
New Inference Rules for Max-SAT⋆

Chu Min Li1, Felip Manyà2, and Jordi Planes3

1 LaRIA, Université de Picardie Jules Verne
33 Rue St. Leu, 80039 Amiens Cedex 01, France

chu-min.li@u-picardie.fr
2 Artificial Intelligence Research Institute (IIIA-CSIC)

Campus UAB, 08193 Bellaterra, Spain
felip@iiia.csic.es

3 Computer Science Department, Universitat de Lleida
Jaume II, 69, E-25001 Lleida, Spain

jplanes@diei.udl.es

Abstract. Exact Max-SAT solvers, compared with SAT solvers, ap-
ply little inference at each node of the proof tree. Commonly used SAT
inference rules like unit propagation produce a simplified formula that
preserves satisfiability but, unfortunately, solving the Max-SAT problem
for the simplified formula is not equivalent to solving it for the origi-
nal formula. In this paper, we define a number of original inference rules
that, besides being applied efficiently, transform Max-SAT instances into
equivalent Max-SAT instances which are easier to solve. The soundness
of the rules, that can be seen as refinements of unit resolution adapted
to Max-SAT, are proved in a novel and simple way via an integer pro-
gramming transformation. Aiming to find out how powerful the inference
rules are in practice, we have developed a new Max-SAT solver, called
MaxSatz, which incorporates those rules, and performed an experimen-
tal investigation. The results obtained provide empirical evidence that
MaxSatz is very competitive and greatly outperforms the best state-
of-the-art Max-SAT solvers on random Max-2SAT, random Max-3SAT,
Max-Cut, and Graph 3-coloring instances, as well as benchmarks sub-
mitted to the Max-SAT Evaluation 2006.

1 Introduction

In recent years there has been a growing interest in developing fast exact
Max-SAT solvers [1, 3, 5, 15, 30, 39, 44] due to their potential to solve over-
constrained NP-hard problems encoded in the formalism of Boolean CNF
formulas. Nowadays, Max-SAT solvers are able to solve a lot of instances
that are beyond the reach of the solvers developed just five years ago.

⋆ Research partially supported by projects TIN2004-07933-C03-03 and TIN2006-
15662-C02-02 funded by the Ministerio de Educación y Ciencia. The first au-
thor is partially supported by National 973 Program of China under Grant No.
2005CB321900. The second author is supported by a grant Ramón y Cajal.

Nevertheless, there is yet a considerable gap between the difficulty of the
instances solved with current SAT solvers and the instances solved with
the best performing Max-SAT solvers.

The motivation behind our work is to bridge that gap between com-
plete SAT solvers and exact Max-SAT solvers by investigating how the
technology previously developed for SAT [18, 26, 32, 43, 46] can be ex-
tended and incorporated into Max-SAT. More precisely, we focus the
attention on branch and bound Max-SAT solvers based on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [13, 14].

One of the main differences between SAT solvers and Max-SAT solvers
is that the former make an intensive use of unit propagation at each node
of the proof tree. Unit propagation, which is a highly powerful inference
rule, transforms a SAT instance φ into a satisfiability equivalent SAT in-
stance φ′ which is easier to solve. Unfortunately, solving the Max-SAT
problem for φ is, in general, not equivalent to solving it for φ′; i.e., the
number of unsatisfied clauses in φ and φ′ is not the same for every truth
assignment. For example, if we apply unit propagation to the CNF for-
mula φ = {x1, x̄1∨x2, x̄1∨¬x2, x̄1∨x3, x̄1∨¬x3}, we obtain φ′ = {2,2}.
The Max-SAT instances φ and φ′ are not equivalent because any inter-
pretation satisfying ¬x1 unsatisfies one clause of φ and two clauses of φ′.
Therefore, if we want to compute an optimal solution, we cannot apply
unit propagation as in SAT solvers.

We proposed in [30] to use unit propagation to compute lower bounds
in branch and bound Max-SAT solvers instead of using unit propagation
to simplify CNF formulas. In our approach, we detect disjoint inconsistent
subsets of clauses via unit propagation. It turns out that the number of
disjoint inconsistent subsets detected is an underestimation of the number
of clauses that will become unsatisfied when the current partial assign-
ment is extended to a total assignment. That underestimation plus the
number of clauses unsatisfied by the current partial assignment provides
a good performing lower bound, which captures the lower bounds based
on inconsistency counts that implement most of the state-of-the-art Max-
SAT solvers [2, 3, 8, 38, 45], as well as other improved lower bounds [4, 5,
39, 40].

On the one hand, the number of disjoint inconsistent subsets detected
is just a conservative underestimation for the lower bound, since every
inconsistent subset φ increases the lower bound by one independently of
the number of clauses of φ unsatisfied by an optimal assignment. However,
an optimal assignment can violate more than one clause of an inconsistent

subset. Therefore, we should be able to improve the lower bound based
on the number of disjoint inconsistent subsets of clauses.

On the other hand, despite the fact that good quality lower bounds
prune large parts of the search space and accelerate dramatically the
search for an optimal solution, whenever the lower bound does not reach
the best solution found so far (upper bound), the solver continues explor-
ing the search space below the current node. During that search, solvers
often redetect the same inconsistencies when computing the lower bound
at different nodes. Basically, the problem with lower bound computation
methods is that they do not simplify the CNF formula in such a way that
the unsatisfied clauses become explicit. Lower bounds are just a pruning
technique.

To overcome the above two problems, we define a set of sound inference
rules that transform a Max-SAT instance φ into a Max-SAT instance φ′

which is easier to solve. In Max-SAT, an inference rule is sound whenever
φ and φ’ are equivalent.

Let us see an example of inference rule: Given a Max-SAT instance φ

that contains three clauses of the form l1, l2, l̄1∨ l̄2, where l1, l2 are literals,
we replace φ with the CNF formula

φ′ = (φ − {l1, l2, l̄1 ∨ l̄2}) ∪ {2, l1 ∨ l2}.

Note that the rule detects a contradiction from l1, l2, l̄1∨ l̄2 and, therefore,
replaces these clauses with an empty clause. In addition, the rule adds
the clause l1 ∨ l2 to ensure the equivalence between φ and φ′. For any
assignment containing either l1 = 0, l2 = 1, or l1 = 1, l2 = 0, or l1 =
1, l2 = 1, the number of unsatisfied clauses in {l1, l2, l̄1 ∨ l̄2} is 1, but
for any assignment containing l1 = 0, l2 = 0, the number of unsatisfied
clauses is 2. Note that even when any assignment containing l1 = 0, l2 = 0
is not the best assignment for the subset {l1, l2, l̄1 ∨ l̄2}, it can be the best
for the whole formula. By adding l1∨ l2, the rule ensures that the number
of unsatisfied clauses in φ and φ′ is also the same when l1 = 0, l2 = 0.

That inference rule adds the new clause l1 ∨ l2, which may contribute
to another contradiction detectable via unit propagation. In this case,
the rule allows to increase the lower bound by 2 instead of 1. Moreover,
the rule makes explicit a contradiction among l1, l2, l̄1 ∨ l̄2, so that the
contradiction does not need to be redetected below the current node.

Some of the inference rules defined in the paper are already known
in the literature [6, 33], others are original for Max-SAT. The new rules
were inspired by different unit resolution refinements applied in SAT, and
were selected because they could be applied in a natural and efficient way.

In a sense, we can summarize our work telling that we have defined the
Max-SAT counterpart of SAT unit propagation.

Aiming to find out how powerful the inference rules are in practice, we
have designed and implemented a new Max-SAT solver, called MaxSatz,
which incorporates those rules, as well as the lower bound defined in [30],
and performed an experimental investigation. The results obtained pro-
vide empirical evidence that MaxSatz is very competitive and greatly
outperforms the best state-of-the-art Max-SAT solvers on random Max-
2SAT, random Max-3SAT, Max-Cut, and Graph 3-coloring instances, as
well as benchmarks submitted to the Max-SAT Evaluation 20061.

The structure of the paper is as follows. In Section 2, we give some pre-
liminary definitions. In Section 3, we describe a basic branch and bound
Max-SAT solver. In Section 4, we define the inference rules and prove
their soundness in a novel and simple way via an integer programming
transformation. We also give examples to illustrate that the inference
rules may produce better quality lower bounds. In Section 5, we present
the implementation of the inference rules in MaxSatz. In Section 6, we
describe the main features of MaxSatz. In Section 7, we report on the
experimental investigation. In Section 8, we present the related work. In
Section 9, we present the conclusions and future work.

2 Preliminaries

In propositional logic a variable xi may take values 0 (for false) or 1
(for true). A literal li is a variable xi or its negation x̄i. A clause is a
disjunction of literals, and a CNF formula φ is a conjunction of clauses.
The length of a clause is the number of its literals. The size of φ, denoted
by |φ|, is the sum of the length of all its clauses.

An assignment of truth values to the propositional variables satisfies
a literal xi if xi takes the value 1 and satisfies a literal x̄i if xi takes the
value 0, satisfies a clause if it satisfies at least one literal of the clause,
and satisfies a CNF formula if it satisfies all the clauses of the formula.
An empty clause, denoted by 2, contains no literals and cannot be satis-
fied. An assignment for a CNF formula φ is complete if all the variables
occurring in φ have been assigned; otherwise, it is partial.

The Max-SAT problem for a CNF formula φ is the problem of finding
an assignment of values to propositional variables that minimizes the
number of unsatisfied clauses (or equivalently, that maximizes the number
of satisfied clauses). Max-SAT is called Max-kSAT when all the clauses

1 http://www.iiia.csic.es/˜maxsat06

have k literals per clause. In the following, we represent a CNF formula as
a multiset of clauses, since duplicated clauses are allowed in a Max-SAT
instance.

CNF formulas φ1 and φ2 are equivalent if φ1 and φ2 have the same
number of unsatisfied clauses for every complete assignment of φ1 and φ2.

3 A basic Max-SAT Solver

The space of all possible assignments for a CNF formula φ can be rep-
resented as a search tree, where internal nodes represent partial assign-
ments and leaf nodes represent complete assignments. A basic branch and
bound algorithm for Max-SAT explores the search tree in a depth-first
manner. At every node, the algorithm compares the number of clauses
unsatisfied by the best complete assignment found so far —called up-
per bound (UB)— with the number of clauses unsatisfied by the cur-
rent partial assignment (#emptyClauses) plus an underestimation of
the minimum number of non-empty clauses that will become unsatisfied
if we extend the current partial assignment into a complete assignment
(underestimation).

The sum #emptyClauses+underestimation is a lower bound (LB) of
the minimum number of clauses unsatisfied by any complete assignment
extended from the current partial assignment. Obviously, if LB ≥ UB, a
better solution cannot be found from this point in search. In that case,
the algorithm prunes the subtree below the current node and backtracks
to a higher level in the search tree.

If LB < UB, the algorithm tries to find a possible better solution
by extending the current partial assignment by instantiating one more
variable; which leads to the creation of two branches from the current
branch: the left branch corresponds to assigning the new variable to false,
and the right branch corresponds to assigning the new variable to true. In
that case, the formula associated with the left (right) branch is obtained
from the formula of the current node by deleting all the clauses containing
the literal x̄ (x) and removing all the occurrences of the literal x (x̄); i.e.,
the algorithm applies the one-literal rule.

The solution to Max-SAT is the value that UB takes after exploring
the entire search tree.

Figure 1 shows the pseudo-code of a basic solver for Max-SAT. We
use the following notations:

– #emptyClauses(φ) is a function that returns the number of empty
clauses in φ.

Input: max-sat(φ, UB) : A CNF formula φ and an upper bound UB

1: if φ = ∅ or φ only contains empty clauses then

2: return #emptyClauses(φ);
3: end if

4: φ← simplifyFormula(φ);
5: LB(φ)← #emptyClauses(φ) + underestimation(φ,UB);
6: if LB(φ) ≥ UB then

7: return ∞;
8: end if

9: x← selectVariable(φ);
10: UB ← min(UB,max-sat(φx̄, UB));
11: return min(UB,max-sat(φx, UB));
Output: The minimal number of unsatisfied clauses of φ

Fig. 1. A basic branch and bound algorithm for Max-SAT

– simplifyFormula(φ) is a procedure that simplifies φ by applying sound
inference rules.

– LB(φ) is a function that returns a lower bound of the minimum num-
ber of unsatisfied clauses in φ if the current partial assignment is
extended to a complete assignment.

– underestimation(φ,UB) is a function that returns an underestimation
of the minimum number of non-empty clauses in φ that will become
unsatisfied if the current partial assignment is extended to a complete
assignment.

– UB is an upper bound of the number of unsatisfied clauses in an
optimal solution. We assume that its initial value is the total number
of clauses in the input formula.

– selectVariable(φ) is a function that returns a variable of φ following
an heuristic.

– φx (φx̄) is the formula obtained by applying the one-literal rule to φ

using the literal x (x̄).

State-of-the-art Max-SAT solvers implement the basic algorithm aug-
mented with powerful inference techniques, good quality lower bounds,
clever variable selection heuristics, and efficient data structures.

We have recently defined in [30] a lower bound computation method in
which the underestimation of the lower bound is the number of disjoint
inconsistent subsets that can be detected using unit propagation. The
pseudo-code is shown in Figure 2.

Example 1. Let φ be the following CNF formula:

{x1, x2, x3, x4, x̄1 ∨ x̄2 ∨ x̄3, x̄4, x5, x̄5 ∨ x̄2, x̄5 ∨ x2}.

Input: underestimation(φ, UB) : A CNF formula φ and an upper bound UB

1: underestimation← 0;
2: apply the one-literal rule to the unit clauses of φ (unit propagation) until an empty

clause is derived;
3: if no empty clause can be derived then

4: return underestimation;
5: end if

6: φ← φ without the clauses that have been used to derive the empty clause;
7: underestimation := underestimation + 1;
8: if underestimation+#emptyClauses(φ) ≥ UB then

9: return underestimation;
10: end if

11: go to 2;
Output: the underestimation of the lower bound for φ

Fig. 2. Computation of the underestimation using unit propagation

With our approach we are able to establish that the number of disjoint
inconsistent subsets of clauses in φ is at least 3. Therefore, the underes-
timation of the lower bound is 3. The steps performed are the following
ones:

1. φ = {x4, x̄4, x5, x̄5 ∨ x̄2, x̄5 ∨ x2}, the first inconsistent subset de-
tected using unit propagation is {x1, x2, x3, x̄1 ∨ x̄2 ∨ x̄3}, and
underestimation = 1.

2. φ = {x5, x̄5 ∨ x̄2, x̄5 ∨ x2}, the second inconsistent subset detected
using unit propagation is {x4, x̄4}, and underestimation = 2.

3. φ = ∅, the third inconsistent subset detected using unit propagation
is {x5, x̄5 ∨ x̄2, x̄5 ∨ x2}, and underestimation = 3. Since φ is empty,
the algorithm stops.

4 Inference rules

We define the set of inference rules considered in the paper. They were
inspired by different unit resolution refinements applied in SAT, and were
selected because they could be applied in a natural and efficient way. Some
of them are already known in the literature [6, 33], others are original for
Max-SAT.

Before presenting the rules, we define an integer programming trans-
formation of a CNF formula used to establish the soundness of the rules.
The method of proving soundness is novel in Max-SAT, and provides clear
and short proofs.

4.1 Integer programming transformation of a CNF formula

Assume that φ = {c1, ..., cm} is a CNF formula with m clauses over the
variables x1, ..., xn. Let ci (1 ≤ i ≤ m) be xi1 ∨ ...∨xik ∨ x̄ik+1

∨ ...∨ x̄ik+r
.

Note that we put all positive literals in ci before the negative ones.

We consider all the variables in ci as integer variables taking values 0
or 1, and define the integer transformation of ci as

Ei(xi1 , ..., xik , xik+1
, ..., xik+r

) = (1 − xi1)...(1 − xik)xik+1
...xik+r

Obviously, Ei has value 0 iff at least one of the variables xij ’s (1 ≤
j ≤ k) is instantiated to 1 or at least one of the variables xis ’s (k + 1 ≤
s ≤ k + r) is instantiated to 0. In other words, Ei=0 iff ci is satisfied.
Otherwise Ei=1.

A literal l corresponds to an integer denoted by l itself for our conve-
nience. The intention of the correspondence is that the literal l is satisfied
if the integer l is 1 and is unsatisfied if the integer l is 0. So if l is a pos-
itive literal x, the corresponding integer l is x, l̄ is 1-x=1-l, and if l is a
negative literal x̄, l is 1-x and l̄ is x=1-(1-x)=1-l. Consequently, l̄=1-l in
any case.

We now generically write ci as l1∨l2∨...∨lk+r. Its integer programming
transformation is

Ei = (1 − l1)(1 − l2)...(1 − lk+r).

The integer programming transformation of a CNF formula φ =
{c1, ..., cm} over the variables x1, ..., xn is defined as

E(x1, ..., xn) =

m
∑

i=1

Ei (1)

That integer programming transformation was used in [20, 29] to de-
sign a local search procedure. Here, we extend it to empty clauses: if ci is
empty, then Ei=1.

Given an assignment A, the value of E is the number of unsatisfied
clauses in φ. If A satisfies all clauses in φ, then E = 0. Obviously, the
minimum number of unsatisfied clauses of φ is the minimum value of E .

Let φ1 and φ2 be two CNF formulas, and let E1 and E2 be their integer
programming transformations. It is clear that φ1 and φ2 are equivalent if
and only if E1=E2 for every complete assignment for φ1 and φ2.

4.2 Inference rules

We next define the inference rules and prove their soundness using the
previous integer programming transformation. In the rest of the section,
φ1, φ2 and φ′ denote CNF formulas, and E1, E2, and E ′ their integer
programming transformations. To prove that φ1 and φ2 are equivalent,
we prove that E1 = E2.

Rule 1 [6] If φ1={l1 ∨ l2 ∨ ... ∨ lk, l̄1 ∨ l2 ∨ ... ∨ lk} ∪ φ′, then φ2={l2 ∨
... ∨ lk} ∪ φ′ is equivalent to φ1.

Proof.

E1 = (1 − l1)(1 − l2)...(1 − lk) + l1(1 − l2)...(1 − lk) + E ′

= (1 − l2)...(1 − lk) + E ′

= E2

General case resolution does not work in Max-SAT [6]. Rule 1 establishes
that resolution works when two clauses give a strictly shorter resolvent.

Rule 1 is known in the literature as replacement of almost common
clauses. We pay special attention to the case k=2, where the resolvent
is a unit clause, and to the case k=1, where the resolvent is the empty
clause. We describe this latter case in the following rule:

Rule 2 [33] If φ1={l, l̄} ∪ φ′, then φ2={2} ∪ φ′ is equivalent to φ1.

Proof. E1=1-l+ l+E ′=1+ E ′=E2

Rule 2, which is known as complementary unit clause rule, can be used to
replace two complementary unit clauses with an empty clause. The new
empty clause contributes to the lower bounds of the search space below
the current node by incrementing the number of unsatisfied clauses, but
not by incrementing the underestimation, which means that this contra-
diction does not have to be redetected again. In practice, that simple rule
gives rise to considerable gains.

The following rule is a more complicated case:

Rule 3 If φ1={l1, l̄1∨ l̄2, l2}∪φ′, then φ2={2, l1∨ l2}∪φ′ is equivalent
to φ1.

Proof.

E1 = 1 − l1 + l1l2 + 1 − l2 + E ′

= 1 + 1 − l1 + l2(l1 − 1) + E ′

= 1 + 1 − l1 − l2(1 − l1) + E ′

= 1 + (1 − l1)(1 − l2) + E ′

= E2

Rule 3 replaces three clauses with an empty clause, and adds a new
binary clause to keep the equivalence between φ1 and φ2.

That pattern φ1 was considered to compute underestimations in [4,
35]; and is also captured by our method of computing underestimations
based on unit propagation [30]. It is mentioned in [22] that existential
directional arc consistency [16] can capture this rule. Note that underes-
timation computation methods in [4, 35] do not add any additional clause
as in our approach, they just detect contradictions.

Let us define a rule that generalizes Rule 2 and Rule 3. Before pre-
senting the rule, we define a lemma needed to prove its soundness.

Lemma 1. If φ1={l1, l̄1 ∨ l2}∪φ′ and φ2={l2, l̄2 ∨ l1}∪φ′, then φ1 and
φ2 are equivalent.

Proof.

E1 = 1 − l1 + l1(1 − l2) + E ′

= 1 − l1 + l1 − l1l2 + E ′

= 1 − l2 + l2 − l1l2 + E ′

= 1 − l2 + (1 − l1)l2 + E ′

= E2

Rule 4 If φ1={l1, l̄1∨l2, l̄2∨l3, ..., l̄k∨lk+1, l̄k+1}∪φ′, then φ2={2, l1∨
l̄2, l2 ∨ l̄3, ..., lk ∨ l̄k+1} ∪ φ′ is equivalent to φ1.

Proof. We prove the soundness of the rule by induction on k. When k=1,
φ1 = {l1, l̄1 ∨ l2, l̄2} ∪ φ′. By applying Rule 3, we get {2, l1 ∨ l̄2} ∪ φ′,
which is φ2 when k = 1. Therefore, φ1 and φ2 are equivalent.

Assume that Rule 4 is sound for k = n. Let us prove that it is sound
for k = n + 1. In that case:

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄n ∨ ln+1, l̄n+1 ∨ ln+2, l̄n+2} ∪ φ′.

By applying Lemma 1 to the last two clauses of φ1 (before φ′), we get

{l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄n ∨ ln+1, l̄n+1, ln+1 ∨ l̄n+2} ∪ φ′.

By applying the induction hypothesis to the first n + 1 clauses of the
previous CNF formula, we get

{2, l1 ∨ l̄2, l2 ∨ l̄3, ..., ln ∨ l̄n+1, ln+1 ∨ l̄n+2} ∪ φ′,

which is φ2 when k = n + 1. Therefore, φ1 and φ2 are equivalent and the
rule is sound.

Rule 4 is an original inference rule. It captures linear unit resolution
refutations in which clauses and resolvents are used exactly once. The
rule simply adds an empty clause, eliminates two unit clauses and the
binary clauses used in the refutation, and adds new binary clauses that
are obtained by negating the literals of the eliminated binary clauses. So,
all the operations involved can be performed efficiently.

Rule 3 and Rule 4 make explicit a contradiction, which does not need
to be redetected in the current subtree. So, the lower bound computation
becomes more incremental. Moreover, the binary clauses added by Rule 3
and Rule 4 may contribute to compute better quality lower bounds ei-
ther by acting as premises of an inference rule or by being part of an
inconsistent subset of clauses, as is illustrated in the following example.

Example 2. Let φ={x1, x̄1∨x̄2, x3, x̄3∨x2, x4, x̄1∨x̄4, x̄3∨x̄4}. Depending
on the ordering in which unit clauses are propagated, unit propagation
detects one of the following three inconsistent subsets of clauses: {x1, x̄1∨
x̄2, x3, x̄3∨x2}, {x1, x4, x̄1∨ x̄4}, or {x3, x4, x̄3∨ x̄4}. Once an inconsistent
subset is detected and removed, the remaining set of clauses is satisfiable.
Without applying Rule 3 and Rule 4, the lower bound computed is 1,
because the underestimation computed using unit propagation is 1.

Note that Rule 4 can be applied to the first inconsistent subset
{x1, x̄1 ∨ x̄2, x3, x̄3 ∨ x2}. If Rule 4 is applied, a contradiction is made
explicit and the clauses x1 ∨ x2 and x3 ∨ x̄2 are added. So, φ becomes
{2, x1 ∨ x2, x3 ∨ x̄2, x4, x̄1 ∨ x̄4, x̄3 ∨ x̄4}. It turns out that φ − {2} is an
inconsistent set of clauses detectable by unit propagation. Therefore, the
lower bound computed is 2.

If the inconsistent subset {x1, x4, x̄1 ∨ x̄4} is detected, Rule 3 can be
applied. Then, a contradiction is made explicit and the clause x1 ∨ x4 is
added. So, φ becomes {2, x1 ∨ x4, x̄1 ∨ x̄2, x3, x̄3 ∨ x2, x̄3 ∨ x̄4}. It turns
out that φ − {2} is an inconsistent set of clauses detectable by unit
propagation. Therefore, the lower bound computed is 2.

Similarly, if the inconsistent subset {x3, x4, x̄3 ∨ x̄4} is detected and
Rule 3 is applied, the lower bound computed is 2.

We observe that, in this example, Rule 3 and Rule 4 not only make
explicit a contradiction, but also allow to improve the lower bound.

Unit propagation needs at least one unit clause to detect a contra-
diction. A drawback of Rule 3 and Rule 4 is that they consume two unit
clauses for deriving just one contradiction. A possible situation is that,
after branching, those two unit clauses could allow unit propagation to
derive two disjoint inconsistent subsets of clauses, as we show in the fol-
lowing example.

Example 3. Let φ={x1, x̄1∨x2, x̄1∨x3, x̄2∨x̄3∨x4, x5, x̄5∨x6, x̄5∨x7, x̄6∨
x̄7∨x4, x̄1∨ x̄5}. Rule 3 replaces x1, x5, and x̄1∨ x̄5 with an empty clause
and x1 ∨ x5. After that, if x4 is selected as the next branching variable
and is assigned 0, there is no unit clause in φ and no contradiction can
be detected via unit propagation. The lower bound is 1 in this situation.
However, if Rule 3 was not applied before branching, φ has two unit
clauses after branching. In this case, the propagation of x1 allows to detect
the inconsistent subset {x1, x̄1∨x2, x̄1 ∨x3, x̄2∨ x̄3}, and the propagation
of x5 allows to detect the inconsistent subset {x5, x̄5∨x6, x̄5∨x7, x̄6∨ x̄7}.
So, the lower bound computed is 2 after the branching.

On the one hand, Rule 3 and Rule 4 add clauses that can contribute to
detect additional conflicts. On the other hand, each application of Rule
3 and Rule 4 consumes two unit clauses, which cannot be used again
to detect further conflicts. The final effect of these two factors will be
empirically analyzed in Section 7.

Finally, we present two new rules that capture unit resolution refuta-
tions in which (i) exactly one unit clause is consumed, and (ii) the unit
clause is used twice in the linear derivation of the empty clause.

Rule 5 If φ1={l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3} ∪ φ′, then φ2={2, l1 ∨ l̄2 ∨
l̄3, l̄1 ∨ l2 ∨ l3} ∪ φ′ is equivalent to φ1.

Proof.

E1 = 1 − l1 + l1(1 − l2) + l1(1 − l3) + l2l3 + E ′

= 1 − l1 + l1 − l1l2 + l1 − l1l3 + l2l3 + E ′

= 1 + l2l3 − l1l2l3 + l1 − l1l2 − l1l3 + l1l2l3 + E ′

= 1 + (1 − l1)l2l3 + l1(1 − l2 − l3 + l2l3) + E ′

= 1 + (1 − l1)l2l3 + l1(1 − l2)(1 − l3) + E ′

= E2

We can combine a linear derivation with Rule 5 to obtain Rule 6:

Rule 6 If φ1={l1, l̄1 ∨ l2, l̄2 ∨ l3, ..., l̄k ∨ lk+1, l̄k+1 ∨ lk+2, l̄k+1 ∨
lk+3, l̄k+2 ∨ l̄k+3} ∪ φ′, then φ2={2, l1 ∨ l̄2, l2 ∨ l̄3, ..., lk ∨ l̄k+1, lk+1 ∨
l̄k+2 ∨ l̄k+3, l̄k+1 ∨ lk+2 ∨ lk+3} ∪ φ′ is equivalent to φ1.

Proof. We prove the soundness of the rule by induction on k. When k=1,

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄2 ∨ l4, l̄3 ∨ l̄4} ∪ φ′.

By Lemma 1, we get

{l1 ∨ l̄2, l2, l̄2 ∨ l3, l̄2 ∨ l4, l̄3 ∨ l̄4} ∪ φ′.

By Rule 5, we get

{l1 ∨ l̄2, 2, l2 ∨ l̄3 ∨ l̄4, l̄2 ∨ l3 ∨ l4} ∪ φ′,

which is φ2 when k = 1. Therefore, φ1 and φ2 are equivalent.
Assume that Rule 6 is sound for k = n. Let us prove that it is sound

for k = n + 1. In that case:

φ1 = {l1, l̄1∨l2, l̄2∨l3, ..., l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+2∨ln+4, l̄n+3∨l̄n+4}∪φ′.

By Lemma 1, we get

{l1∨ l̄2, l2, l̄2∨l3, ..., l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+2∨ln+4, l̄n+3∨ l̄n+4}∪φ′.

By applying the induction hypothesis, we get

{l1∨ l̄2, 2, l2∨ l̄3, ..., ln+1∨ l̄n+2, ln+2∨ l̄n+3∨ l̄n+4, l̄n+2∨ln+3∨ln+4}∪φ′,

which is φ2 when k = n + 1. Therefore, φ1 and φ2 are equivalent and the
rule is sound.

Similarly to Rule 3 and Rule 4, Rule 5 and Rule 6 make explicit
a contradiction, which does not need to be redetected in subsequent
search. Therefore, the lower bound computation becomes more incremen-
tal. Moreover, they also add clauses which can improve the quality of the
lower bound, as is illustrated in the following example.

Example 4. Let φ={x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3, x4, x1 ∨ x̄4, x̄2 ∨ x̄4, x̄3 ∨
x̄4}. Depending on the ordering in which unit clauses are propagated,
unit propagation can detect one of the following inconsistent subsets:

{x1, x̄1∨x2, x̄1∨x3, x̄2∨x̄3}, {x4, x1∨x̄4, x̄2∨x̄4, x̄1∨x2}, {x4, x1∨x̄4, x̄3∨
x̄4, x̄1 ∨ x3}, in which Rule 5 is applicable. If Rule 5 is not applied, the
lower bound computed using the underestimation function of Figure 2
is 1, since the remaining clauses of φ are satisfiable once the inconsistent
subset of clauses is removed. Rule 5 allows to add two ternary clauses
contributing to another contradiction. For example, Rule 5 applied to
{x1, x̄1∨x2, x̄1∨x3, x̄2∨ x̄3} adds to φ clauses x1∨ x̄2∨ x̄3 and x̄1∨x2∨x3,
which, with the remaining clauses of φ ({x4, x1 ∨ x̄4, x̄2 ∨ x̄4, x̄3 ∨ x̄4}),
give the second contradiction detectable via unit propagation. So the
lower bound computed using Rule 5 is 2.

In contrast to Rule 3 and Rule 4, Rule 5 and Rule 6 consume exactly
one unit clause for deriving an empty clause. Since a unit clause can be
used at most once to derive a conflict via unit propagation, Rule 5 and
Rule 6 do not limit the detection of further conflicts via unit propagation.

5 Implementation of inference rules

In this section, we describe the implementation of all the inference rules
presented in Section 4. We suppose that the CNF formula is loaded and,
for every literal ℓ, a list of clauses containing ℓ is constructed. The appli-
cation of a rule means that some clauses in φ1 are removed from the CNF
formula, new clauses in φ2 are inserted into the formula, and the lower
bound is increased by 1. Note that in all the inference rules selected in
our approach, φ2 contains fewer literals and fewer clauses than φ1, so that
new clauses of φ2 can be inserted in the place of the removed clauses of
φ1 when an inference rule is applied. Therefore, we do not need dynamic
memory management and the implementation can be made very efficient.

Rule 1 for k=2 and Rule 2 can be applied efficiently using a matching
algorithm (see e.g. [12] for an efficient implementation) over the lists of
clauses. The first has a time complexity of O(m), where m is the number
of clauses in the CNF formula. The second has a time complexity of O(u),
where u is the number of unit clauses in the CNF formula. These rules are
applied at every node, before any lower bound computation or application
of other inference rules. Rule 1 (k=2) is applied as many times as possible
to derive unit clauses before applying Rule 2.

The implementation of Rule 3, Rule 4, Rule 5, and Rule 6 is entirely
based on unit propagation. Given a CNF formula φ, unit propagation
constructs an implication graph G (see e.g. [7]), from which the applica-
bility of inference rules is detected. In this section, we first describe the

construction of the implication graph, and then describe how to deter-
mine the applicability of Rule 3, Rule 4, Rule 5, and Rule 6. Then, we
analyze the complexity, termination and (in)completeness of the applica-
tion of the rules. Finally we discuss the extension of the inference rules
for weighted Max-SAT and their implementation.

5.1 Implication graph

Given a CNF formula φ, Figure 3 shows how unit propagation constructs
an implication graph whose nodes are literals.

Input: UnitPropagation(φ) : φ is a CNF formula not containing the complementary
unit clauses ℓ and ℓ̄ for any ℓ

initialize G as the empty graph
add a node labeled with ℓ for every literal ℓ in a unit clause c of φ

repeat

if ℓ1, ℓ2, ..., ℓk−1 are nodes of G, c = ℓ̄1 ∨ ℓ̄2 ∨ ... ∨ ℓ̄k−1 ∨ ℓk is a clause of φ, and
ℓk is not a node of G, then

add into G a node labeled with ℓk

add into G a directed edge from node ℓi to ℓk for every i (1 ≤ i < k)
end if

until no more nodes can be added or there is a literal ℓ such that both ℓ and ℓ̄ are
nodes of G

Return G

Output: Implication graph G of φ

Fig. 3. Unit propagation for constructing implication graphs

Note that every node in G corresponds to a different literal, where ℓ

and ℓ̄ are considered as different literals. When the CNF formula contains
several copies of a unit clause ℓ, the algorithm adds just one node with
label ℓ.

Example 5. Let φ={x1, x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3 ∨ x4, x5, x̄5 ∨ x6, x̄5 ∨
x7, x̄6 ∨ x̄7 ∨ x̄4, x̄5 ∨ x8}. UnitPropagation constructs the implication
graph of Figure 4, in which we add a special node 2 to highlight the
contradiction.

G is always acyclic because every added edge connects a new node.
It is well known that the time complexity of unit propagation is O(|φ|),
where |φ| is the size of φ (see e.g. [17]).

We associate clause c=ℓ̄1∨ ℓ̄2∨ ...∨ ℓ̄k−1∨ ℓk with node ℓk if node ℓk is
added into G because of c. Note that node ℓk does not have any incoming

x1

x2

x3

x4

x5

x6

x7

x̄4

x8

Fig. 4. An implication graph example

edge if and only if c is unit (k=1), and the node has only one incoming edge
if and only if c is binary (k=2). Once G is constructed, if G contains both
ℓ and ℓ̄ for some literal ℓ (i.e., unit propagation deduces a contradiction),
it is easy to identify all nodes from which there exists a path to ℓ or ℓ̄ in G;
i.e., the clauses implying ℓ or ℓ̄. All these clauses constitute an inconsistent
subset S of φ. In the above example, clauses x1, x̄1 ∨ x2, x̄1 ∨ x3 and
x̄2∨x̄3∨x4 imply x4, and clauses x5, x̄5∨x6, x̄5∨x7 and x̄6∨x̄7∨x̄4 imply x̄4.
Clause x̄5 ∨x8 does not contribute to the contradiction. The inconsistent
subset S is {x1, x̄1∨x2, x̄1∨x3, x̄2∨x̄3∨x4, x5, x̄5∨x6, x̄5∨x7, x̄6∨x̄7∨x̄4}.

5.2 Applicability of Rule 3, Rule 4, Rule 5, and Rule 6

We assume that unit propagation deduces a contradiction and, therefore,
the implication graph G contains both ℓ and ℓ̄ for some literal ℓ. Let Sℓ

be the set of all nodes from which there exists a path to ℓ, let Sℓ̄ be the
set of all nodes from which there exists a path to ℓ̄, and let S=Sℓ ∪ Sℓ̄.
As a clause is associated with each node in G, we also use S, Sℓ, and Sℓ̄

to denote the set of clauses associated with the nodes in S, Sℓ, and Sℓ̄,
respectively. Lemma 2 and Lemma 3 are used to detect the applicability
of Rule 3, Rule 4, Rule 5, and Rule 6.

Lemma 2. Rule 3 and Rule 4 are applicable if

1. in Sℓ (resp. Sℓ̄), there is one unit clause and all the other clauses are
binary,

2. nodes in Sℓ (resp. Sℓ̄) form an implication chain starting at the unit
clause and ending at ℓ (resp. ℓ̄),

3. Sℓ ∩ Sℓ̄ is empty.

Proof. Starting from the node corresponding to the unit clause in Sℓ

(resp. Sℓ̄), and following in parallel the two implication chains, we have
φ1 in Rule 3 or Rule 4 by writing down the clause corresponding to each
node.

Example 6. Let φ be the following CNF formula containing clauses c1 to
c7: {c1 : x1, c2 : x̄1 ∨ x2, c3 : x̄2 ∨ x3, c4 : x̄3 ∨ x4, c5 : x5, c6 :
x̄5 ∨x6, c7 : x̄6 ∨ x̄4}. The two complementary literals in the implication
graph G are x4 and x̄4. G is as follows.

c1 c2 c3 c4

c5 c6 c7

x1 x2 x3 x4

x5 x6 x̄4

Rule 4 is applicable because ℓ=x4,
Sℓ={x1(c1), x2(c2), x3(c3), x4(c4)}, and Sℓ̄={x5(c5), x6(c6), x̄4(c7)}.
It is easy to verify that the three conditions of Lemma 2 are satisfied.

Remark: φ can be rewritten as {c1 : x1, c2 : x̄1∨x2, c3 : x̄2∨x3, c4 :
x̄3 ∨ x4, c7 : x̄4 ∨ x̄6, c6 : x6 ∨ x̄5, c5 : x5} to be compared with φ1 in
Rule 4.

The application of Rule 3 and Rule 4 consists of replacing every bi-
nary clause c in S with a binary clause obtained by negating every lit-
eral of c, removing the two unit clauses of S from φ, and incrementing
#emptyClauses(φ) by 1.

Lemma 3. Rule 5 and Rule 6 are applicable if

1. in S=Sℓ ∪ Sℓ̄, there is one unit clause and all the other clauses are
binary; i.e., all nodes in S, except for the node corresponding to the
unit clause, have exactly one incoming edge in G.

2. Sℓ ∩ Sℓ̄ is non-empty and contains k (k >0) nodes forming an impli-
cation chain of the form ℓ1 → ℓ2 → ... → ℓk, where ℓk is the last
node of the chain.

3. (Sℓ ∪Sℓ̄)-(Sℓ ∩Sℓ̄) contains exactly three nodes : ℓ, ℓ̄, and a third one.
Let ℓk+1 be the third literal,
if ℓk+1 ∈ Sℓ, then G contains the following implications

ℓk → ℓk+1 → ℓ

ℓk → ℓ̄

if ℓk+1 ∈ Sℓ̄, then G contains the following implications

ℓk → ℓ

ℓk → ℓk+1 → ℓ̄

Proof. Assume, without loss of generality, that ℓk+1 ∈ Sℓ; the case ℓk+1

∈ Sℓ̄ is symmetric. The implication chain formed by the nodes of Sℓ ∩ Sℓ̄

correspond to the clauses {ℓ1, ℓ̄1 ∨ ℓ2, ..., ℓ̄k−1 ∨ ℓk}, which, together with
the three clauses {ℓ̄k∨ℓk+1, ℓ̄k+1∨ℓ, ℓ̄k∨ℓ̄} corresponding to ℓk → ℓk+1 → ℓ

and ℓk → ℓ̄, give φ1 in Rule 5 or Rule 6.

Example 7. Let φ be the following CNF formula containing clauses c1 to
c5: {c1 : x1, c2 : x̄1 ∨ x2, c3 : x̄2 ∨ x3, c4 : x̄2 ∨ x4, c5 : x̄3 ∨ x̄4}. Unit
propagation constructs G with two complementary literals x4 and x̄4 as
follows:

c1 c2 c3

c4

c5

x1 x2 x3 x̄4

x4

We have Sx4
={x1(c1), x2(c2), x4(c4)} and Sx̄4

={x1(c1), x2(c2), x3(c3),
x̄4(c5)}. The nodes in Sx4

∩ Sx̄4
obviously form an implication chain:

x1 → x2. (Sx4
∪ Sx̄4

)-(Sx4
∩ Sx̄4

)={x3(c3), x4(c4), x̄4(c5)}. G contains
x2 → x3 → x̄4 and x2 → x4. Rule 6 is applicable.

The application of Rule 5 and Rule 6 consists of removing the unit
clause of Sℓ ∪ Sℓ̄ from φ, replacing each binary clause c in Sℓ ∩ Sℓ̄ with a
binary clause obtained from c by negating the two literals of c, replacing
the three binary clauses in (Sℓ ∪ Sℓ̄)-(Sℓ ∩ Sℓ̄) with two ternary clauses,
and incrementing #emptyClauses(φ) by 1.

5.3 Complexity, termination, and (in)completeness of rule
applications

In our branch and bound algorithm for Max-SAT, we combine the appli-
cation of the inference rules and the computation of the underestimation
of the lower bound. Given a CNF formula φ, function underestimation

uses unit propagation to construct an implication graph G. Once G con-
tains two nodes ℓ and ℓ̄ for some literal ℓ, G is analyzed to determine
whether some inference rule is applicable. If some rule is applicable, it is

applied and φ is transformed into an equivalent Max-SAT instance. Oth-
erwise, all clauses contributing to the contradiction are removed from φ,
and the underestimation is incremented by 1. This procedure is repeated
until unit propagation cannot derive more contradictions. Finally, all re-
moved clauses, except those removed or replaced due to inference rule
applications, are reinserted into φ. The underestimation, together with
the new φ, is returned.

It is well known that unit propagation can be implemented with a
time complexity linear in the size of φ (see e.g. [17]). The complexity of
determining the applicability of the inference rules using Lemma 2 and
Lemma 3 is linear in the size of G, bounded by the number of literals in
φ. The application of an inference rule is obviously linear in the size of G.
So, the whole time complexity of function underestimation with inference
rule applications is O(d ∗ |φ|), where d is the number of contradictions
that function underestimation is able to detect using unit propagation.

Since every inference rule application reduces the size of φ, function
underestimation with inference rule applications has linear space com-
plexity, and it always terminates. Recall that new clauses added by the
inference rules can be stored in the place of the old ones. The data struc-
tures for loading φ can be statically and efficiently maintained.

We have proved that the inference rules are sound. The following
example shows that the application of the rules is not necessarily complete
in our implementation, in the sense that not all possible applications of
the inference rules are actually done.

Example 8. Let φ={x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4, x̄1 ∨ x̄2, x2}. Unit propaga-
tion may discover the inconsistent subset S={x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4}. In
this case, no inference rule is applicable to S. Then, the underestimation
of the lower bound is incremented by 1, and φ becomes {x̄1 ∨ x̄2, x2}.
Unit propagation cannot detect more contradictions in φ, and function
underestimation stops after reinserting {x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4} into φ.
The value 1 is returned, together with the unchanged φ. Note that Rule 3
is applicable to the subset {x1, x̄1 ∨ x̄2, x2} of φ, but is not applied.

Actually, function underestimation only applies Rule 3 if unit prop-
agation detects the inconsistent subset {x1, x̄1 ∨ x̄2, x2} instead of
{x1, x3, x4, x̄1 ∨ x̄3 ∨ x̄4}. The detection of an inconsistent subset depends
on the ordering in which unit clauses are propagated in unit propagation.
In this example, the inconsistent subset {x1, x̄1 ∨ x̄2, x2} is discovered if
unit clause x2 is propagated before x3 and x4. Further study is needed to
define orderings for unit clauses that maximize the inference rule appli-
cations.

5.4 Inference rules for weighted Max-SAT

The inference rules presented in this paper can be naturally extended to
weighted Max-SAT. In weighted Max-SAT, every clause is associated with
a weight and the problem consists of finding a truth assignment for which
the sum of the weights of unsatisfied clauses is minimum. For example,
the weighted version of Rule 3 could be

Rule 7 If φ1={(l1, w1), (l̄1∨ l̄2, w2), (l2, w3)}∪φ′, then φ2={(2, w), (l1∨
l2, w), (l1, w1 −w), (l̄1 ∨ l̄2, w2 −w), (l2, w3 −w)}∪φ′ is equivalent to φ1

where w1, w2 and w3 are positive integers representing the clause weight,
and w=min(w1, w2, w3). Mandatory clauses, that have to be satisfied in
any optimal solution, are specified with the weight ∞. Note that if w 6=∞,
∞-w=∞ and if w=∞, no optimal solution can be found and the solver
should backtrack. Clauses with weight 0 are removed. Observe that φ1

can be rewritten as φ11 ∪ φ12, where φ11={(l1, w), (l̄1 ∨ l̄2, w), (l2, w)},
and φ12={(l1, w1 − w), (l̄1 ∨ l̄2, w2 − w), (l2, w3 − w)} ∪ φ′. Then the
weighted inference rule is equivalent to the unweighted version applied w

times to the (unweighted) clauses of φ11.
Similarly, the weighted version of Rule 4 could be

Rule 8 If φ1={(l1, w1) (l̄1 ∨ l2, w2), (l̄2 ∨ l3, w3), ..., (l̄k ∨
lk+1, wk+1), (l̄k+1, wk+2)} ∪ φ′, then φ2={(2, w), (l1 ∨ l̄2, w), (l2 ∨
l̄3, w), ..., (lk ∨ l̄k+1, w), (l1, w1 − w), (l̄1 ∨ l2, w2 − w), (l̄2 ∨ l3, w3 −
w), ..., (l̄k ∨ lk+1, wk+1 − w), (l̄k+1, wk+2 − w)} ∪ φ′ is equivalent to φ1

where w=min(w1, w2, ..., wk+2). Observe that φ1 can also be rewrit-
ten as φ11 ∪ φ12, with φ11={(l1, w) (l̄1 ∨ l2, w), (l̄2 ∨ l3, w), ..., (l̄k ∨
lk+1, w), (l̄k+1, w)}, The weighted version of Rule 4 is equivalent to the
unweighted Rule 4 applied w times to the (unweighted) clauses of φ11.

Other inference rules could be extended in the same way to weighted
Max-SAT.

The current implementation of inference rules can also be naturally
extended to weighted inference rules, which we are currently doing. If an
inconsistent subformula is detected and a rule is applicable (clause weights
are not considered in the detection of the inconsistent subformula and of
the applicability of the rule, provided that clauses with weight 0 have been
discarded), then φ11 and φ12 are separated after computing the minimal
weight w of all clauses in the detected inconsistent subformula, and the
rule is applied to φ11. The derived clauses and clauses in φ12 can be used
in subsequent reasoning.

6 MaxSatz: A New Max-SAT Solver

We have implemented a new Max-SAT solver, called MaxSatz, that incor-
porates the lower bound computation method based on unit propagation
defined in Section 3, and applies the inference rules defined in Section 4.
The name of MaxSatz comes from the fact that the implementation of the
branch and bound procedure and all inference rules incorporates most of
the technology that was developed for the SAT solver Satz [28, 27].

MaxSatz incorporates the lower bound based on unit propagation, and
applies Rule 1, Rule 2, Rule 3, Rule 4, Rule 5, and Rule 6. In addition,
MaxSatz applies the following techniques:

– Pure literal rule: If a literal only appears with either positive polarity
or negative polarity, we delete the clauses containing that literal.

– Empty-Unit clause rule [2]: Let neg1(x) (pos1(x)) be the number of
unit clauses in which x is negative (positive). If #emptyClauses(φ)+
neg1(x) ≥ UB, then we assign x to false. If #emptyClauses(φ) +
pos1(x) ≥ UB, then we assign x to true.

– Dominating Unit Clause (DUC) rule [33]: If the number of clauses in
which a literal x (x̄) appears is not greater than neg1(x) (pos1(x)),
then we assign x to false (true).

– Variable selection heuristic: Let neg2(x) (pos2(x)) be the number of
binary clauses in which x is negative (positive), neg3(x) (pos3(x)) be
the number of clauses containing three or more literals in which x is
negative (positive). We select the variable x such that (neg1(x) + 4 ∗
neg2(x) + neg3(x))*(pos1(x) + 4 ∗ pos2(x) + pos3(x)) is the largest.
The fact that binary clauses are counted four times more than other
clauses is determined empirically.

– Value selection heuristic: Let x be the selected branching variable. If
neg1(x)+4∗neg2(x)+neg3(x) < pos1(x)+4∗pos2(x)+pos3(x), set
x to true. Otherwise set x to false. This heuristics is also determined
empirically.

In this paper, in order to compare the inference rules defined, we have
used three simplified versions of MaxSatz:

– MaxSat0: does not apply any inference rule defined in Section 4.
– MaxSat12: applies rules 1 and 2, but not rules 3, 4, 5 and 6.
– MaxSat1234: applies rules 1, 2, 3 and 4, but not rules 5 and 6.

Actually, MaxSatz corresponds to MaxSat123456 in our terminology.
MaxSat12 corresponds to an improved version of the solver UP [30], us-
ing a special ordering for propagating unit clauses in unit propagation.

MaxSat12 maintains two queues during unit propagation: Q1 and Q2.
When MaxSat12 starts the search for an inconsistent subformula via unit
propagation, Q1 contains all the unit clauses of the CNF formula under
consideration (more recently derived unit clauses are at the end of Q1),
and Q2 is empty. The unit clauses derived during the application of unit
propagation are stored in Q2, and unit propagation does not use any unit
clause from Q1 unless Q2 is empty. Intuitively, this ordering prefers unit
clauses which were non-unit clauses before starting the application of unit
propagation. This way, the derived inconsistent subset contains, in gen-
eral, less unit clauses. The unit clauses which have not been consumed
will contribute to detect further inconsistent subsets. Our experimental
results presented in [31] show that the search tree size of MaxSat12 is sub-
stantially smaller than that of UP, and MaxSat12 is substantially faster
than UP. MaxSat0, Maxsat1234, and MaxSatz use the same ordering as
MaxSat12 for propagating unit clauses in unit propagation.

The source code of MaxSat0, MaxSat12, MaxSat1234, and MaxSatz
can be found at http://web.udl.es/usuaris/m4372594/jair-maxsatz-
solvers.zip

7 Experimental Results

We report on the experimental investigation performed for unweighted
Max-SAT in order to evaluate the inference rules defined in Section 4, and
to compare MaxSatz with the best performing state-of-the-art solvers.
The experiments were performed on a Linux Cluster with processors
2 GHz AMD Opteron with 1 Gb of RAM.

The structure of this section is as follows. We first describe the solvers
and benchmarks that we have considered. Then, we present the experi-
mental evaluation of the inference rules. Finally, we show the experimental
comparison of MaxSatz with other solvers.

7.1 Solvers and benchmarks

MaxSatz was compared with the following Max-SAT solvers:

– BF2 [8]: a branch and bound Max-SAT solver which uses MOMS as
dynamic variable selection heuristic and does not consider underesti-
mations in the computation of the lower bound. It was developed by
Borchers & Furman in 1999.

2 Downloaded in October 2004 from http://infohost.nmt.edu/˜borchers/satcodes.tar.gz

– AGN3 [1]: a branch and bound Max-2SAT solver. It was developed by
Alber, Gramm &Niedermeier in 1998.

– AMP4 [3]: a branch and bound Max-SAT solver based on BF that in-
corporates a lower bound of better quality and the Jeroslow-Wang
variable selection heuristic [21]. It was developed by Alsinet, Manyà
& Planes and presented at SAT-2003.

– toolbar5 [15, 22]: a Max-SAT solver whose inference was inspired in
soft arc consistency properties implemented in weighted CSP solvers.
It was developed by de Givry, Larrosa, Meseguer & Schiex and was
first presented at CP-2003. We used version 2.2 with default parame-
ters.

– MaxSolver6 [39]: a branch and bound Max-SAT solver that applies a
number of efficient inference rules. It is developed by Xing &Zhang
and presented at CP-2004. We used the second release of this solver.

– Lazy7 [5]: a branch and bound Max-SAT solver with lazy data struc-
tures and a static variable selection heuristic. It was developed by
Alsinet, Manyà & Planes and presented at SAT-2005.

– UP8 [30]: a branch and bound Max-SAT solver with the lower bound
computation method based on unit propagation (cf. Section 3). It was
developed by Li, Manyà & Planes and presented at CP-2005.

All solvers we used in the experimentation were obtained in (or before)
October 2005.

We used as benchmarks randomly generated Max-2SAT instances and
Max-3SAT instances, graph 3-coloring instances9, as well as Max-Cut in-
stances10. Additionally, the benchmarks submitted to the Max-SAT eval-
uation of the conference SAT-2006 are considered, including the problems

3 Downloaded in October 2005 from http://www-fs.informatik.uni-
tuebingen.de/˜gramm/

4 Available at http://web.udl.es/usuaris/m4372594/software.html
5 Downloaded in October 2005 from http://carlit.toulouse.inra.fr/cgi-

bin/awki.cgi/ToolBarIntro
6 Downloaded in October 2005 from http://cic.cs.wustl.edu/maxsolver/
7 Available at http://web.udl.es/usuaris/m4372594/software.html
8 Available at http://web.udl.es/usuaris/m4372594/software.html
9 Given an undirected graph G = (V, E), where V = {x1, . . . , xn} is the set of vertices

and E is the set of edges, and a set of three colors, the graph 3-coloring problem is
the problem of coloring every vertex with one of the three colors in such a way that,
for each edge (xi, xj) ∈ E, vertex xi and vertex xj do not have the same color.

10 Given an undirected graph G = (V, E), let wxi,xj
be the weight associated with each

edge (xi, xj) ∈ E. The weighted Max-Cut problem is to find a subset S of V such
that W (S,S) =

P

xi∈S,xj∈S
wxi,xj

is maximized, where S = V − S. In this paper,

we set weight wxi,xj
= 1 for all edges.

Max-Cut, Max-Ones, Ramsey numbers and random Max-2SAT and Max-
3SAT instances.

We generated Max-2SAT instances and Max-3SAT instances using the
generator mwff.c developed by Bart Selman, which allows for duplicated
clauses. For Max-Cut, we first generated a random graph of m edges in
which every edge is randomly selected among the set of all possible edges.
If the graph is not connected, it is discarded. If the graph is connected,
we used the encoding of [36] to encode the Max-Cut instance into a CNF:
we created, for each edge (xi, xj), exactly two binary clauses (xi∨xj) and
(x̄i ∨ x̄j). If φ is the collection of such binary clauses, then the Max-Cut
instance has a cut of weight k iff the Max-SAT instance has an assignment
under which m + k clauses are satisfied.

For graph 3-coloring, we first used Culberson’s generator to generate
a random k-colorable graph of type IID (independent random edge as-
signment, variability=0) with k vertices and a fixed edge density. We then
used Culberson’s converter to SAT with standard conversion and three
colors to generate a Max-SAT instance: for each vertex xi and for each
color j ∈ {1, 2, 3}, a propositional variable xij is defined meaning that
vertex i is colored with color j. For each vertex xi, four clauses are added
to encode that the vertex is colored with exactly one color: xi1∨xi2∨xi3,
x̄i1 ∨ x̄i2, x̄i1 ∨ x̄i3, and x̄i2 ∨ x̄i3; and, for each edge (xi, xj), three clauses
are added to encode that vertex xi and vertex xj do not have the same
color: x̄i1 ∨ x̄j1, x̄i2 ∨ x̄j2, and x̄i3 ∨ x̄j3.

In random Max-2SAT and Max-3SAT instances, clauses are entirely
independent to each other and do not have any intended meaning. In
the graph 3-coloring instances and Max-Cut instances used in this paper,
clauses are not independent and subsets of clauses have a precise intended
meaning. In other words, the graph 3-coloring instances and Max-Cut
instances are structured instances, although the underlying graphs are
random. For example, in a Max-Cut instance, every time we have a clause
xi∨xj, we also have the clause x̄i∨x̄j; the satisfaction of these two clauses
means that the corresponding edge is in the cut. In a graph 3-coloring
instance, every time we have a ternary clause xi1∨xi2∨xi3 encoding that
vertex i is colored with at least a color, we also have three binary clauses
x̄i1 ∨ x̄i2, x̄i1 ∨ x̄i3, and x̄i2 ∨ x̄i3 encoding that vertex i cannot be colored
with two or more colors. While a Max-Cut instance only contains binary
clauses, a graph 3-coloring instance contains a ternary clause for every
vertex in the graph.

The Max-Cut and Ramsey numbers instances submitted to the Max-
SAT evaluation 2006 contain different structures. For example, the un-

derlying graphs in the submitted Max-Cut instances have different ori-
gins such as fault diagnosis problems, coding theory problems, and graph
clique problems. Max-2SAT and Max-3SAT instances submitted to the
evaluation do not contain duplicated clauses.

For each problem instance we generated, we computed an upper bound
with a local search solver, which was used in all the solvers. We did not
provide any parameter to any solver except the instance to be solved and
the initial upper bound. In other words, we used the default values for
all the parameters. For problem instances in the benchmarks submitted
to Max-SAT evaluation 2006, all solvers ran in the same condition as in
the evaluation, i.e., no initial upper bound is provided to the solvers.

7.2 Evaluation of the inference rules

In the first experiment performed to evaluate the impact of the inference
rules of Section 4, we solved sets of 100 random Max-2SAT instances with
50 and 100 variables; the number of clauses ranged from 400 to 4500 for
50 variables, and from 400 to 1000 for 100 variables. The results obtained
are shown in Figure 5. Along the horizontal axis is the number of clauses,
and along the vertical axis is the mean time (left plot), in seconds, needed
to solve an instance of a set, and the mean number of branches of the
proof tree (right plot). Notice that we use a log scale to represent both
run-time and branches.

We observe that the rules are very powerful for Max-2SAT and the
gain increases as the number of variables and the number of clauses in-
crease. For 50 variables and 1000 clauses (the clause to variable ratio is
20), MaxSatz is 7.6 times faster than MaxSat1234; and for 100 variables
and 1000 clauses (the clause to variable ratio is 10), MaxSatz is 9.2 times
faster than MaxSat1234. The search tree of MaxSatz is also substantially
smaller than that of MaxSat1234. Rule 5 and Rule 6 are more power-
ful than Rule 3 and Rule 4 for Max-2SAT. The intuitive explanation is
that MaxSatz and MaxSat1234 detect many more inconsistent subsets
of clauses containing one unit clause than subsets containing two unit
clauses, so that Rule 5 and Rule 6 can be applied many times more than
Rule 3 and Rule 4 in MaxSatz.

Recall that, on the one hand, every application of Rule 3 and Rule
4 consumes two unit clauses but only gives one empty clause, limiting
unit propagation in detecting more conflicts in subsequent search. On the
other hand, Rule 3 and Rule 4 add clauses which may contribute to detect
further conflicts. Depending on the number of clauses (or more precisely,
the clause to variable ratio) in a formula, these two factors have different

importance. When there are relatively few clauses, unit propagation rel-
atively does not easily derive a contradiction from a unit clause, and the
binary clauses added by Rule 3 and Rule 4 are relatively important for
deriving additional conflicts and improving the lower bound, which ex-
plains why the search tree of MaxSat1234 is smaller than the search tree
of MaxSat12 for instances of 100 variables and fewer than 600 clauses. On
the contrary, when there are many clauses, unit propagation easily derives
a contradiction from a unit clause, so that the two unit clauses consumed
by Rule 3 and Rule 4 probably would allow to derive two disjoint incon-
sistent subsets of clauses. In addition, the binary clauses added by Rule 3
and Rule 4 are relatively less important for deriving additional conflicts,
considering the large number of clauses in the formula. In this case, the
search tree of MaxSat1234 is larger than the search tree of MaxSat12.
However, in both cases, MaxSat1234 is faster that MaxSat12, meaning
that the incremental lower bound computation due to Rule 3 and Rule 4
is very effective, since the redetection of many conflicts is avoided thanks
to Rule 3 and Rule 4.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 400 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 100 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 400 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 100 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Fig. 5. Comparison among MaxSat12, MaxSat1234 and MaxSatz on random Max-
2SAT instances.

Rule 5 and Rule 6 do not limit unit propagation in detecting more
conflicts, since their application produces one empty clause and consumes
just one unit clause, which allows to derive at most one conflict in any
case. The added ternary clauses allow to improve the lower bound, so
that the search tree of MaxSatz is substantially smaller than the search
tree of MaxSat1234. The incremental lower bound computation due to
Rule 5 and Rule 6 also contributes to the time performance of MaxSatz.
For example, while the search tree of MaxSatz for instances with 50 vari-
ables and 2000 clauses is about 11.5 times smaller than the search tree of
MaxSat1234, MaxSatz is 14 times faster than MaxSat1234.

In the second experiment, we solved random Max-3SAT instances in-
stead of random Max-2SAT instances. We solved instances with 50 and 70
variables; the number of clauses ranged from 400 to 1200 for 50 variables,
and from 500 to 1000 for 70 variables. The results obtained are shown in
Figure 6.

 0.1

 1

 10

 100

 1000

 400 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 1000

 10000

 100000

 1e+06

 1e+07

 400 600 800 1000 1200

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 50 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-3SAT - 70 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 10000

 100000

 1e+06

 1e+07

 1e+08

 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 70 variables

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Fig. 6. Comparison among MaxSat12, MaxSat1234 and MaxSatz on random Max-
3SAT instances.

Although the rules do not involve ternary clauses, they are also pow-
erful for Max-3SAT. Similarly to Max-2SAT, Rule 3 and Rule 4 slightly
improve the lower bound when there are relatively few clauses, but do
not improve the lower bound when the number of clauses increases. They
improve the time performance thanks to the incremental lower bound
computation they allowed. The gain increases as the number of clauses
increases. For example, for problems with 70 variables, when the number
of clauses is 600, MaxSat1234 is 36% faster than MaxSat12 and, when
the number of clauses is 1000, the gain is 44%.

Rule 5 and Rule 6 improve both the lower bound and the time perfor-
mance of MaxSatz. The gain increases as the number of clauses increases.

In the third experiment we considered the Max-Cut problem for
graphs with 50 vertices and a number of edges ranging from 200 to 800.
Figure 7 shows the results of comparing the inference rules on Max-Cut
instances. We observe that the rules allow us to solve the instances much
faster. Similarly to random Max-2SAT, Rule 3 and Rule 4 do not im-
prove the lower bound when there are many clauses, but improve the
time performance due to the incremental lower bound computation they
allowed. Rule 5 and Rule 6 are more powerful than Rule 3 and Rule 4 for
these instances, which only contain binary clauses but have some struc-
ture. In addition, the reduction of the tree size due to Rule 5 and Rule
6 contributes to the time performance of MaxSatz more than the incre-
mentality of the lower bound computation, as for random Max-2SAT. For
example, the search tree of MaxSatz for instances with 800 edges is 40
times smaller than the search tree of MaxSat1234, and MaxSatz is 47
times faster.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 200 300 400 500 600 700 800

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Fig. 7. Experimental results for Max-Cut

In the fourth experiment we considered graph 3-coloring instances
with 24 and 60 vertices, and with density of edges ranging from 20% to
90%. Figure 8 shows the results of comparing the inference rules on graph
3-coloring instances. We observe that Rule 1 and Rule 2 are not useful
for these instances; the tree size of MaxSat0 and MaxSat12 is almost the
same, and MaxSat12 is slower than MaxSat0. On the contrary, other rules
are very useful for these instances, especially because they allow to reduce
the search tree size by deriving better lower bounds.

 1e-04

 0.001

 0.01

 0.1

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 24 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 10

 100

 1000

 10000

 20 30 40 50 60 70 80 90

B
ra

nc
he

s
(lo

g
sc

al
e)

% of edges

Graph 3-coloring 24 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 1

 10

 100

 1000

 10000

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 60 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

 100000

 1e+06

 1e+07

 1e+08

 20 30 40 50 60 70 80 90

B
ra

nc
he

s
(lo

g
sc

al
e)

% of edges

Graph 3-coloring 60 nodes

MaxSat0
MaxSat12

MaxSat1234
MaxSatz

Fig. 8. Experimental results for Graph 3-Coloring

Note that Rule 3 and Rule 4 are more powerful than Rule 5 and Rule
6 for large instances. This is probably due to the fact that two unit clauses
are needed to detect a contradiction, so that Rule 3 and Rule 4 are applied
many more times. Also note that the instances with 60 vertices become
easier to solve when the density of the graph is high.

In the fifth experiment, we compared different inference rules on the
benchmarks submitted to the Max-SAT Evaluation 2006. Solvers ran in

the same conditions as in the evaluation. In Table 1, the first column
is the name of the benchmark set, the second column is the number of
instances in the set, and the rest of columns display the average time, in
seconds, needed by each solver to solve an instance (the number of solved
instances in brackets). The maximum time allowed to solve an instance
was 30 minutes.

In is clear that MaxSat12 is better than MaxSat0, MaxSat1234 is
better than MaxSat12, and MaxSatz is better than MaxSat1234. For ex-
ample, MaxSatz solves three MAXCUT johnson instances within the time
limit, while other solvers solve only two. The average time for MaxSatz
to solve one of these three instances is 44.46 seconds, the third instance
needing more time to be solved than the first two ones.

Set Name #Instances MaxSat0 MaxSat12 MaxSat1234 MaxSatz

MAXCUT brock 11 401.47(9) 265.07(11) 215.40(11) 13.17(11)
MAXCUT c-fat 7 1.92 (5) 3.11 (5) 2.84 (5) 0.07(5)
MAXCUT hamming 6 39.42(2) 29.43(2) 29.48(2) 171.30(3)
MAXCUT johnson 4 14.91(2) 8.57 (2) 7.21 (2) 44.46(3)
MAXCUT keller 2 512.66(2) 213.64(2) 163.26(2) 6.82(2)
MAXCUT p hat 12 72.16(9) 286.09(12) 226.24(12) 16.81(12)
MAXCUT san 11 801.95(7) 305.75(7) 245.70(7) 258.65(11)
MAXCUT sanr 4 323.67(3) 134.74(3) 107.76(3) 71.00(4)
MAXCUT max cut 40 610.28(35) 481.48(40) 450.05(40) 7.18(40)
MAXCUT SPINGLASS 5 0.22 (2) 0.19 (2) 0.15 (2) 0.14(2)
MAXONE 45 0.03 (45) 0.03 (45) 0.03 (45) 0.03(45)
RAMSEY 48 8.93 (34) 8.42 (34) 7.80 (34) 7.78(34)
MAX2SAT 100VARS 50 95.01(50) 11.30(50) 8.14 (50) 1.25(50)
MAX2SAT 140VARS 50 153.28(49) 51.76(50) 34.14(50) 6.94(50)
MAX2SAT 60VARS 50 1.35 (50) 0.08 (50) 0.06 (50) 0.02(50)
MAX2SAT DISCARDED 180 126.98(162) 71.85(173) 68.97(175) 22.72(180)
MAX3SAT 40VARS 50 11.52(50) 3.33 (50) 2.52 (50) 1.92(50)
MAX3SAT 60VARS 50 167.17(50) 72.72(50) 52.14(50) 40.27(50)

Table 1. Rule evaluation by benchmarks in the MAX-SAT Evaluation 2006.

7.3 Comparison of MaxSatz with other solvers

In the first experiment, that we performed to compare MaxSatz with
other state-of-the-art Max-SAT solvers, we solved sets of 100 random
Max-2SAT instances with 50, 100 and 150 variables; the number of clauses
ranged from 400 to 4500 for 50 variables, from 400 to 1000 for 100 vari-
ables, and from 300 to 650 for 150 variables. The results of solving such in-
stances with BF, AGN, AMP, Lazy, toolbar, MaxSolver, UP and MaxSatz
are shown in Figure 9. Along the horizontal axis is the number of clauses,
and along the vertical axis is the mean time, in seconds, needed to solve
an instance of a set. When a solver spent too much time to solve the

instances at a point, it was stopped and the corresponding point is not
showed in the figure. That is why for 50 variable instances, BF has only
one point in the figure (for 400 clauses); and for 100 variable instances,
BF and AMP also have only one point in the figure (for 400 clauses). The
version of MaxSolver we used limits the number of clauses to 1000 in the
instances to be solved. We ran it for instances up to 1000 clauses.

We see dramatic differences on performance between MaxSatz and the
rest of solvers in Figure 9. For the hardest instances, MaxSatz is up to two
orders of magnitude faster than the second best performing solvers (UP).
For those instances, MaxSatz needs 1 second to solve an instance while
solvers like MaxSolver and toolbar are not able to solve these instances
after 10,000 seconds.

In the second experiment, we solved random Max-3SAT instances
instead of random Max-2SAT instances. The results obtained are shown
in Figure 10.

We did not consider AGN because it can only solve Max-2SAT in-
stances. We solved instances with 50, 70 and 100 variables; the number of
clauses ranged from 500 to 1200 for 50 variables, from 500 to 1000 for 70
variables, and from 450 to 800 for 100 variables. For 70 variables, AMP
has only one point in the figure (for 500 clauses) and BF is too slow.
For 100 variables, we compared only the two best solvers. Once again, we
observe dramatic differences on the performance profile of MaxSatz and
the rest of solvers. Particularly remarkable are the differences between
MaxSatz and toolbar (the second best performing solver on Max-3SAT),
where we see that MaxSatz is up to 1,000 times faster than toolbar on
the hardest instances.

In the third experiment, we considered the Max-Cut problem of graphs
with 50 vertices and a number of edges ranging from 200 to 700. Figure 11
shows the results obtained. BF has only one point in the figure (for 200
edges). MaxSolver solved instances up to 500 edges (1000 clauses). We
observe that MaxSatz is superior to the rest of solvers.

In the fourth experiment, we considered the 3-coloring problem of
graphs with 24 and 60 vertices, and a density of edges ranging from 20%
to 90%. AGN was not considered because it can only solve Max-2SAT
instances. For 60 vertices, we only compared the three best solvers, of
which MaxSolver is a different version not limiting the number of clauses
of the instance to be solved. Figure 12 shows the comparative results
for different solvers. MaxSatz is the best performing solver, and UP and
MaxSolver are substantially better than the rest of solvers.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 400 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 100 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 150 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

Fig. 9. Experimental results for 50-variable, 100-variable and 150-variable random
Max-2SAT instances.

 0.1

 1

 10

 100

 1000

 10000

 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

BF
AMP
Lazy

toolbar
MaxSolver

UP
MaxSatz

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 70 variables

AMP
Lazy

toolbar
MaxSolver

UP
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 100 variables

toolbar
MaxSatz

Fig. 10. Experimental results for 50-variable, 70-variable and 100-variable random
Max-3SAT instances.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600 700

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
MaxSatz

Fig. 11. Experimental results for Max-Cut

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 24 nodes

BF
AMP
Lazy

MaxSolver
toolbar

UP
MaxSatz

 1

 10

 100

 1000

 10000

 100000

 20 30 40 50 60 70 80 90

tim
e

(lo
g

sc
al

e)

% of edges

Graph 3-coloring 60 nodes

MaxSolver
UP

MaxSatz

Fig. 12. Experimental results for Graph 3-Coloring

In the fifth experiment, we compared the Max-SAT solvers on the
benchmarks submitted to the Max-SAT Evaluation 2006. Solvers ran in
the same conditions as in the evaluation. In Table 2, the first column
is the name of the benchmark set, the second column is the number of
instances of the set, and the rest of columns display the average time, in
seconds, needed by each solver to solve an instance within a time limit
of 30 minutes (the number of instances solved within the time limit in
brackets). A dash means that the corresponding solver cannot solve the
set of instances. It is clear that MaxSatz is the best performing solver for
all the sets.

8 Related Work

The simplest method to compute a lower bound consists in just counting
the number of clauses unsatisfied by the current partial assignment [8].
One step forward is to incorporate an underestimation of the number of
clauses that will become unsatisfied if the current partial assignment is
extended to a complete assignment. The most basic method was defined
in [38] by Wallace and Freuder:

LB(φ) = #emptyClauses(φ) +
∑

x occurs in φ

min(ic(x), ic(x̄))

where φ is the CNF formula associated with the current partial assign-
ment, and ic(x) (ic(x̄)) —inconsistency count of x (x̄)— is the number
of unit clauses of φ that contain x̄ (x).

The underestimation of the lower bound can be improved by applying
to binary clauses the Directional Arc Consistency (DAC) count defined
by Wallace in [37] for Max-CSP. The DAC count of a value of the variable
x in φ is the number of variables which are inconsistent with that value
of x. For example, if φ contains clauses x ∨ y, x ∨ ȳ, and x̄ ∨ y, the value
0 of x is inconsistent with y. Note that value 0 of y is also inconsistent
with x. These two inconsistencies are not disjoint and cannot be summed.
Wallace defined a direction from x to y, so that only the inconsistency for
value 0 of x is counted. After defining a direction between every pair of
variables sharing a constraint, one computes the DAC count for all values
of x by checking all variables to which a direction from x is defined. The
underestimation considering the DAC count of Wallace is as follows:

∑

x occurs in φ

(min(ic(x), ic(x̄)) + min(dac(x), dac(x̄))

Set Name #Instances BF AMP AGN toolbar Lazy MaxSolver UP MaxSatz

MAXCUT brock 11 (0) 545.81(1) 965.72(7) 449.12(11) 572.66 (9) (0) 508.85(8) 13.17(11)
MAXCUT c-fat 7 6.06 (1) 1.95 (3) 32.70(5) 42.84(5) 13.23 (4) 41.58(3) 7.19 (5) 0.07(5)
MAXCUT hamming 6 (0) 636.04(1) 159.99(1) 145.84(2) 265.35 (2) (0) 294.89(2) 171.30(3)
MAXCUT johnson 4 (0) 394.17(2) 92.90(2) 11.07(2) 13.50 (2) 1.34 (1) 29.42(2) 44.46(3)
MAXCUT keller 2 (0) 197.15(1) 39.36(1) 255.39(2) 348.75 (2) (0) 615.54(2) 6.82 (2)
MAXCUT DIMACS p hat 12 605.44(2) 107.79(8) 16.11(8) 235.60(11) 259.33 (10) 14.00(8) 140.23(9) 16.81(12)
MAXCUT san 11 (0) 563.19(1) 72.35(2) 568.09(7) 956.54 (5) 283.34(2) 812.47(5) 258.65(11)
MAXCUT sanr 4 (0) 428.18(1) 909.32(3) 234.89(3) 410.53 (3) 138.32(1) 538.10(3) 71.00(4)
MAXCUT max cut 40 (0) (0) 1742.79(3) 736.34(18) 1027.21 (7) (0) 623.03(13) 7.18(40)
MAXCUT SPINGLASS 5 0.21 (1) 0.13 (1) 12.70(2) 5.72 (2) 0.05 (1) 570.68(2) 0.86 (2) 0.14(2)
MAXONE 45 0.02 (21) 0.03 (45) - 35.35(44) 278.58 (26) 0.06 (45) 0.31 (45) 0.03 (45)
RAMSEY ram k 48 8.53 (30) 38.44(30) - 4.14(27) 10.48 (25) 0.20 (20) 19.65(25) 7.78 (34)
MAX2SAT 100VARS 50 0.14 (10) 143.23(11) 185.69(30) 244.05(34) 273.44 (22) 532.47(16) 192.34(48) 1.25 (50)
MAX2SAT 140VARS 50 0.08 (10) 91.93(12) 126.34(28) 262.30(26) 217.12 (17) 168.42(18) 75.57(39) 6.94 (50)
MAX2SAT 60VARS 50 1.92 (3) 514.02(44) 6.34 (50) 2.01 (50) 26.44 (50) 81.82(50) 0.94 (50) 0.02 (50)
MAX2SAT DISCARDED 180 357.65(28) 439.54(76) 99.70(108) 178.23(116) 85.08 (87) 308.58(73) 166.29(149) 22.72(180)
MAX3SAT 40VARS 50 170.49(22) 202.18(50) - 10.19 (50) 69.72 (50) 66.34(49) 60.50(50) 1.92(50)
MAX3SAT 60VARS 50 4.07 (16) 168.00(25) - 361.95(43) 242.40 (28) 139.03(22) 166.76(37) 40.27(50)

Table 2. Experimental results for benchmarks in the MAX-SAT Evaluation 2006.

where dac(x) (dac(x̄)) is the DAC count of the value 1(0) of x. In [37],
all directions are statically defined, so that dac(x) and dac(x̄) can be
computed in a preprocessing step for every x and do not need to be re-
computed during search. This is improved in [25] by introducing reversible
DAC, which searches for better directions to obtain a better LB at every
step of search. A further improvement of DAC count is the additional in-
corporation of inconsistencies contributed by disjoint subsets of variables,
based on particular variable partitions [24].

Inconsistent and DAC counts deal with unit and binary clauses. Lower
bounds dealing with longer clauses include star rule [35, 4] and UP [30].

In the star rule, the underestimation of the lower bound is the number
of disjoint inconsistent subformulas of the form {l1, . . . , lk, l̄1 ∨ · · · ∨ l̄k}.
The star rule, when k = 1, is equivalent to inconsistency counts of Wallace
and Freuder.

UP subsumes the inconsistent count method based on unit clauses
and the star rule. Its effectiveness for producing a good lower bound
can be illustrated with the following example: let φ be a CNF formula
containing the clauses x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3 ∨ x4, x5, x̄5 ∨ x6, x̄5 ∨
x7, x̄6 ∨ x̄7 ∨ x̄4. UP easily detects that inconsistent subset with 8 clauses
and 7 variables, in time linear in the size of the formula. Note that this
subset is not detected by any of the lower bounds described above, except
for the variable partition based approach of [24] in the case that the 7
variables are in the same partition.

We mention two more lower bound computation methods. One is
called LB4 [35] and was defined by Shen and Zhang. It is similar to UP
but restricted to Max-2SAT instances and using a static variable order-
ing. Another is based on linear programming and was defined by Xing
and Zhang [40].

A good lower bound computation method has a dramatic impact on
the performance of a Max-SAT solver. Another approach to speed up a
Max-SAT solver consists in applying inference rules to transform a Max-
SAT instance φ into an equivalent but simpler Max-SAT instance φ′.
Inference rules that have proven to be useful in practice include: (i) the
pure literal rule, that was applied in [3, 39, 44, 30, 45]; (ii) the dominating
unit clause rule, first proposed by Niedermeier and Rossmanith [33], and
applied in [4, 39, 30]; (iii) the almost common clause rule, first proposed
by Bansal and Raman [6] and restated as Rule 1 in this paper. It was
extended to weighted Max-SAT in [4]; that rule was called neighborhood
resolution in [22] and used as a preprocessing technique in [4, 30, 36];
(iv) the complementary unit clause rule [33], restated as Rule 2 in this

paper; and (v) the coefficient-determining unit propagation rule [40] based
on integer programming.

The inference rules presented in this paper simplify a Max-SAT for-
mula φ and allow to improve the lower bound computation, since they all
transform a Max-SAT formula φ into a simpler and equivalent formula
containing more empty clauses. Their soundness, i.e. the fact they trans-
form a formula into an equivalent one, can be proved in several ways,
including, (i) checking all possible variable assignments, (ii) using integer
programming as done in Section 4, and (iii) using soft local consistency
techniques defined for Weighted Constraint Networks (WCN), since Max-
SAT is a subcase of WCN where variables are Boolean and only unit costs
are used.

Soft local consistency techniques for WCN are based on two basic
equivalence preserving transformations called projection and extension

[34, 11]. Given a Max-SAT instance, projection replaces two binary clauses
x ∨ y and x ∨ ȳ by a unit clause x, which is Rule 1 for k=2. Extension
is the inverse operation of projection and replaces a unit clause x by two
binary clauses x ∨ y and x ∨ ȳ for a selected variable y. If the projection
operation is rather straightforward for a SAT or Max-SAT instance, the
extension operation is very ingenious. To see this, note that Rule 3 can
be proved or applied with an extension followed by a projection:

l1, l̄1 ∨ l̄2, l2 = l1 ∨ l2, l1 ∨ l̄2, l̄1 ∨ l̄2, l2

= l1 ∨ l2, l̄2, l2

= l1 ∨ l2,2

Lemma 1 can also be proved using an extension followed by a projec-
tion:

l1, l̄1 ∨ l2 = l1 ∨ l̄2, l1 ∨ l2, l̄1 ∨ l2

= l1 ∨ l̄2, l2

The extension operation obviously cannot be used in an unguided way,
since it may cancel a previous projection. One way to guide its use is to
define an ordering between variables to enforce directional arc consistency
[9, 11]. Directional arc consistency allows to concentrate weights on the
same variables by shifting weights from earlier variables to later ones in
a given ordering. For example if x1 < x2 in a given variable ordering, one
can extend unit clause x1 to x1 ∨ x2, x1 ∨ x̄2, but one cannot extend unit

clause x2 to x1 ∨ x2, x̄1 ∨ x2, allowing unit clauses to be concentrated on
variable x2. Nevertheless, how to define the variable ordering to efficiently
exploit as much as possible the power of soft arc consistency techniques
in the lower bound computation remains an open problem.

The projection and extension operations can be extended to con-
straints involving more than two variables to achieve high-order consis-
tency in WCN [10]. For a Max-SAT instance, the extended projection
and extension operations can be stated using Rule 1 for k>2. For the two
formulas φ1 and φ2 in Rule 1, replacing φ1 with φ2 is a projection and φ2

with φ1 is an extension. Given a unit clause x and three variables x, y,
z, the extension of the unit clause x to the set of three variables can be
done as follows : replacing x by x∨ y and x∨ ȳ, and then x∨ y and x∨ ȳ

by x ∨ y ∨ z, x ∨ y ∨ z̄, x ∨ ȳ ∨ z and x ∨ ȳ ∨ z̄.

Rule 5 can be proved or applied by extending the four clauses of
φ1 to ternary clauses on the three variables of l1, l2 and l3, and then
applying the projection operation to obtain φ2. This proof appears to be
longer than that using integer programming presented in Section 4, since
it appears that a number of intermediate ternary and binary clauses have
to be created.

Compared with general soft local consistency techniques of WCN, our
approach with inference rules for Max-SAT has the following features:

– the inference rules are identified and selected because they naturally
cooperate with unit propagation. On the one hand, their application is
entirely guided by unit propagation to be highly efficient and without
any predefined direction as in directional arc consistency enforcing.
On the other hand, they allow unit propagation to compute tighter
lower bounds and make the computation partially incremental during
search, since inconsistencies captured by inference rules do not need
to be rediscovered.

– general soft local consistency enforcing algorithms as presented in [11,
10] typically extend low-order constraints (shorter clauses) to high-
order constraints (longer clauses), and then project these high-order
constraints down to low-order constraints, implying a number of in-
termediate steps and generating a number of intermediate constraints
(clauses). Inference rules presented in this paper deal with inconsis-
tencies detected by unit propagation, and if applicable, they directly
replace the clauses implying the inconsistencies by equivalent clauses
without any intermediate step.

In [23], based on a logical approach, Larrosa, Heras and de Givry,
independently and in parallel with our work, defined and implemented a
chain resolution rule and a cycle resolution rule for weighted Max-SAT.
These two rules are extensions of Rules 2-RES and 3-RES presented, also
independently and in parallel with our work, in [19].

The chain resolution could be stated as follows:







(l1, u1),
(l̄i ∨ li+1, ui+1)1≤i<k,

(l̄k, uk+1)







=























(li,mi − mi+1)1≤i≤k,

(l̄i ∨ li+1, ui+1 − mi+1)1≤i<k,

(li ∨ l̄i+1,mi+1)1≤i<k,

(l̄k, uk+1 − mk+1),
(2,mk+1)























where, for 1≤i≤k+1, ui is the weight of the corresponding clause,
mi=min(u1, u2, ..., ui), and all variables in the literals are different. The
weight of a mandatory clause is denoted ⊤ and the subtraction − is ex-
tended so that ⊤−ui=⊤. The chain resolution rule is equivalent to Rule 4
if it is applied to unweighted Max-SAT. The main difference between the
chain resolution rule and the weighted version of Rule 4 presented in Sec-
tion 5.4 is that the chain resolution shifts a part of the weight from unit
clause (l1,m1 −mk+1), that is derived in the weighted version of Rule 4,
to create unit clauses (li,mi−mi+1)1<i≤k, (l1,m1−mk+1) itself becoming
(l1,m1 − m2).

The cycle resolution rule could be stated as follows:

{

(l̄i ∨ li+1, ui)1≤i<k,

(l̄1 ∨ l̄k, uk)

}

=































(l̄1 ∨ li,mi−1 − mi)2≤i≤k,

(l̄i ∨ li+1, ui − mi)2≤i<k,

(l̄1 ∨ li ∨ l̄i+1,mi)2≤i<k,

(l1 ∨ l̄i ∨ li+1,mi)2≤i<k,

(l̄1 ∨ l̄k, uk − mk),
(l̄1,mk)































When a subset of binary clauses have a cyclic structure, the cycle
resolution rule allows to derive a unit clause. Note that the detection of
the cyclic structure appears rather time-consuming if it is done at every
node of a search tree and that 2×(k-2) new ternary clauses have to be
inserted. So in [23], the cycle resolution rule is applied in practice only
for the case k=3, which is similar to Rule 5, when applied to unweighted
Max-SAT. The cycle resolution rule applied to unweighted Max-SAT for
k=3 can replace Rule 5 and Rule 6 in MaxSatz, but with the following
differences compared with Rule 5 and Rule 6:

– the application of Rule 5 and Rule 6 is entirely based on inconsistent
subformulas detected by unit propagation. The detection of the ap-
plicability of Rule 5 and Rule 6 is easy and has very low overhead,
since the inconsistent subformulas are always detected in MaxSatz to
compute the lower bound (with or without Rule 5 and Rule 6). Every
application of Rule 5 or Rule 6 allows to increment the lower bound
by 1.

– the cycle resolution rule needs an extra detection of the cyclic struc-
ture, but allows to derive a unit clause from the cyclic structure. The
derived unit clause can then be used in a unit propagation to possi-
bly detect an inconsistent subformula that would increase the lower
bound by 1.

It would be an interesting future research topic to implement the
cycle resolution rule in MaxSat1234 (i.e., MaxSatz without Rule 5 and
Rule 6) to evaluate the overhead of detecting the cyclic structure and
the usefulness of the unit clauses and the ternary clauses derived using
the cycle resolution rule, and to compare the implemented solver with
MaxSatz. It would be also interesting to compare the chain resolution rule
and the cycle resolution rule with the weighted inference rules presented
in Section 5.4.

9 Conclusions and future work

One of the main drawbacks of state-of-the-art Max-SAT solvers is the
lack of suitable inference techniques that allow to detect as much con-
tradictions as possible and to simplify the formula at each node of the
search tree. Existing approaches put the emphasis on computing underes-
timations of good quality, but the problem with underestimations is that
the same contradictions are computed once and again. Furthermore, it
turns out that UP , one of the currently best performing underestima-
tions consisting of detecting disjoint inconsistent subsets of clauses in a
CNF formula via unit propagation, is still too conservative. To make lower
bound computation more incremental and to improve the underestima-
tion, we have defined a number of original inference rules for Max-SAT
that, based on derived contradictions by unit propagation, transform a
Max-SAT instance into an equivalent Max-SAT instance which is easier
to solve. The rules were carefully selected taking into account that they
should be applied efficiently. Since all these rules are based on contra-
diction detection, they should be particularly useful for hard Max-SAT
instances containing many contradictions.

Aiming to find out how powerful the inference rules are in practice,
we have developed a new Max-SAT solver, called MaxSatz, which incor-
porates those rules, and performed an experimental investigation. The
results of comparing MaxSatz with inference rules and MaxSatz without
inference rules provide empirical evidence of the usefulness of these rules
in making lower bound computation more incremental and in improving
the quality of lower bounds. The results of comparing MaxSatz with the
best existing solvers provide empirical evidence that MaxSatz, at least
for the instances solved, is faster than other solvers. We observed gains
of several orders of magnitude for the hardest instances. Interestingly,
for the benchmarks used, the second best solver was generally different:
UP for Max-2SAT, toolbar for Max-3SAT, MaxSolver for Max-Cut, and
MaxSolver and UP for graph 3-coloring. So, MaxSatz is more robust than
the rest of solvers. It is worth mentioning that MaxSatz enhanced with
a lower bound based on failed literal detection was the best performing
solver for unweighted Max-SAT instances in the First Max-SAT Evalua-
tion competing against four state-of-the-art solvers11.

As future work we plan to study the orderings of unit clauses in unit
propagation to maximize inference rule applications, and to define new
inference rules for ternary clauses. We are extending the results of this
paper to weighted Max-SAT which is more suitable for modeling problems
such as maximum clique, set covering and combinatorial auctions, as well
as constraint satisfaction problems such as hard instances of Model RB
[41, 42].

References

1. J. Alber, J. Gramm, and R. Niedermeier. Faster exact algorithms for hard prob-
lems: A parameterized point of view. In 25th Conf. on Current Trends in Theory
and Practice of Informatics, LNCS, pages 168–185. Springer-Verlag, November
1998.

2. T. Alsinet, F. Manyà, and J. Planes. Improved branch and bound algorithms for
Max-2-SAT and weighted Max-2-SAT. In Proceedings of the Catalonian Conference
on Artificial Intelligence, 2003.

3. T. Alsinet, F. Manyà, and J. Planes. Improved branch and bound algorithms for
Max-SAT. In Proceedings of the 6th International Conference on the Theory and
Applications of Satisfiability Testing, 2003.

4. T. Alsinet, F. Manyà, and J. Planes. A Max-SAT solver with lazy data structures.
In Proceedings of the 9th Ibero-American Conference on Artificial Intelligence,
IBERAMIA 2004, Puebla, México, pages 334–342. Springer LNCS 3315, 2004.

5. T. Alsinet, F. Manyà, and J. Planes. Improved exact solver for weighted Max-SAT.
In Proceedings of the 8th International Conference on Theory and Applications of

11 see http://www.iiia.csic.es/˜maxsat06 for details

Satisfiability Testing, SAT-2005, St. Andrews, Scotland, pages 371–377. Springer
LNCS 3569, 2005.

6. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In
Proc 10th International Symposium on Algorithms and Computation, ISAAC’99,
Chennai, India, pages 247–260. Springer, LNCS 1741, 1999.

7. P. Beam, H. Kautz, and A. Sabharwal. Understanding the power of clause learning.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03), Acapulco, Mexico, pages 94–99. Morgan Kaufman, 2003.

8. B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and
weighted MAX-SAT problems. Journal of Combinatorial Optimization, 2:299–306,
1999.

9. M. C. Cooper. Reduction operations in fuzzy or valued constraint satisfaction.
Fuzzy Sets and Systems, 134:311–342, 2003.

10. M. C. Cooper. High-order consistency in valued constraint satisfaction. Con-
straints, 10:283–305, 2005.

11. M. C. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intel-
ligence, 154(1–2):199–227, 2004.

12. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

13. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

14. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

15. S. de Givry, J. Larrosa, P. Meseguer, and T. Schiex. Solving Max-SAT as weighted
CSP. In 9th International Conference on Principles and Practice of Constraint
Programming, CP-2003, Kinsale, Ireland, pages 363–376. Springer LNCS 2833,
2003.

16. S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Get-
ting closer to full arc consistency in weighted csps. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-05, Edinburgh, Scotland,
pages 84–89, 2005.

17. J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms.
PhD thesis, Department of Computer and Information Science, University of Penn-
sylvania, PA, USA, 1995.

18. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Proceed-
ings of Design, Automation and Test in Europe, DATE-2002, Paris, France, pages
142–149. IEEE Computer Society, 2001.

19. F. Heras and J. Larrosa. New inference rules for efficient Max-SAT solving. In Pro-
ceedings of the National Conference on Artificial Intelligence, AAAI-2006. Boston,
USA. AAAI Press, 2006.

20. W. Q. Huang and J. R. Chao. Solar: A learning from human algorithm for solving
SAT. Science in China (Series E), 27(2):179–186, 1997.

21. R. G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence, 1:167–187, 1990.

22. J. Larrosa and F. Heras. Resolution in Max-SAT and its relation to local consis-
tency in weighted CSPs. In Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI-2005, Edinburgh, Scotland, pages 193–198. Morgan
Kaufmann, 2005.

23. J. Larrosa, F. Heras, and S. Givry. A logical approach to efficient max-sat solving.
Submitted, 2006.

24. J. Larrosa and P. Meseguer. Partition-based lower bound for Max-CSP. Con-
straints, 7(3–4):407–419, 2002.

25. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.
Artificial Intelligence, 107(1):149–163, 1999.

26. C. M. Li. A constraint-based approach to narrow search trees for satisfiability.
Information Processing Letters, 71:75–80, 1999.

27. C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiabil-
ity problems. In Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI’97, Nagoya, Japan, pages 366–371. Morgan Kaufmann, 1997.

28. C. M. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems.
In Proceedings of the 3rd International Conference on Principles of Constraint
Programming, CP’97, Linz, Austria, pages 341–355. Springer LNCS 1330, 1997.

29. C. M. Li and W. Q. Huang. Diversification and determinism in local search for
satisfiability. In Proceedings of the 8th International Conference on Theory and
Applications of Satisfiability Testing, SAT-2005, St. Andrews, Scotland, pages 158–
172. Springer LNCS 3569, 2005.

30. C. M. Li, F. Manyà, and J. Planes. Exploiting unit propagation to compute
lower bounds in branch and bound Max-SAT solvers. In Proceedings of the 11th
International Conference on Principles and Practice of Constraint Programming,
CP-2005, Sitges, Spain, pages 403–414. Springer LNCS 3709, 2005.

31. C. M. Li, F. Manyà, and J. Planes. Detecting disjoint inconsistent subformulas
for computing lower bounds for max-sat. In Proceedings of the 21st National
Conference on Artificial Intelligence, AAAI’06, Boston, USA, pages 86–91. AAAI
Press, 2006.

32. J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

33. R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36:63–88, 2000.

34. T. Schiex. Arc consistency for soft constraints. In Proceedings of the 6th Interna-
tional Conference on Principles of Constraint Programming, CP-2000, Singapore,
pages 411–424. Springer LNCS 1894, 2000.

35. H. Shen and H. Zhang. Study of lower bound functions for max-2-sat. In Proceed-
ings of AAAI-2004, pages 185–190, 2004.

36. H. Shen and H. Zhang. Improving exact algorithms for max-2-sat. Annals of
Mathematics and Artificial Intelligence, 44:419–436, 2005.

37. R. J. Wallace. Directed arc consistency preprocessing. In Constraint Processing,
Selected Papers, Springer LNCS 923, pages 121–137, 1995.

38. R. J. Wallace and E. Freuder. Comparative studies of constraint satisfaction and
Davis-Putnam algorithms for maximum satisfiability problems. In D. Johnson and
M. Trick, editors, Cliques, Coloring and Satisfiability, volume 26, pages 587–615.
American Mathematical Society, 1996.

39. Z. Xing and W. Zhang. Efficient strategies for (weighted) maximum satisfiability.
In Proceedings of CP-2004, pages 690–705, 2004.

40. Z. Xing and W. Zhang. An efficient exact algorithm for (weighted) maximum
satisfiability. Artificial Intelligence, 164(2):47–80, 2005.

41. K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to generate
hard satisfiable instances. In Proc. of 19th International Joint Conference on
Artificial Intelligence (IJCAI), pages 337–342, 2005.

42. K. Xu and W. Li. Many hard examples in exact phase transitions. Theoretical
Computer Science, 355:291–302, 2006.

43. H. Zhang. SATO: An efficient propositional prover. In Conference on Automated
Deduction (CADE-97), pages 272–275, 1997.

44. H. Zhang, H. Shen, and F. Manya. Exact algorithms for MAX-SAT. In 4th Int.
Workshop on First order Theorem Proving, June 2003.

45. H. Zhang, H. Shen, and F. Manya. Exact algorithms for MAX-SAT. Electronic
Notes in Theoretical Computer Science, 86(1), 2003.

46. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In International Conference on Computer
Aided Design, ICCAD-2001, San Jose/CA, USA, pages 279–285, 2001.

