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Look-back: 
Backjumping / Learning

 Backjumping:
• In deadends, go back to 

the most recent culprit.

 Learning:
• constraint-recording, no-

good recording.

• good-recording

Fall 2010



Backjumping

 (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})

 (r,b,b,b,g,r) conflict set of x7

 (r,-,b,b,g,-) c.s. of x7

 (r,-,b,-,-,-,-) minimal conflict-set

 Leaf deadend: (r,b,b,b,g,r)

 Every conflict-set is a no-good
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Gaschnig jumps only 

at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Backjumping styles

 Jump at leaf only (Gaschnig 1977)
• Context-based

 Graph-based (Dechter, 1990)
• Jumps at leaf and internal dead-ends, graph 

information

 Conflict-directed (Prosser 1993)
• Context-based, jumps at leaf and internal dead-ends
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Gaschnig’s 

backjumping:
Culprit variable

 If a_i is a leaf deadend and x_b its culprit variable, then a_b is a 

safe backjump destination and a_j, j<b is not.
 The culprit of x7 (r,b,b,b,g,r) is (r,b,b)  x3
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Gaschnig’s backjumping 

Implementation [1979]

 Gaschnig uses a marking technique to compute 

culprit.

 Each variable  xj maintains a pointer (latest_j) to the 

latest ancestor incompatible with any of its values. 

 While forward generating      , keep array latest_i, 

1<=j<=n, of pointers to the last value conflicted with 

some value of x_j

 The algorithm jumps from a leaf-dead-end x_{i+1} 

back to latest_(i+1) which is its culprit.

ia
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Gaschnig’s backjumping
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Example of Gaschnig’s backjump
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Properties

 Gaschnig’s backjumping implements 

only safe and maximal backjumps in 

leaf-deadends.
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Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Graph-based backjumping scenarios

Internal deadend at X4

 Scenario 1, deadend at x4: 

 Scenario 2: deadend at x5:

 Scenario 3: deadend at x7:

 Scenario 4: deadend at x6:
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Graph-based backjumping

 Uses only graph information to find culprit

 Jumps both at leaf and at internal dead-ends

 Whenever a deadend occurs at x, it jumps to the most 

recent variable  y connected to x in the graph. If y is an 

internal deadend it jumps back further to the most recent 

variable connected to x or y.

 The analysis of conflict is approximated by the graph.

 Graph-based algorithm provide graph-theoretic bounds.
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Ancestors and parents

 anc(x7) = {x5,x3,x4,x1}

 p(x7) =x5

 p(r,b,b,b,g,r) = x5
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Internal deadends analysis
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Graph-based backjumping algorithm,

but we need to jump at internal deadends too

When not all variables

In the session above

X_i are relevant deadends?

See example 6.6
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Properties of graph-based 

backjumping

 Algorithm graph-based backjumping jumps back at 

any deadend variable as far as graph-based 

information allows.

 For each variable, the algorithm maintains the 

induced-ancestor set I_i relative the relevant dead-

ends in its current session.

 The size of the induced ancestor set is at most w*(d).
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Conflict-directed backjumping
(Prosser 1990)

 Extend Gaschnig’s backjump to internal dead-ends.

 Exploits information gathered during search.

 For each variable the algorithm maintains an induced 

jumpback set, and jumps to most recent one.

 Use the following concepts:

• An ordering over variables induced a strict ordering 

between constraints: R_1<R_2<…R_t 

• Use earliest minimal consflict-set (emc(x_(i+1)) ) of a 

deadend.

• Define the jumpback set of a deadend
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Example of conflict-directed backjumping
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Properties

 Given a dead-end    , the latest variable in its 
jumpback set     is the earliest variable to which it is 
safe to jump.

 This is the culprit. 

 Algorithm conflict-directed backtracking jumps back 
to the latest variable in the dead-ends’s jumpback 
set, and is therefore safe and maximal.
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Conflict-directed backjumping
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Graph-based backjumping on DFS orderings
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Complexity of Graph-based Backjumping

 T_i= number of nodes in the AND/OR search space rooted at 

x_i (level m-i)

 Each assignment of a value to x_i generates subproblems:

• T_i = k b T_{i-1}

• T_0 = k

 Solution: 
1 mm

m kbT
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DFS of graph and induced graphs

Spanning-tree of a graph;

DFS spanning trees, BFS spanning trees.
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Complexity of  Backjumping

uses pseudo-tree analysis

Simple: always jump back to parent in pseudo tree

Complexity for csp: exp(tree-depth)

Complexity for csp: exp(w*log n)
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Look-back:  No-good Learning

 (x1=2,x2=2,x3=1,x4=2) is a 

dead-end

 Conflicts to record:

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x3=1,x4=2) binary

• (x4=2) unary

Learning means recording conflict sets

used as constraints to prune future 

search space.
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Learning, constraint recording

 Learning means recording conflict sets

 An opportunity to learn is when deadend is 

discovered.

 Goal of learning to not discover the same deadends.

 Try to identify small conflict sets

 Learning prunes the search space.
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Nogoods explain deadends

 Conflicts to record are explanations

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x1=2,x2=2,x3=1,x4=2) (x ≠1) and 

• (x3=1,x4=2) 

• (x4=2)  (x ≠1)

Learning means recording explanations to conflicts

They are implied constraints

(x ≠1)
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Learning example
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Learning Issues

 Learning styles

• Graph-based or context-based

• i-bounded, scope-bounded

• Relevance-based

 Non-systematic randomized learning

 Implies time and space overhead

 Applicable  to SAT
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Graph-based learning algorithm
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Deep learning

 Deep learning: recording all and only minimal 

conflict sets

 Example:

 Although most accurate, overhead is 

prohibitive: the number of conflict sets in the 

worst-case:
r

r

r
2

2/
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Jumpback Learning

 Record the jumpback assignment
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Bounded and relevance-based learning

Bounding the arity of constraints recorded.

 When bound is i: i-ordered graph-based,i-order jumpback or 

i-order deep learning.

 Overhead complexity of i-bounded learning is time and 

space exponential in i.
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Complexity of backtrack-learning 

(improved)

 Theorem: Any backtracking algorithm using graph-based 

learning along d has a space complexity                   and time 

complexity 

 (book). Refined more: 

 Proof: The number of deadends for each variable is                 , 

yielding                  deadends.There are at most kn values between 

two succesive deadends:                        number of nodes in the 

search space. Since at most                    constraints-checks we get                                 

.

 Improved more: If we have                     leaves, we have k to n 

times as many internal nodes, yielding between                        and 

nodes.
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Complexity of Backtrack-Learning

for CSP

The number of dead-ends is bounded by

Number of constraint tests per dead-end are

Space  complexity is 

Time  complexity is

Learning and backjumping: 

)(

)(

)*(2

)*(

dw

dw

kenO

nkO



 The complexity of learning along d is time and 

space exponential in w*(d): 

)( )*(dwnkO

)(eO

m- depth of tree, e- number of constraints
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Good caching:

Moving from one to all or counting

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

E

C

F

D

B

A 0 1

0 1

0 1 0 1 0 1

A

D

B C
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F
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Summary: 

time-space for constraint processing

 Constraint-satisfaction
• Search with backjumping 

• Space: linear, Time: O(exp(logn  w*))

• Search with learning no-goods
• time and space: O(exp(w*))

• Variable-elimination
• time and space:  O(exp(w*))

 Counting, enumeration
• Search with backjumping 

• Space: linear, Time: O(exp(n ))

• Search with no-goods caching only
• space:  O(exp(w*))  Time: O(exp(n))

• Search with goods and no-goods learning
• Time and space: O(exp(path-width), O(exp(log n w*))

• Variable-elimination
• Time and space:  O(exp(w*))
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Non-Systematic Randomized Learning

 Do search in a random way with interupts, restarts, 

unsafe backjumping, but record conflicts.

 Guaranteed completeness.
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Look-back for SAT

 A partial assignment is a set of literals:

 A jumpback set if a J-clause:

 Upon a leaf deadend of x resolve two clauses, one enforcing x 

and one enforcing ~x relative  to the current assignment

 A clause forces x relative to assignment      if all the literals in 

the clause are negated in      . 

 Resolving the two clauses we get a nogood.

 If we identify the earliest two clauses we will find the earliest 

condlict.

 The argument can be extended to internal deadends.
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Look-back for SAT
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Integration of algorithms
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Relationships between various 

backtracking algrithms
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Empirical comparison of algorithms

 Benchmark instances

 Random problems

 Application-based random problems

 Generating fixed length random k-sat 

(n,m) uniformly at random

 Generating fixed length random CSPs

 (N,K,T,C) also arity, r.
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The Phase transition (m/n)

Fall 2010



Some empirical evaluation

 Sets 1-3 reports average over 2000 instances of random 

csps from 50% hardness. Set 1: 200 variables, set 2: 300, 

Set 3: 350. All had  3 values.:

 Dimacs problems
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