
Backtracking search: look-back

ICS 275

Spring 2010

Fall 2010

Look-back:
Backjumping / Learning

 Backjumping:
• In deadends, go back to

the most recent culprit.

 Learning:
• constraint-recording, no-

good recording.

• good-recording

Fall 2010

Backjumping

 (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})

 (r,b,b,b,g,r) conflict set of x7

 (r,-,b,b,g,-) c.s. of x7

 (r,-,b,-,-,-,-) minimal conflict-set

 Leaf deadend: (r,b,b,b,g,r)

 Every conflict-set is a no-good

Fall 2010

Gaschnig jumps only

at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Backjumping styles

 Jump at leaf only (Gaschnig 1977)
• Context-based

 Graph-based (Dechter, 1990)
• Jumps at leaf and internal dead-ends, graph

information

 Conflict-directed (Prosser 1993)
• Context-based, jumps at leaf and internal dead-ends

Fall 2010

Gaschnig’s

backjumping:
Culprit variable

 If a_i is a leaf deadend and x_b its culprit variable, then a_b is a

safe backjump destination and a_j, j<b is not.
 The culprit of x7 (r,b,b,b,g,r) is (r,b,b) x3

Fall 2010

Gaschnig’s backjumping

Implementation [1979]

 Gaschnig uses a marking technique to compute

culprit.

 Each variable xj maintains a pointer (latest_j) to the

latest ancestor incompatible with any of its values.

 While forward generating , keep array latest_i,

1<=j<=n, of pointers to the last value conflicted with

some value of x_j

 The algorithm jumps from a leaf-dead-end x_{i+1}

back to latest_(i+1) which is its culprit.

ia

Fall 2010

Gaschnig’s backjumping

Fall 2010

Example of Gaschnig’s backjump

Fall 2010

Properties

 Gaschnig’s backjumping implements

only safe and maximal backjumps in

leaf-deadends.

Fall 2010

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Graph-based backjumping scenarios

Internal deadend at X4

 Scenario 1, deadend at x4:

 Scenario 2: deadend at x5:

 Scenario 3: deadend at x7:

 Scenario 4: deadend at x6:

Fall 2010

Graph-based backjumping

 Uses only graph information to find culprit

 Jumps both at leaf and at internal dead-ends

 Whenever a deadend occurs at x, it jumps to the most

recent variable y connected to x in the graph. If y is an

internal deadend it jumps back further to the most recent

variable connected to x or y.

 The analysis of conflict is approximated by the graph.

 Graph-based algorithm provide graph-theoretic bounds.

Fall 2010

Ancestors and parents

 anc(x7) = {x5,x3,x4,x1}

 p(x7) =x5

 p(r,b,b,b,g,r) = x5

Fall 2010

Internal deadends analysis

Fall 2010

Graph-based backjumping algorithm,

but we need to jump at internal deadends too

When not all variables

In the session above

X_i are relevant deadends?

See example 6.6

Fall 2010

Properties of graph-based

backjumping

 Algorithm graph-based backjumping jumps back at

any deadend variable as far as graph-based

information allows.

 For each variable, the algorithm maintains the

induced-ancestor set I_i relative the relevant dead-

ends in its current session.

 The size of the induced ancestor set is at most w*(d).

Fall 2010

Conflict-directed backjumping
(Prosser 1990)

 Extend Gaschnig’s backjump to internal dead-ends.

 Exploits information gathered during search.

 For each variable the algorithm maintains an induced

jumpback set, and jumps to most recent one.

 Use the following concepts:

• An ordering over variables induced a strict ordering

between constraints: R_1<R_2<…R_t

• Use earliest minimal consflict-set (emc(x_(i+1))) of a

deadend.

• Define the jumpback set of a deadend

Fall 2010

Example of conflict-directed backjumping

Fall 2010

Properties

 Given a dead-end , the latest variable in its
jumpback set is the earliest variable to which it is
safe to jump.

 This is the culprit.

 Algorithm conflict-directed backtracking jumps back
to the latest variable in the dead-ends’s jumpback
set, and is therefore safe and maximal.

ia

iJ

Fall 2010

Conflict-directed backjumping

Fall 2010

Graph-based backjumping on DFS orderings

Fall 2010

Complexity of Graph-based Backjumping

 T_i= number of nodes in the AND/OR search space rooted at

x_i (level m-i)

 Each assignment of a value to x_i generates subproblems:

• T_i = k b T_{i-1}

• T_0 = k

 Solution:
1 mm

m kbT

Fall 2010

DFS of graph and induced graphs

Spanning-tree of a graph;

DFS spanning trees, BFS spanning trees.

Fall 2010

Complexity of Backjumping

uses pseudo-tree analysis

Simple: always jump back to parent in pseudo tree

Complexity for csp: exp(tree-depth)

Complexity for csp: exp(w*log n)

Fall 2010

Look-back: No-good Learning

 (x1=2,x2=2,x3=1,x4=2) is a

dead-end

 Conflicts to record:

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x3=1,x4=2) binary

• (x4=2) unary

Learning means recording conflict sets

used as constraints to prune future

search space.

Fall 2010

Learning, constraint recording

 Learning means recording conflict sets

 An opportunity to learn is when deadend is

discovered.

 Goal of learning to not discover the same deadends.

 Try to identify small conflict sets

 Learning prunes the search space.

Fall 2010

Nogoods explain deadends

 Conflicts to record are explanations

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x1=2,x2=2,x3=1,x4=2) (x ≠1) and

• (x3=1,x4=2)

• (x4=2) (x ≠1)

Learning means recording explanations to conflicts

They are implied constraints

(x ≠1)

Fall 2010

Learning example

Fall 2010

Learning Issues

 Learning styles

• Graph-based or context-based

• i-bounded, scope-bounded

• Relevance-based

 Non-systematic randomized learning

 Implies time and space overhead

 Applicable to SAT

Fall 2010

Graph-based learning algorithm

Fall 2010

Deep learning

 Deep learning: recording all and only minimal

conflict sets

 Example:

 Although most accurate, overhead is

prohibitive: the number of conflict sets in the

worst-case:
r

r

r
2

2/

Fall 2010

Jumpback Learning

 Record the jumpback assignment

Fall 2010

Bounded and relevance-based learning

Bounding the arity of constraints recorded.

 When bound is i: i-ordered graph-based,i-order jumpback or

i-order deep learning.

 Overhead complexity of i-bounded learning is time and

space exponential in i.

Fall 2010

Complexity of backtrack-learning

(improved)

 Theorem: Any backtracking algorithm using graph-based

learning along d has a space complexity and time

complexity

 (book). Refined more:

 Proof: The number of deadends for each variable is ,

yielding deadends.There are at most kn values between

two succesive deadends: number of nodes in the

search space. Since at most constraints-checks we get

.

 Improved more: If we have leaves, we have k to n

times as many internal nodes, yielding between and

nodes.

Fall 2010

Complexity of Backtrack-Learning

for CSP

The number of dead-ends is bounded by

Number of constraint tests per dead-end are

Space complexity is

Time complexity is

Learning and backjumping:

)(

)(

)*(2

)*(

dw

dw

kenO

nkO

 The complexity of learning along d is time and

space exponential in w*(d):

)()*(dwnkO

)(eO

m- depth of tree, e- number of constraints

Fall 2010

Good caching:

Moving from one to all or counting

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

E

C

F

D

B

A 0 1

0 1

0 1 0 1 0 1

A

D

B C

E

F

Fall 2010

Summary:

time-space for constraint processing

 Constraint-satisfaction
• Search with backjumping

• Space: linear, Time: O(exp(logn w*))

• Search with learning no-goods
• time and space: O(exp(w*))

• Variable-elimination
• time and space: O(exp(w*))

 Counting, enumeration
• Search with backjumping

• Space: linear, Time: O(exp(n))

• Search with no-goods caching only
• space: O(exp(w*)) Time: O(exp(n))

• Search with goods and no-goods learning
• Time and space: O(exp(path-width), O(exp(log n w*))

• Variable-elimination
• Time and space: O(exp(w*))

Fall 2010

Non-Systematic Randomized Learning

 Do search in a random way with interupts, restarts,

unsafe backjumping, but record conflicts.

 Guaranteed completeness.

Fall 2010

Look-back for SAT

 A partial assignment is a set of literals:

 A jumpback set if a J-clause:

 Upon a leaf deadend of x resolve two clauses, one enforcing x

and one enforcing ~x relative to the current assignment

 A clause forces x relative to assignment if all the literals in

the clause are negated in .

 Resolving the two clauses we get a nogood.

 If we identify the earliest two clauses we will find the earliest

condlict.

 The argument can be extended to internal deadends.

Fall 2010

Look-back for SAT

Fall 2010

Integration of algorithms

Fall 2010

Fall 2010

Relationships between various

backtracking algrithms

Fall 2010

Empirical comparison of algorithms

 Benchmark instances

 Random problems

 Application-based random problems

 Generating fixed length random k-sat

(n,m) uniformly at random

 Generating fixed length random CSPs

 (N,K,T,C) also arity, r.

Fall 2010

The Phase transition (m/n)

Fall 2010

Some empirical evaluation

 Sets 1-3 reports average over 2000 instances of random

csps from 50% hardness. Set 1: 200 variables, set 2: 300,

Set 3: 350. All had 3 values.:

 Dimacs problems

Fall 2010

