
Chapter 5: General search strategies:
Look-ahead

 ICS 275ICS 275

Fall 2010Fall 2010

Fall 2010

What if the Constraint network is not
backtrack-free?

 Backtrack-free in general is too costly so
what to do?

 Search?
 What is the search space?
 How to search it? Breadth-first? Depth-

first?

Fall 2010

The search space for a CN

 A tree of all partial solutions
 A partial solution: (a1,…,aj) satisfying all

relevant constraints
 The size of the underlying search space

depends on:
• Variable ordering

• Level of consistency possessed by the
problem

Fall 2010

Search space and the effect of ordering

2,3,5

2,5,62,3,42,3,4

Z

X
Y L

Fall 2010

Dependency on
consistency level

 After arc-consistency z=5
and l=5 are removed

 After path-consistency

• R’_zx

• R’_zy

• R’_zl

• R’_xy

• R’_xl

• R’_yl

2,3,5

2,5,62,3,42,3,4

Z

X
Y L

Fall 2010

The effect of higher consistency on search

Fall 2010

Cost of node’s expansion

 Number of consistency checks for toy problem:
• For d1: 19 for R, 43 for R’

• For d2: 91 on R and 56 on R’

 Reminder:

Fall 2010

Backtracking Search for a Solution

Fall 2010

Backtracking Search for a single Solution

Fall 2010

Backtracking Search for *All* Solutions

Fall 2010

Backtracking Search for *All* Solutions

For all tasks
Time: O(exp(n))
Space: linear

Fall 2010

Fall 2010

Traversing Breadth-First (BFS)?

Not-equal

BFS space is exp(n) while no
Time gain  use DFS

Backtracking

 Complexity of extending a
partial solution:

• Complexity of consistent
O(e log t), t bounds tuples,
e constraints

• Complexity of selectValue
O(e k log t)

Fall 2010

Improving backtracking

 Before search: (reducing the search space)
• Arc-consistency, path-consistency

• Variable ordering (fixed)

 During search:
• Look-ahead schemes:

• value ordering,

• variable ordering (if not fixed)

• Look-back schemes:
• Backjump

• Constraint recording

• Dependency-directed backtacking

Fall 2010

Look-ahead: value orderings

 Intuition:
• Choose value least likely to yield a dead-end

• Approach: apply propagation at each node in the search tree

 Forward-checking

• (check each unassigned variable separately

 Maintaining arc-consistency (MAC)

• (apply full arc-consistency)

 Full look-ahead

• One pass of arc-consistency (AC-1)

 Partial look-ahead

• directional-arc-consistency

Fall 2010

Generalized look-ahead

Fall 2010

Forward-checking example

Fall 2010

Fall 2010

Forward-Checking for Value Selection

O ek 2


Fall 2010

Forward-Checking for Value Ordering

O ek 2


O ek 2
FC overhead:

For each value of a future variable e_u
Tests: O(k e_u), for all future variables O(ke)
For all current domain O(k^2 e)

Fall 2010

Forward-Checking for Value Ordering

O ek 2


Oek 2
FW overhead: :

Forward-checking

O ek 2
Complexity of selectValue-forward-checking at each node:

Fall 2010

Arc-consistency look-ahead
(Gashnig, 1977)

 Applies full arc-consistency on all un-
instantiated variables following each value
assignment to the current variable.

 Complexity:
• If optimal arc-consistency is used:

• What is the complexity overhead when AC-1
is used at each node?

O ek 3


Fall 2010

Oek 2


Oek 3 

Forward-checking:

MAC:

MAC: Mmaintaining arc-consistency
(Sabin and Freuder 1994)

 Perform arc-consistency in a binary search
tree: Given a domain X={1,2,3,4} the
algorithm assigns X=1 (and apply arc-
consistency) and if x=1 is pruned, it applies
arc-consistency to X={2,3,4}

 If inconsistency is discovered, a new
variable is selected (not necessarily X)

Fall 2010

Fall 2010

MAC for Value Ordering

O ek 2


O ek 2


O ek 3 

FW overhead:

MAC overhead:

Fall 2010

MAC for Value Ordering

O ek 2


O ek 2


O ek 3 

FW overhead:

MAC overhead:

Arc-consistency prunes x1=red
Prunes the whole tree Not searched

By MAC

Arc-consistency look-ahead:
(a variant: maintaining arc-consistency MAC)

Fall 2010

Full and partial look-ahead

 Full looking ahead:
• Make one pass through future variables

(delete, repeat-until)

 Partial look-ahead:
• Applies (similar-to) directional arc-consistency

to future variables.

• Complexity: also

• More efficient than MAC
O ek 3



Fall 2010

Example of partial look-ahead

Fall 2010

Branching-ahead: Dynamic Value Ordering

Rank order the promise in non-rejected values
• Rank functions

• MC (min conflict)

• MD (min domain)

• SC (expected solution counts)

• MC results (Frost and Dechter, 1996)

• SC – currently shows good performance using IJGP
(Kask, Dechter and Gogate, 2004)

Fall 2010

Dynamic Variable Ordering (DVO)

 Following constraint propagation, choose the
most constrained variable

 Intuition: early discovery of dead-ends
 Highly effective: the single most important

heuristic to cut down search space
 Most popular with FC
 Dynamic search rearrangement (Bitner and Reingold,

1975) (Purdon,1983)

Fall 2010

Fall 2010

Forward-Checking, Variable Ordering

O ek 2


O ek 2


O ek 3 

FW overhead:

MAC overhead:

Fall 2010

Forward-Checking, Variable Ordering

O ek 2


O ek 2


O ek 3 

FW overhead:

MAC overhead:

After X1 = red choose X3 and not X2

Fall 2010

Forward-Checking, Variable Ordering

O ek 2


O ek 2


O ek 3 

FW overhead:

MAC overhead:

After X1 = red choose X3 and not X2

Fall 2010

Forward-Checking, Variable Ordering

O ek 2


O ek 2


O ek 3 

FW overhead:

MAC overhead:

After X1 = red choose X3 and not X2

Example: DVO with forward checking (DVFC)

Fall 2010

Algorithm DVO (DVFC)

Fall 2010

DVO: Dynamic Variable Ordering, More involved
heuristics

 dom: choose a variable with min domain
 deg: choose variable with max degree
 dom+deg: dom and break ties with max

degree
 dom/deg (Bessiere and Ragin, 96): choose min dom/deg

 dom/wdeg: domain divided by weighted degree.
Constraints are weighted as they get involved in more
conflicts. wdeg: sum the weights of all constraints that
touch x.

Fall 2010

Implementing look-aheads
 Cost of node generation should be reduced
 Solution: keep a table of viable domains for

each variable and each level in the tree.

 Space complexity
 Node generation = table updating Oed k ⇒Oek 

On2k 

Fall 2010

Branching Strategies (selecting
the search space)
(see vanBeek, chapter 4 in Handbook)

 Enumeration branching: the naïve backtracking search choice
 A branching strategy in the search tree: a set of branching constraints

p(b_1,…b_j} where b_i is a branching constraint
 Branches are often ordered using a heuristic.
 To ensure completeness, the constraints that are ordered on the

branches should be exclusive and exhaustive.
 Most common are unary constraints:

• Enumeration: (x=1,x=2,x=3…)

• Binary choices: (x=1, x != 1)

• Domain spliting: (x>3,x<3)

 Using domain-specific formulas
• Scheduling: one job before or after: (x_1 +d_1 < x_2, x_2+d_2 < x_1)

• Can be simulated by auxiliary variables.

• Searching the dual problem

• Formula-based splitting in SAT

Fall 2010

Randomization
 Randomized variable selection (for tie breaking

rule)
 Randomized value selection (for tie breaking

rule)
 Random restarts with increasing time-cutoff
 Capitalizing on huge performance variance
 All modern SAT solvers that are competitive us

restarts.

Fall 2010

The cycle-cutset effect

 A cycle-cutset is a subset of nodes in an
undirected graph whose removal results
in a graph with no cycles

 A constraint problem whose graph has a
cycle-cutset of size c can be solved by
partial look-ahead in time O  n−c k c2 



Fall 2010

Extension to stronger look-ahead

 Extend to path-consistency or i-consistency or
generalized-arc-consistency

Fall 2010

Look-ahead for SAT: DPLL
(Davis-Putnam, Logeman and Laveland, 1962)

Fall 2010

Fall 2010

What is SAT?

Given a sentence:

• Sentence: conjunction of clauses

• Clause: disjunction of literals

• Literal: a term or its negation

• Term: Boolean variable

Question: Find an assignment of truth values to the Boolean variables
such the sentence is satisfied.

c1∨¬c 4∨c5∨c 6 ∧c2∨¬c3 ∧ ¬c4 

c2∨¬c3 
c1 ,¬c6

c1=1⇔¬c1=0

Fall 2010

CSP is NP-Complete

 Verifying that an assignment for all
variables is a solution
• Provided constraints can be checked in

polynomial time

 Reduction from 3SAT to CSP
• Many such reductions exist in the literature

(perhaps 7 of them)

Fall 2010

Problem reduction

Example: CSP into SAT (proves nothing, just an exercise)

Notation: variable-value pair = vvp

 vvp → term

• V1 = {a, b, c, d} yields x1 = (V1, a), x2 = (V1, b), x3 = (V1, c), x4 = (V1, d),

• V2 = {a, b, c} yields x5 = (V2, a), x6 = (V2, b), x7 = (V2,c).

 The vvp’s of a variable → disjunction of terms

• V1 = {a, b, c, d} yields

 (Optional) At most one VVP per variable

x1∨x2∨x3∨x 4

x1∧¬x2∧¬x3∧¬x4 ∨¬x1∧x2∧¬x3∧¬x4 ∨¿

¿ ¬x1∧¬x 2∧ x3∧¬x 4∨¬x1∧¬x2∧¬x3∧x 4 

Fall 2010

CSP into SAT (cont.)
Constraint:

1. Way 1: Each inconsistent tuple → one disjunctive clause

• For example: how many?

1. Way 2:
a) Consistent tuple → conjunction of terms
b) Each constraint → disjunction of these conjunctions

→ transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the
sentence is satisfied

CV 1V 2
={ a ,a  ,a ,b  ,b , c , c ,b  ,d ,a }

¬x1∨¬x7

x1∧x5

x1∧x5 ∨x1∧x 6 ∨ x2∧x7 
¿  x3∧x6 ∨x4∧x5 

Example of DPLL

Fall 2010

	Chapter 5: General search strategies: Look-ahead
	What if the Constraint network is not backtrack-free?
	The search space for a CN
	Search space and the effect of ordering
	Dependency on consistency level
	The effect of higher consistency on search
	Cost of node’s expansion
	Backtracking Search for a Solution
	Backtracking Search for a single Solution
	Backtracking Search for *All* Solutions
	Slide 11
	Traversing Breadth-First (BFS)?
	Backtracking
	Improving backtracking
	Look-ahead: value orderings
	Generalized look-ahead
	Forward-checking example
	 Forward-Checking for Value Selection
	 Forward-Checking for Value Ordering
	Slide 20
	Forward-checking
	Arc-consistency look-ahead (Gashnig, 1977)
	MAC: Mmaintaining arc-consistency (Sabin and Freuder 1994)
	 MAC for Value Ordering
	Slide 25
	Arc-consistency look-ahead: (a variant: maintaining arc-consistency MAC)
	Full and partial look-ahead
	Example of partial look-ahead
	Branching-ahead: Dynamic Value Ordering
	 Dynamic Variable Ordering (DVO)
	 Forward-Checking, Variable Ordering
	Forward-Checking, Variable Ordering
	Slide 33
	Slide 34
	Example: DVO with forward checking (DVFC)
	Algorithm DVO (DVFC)
	 DVO: Dynamic Variable Ordering, More involved heuristics
	Implementing look-aheads
	Slide 39
	Randomization
	The cycle-cutset effect
	Extension to stronger look-ahead
	Look-ahead for SAT: DPLL (Davis-Putnam, Logeman and Laveland, 1962)
	What is SAT?
	CSP is NP-Complete
	Problem reduction
	CSP into SAT (cont.)
	Example of DPLL

