Chapter 5: General search strategies:
Look-ahead
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What if the Constraint network is not
backtrack-free?

Backtrack-free in general is too costly so
what to do?

Search?
What Is the search space?

How to search it? Breadth-first? Depth-
first?

%
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The search space for a CN

A tree of all partial solutions

A partial solution: (al,...,aj) satisfying all
relevant constraints
The size of the underlying search space
depends on:

Variable ordering

Level of consistency possessed by the

\ problem /
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Search space and the effect of ordering

Root
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After arc-consistency z=5
and |=5 are removed

After path-consistency @
R’ zx
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The effect of higher consistency on search

Theorem 5.1.3 Let R be a tighter network than T, where both represent the same set
af sofutions, For any orderving d, any path appearing in the search graph devived from T
also appears in the serreh graph devived from . O

o /
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Number of consistency checks for toy problem:
For dl: 19 for R, 43 for R’
Ford2: 91 on Rand 56 on R’

Reminder:

Definition 5.1.5 {backtrack-free network) A network K is said to be backtrack-free
along ordering d if every leaf node in the corresponding search graph is a solution.

o /
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For all tasks
Time: O(exp(n))
Space: linear
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Traversing Breadth-First (BFS)?

Not-equal

BFS space is exp(n) while no
Time gain - use DFS

o
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procedure BACKTRACKING
Input: A constraint network P = (X, D, (7).

Output: Either a solution, or notification that the network is ineconsistent.

i 1 (initialize variable counter)
Dy D {copy domain)
while 1 <i<mn

instantiate x; + SELECTVALUE

if r; is null (no value was returned)
Pe—d—1 {(backtrack)
else
ie—i+1 {step forward)
D — 1
end while
ifi=>0
return “inconsistent”
else
return instantiated values of {xy, ..., 2.}

end procedure

subprocedure SELECTVALUE  (return a value in [J] consistent with &;_,)

while I} is not empty
select an arbitrary element @ < £, and remove a from £
if CONSISTENT(&_1, 15 = )
return o
end while
return null {no consistent value)
end procedure

Complexity of extending a
partial solution:
Complexity of consistent

O(e log t), t bounds tuples,
e constraints

Complexity of selectValue
O(e k log t)

Figure 5.4: The backtracking algorithm.
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Before search: (reducing the search space)

Arc-consistency, path-consistency
Variable ordering (fixed)

During search:

Look-ahead schemes:

¢ value ordering,

e variable ordering (if not fixed)
Look-back schemes:

e Backjump

e Constraint recording

e Dependency-directed backtacking
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Intuition:
Choose value least likely to yield a dead-end
Approach: apply propagation at each node in the search tree
Forward-checking
(check each unassigned variable separately
Maintaining arc-consistency (MAC)
(apply full arc-consistency)
Full look-ahead
One pass of arc-consistency (AC-1)
Partial look-ahead
directional-arc-consistency

\_
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P]‘EI-['E!EI'I.[I"E' GENERALIZED-LOOKAHEAD

Input: A constraint network F = (X, 0.

Output: Either a solution, or notification that the network is inconsis-
tent.

—Diforl <i<n (copy all domains)
i— 1 (initialize variable counter)
while 1 << 1< n

instantiate ; «— SELECTVALUE-XXX

if 7 is null [no value was returned)
fe—i—1 (backtrack)
reset each D) k& = 4, to its value before x; was last instantiated
else
f—i+1 (step forward)
end while
ifi=10
return “inconsistent”
else
return nstantiated values of {2, ... 2.}

end procedure

Figure 5.7: A common framework for several look-ahead based search algorithms. By
replacing SELECTVALUE-XXX with SELECTVALUE-FORWARD-CHECKING, the forward

checking, algoritlun is obtained. S:imjll:%ﬂy% Using SELECT VALUE-ARC-CONSISTENCY vields
8

an algorithm that interweaves arc-cons g]]i(t)“}’ and search.
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Forward-Checking for Value Selection

green
Not searched

by forward
checking
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Forward-Checking for Value Ordering
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Forward-Checking for Value Ordering
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P]‘DEEE]I.[I"E' SELECT VALUE-FORWARD- CHECKING
while [ is not empty
select an arbitrary element e £, and remove a from £
emphy-domain — false
for all b, i <k <n
for all values bin [
if not CONSISTENT(&;—1.7; =a, ¥ =h)
remove b from £

end for
if 1)) is emmpty (7; = a leads to a dead-end)
empty-domain — true
if empty-domain (don't select a)
reset each D ¢ <k < n to value before @ was selected
else
return o
end while
return null (no consistent value)

end procedure

Figure 5.8: The sSELECTVALUE subprocedure for the forward checking alporithim.,

Q)mplexity of selectValue-forward-checking at each node: O(ekZ)/
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Applies full arc-consistency on all un-
Instantiated variables following each value

assignment to the current variable.
Complexity:
If optimal arc-consistency is used: Of ok’

What is the complexity overhead when AC-1
IS used at each node?

Forward-checking: () ( €k2 )

\ MAC: 0(ek’)

%
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Perform arc-consistency in a binary search
tree: Given a domain X={1,2,3,4} the
algorithm assigns X=1 (and apply arc-
consistency) and if x=1 Is pruned, it applies
arc-consistency to X={2,3,4}

If Inconsistency Is discovered, a new
variable Is selected (not necessarily X)
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MAC for Value Ordering

™

FW overhead:

0/(ek’)

QAC overhead: O(ekg)
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MAC for Value Ordering
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subprocedure SELECT VALUE-ARC-CONSISTENCY

while [ is not empty
select an arbitrary element e = £, and remove @ from £
repeat
removed-value — false
forall ji<ji<n
forall ki <k <n
for each value b in [
if there is no value ¢ = [ such that
CONSISTENT(#;—, Ti =a, T;=h, 1 =c)
remove b from 1)
removed-value — true
end for
end for
end for
until removed-value = false
if any future domain is empty  {don't select a)
reset each 1§ < § < n, to value before e was selected
else
returm e
end while
return null (no consistent value)
end procedure

Figure 5.10: The sELECTVALUE subprocedure for arc-consistency, based on the AC-1
alporithm.
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Full looking ahead:

Make one pass through future variables
(delete, repeat-until)

Partial look-ahead:

Applies (similar-to) directional arc-consistency
to future variables.

Complexity: also O(ek3 )
More efficient than MAC

%
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Example 5.3.3 Conside the problem in Figure 5.3 using the same ordering of variables
and values as in Figure 5.9, Partial-look-ahead starts by considering ) = red. Applying
directional arc-consistency from o towards xp will first shrink the domains of x5, 74 and
w7, [ when processing x,), as was the case for forward-checking, Later, when directicnal
arc-consistency processes ry (with its only value, “blue™) against @ (with its only value,
“blue ), the domain of »y will becomne empty, and the value “red” for #; will be rejected.
Likewise, the value ry = Blue will be rejected. Therefore, the whole tree in Figure 5.9 will
not be visited if either partial-look-ahead or the more extensive look-ahead schemes are
used. With this level of look-ahead only the subtree below xy = green will be expanded.
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Rank order the promise in non-rejected values

Rank functions

e MC (min conflict)

® MD (min domain)

e SC (expected solution counts)

MC results (Frost and Dechter, 1996)

SC - currently shows good performance using IJGP
(Kask, Dechter and Gogate, 2004)

/
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Following constraint propagation, choose the
most constrained variable

Intuition: early discovery of dead-ends

Highly effective: the single most important
heuristic to cut down search space

Most popular with FC

Dynamic search rearrangement (Bitner and Reingold,
1975) (Purdon,1983)
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Forward-Checking, Variable Ordering
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Forward-Checking, Variable Ordering

™

After X1 = red choose X3 and not X2

FW overhead:
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Forward-Checking, Variable Ordering

™

After X1 = red choose X3 and not X2

FW overhead: O<ek2)

QAC overhead: O(ekg)
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Forward-Checking, Variable Ordering

™

After X1 = red choose X3 and not X2
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X7

bluc,green

without dead-ends, by assigning; red or feal to rg.

x4

red,green,teal

x5

Example 5.3.4 Consider again the example in Figure 53, Initially, all variables have
domain size of 2 or more. DVEFC picks 77, whose domain size is 2, and the value <
wy, blue =, Forward-checking propagation of this choice to each future variable restricts
the domains of rs. ry and s to single values, and reduces the size of x;'s domain
DVEC selects oy and assigns it its only possible value, red. Subsequently, forward-checking
causes variable ) to also have a singleton domain. The algorithm chooses ) and its only
consistent value, greem After propagating this choice, we see that ry has one value,
red; it is selected and assipned the value. Then z; can be selected and assigned its only
consistent value, dfuwe. Propagating this assignment does not further shrink any future
\du:umain. Next, 75 can be selected and assigned green. The solution is then completed,

Fall 2010
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procedure DVFC
Input: A constraint network R = (X, D)
Output: Either a solution, or notification that the network is inconsistent.

e Diforl <i<n (copy all domains)
i—1 (initialize wariable counter)
& = Willjcjcy [} (fnd future var with smallest domain)
Tip1 — T, [rearrange variables so that », follows o))
while 1 <1< n
instantiate r; — SELECTYALUE-FORWARD-CHECKING

if r; is null (no value was returned)
reset each ' set to its value before x; was last instantiated
i—i—1 (backtrack)
el=e
ife <n
t—i+1 (step forward to x,)

& = Willjcjcy [} (fnd future var with smallest domain)
Tip1 — T, [rearrange variables so that », follows o))
i—i+1 (step forward to z,)
end while
ifi=0
return “inconsistent”
else
return instantiated values of {x, ... . z,}
end procedure

Figure 5.12: The DVFC algorithm. It usespthy s5pRqy VALUE-FORWARD-CHECKING sub-
procedure given in Fig, 5.8,




dom: choose a variable with min domain
deg: choose variable with max degree

dom+deg. dom and break ties with max
degree

dom/deg (Bessiere and Ragin, 96): choose min dom/deg

dom/wdeg:. domain divided by weighted degree.
Constraints are weighted as they get involved in more
conflicts. wdeg: sum the weights of all constraints that
touch x.
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Cost of node generation should be reduced

Solution: keep a table of viable domains for
each variable and each level in the tree.

Space complexity  0(n’k)
Node generation = table updating 0le;k)=0(ek)
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Enumeration branching: the naive backtracking search choice

A branching strategy in the search tree: a set of branching constraints
p(b_1,...b j} where b_iis a branching constraint

Branches are often ordered using a heuristic.

To ensure completeness, the constraints that are ordered on the
branches should be exclusive and exhaustive.

Most common are unary constraints:
Enumeration: (x=1,x=2,x=3...)
Binary choices: (x=1, x!=1)
Domain spliting: ( x>3,x<3)
Using domain-specific formulas
Scheduling: one job before or after: (x_ 1+d 1<x 2,x 2+d 2<x 1)
Can be simulated by auxiliary variables.
Searching the dual problem
Formula-based splitting in SAT
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Randomized variable selection (for tie breaking
rule)

Randomized value selection (for tie breaking
rule)

Random restarts with increasing time-cutoff
Capitalizing on huge performance variance

All modern SAT solvers that are competitive us
restarts.
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A cycle-cutset Is a subset of nodes In an
undirected graph whose removal results
In a graph with no cycles

A constraint problem whose graph has a
cycle-cutset of size ¢ can be solved by
partial look-ahead in time  o((n—c)k'“*?)

%
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Extend to path-consistency or i-consistency or
generalized-arc-consistency

Definition 5.3.7 (general arc-consistency) Given a constraint O = (R, 5) and a
variable + = 5, a value a = [, 12 supported in C' if there iz a tuple t = R such that
tlx] = a. { is then called a support for << v.a = in C. O 5 arc-consistent if for each
variable =, in its scope and each of its values, o = 1), < r a > has a support in . A
C'SF is arc-congistent if each of its constraints 45 arc-consistent.

o /
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DPLL{y)

Input: A cof theory @

Output: A decision of whether o is satisfiable.

. Unit_propagate(s);

. If the empty clause is generated, return(felse);
. Elze, if all variables are assipned, return(frue);

. Else

() = some unassigned variable;

return| DPLL{ @A () v
DPLL{ A —(]) )

!IF:n!:.-'In-Ih-LI.'II:-..'.II—'-

Figure 5.13: The DPLL Procedure

/
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Given a sentence;

= Semnterice. conjurction of clauses

c,Voc,VegVegnle, Ve Alme,

(C2\/ﬁ03)

Clause: disjunction of literals

10 'L

Literal: aterm or its negation

C1:1<:>_'C1:O

Term: Boolean variable

Question: Find an assignment of truth values to the Boolean variables

such the sentence is satisfied.
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CSP is NP-Complete

Verifying that an assignment for all
variables Is a solution

Provided constraints can be checked in
polynomial time

Reduction from 3SAT to CSP

Many such reductions exist in the literature
(perhaps 7 of them)

o
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Problem reduction

Example: CSP into SAT (proves nothing, just an exercise)

Notation: variable-value pair = vvp

Vp - term
V,={a, b, c, d} yields x, = (V,, &), X, = (V. b), x;=(V, ¢), x,=(V,, d),
V, ={a, b, c}yields x; = (V,, @), X; = (V, b), X, = (V,,C).

The vvp’s of a variabIeX_l isfsac}{oﬁ bf\ze%nfk
V, ={a, b, c, d} yields

(Optional) At most one VVP per variable

(xl/\ﬁXZ/\—lXB/\ﬁXLL)\/(ﬁxl/\x2/\ﬁx3/\ﬁx4)\/i,

\ (}(—le/\—IXZ/\x3/\ﬁx4)\/(ﬁx1/\ﬁx2/\ﬁx3/\x4) /

Fall 2010



/CSP into SAT (cont.)

Constraint: Cyv ={(a,a),(a,b),(b,c),(c,b),(d,a)}

Way 1: Each inconsistent tuple — one disjunctive clause
. ?
For example: _le VX how many*

7

Way 2.
d) Consistent tuple - conjunction of terms
D) Each constraint - disjunction of these conjunctiofig AX c

(X1/\X5)V(X1/\X6)V(X2/\X7)

Z,QXB/\XGJ\/LIXLM\XS)”
- transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the

sentence is satisfied

Fall 2010



Figure 5.14: A backtracking, search tree along the variables A, B, D). ' for a cof theory
g = {—Av B), (-C v A) (Av B ), (). Hollow nodes and bars in the search tree
represent illegal states, triangles represent solutions. The enclosed area corresponds to
DPLL with unit-propagation.

o /
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