Advanced consistency methods Chapter 8

ICS-275 Spring 10

Relational consistency (Chapter 8)

- Relational arc-consistency
- Relational path-consistency
- Relational m-consistency
- Relational consistency for Boolean and linear constraints:
 - Unit-resolution is relational-arc-consistency
 - Pair-wise resolution is relational pathconsistency

Example

 Consider a constraint network over five integer domains, where the constraints take the form of linear equations and the domains are integers bounded by

• D_y in [-5,7]

- $R_{ztl} := z + t = 1$
- From D_x and R_xyz infer z-y in [-2,3] from this and D_y we can infer z in [-7,10]

Relational arc-consistency

Let R be a constraint network , $X = \{x_1, \dots, x_n\}$, D_1,...,D_n, R_S a relation.

R_S in R is relational-arc-consistent relative to x in S, iff any consistent instantiation of the variables in S- {x} has an extension to a value in D_x that satisfies R_S. Namely,

$$\rho(S-x) \subseteq \pi_{S-x}R_S \otimes D_x$$

Enforcing relational arc-consistency

If arc-consistency is not satisfied add:

$R_{S-x} \leftarrow R_{S-x} \cap \pi_{S-x} R_S \otimes D_S$

Example

- $R_{xyz} = \{(a,a,a), (a,b,c), (b,b,c)\}.$
- This relation is not relational arc-consistent, but if we add the projection:

 $R_{xy} = \{(a,a),(a,b),(b,b)\}, \text{ then } R_{xyz} \text{ will be relational arc-consistent relative to } \{z\}.$

 To make this network relational-arc-consistent, we would have to add all the projections of R_{xyz} with respect to all subsets of its variables.

Relational path-cosistency

- Let R_S and R_T be two constraints in a network.
- R_S and R_T are relational-path-consistent relative to a variable x in S U T iff any consistent instantiation of variables in S∩T - {x} has an extension to in the domain D_x, s.t. R_S and R_T simultaneously;

$$\rho(A) \subseteq \pi_A R_S \otimes R_T \otimes D_x$$
$$A = S \cup T - x$$

Example: **R_{xyz}:= x + y = z** D_x in [-2,3] D_y in [-5,7]

R_{zti}:= z + t = i

- We can assign to x, y, I and t values that are consistent relative to the relational-arc-consistent network generated in earlier. For example, the assignment
- (x=2, y= -5, t=3, l=15) is consistent, since only domain restrictions are applicable, but no value of z that satisfies x+y = z and z+t = l.
- To make the two constraints relational pathconsistent relative to z add : x+y+t = l.

Enforcing relational arc, path and mconsistency

If arc-consistency is not satisfied add: $R_{S-x} \leftarrow R_{S-x} \cap \pi_{S-x} R_S \otimes D_S$ r.a.c $\rho(A) \subseteq \pi_A R_S \otimes R_T \otimes D_r$ r.p.c $A = S \cup T - x$ $\rho(A) \subseteq \pi_A \otimes_{i=1,m} R_{S_i} \otimes D_x$ r.m.c $A = S_1 \cup \dots S_m - x$

Extended composition

 The extended composition of relation R_{S_1}, ..., R_{S_m} relative to A is defined by

 $EC_A(R_{1,\ldots},R_m) = \pi_A(R_1 \otimes R_2 \otimes,\ldots,\otimes R_m)$

- If the projection operation is restricted to subsets of size i, it is called extended (*i*,*m*)-composition.
- Special cases: domain propagation and relational arcconsistency

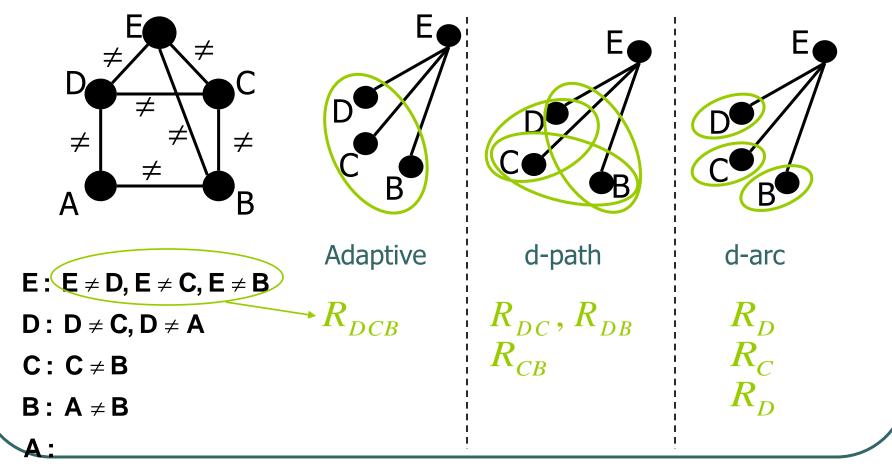
$$D_x \leftarrow D_x \cap \pi_x R_S \otimes D_S$$

$$R_{S-x} \leftarrow R_{S-x} \cap \pi_{S-x} R_S \otimes D_S$$

Directional relational consistency

Given an ordering *d*, a constraint network *R* is m-directionally relationally consistent r.t d iff for every subset R_1..., R_m whose latest variable is *x_l*, for every A in { *x_1*, ..., *x_{l-1*}, every consistent assignment to A can be extended to *x_l* simultaneously satisfying all these constraints.

Summary: directional i-consistency



Example: crossword puzzle

$$R_{1,2,3,4,5} = \{(H, O, S, E, S), (L, A, S, E, R), (S, H, E, E, T), (S, N, A, I, L), (S, T, E, E, R)\}$$

$$R_{3,6,9,12} = \{(H, I, K, E), (A, R, O, N), (K, E, E, T), (E, A, R, N), (S, A, M, E)\}$$

$$R_{5,7,11} = \{(R, U, N), (S, U, N), (L, E, T), (Y, E, S), (E, A, T), (T, E, N)\}$$

$$R_{8,9,10,11} = R_{3,6,9,12}$$

$$R_{10,13} = \{(N, O), (B, E), (U, S), (I, T)\}$$

$$I = I_{10,13}$$

1	2	3	+	5
		6		7
	8	9	10	11
		12	13	

Example: crossword puzzle, DRC_2



Complexity

Even DRC_2 is exponential in the induced-width.

 Crossword puzzles can be made directional backtrack-free by DRC_2

Domain tightness

- Theorem: a strong relational 2-consistent constraint network over bi-valued domains is globally consistent.
- **Theorem**: A strong relational k-consistent constraint network with at most k values is globally consistent.

Inference for Boolean theories

- Resolution is identical to Extended 2 decomposition
- Boolean theories have domain size 2
- Therefore DRC_2 makes a cnf globally consistent.
- DRC_2 expressed on cnfs is directional resolution

Directional resolution

DIRECTIONAL-RESOLUTION

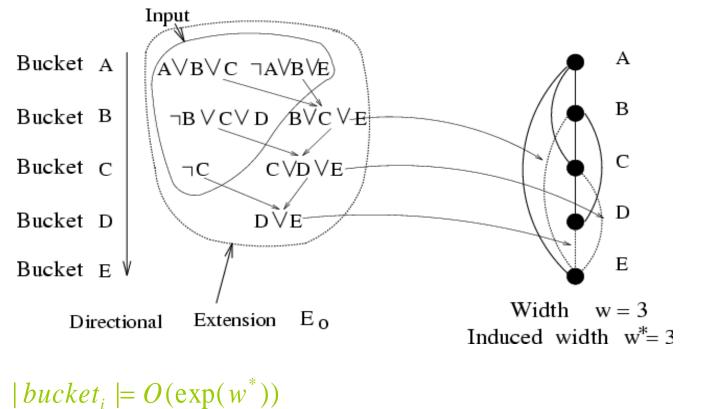
Input: A *CNF* theory φ , an ordering $d = Q_1, \ldots, Q_n$ of its variables.

- **OutputA** decision of whether φ is satisfiable. If it is, a theory $E_d(\varphi)$, equivalent to φ , else an empty directional extension.
- 1. Initialize: generate an ordered partition of clauses into buckets. $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all clauses whose highest literal is Q_i .
- 2. for $i \leftarrow n$ downto 1 process $bucket_i$:
- 3. **if** there is a unit clause **then** (the instantiation step) apply unit-resolution in $bucket_i$ and place the resolvents in their right buckets. **if** the empty clause was generated, theory is not satisfiable.
- 4. **else** resolve each pair $\{(\alpha \lor Q_i), (\beta \lor \neg Q_i)\} \subseteq bucket_i$.

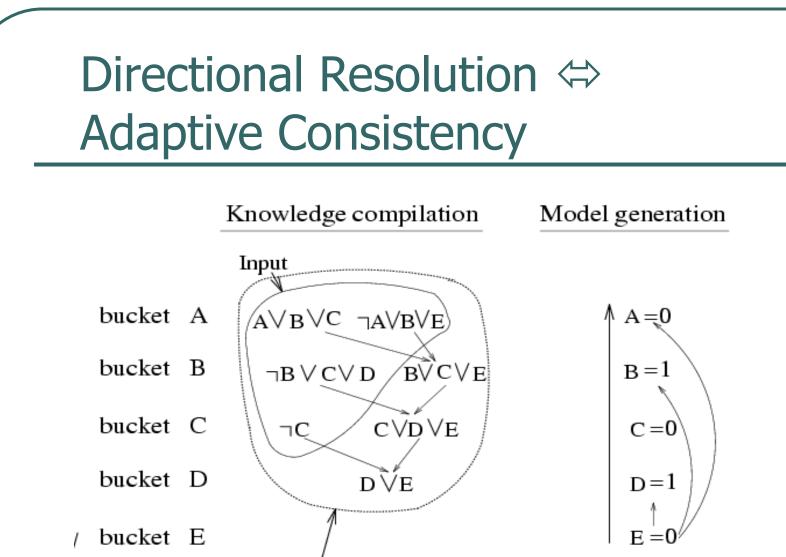
if $\gamma = \alpha \lor \beta$ is empty, return $E_d(\varphi) = \{\}$, theory is not satisfiable else determine the index of γ and add it to the appropriate bucket.

5. return $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

DR resolution = adaptive-consistency=directional relational path-consistency



DR time and space : $O(n \exp(w^*))$



Directional

Εo

Extension

History

- 1960 resolution-based Davis-Putnam algorithm
- 1962 resolution step replaced by conditioning (Davis, Logemann and Loveland, 1962) to avoid memory explosion, resulting into a backtracking search algorithm known as Davis-Putnam (DP), or DPLL procedure.
- The dependency on induced width was not known in 1960.
- 1994 Directional Resolution (DR), a rediscovery of the original Davis-Putnam, identification of tractable classes (Dechter and Rish, 1994).

Complexity of DR

Theorem 4.7.6 (complexity of DR)

Given a theory φ and an ordering of its variables o, the time complexity of algorithm DR along o is $O(n \cdot 9^{w_o^*})$, and $E_o(\varphi)$ contains at most $n \cdot 3^{w_o^*+1}$ clauses, where w_o^* is the induced width of φ 's interaction graph along o. \Box

• 2-cnfs and Horn theories

Theorem 4.7.7 Given a 2-cnf theory φ , its directional extension $E_o(\varphi)$ along any ordering o is of size $O(n \cdot w_o^{*2})$, and can be generated in $O(n \cdot w_o^{*2})$ time.

Theorem 4.7.8 The consistency of Horn theories can be determined by unit propagation. If the empty clause is not generated, the theory is satisfiable. \Box

Linear inequalities

- Consider r-ary constraints over a subset of variables x_1, ... x_r of the form
- a_1 x_1 + ... + a_r x_r <= c, a_i are rational constants. The r-ary inequalities define corresponding r-ary relations that are row convex.
- Since r-ary linear inequalities that are closed under relational path-consistency are row-convex, relative to any set of integer domains (using the natural ordering).
- Proposition: A set of linear inequalities that is closed under RC_2 is globally consistent.

Linear inequalities

- Gausian elimination with domain constraint is relational-arc-consistency
- Gausian elimination of 2 inequalities is relational path-consistency
- Theorem: directional relational pathconsistency is complete for CNFs and for linear inequalities

```
Directional-Linear-Elimination (\varphi, d)
```

Input: A set of linear inequalities φ , an ordering $d = x_1, \ldots, x_n$.

OutputA decision of whether φ is satisfiable. If it is, a backtrack-free theory $E_d(\varphi)$.

- 1. Initialize: Partition inequalities into ordered buckets.
- 2. for $i \leftarrow n$ downto 1 do
- 3. if x_i has one value in its domain then

substitute the value into each inequality in the bucket and put the resulting inequality in the right bucket.

4. else, for each pair $\{\alpha, \beta\} \subseteq bucket_i$, compute $\gamma = elim_i(\alpha, \beta)$ if γ has no solutions, return $E_d(\varphi) = \{\}$, "inconsistency" else add γ to the appropriate lower bucket.

5. return $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

Figure 4.22: Fourier Elimination; DLE

Directional linear elimination, DLE : generates a backtrack-free representation

Theorem 4.8.3 Given a set of linear inequalities φ , algorithm DLE (Fourier elimination) decides the consistency of φ over the Rationals and the Reals, and it generates an equivalent backtrack-free representation. \Box

Example

 $egin{aligned} bucket_4: & 5x_4+3x_2-x_1\leq 5, \ x_4+x_1\leq 2, \ -x_4\leq 0, \ bucket_3: & x_3\leq 5, \ x_1+x_2-x_3\leq -10 \ bucket_2: & x_1+2x_2\leq 0. \ bucket_1: \end{aligned}$

Figure 4.23: initial buckets

Figure 4.24: final buckets