d.) D
bucket g C(f,9) h(a, f) F
bucket A h® (a,0) ‘ A
bucket G h(g) : G
AN Width w=4
OPT Induced widthw*=4

Figure 2.35: Schematic execution of elim-opt

the optimal solution can be generated in linear time by a greedy procedure. The algorithm’s
complexity is time and space exponential in the cost-graph’s adjusted induced-width. O

2.7 General bucket elimination and related work

We have mentioned throughout this paper algorithms in probabilistic and deterministic
reasoning that can be viewed as bucket-elimination algorithms. Among those are the
peeling algorithm for genetic trees [7], Zhang and Poole’s VEI algorithm [46] which is
identical to elim-bel, SPT algorithm by D’Ambrosio et.al., [36] which preceded both elim-
bel and VE1 and provided the principle ideas in the context of belief updating. Decimation
algorithms in statistical physics are also related and were applied to Boltzmann trees [39].
We also made explicit the observation that bucket elimination algorithms resemble tree-
clustering methods, an observation that was made earlier in the context of constraint
satisfaction tasks [16].

The observation that a variety of tasks allow efficient algorithms of hyper-trees and
therefore can benefit from a tree-clustering approach was recognized by several works in
the last decade. In [34] the connection between optimization and constraint satisfaction
and its relationship to dynamic programming is explicated. In the work of [28, 41] and
later in [5] an axiomatic framework that characterize tasks that can be solved polynomi-
ally over hyper-trees, is introduced. Such tasks can be described using combination and
projection operators over real-valued functions, and satisfy a certain set of axioms. The
axiomatic framework [41] was shown to capture optimization tasks, inference problems in
probabilistic reasoning, as well as constraint satisfaction. Indeed, the tasks considered in
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this paper can be expressed using operators obeying those axioms and therefore their so-
lution by tree-clustering methods follows. Since, as shown in [16] and here, tree-clustering
and bucket elimination schemes are closely related, tasks that fall within the axiomatic
framework [41] can be accomplished by bucket elimination algorithms as well. In [5] a
different axiomatic scheme is presented using semi-ring structures showing that impotent
semi-rings characterize the applicability of constraint propagation algorithms. Most of
the tasks considered here do not belong to this class.

In contrast, the contribution of this paper is in making the derivation process of vari-
able elimination algorithms from the algebraic expression of the tasks, explicit. This
makes the algorithms more accessible and their properties better understood. The associ-
ated complexity analysis and the connection to graph parameters are also made explicit.
Task specific properties are also studied (e.g, irrelevant buckets in belief updating).

The work we show here also fits into the framework developed by Arnborg and Prosk-
ourowski [2, 1]. They present table-based reductions for various NP-hard graph problems
such as the independent-set problem, network reliability, vertex cover, graph k-colorability,
and Hamilton circuits. Here and elsewhere [18, 11] we extend the approach to a different
set of problems.

The following paragraphs summarize and generalizes the bucket elimination algorithm
using two operators of combination and marginalization. The task at hand can be defined
in terms of a triplet (X, D, F') where X = {Xj, ..., X,} is a set of variables having domain
of values {Dy, ..., D,,}. and F' = {fi, ..., fr} is a set of functions, where each f; is defined
over a scope S; C X. Given a function h defined over scope S C X, and given Y C
S, the (generalized) projection operator |y f is defined by enumeration as |y h €
{mazs_yh,ming_yh,Ilg_yh,> o, h} and the (generalized) combination operator ®; f;
is defined over U = U;S;. ®@5_, f; € {II}_, f;, Z?Zl fis ™5 fi}.

The problem is to compute

Yy @, fi

(In [41] the f; are called valuations.) We showed that such problems can be solved by
the bucket-elimination algorithm, stated using this general form in Figure 2.36. For
example, elim-bel is obtained when {y= )¢ , and ®; = II;, elim-mpe is obtained when
Jy= maxg_y and ®; = II;, and adaptive consistency corresponds to |y = Ilg_y and
®; =X;. Similarly, Fourier elimination, directional resolution as well as elim-meu can be
shown to be expressible in terms of such operators.
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Algorithm bucket-elimination

Input: A set of functions F' = {fi, ..., fn} over scopes Si, ..., Sp;
an ordering of the variables, d = X1, ..., X,;; A subset Y.

Output: A new compiled set of functions

from which |}y ®I_, f; can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into
bucketq, ..., bucket,,, where bucket; contains all the functions whose
highest variable in their scope is X;. Let Si,...,.S; be the subset of
variables in the processed bucket on which functions (new or old)
are defined.

2. Backward: For p < n downto 1, do

for all the functions A, Ao, ..., A; in bucket,, do

e If (observed variable) X, = x, appears in bucket,, assign
X, = x, to each )\; and then put each resulting function in
appropriate bucket.

e else, U, — Ule S; — {X,}. Generate \, =|y, ®Z:1/\,~ and
add A, to the largest-index variable in U,,.

3. Return: all the functions in each bucket.

Figure 2.36: Algorithm bucket-elimination
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2.8 Back to deterministic graphical models

2.8.1 Bucket elimination for Propositional CNFs

We will next describe the bucket elimination for solving satisfiability of a propositional
formula expressed in CNF [21] .

Propositional variables take only two values {true, false} or “1” and “0.” We denote
propositional variables by uppercase letters P, Q), R, ..., propositional literals (i.e., P,—=P)
stand for P = “true” or P = “false,” and disjunctions of literals, or clauses, are denoted
by «, 3, .... A unit clause is a clause of size 1. The notation (aVT), when o = (PVQV R)
is shorthand for the disjunction (PV QV RV T). aV /3 denotes the clause whose literal
appears in either « or (3. The resolution operation over two clauses (aV @) and (5 V —=Q)
results in a clause (« V [3), thus eliminating ). A formula ¢ in conjunctive normal form
(CNF) is a set of clauses ¢ = {ay,..., o} that denotes their conjunction. The set of
models or solutions of a formula ¢ is the set of all truth assignments to all its symbols
that do not violate any clause. Deciding if a theory is satisfiable is known to be NP-
complete [21].

It can be shown that the join-project operation used to process and eliminate a vari-
able by adaptive-consistency over relational constraints translates to pair-wise resolution
when applied to clauses [19]. This yields a bucket-elimination algorithm for propositional
satisfiability which we call directional resolution. Consider the following algorithm for
deciding the satisfiability of a propositional theory in conjunctive normal form (CNF).
Given a set of clauses and an ordering of the propositional variables, assign to each clause
the index of the highest ordered literal in the clause. Then resolve in order, from last to
first, only clauses having the same index, and only on their highest literal. This restriction
results in a systematic elimination of literals from the set of clauses that are candidates
for future resolution. Algorithm directional resolution, (DR), is the core of the well-known
Davis-Putnam algorithm for satisfiability [9, 17].

Algorithm DR (see Figure 2.38) is described using buckets partitioning the set of
clauses in the theory . We call its output theory Eg4(p), the directional extension of
. Given an ordering d = Q1, ..., Q,, all the clauses containing (); that do not contain
any symbol higher in the ordering are placed in the bucket of @);, denoted bucket;. As
previously noted, the algorithm processes the buckets in the reverse order of d. The
processing bucket; resolves over ); all possible pairs of clauses in the bucket and inserts
the resolvents into appropriate lower buckets.

Consider for example the following propositional theory:

o =(AVBVC)(=AVBVE)(~BVCVD)

The initial partitioning into buckets along the ordering d = E, D,C, B, A as well as
the bucket’s content generated by the algorithm following resolution over each bucket is
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Bucket A

Bucket B

Bucket ¢

Bucket D

Bucket E

Directional  Extension E i
irection o Induced width w'=3

Figure 2.37: A schematic execution of directional resolution using ordering d =
E.D,C B, A

depicted in Figure 2.37. As demonstrated [17], once all the buckets are processed, and
if inconsistency was not encountered (namely the empty clause was not generated), a
model can be assembled in a backtrack-free manner by consulting F4(¢) using the order
d as follows: assign to () a truth value that is consistent with the clauses in bucket; (if
the bucket is empty, assign )1 an arbitrary value); after assigning values to @1, ..., Qi_1,
assign a value to ); such that, together with the previous assignments, ¢); will satisfy all
the clauses in bucket;.

We can easily show that the complexity of DR is exponentially bounded (time and
space) in the induced width of the theory’s primal graph in which a node is associated with
a proposition and an arc connects any two nodes appearing in the same clause [14]. For
example, the primal graph of theory ¢ along the ordering d is depicted in Figure 2.37 by
the solid arcs. The broken arcs reflect induced connection of the induced graph. Those
are associated with the new clauses generated by resolution. The induced width of this
ordering is 3 and, as shown, the maximum number of variables in a bucket, excluding the
bucket’s variable, is 3.

2.8.2 Bucket elimination for linear inequalities

A special type of constraint is one that can be expressed by linear inequalities. The
domains may be the real numbers, the rationals or finite subsets. In general, a linear
constraint between r variables or less is of the form 22:1 a;r; < ¢, where a; and c are
rational constants. For example, (3z;+2x; < 3)A(—4x;+5z; < 1) are allowed constraints
between variables z; and z;. In this special case, variable elimination amounts to the
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Algorithm directional resolution

Input: A CNF theory ¢, an ordering d = @1, ..., Q.

Output: A decision of whether ¢ is satisfiable. If it is, a theory
E4(p), equivalent to p; else, a statement “The problem is inconsis-
tent”.

1. Initialize: Generate an ordered partition of the clauses,
buckety, ..., bucket,,, where bucket; contains all the clauses whose
highest literal is @);.

2. Forp=ntol, do

e if bucket, contains a unit clause, perform only unit resolution.
Put each resolvent in the appropriate bucket.

e else, resolve each pair {(a V Q,), (B V =Q,)} C bucket,. If
v = aV [ is empty, return “the theory is not satisfiable”;
else, determine the index of v and add v to the appropriate
bucket.

3. Return: E,(p) <= |, bucket; and generate a model in a
backtrack-free manner.

Figure 2.38: Algorithm directional resolution

67
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Fourier algorithm

Input: A set of linear inequalities, an ordering o.

Output: An equivalent set of linear inequalities that is backtrack-free along o.
Initialize: Partition inequalities into buckety, ..., bucket,, by the ordered
partitioning rule.

For p «+ n downto 1
for each pair {a, 8} C bucket,, compute v = elim,(«, ().
If v has no solutions, return inconsistency.
else add v to the appropriate lower bucket.
return E,(p) < |J, bucket;.

Figure 2.39: Fourier elimination algorithm

standard Gaussian elimination. From the inequalities x —y < 5 and x > 3 we can deduce
by eliminating x that y > 2. The elimination operation is defined by:

Definition 2.8.1 Let a = Zgzl) a;x; + a,x, < c, and [ = 52_11) bjz; + byx, < d. Then
elim,(«, ) is applicable only if a, and b, have opposite signs, in which case elim,(«, 3) =
Z:;ll(—aiz—: +b;)x; < —Z—:c+d. If a, and b, have the same sign the elimination implicitly
generates the universal constraint.

It is possible to show that the pair-wise join-project operation applied in a bucket can
be accomplished by linear elimination as defined above. Applying adaptive-consistency
to linear constraints and processing each pair of relevant inequalities in a bucket by
linear elimination yields a bucket elimination algorithm which coincides with the well
known Fourier elimination algorithm (see [26]). From the general principle of variable
elimination, and as is already known, the algorithm decides the solvability of any set
of linear inequalities over the rationals and generates a problem representation which is
backtrack-free. The algorithm expressed as a bucket elimination algorithm is summarized
in Figure 2.39. The complexity of Fourier elimination is not bounded exponentially by
the induced-width, however. The reason is that the number of feasible linear inequalities
that can be specified over a set of i variables cannot be bounded exponentially by i. For
a schematic execution of the algorithm see Figure 2.40, and for more details see [19].
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bucket, :x —y <5, x> 3, t—x<10
bucket, 1y <10 || —y <2, t—y<15
bucket,, :

bucket, : || t <25

Figure 2.40: Bucket elimination for the set of linear inequalities: x —y <5, = > 3, t—
r < 10, y < 10 along the ordering d =1, z,y, x

2.9 Summary

The chapter describes the bucket-elimination framework which unifies variable elimination
algorithms appearing for deterministic and probabilistic reasoning as well as for optimiza-
tion tasks. In this framework, the algorithms exploit the structure of the relevant network
without conscious effort on the part of the designer. Most bucket-elimination algorithms®
are time and space exponential in the induced-width of the underlying dependency graph
of the problem.

The simplicity of the proposed framework highlights the features common to bucket-
elimination and join-tree clustering, and allows focusing belief-assessment procedures on
the relevant portions of the network. Such enhancements were accompanied by graph-
based complexity bounds which are even more refined than the standard induced-width
bound.

The performance of bucket-elimination and tree-clustering algorithms suffers from the
usual difficulty associated with dynamic programming: exponential space and exponen-
tial time in the worst case. Such performance deficiencies also plague resolution and
constraint-satisfaction algorithms [17, 11]. Space complexity can be reduced using con-
ditioning search. We have presented one generic scheme showing how conditioning can
be combined on top of elimination, reducing the space requirement while still exploiting
topological features.

In summary, we provided a uniform exposition across several tasks, applicable to both
probabilistic and deterministic reasoning, which facilitates the transfer of ideas between
several areas of research. More importantly, the organizational benefit associated with
the use of buckets should allow all the bucket-elimination algorithms to be improved
uniformly. This can be done either by combining conditioning with elimination as we
have shown, or via approximation algorithms as is shown in [11].

Finally, no attempt was made in this paper to optimize the algorithms for distributed
computation, nor to exploit compilation vs. run-time resources. These issues should

Sall, except Fourier algorithm.
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be addressed. In particular, improvements exploiting the structure of the conditional
probability matrices as presented recently in [38, 6, 33] can be incorporated on top of

bucket-elimination.
These restrictions are already available in the literature in the context of the existing

algorithms [22, 40]
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