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Relational consistency
(Chapter 8)

\_

Relationa
Relationa

Relationa

arc-consistency
path-consistency
m-consistency

Relational consistency for
Boolean and linear constraints:

Unit-resolution is relational-arc-consistency

Pair-wise resolution is relational path-
consistency

Fall 2010

ICS 275 - Constraint Networks 2




Consider a constraint network over five integer domains,
where the constraints take the form of linear equations and
the domains are integers bounded by

D xin [-2,3]

D yin [-5,7]

R {xyz}=x+y=12

R {zth=z+t=1

From D_x and R_xyz infer z-y in [-2,3] from
this and D_y we can infer z in [-7,10]
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Let R be a constraint network , X={x_1,...,x_n},
D 1,...D n,R_Sarelation.

R_Sin R is relational-arc-consistent relative to x
In S, Iff any consistent instantiation of the
variables in S- {x} has an extension to a value
In D_x that satisfies R_S. Namely,

P —X)c 7 Ry ®D,

/
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If arc-consistency Is not satisfied add:

R, < R._ Nz, R ®D,
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Example

R {xyz} ={(a,a,a),(a,b,c),(b,b,c)}.

This relation is not relational arc-consistent, but if we
add the projection:

R _{xy}={(a,a),(a,b),(b,b)}, then R_{xyz} will be
relational arc-consistent relative to {z}.

To make this network relational-arc-consistent, we
would have to add all the projections of R_{xyz} with
respect to all subsets of its variables.

\_ /
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Let R_S and R_T be two constraints in a network.

R_S and R_T are relational-path-consistent relative to a
variable x in S U T iff any consistent instantiation of variables in
SN T - {x} has an extension to in the domain D_x, s.t. R_S and
R_T simultaneously;

p(A)c 7R ®R; ®D,
A=SUT —X

A pair of relations R_S and R_T is relational-path-consistent iff
it is relational-path-consistent relative to every variable in SNT.
A network is relational-path-consistent iff every pair of its

relations is relational-path-consistent. /
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/ D x in [-2,3] \
Example: D yin[-5,7]

R {xyz}:=x+y=2
R {ztly:=z+t=1

We can assign to X, Yy, | and t values that are
consistent relative to the relational-arc-consistent
network generated in earlier. For example, the
assignment

(X=2, y= -5, t=3, |=15) Is consistent, since only
domain restrictions are applicable, but no value of z
that satisfies x+y =z and z+t = |.

To make the two constraints relational path-
consistent relative to z add : x+y+t = 1.

\_ /
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If arc-consistency Is not satisfied add:
R, < R._ Nz, R ®D,
p(A) = 7,Rs @R ® D,

A=SUT —X
P(A) = ) ®iym Rs, ® D,

\”“'C A=S, U..S_ —X /
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Extended composition

The extended composition of relation R {S_1}, ..., R {S_m}
relative to A is defined by

EC,(R,...R,) = 7,(R, ®R,®,...®R )

If the projection operation is restricted to subsets of size i, it is
called extended (i,m)-composition.

Special cases: domain propagation and relational arc-
consistency

D, <D, "7, R, ® Dy

R, <R, Nz R ®Dq

\_ /
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Directional relational consistency

Given an ordering d, a constraint network R
IS m-directionally relationally consistent r.t d
Iff for every subset R _1... , R_m whose latest
variable is x_|, forevery Ain{x 1, ..., x {I-
1}, every consistent assignment to A can be
extended to x_| simultaneously satisfying all
these constraints.

\_ /
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Summary: directional i-consistency

E E E
p® Df// /e
C B‘ C@ ‘B = C‘B é
Adaptive d-path d-arc

E:ED,E-C, E#B
D:DC,D=A
C: C=%=B

\i:A;tB
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Example: crossword puzzie

R, 5.5 ={(@L0,S,E S).(L,A,S,ER),(S,ILEE,T),
(S,N,A,LL),(S,T,E,E,R)}

Ri601, ={(LLK,E),(A,R,O,N),(K,E,E, T), (E,A,R,N),
(S,A,M,E)}

Roon = (R,U.N),(8,U.N), (L E D (Y. E.S), (A, T, (T.E. N}

R

R

891011 — R36 12

10,13 E{(N ,0), (B,E),(U,S),(I, T)}

12,13 10,13

\_
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Example: crossword puzzie,

DRC_2

bucket(x)
bucket(x,)
bucket(x)
bucket(x,)
bucket(xs)
bucket(x)
bucket(x+)
bucket(xg)
bucket(xq)
bucket(x,y)
bucket(x,,)
bucket(x,5)

bucket(x,3)

r ™
Ris345
\
Hy 545
Riy60.12 H3,i5
\
H4,5l,69 12
Rs 711 \H5,6,9,12
H6,7l,9,11,12
H7,_f},11,12
Rg 10,11 \
Hﬁ),ll(v),ll Hy i1
\
Rioas Hl()lll 12

... exit.
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Complexity

\_

Even DRC_2 is exponential in the
iInduced-width.

Crossword puzzles can be made
directional backtrack-free by DRC 2
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Domain tightness

Theorem: a strong relational 2-consistent constraint
network over bi-valued domains is globally consistent.

Theorem: A strong relational k-consistent constraint network
with at most k values is globally consistent.

/
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Inference for Boolean theories

Resolution Is identical to Extended 2
decomposition

Boolean theories have domain size 2

Therefore DRC_2 makes a cnf globally
consistent.

DRC_2 expressed on cnfs iIs directional
resolution

\_ /
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Directional resolution

L.

DIRECTIONAL- RESOLUTION

Input: A CNFtheory ¢, an ordering d = ()4, ... , (), of its variables.
OutputA decision of whether ¢ is satisfiable. If it is, a theory E4(y),

equivalent to ¢, else an empty directional extension.
Initialize: generate an ordered partition of clauses into buckets.
buckety, ... , bucket,, where bucket; contains all clauses whose
highest literal is €);.
for i +— n downto 1 process bucket,;:
if there is a unit clause then (the instantiation step)
apply unit-resolution in bucket; and place the resolvents in their right buckets.
if the empty clause was generated, theory is not satisfiable.
else resolve each pair {(aV Q,), (8 V ~Q;)} C bucket;.
if v = a Vv 3 is empty, return F4(yp) = {}, theory is not satisfiable
else determine the index of v and add it to the appropriate bucket.
return E(p) « |J, bucket;

Figure 4.20: Directional-resolution
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DR resolution = adaptive-consistency=directional

relational path-consistency

Input

Bucket A

Bucket B | | -BVCVD /BVCVE———
L\

Bucket C

Bucket D ‘~ DVE

Bucket E ¥ /

Directional  Extension Eg

| bucket, |= O (exp(w"))
DR time and space :O(nexp(w"))

Width w=3
Induced width w'= 2
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/ Directional Resolution <
Adaptive Consistency

™

Knowledge compilation Model generation

.........................
..................

— -—

bucket A lﬁf BVC —AVBVE

bucket B || .pv VD BVCVEE; B—\
i T

A ~ '.

bucket C i\ HcC CVDVE c=0' |

\2 .

bucket D S DVE .~ p=1]/

{ bucket E

Directional Extension
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History

1960 — resolution-based Davis-Putnam algorithm

1962 — resolution step replaced by conditioning
(Davis, Logemann and Loveland, 1962) to avoid
memory explosion, resulting into a backtracking search

algorithm known as Davis-Putnam (DP), or DPLL procedure.

The dependency on induced width was not known in 1960.

1994 — Directional Resolution (DR), a rediscovery of
the original Davis-Putnam, identification of tractable classes
(Dechter and Rish, 1994).
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Complexity of DR

Theorem 4.7.6 {complezity of DR)

Given a theory @ and an ordering of its variables o, the time complexity of algorithm DR

along o is O(n-9"), and E,(p) contains at most n-3"+! clauses, where w is the induced
width of ¢’s interaction graph along o. O

2-cnfs and Horn theories

Theorem 4.7.7 Given a 2-cnf theory , its directional extension Eq(p) along any order-

ing o is of size O(n - w’?), and can be generated in O(n - w’?) time.

Theorem 4.7.8 The consistency of Horn theories can be determined by unit propagation.
If the empty clause is not generated, the theory is satisfiable. O
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Linear inequalities

™

Consider r-ary constraints over a subset of variables
Xx_1, ... x_rof the form

alx 1+..+arx r<=c,a_lare rational
constants. The r- ary mequalltles define
corresponding r-ary relations that are row convex.

Since r-ary linear inequalities that are closed under
relational path-consistency are row-convex, relative
to any set of integer domains (using the natural
ordering).

Proposition: A set of linear inequalities that is
closed under RC_2 is globally consistent.

/
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Linear inequalities

Gausian elimination with domain
constraint Is relational-arc-consistency

Gausian elimination of 2 inequalities Is
relational path-consistency

Theorem: directional relational path-

consistency Is complete for CNFs and
for linear inequalities

\_ /
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DIRECTIONAL-LINEAR-ELIMINATION (i, d)

Input: A set of linear inequalities @, an ordering d = x4, ... , Zy.

QOutputA decision of whether ¢ is satisfiable. If it is, a backtrack-

free theory Eg(p).

1. Initialize: Partition inequalities into ordered buckets.

2. for i «— n downto 1 do

3. if z; has one value in its domain then
substitute the value into each inequality in the bucket
and put the resulting inequality in the right bucket.

4. else,for each pair {a, 8} C bucket,, ccrmpute th eliry (o, )

if v has no solutions, return E4(p) = {}, “inconsistency”
else add « to the appropriate lcmer bucket.

\ 5. return Ey(y) «— | J. bucket;

Figure 4.22: Fourier Elimination; DLE
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Directional linear elimination, DLE :
generates a backtrack-free representation

Theorem 4.8.3 Given a set of linear inequalities @, algorithm DLE (Fourier elimina-
tion) decides the consistency of @ over the Rationals and the Reals, and it generates an
equivalent backtrack-free representation. O

\_ /
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Example

™
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brucket, :
buckets :
bruckets :

brckets : Bxa+3x2 — 31 < 5, Ta+m31 = 2. — 14 =< 1,
brckets : Tz =< 5, 1 + s — 3 =< —10
bruckets : x4, + 2+ =< 0.

bucketq :

Figure 4.23: initial buckets

DE4+ 3Ty — X1 <D, Ty + 131 <2, —xy <),
T3 <5, m1+x2—x3 < —10

1+ 279 <0 || 333 — 31 < 5,31 + 22 < =5
bucket; : || z; < 2.

Figure 4.24: final buckets

/
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