Consistency algorithms

Chapter 3
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ﬂionsistency methods

Approximation of inference:
Arc, path and iI-consistecy

Methods that transform the original
network into tighter and tighter
representations

o
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Arc-consistency

X ¥
\“-‘_-
(a) (b)

Figure 3.1: A matching diagram describing the arc-consistency of two variables x and w.

In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and
the variables are now arc-consistent.

Definition 3.2.2 {arc-cnn@*fr&pwbdﬁ-imaﬁe@@f@w%§iwm"ﬂt R = (X, D,C). with
Ry € O, a variable z; is arc-6Qpbiigjatdptive to x; if and only if for every value a; € Dy
there exists a value a; € Dy sur:hl-mi:ra igvécp} € Ry;. The subnetwork (alternatively, the
are) defined by {z;, x5} is a.?"c—cm;wilgiézmitli{I%@%Lﬂnfy if ;s arc-consistent relative to x5
and z; is arc-consistent relative to ;. FLIlf ﬁsifébi?rl- of constraints is called arc-consistent aff

all of its arcs (e.q.. subnetworks of size 2} are Grc-consistent.
SN
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Revise for arc-consistency

REVISE((z;), ;)

input: a subnetwork defined by two variables X = {z,.2;}, a distinguished variable z;.
domains: D; and D;, and constraint R;;

output: D;, such that, x; arc-consistent relative to x;

1. for ecach a, € D,

2 if there is no a; € D; such that (a;,a;) € R;;
3. then delete a; from D;

4 endif

5. endfor

Figure 3.2: The Revise procedure

D, -« D,n (R, 0D))
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A matching diagram describing a network of
constraints that is not arc-consistent (b) An arc-
consistent equivalent network.
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AC-1(R)

input: a network of constraints R = (X, D, ')
_output: R’ which is the loosest arc-consistent network equivalent to R
. repeat
2, for every pair {z;.x;} that participates in a constraint
3. Revise((z;). x;) (or D; «— D; Nw;(R;; W D;))
4. Revise((z;),z;) (or D; «— D, nm;(R;; X D;))
5. endfor
6. until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)
Complexity (Mackworth and Freuder, 1986): O(enk?)
e = number of arcs, n variables, k values
(ek"2, each loop, nk num&e(eile)oops), best-case = ek,

-consistency is:
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AC-3(R)

=—=input: a network of constraints R = (X, D, C')
output: R’ which is the largest arc-consistent network equivalent to R
1. for every pair {z;, z;} that participates in a constraint R;; € R
2 queune — queue U {(z;, x;), (x;,x;)}
3. endfor
4. while queue £ {}
5. select and delete (x;, ;) from queue
6 Revise((x;), ;)
7 if Revise((x;),x;) causes a change in D;
8 then queue — queue U {(xy,x;), i # k}
9. endif
10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)
Complexity: O(ek 3§ince each arc may be processed in O(2Kk)

st case O(ek),
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ﬂxample: A 3 variables network with 2 \
constraints: z divides x and z divides y
(a) before and (b) after AC-3 is applied.

7 Z

X Y
X Y

ORI D (24

(@) (b)

o /
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7 z

/,S (2
AC-4(R) X Y X, !
input: a network of constraints R 2s) (24) @) (29

output: An arc-consistent network equivalent to R
1. Initialization: A «— @,

(@) ()

2. initialize S, oy, counter(i,a;, j) for all R;;

3. for all counters

4. if counter(z;. a;.x;) = 0 (if < x;.a; > is unsupported by z;)
5. then add < x;.a; > to LIST

6. endif

7. endfor

8. while LIST is not empty

9. choose < x;,a; > from LIST, remove it, and add it to M
10. for each < x;,a; > in Sy, )

11. decrement counter(z;. a;. x;)

12. if counter(z;. a;. x;) =0

13. then add < x;,a; > to LIST

14. endif

15. endfor

16. endwhile

Figure 3.7: Arc-consistency-4 (AC-4)

Complexity: O(ek?)

(Counter is the number of supports to ai in xi from xj. S_(xi,al) is the set
airs that (xi,al) supports)
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Example applying AC-4

Example 3.2.9 Consider the problem in Figure 3.6. Initializing the S, q) arrays (indi-
cating all the variable-value pairs that each < z,a > supports), we have :

8(312] - {{ 7,2 >, < y,2 >, < yd :"’}-. 3[215} - {‘: T,0 :"'}-_ S{T_,g] = {'f-: z, 2 }}_,
Stes) ={< 20>} Sy = {< 2,2 >}, Spay = {< 2,2 >}

For counters we have: counter(z,2,z) = 1. counter(z,5,z) = 1. counter(z,2,z) = 1,
counter(z,5,z) = 1, counter(z,2,y) = 2, counter{z5,y) = 0. counter(y,2,z) = 1,

counter(y,4,z) = 1. (Note that we do not need to add counters between variables that
arc not directly constrained, such as z and y.) Finally, List = {< 25 >}, M = . Once
< z,0 > 1s removed from Last and placed in M, the counter of < 2,5 > 18 updated to
counter(z,5,z) = 0, and < z,5 > is placed in Lest. Then, < x,5 > is removed from
List and placed in M. Since the only value 1t supports 1s < z,5 > and sinee < 2,5 > 1s

already in M, the List remains empty and the process stops. O
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ﬂ)istributed arc-consistency
(Constraint propagation)

\

Node x_j sends the message to node x_i hiJ — 7'[; (Rij |:| Dj )

Node x_i updates its domain:
D. « D. n 7'[1.(Rl.j [] Dj) =

Messages can be sent asynchronously or scheduled J
in a topological order Di «— Di N hi

o

Implement AC-1 distributedly. Di — Di N ]'[;(RU [ ] D])

/

Fall 2010
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ﬂixercise: make the following \

network arc-consistent

Draw the network’s primal and dual
constraint graph

Network =
Domains {1,2,3,4}

Constraints: y <X, z <y, t < z, f<t, x<=t+1,
Y<f+2

o /
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/Arc-consistency Algorithms \

AC-1: brute-force, distributed O(nekB)
AC-3, queue-based O(ek?)
AC-4, context-based, optimal O(ek”)

AC-5,6,7,.... Good in special cases
Important: applied at every node of search

(n number of variables, e=#constraints, k=domain size)

\I\/Iackworth and Freuder (1977,1983), Mohr and Anderson, (1985).../
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ﬂsing constraint tightness in \

analysis

= | int
AC-1: brute-force, O(nek?) O(nekt)
AC-3, queue-based O(ek”) O(ekt)
AC-4, context-based, optimal O(et)

AC-5,6,7,.... Good in special cases
Important: applied at every node of search

(n number of variables, e=#constraints, k=domain size)

\I\/Iackworth and Freuder (1977,1983), Mohr and Anderson, (1985).../
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onstraint checking

- Arc-consistency

\

B

\

13
A / L[S _j
- 18]

L2 ’ >B<C
[1-..10]

2<C- A<5K——/

[11—__—1—5]/ C

o

1-B:[5..14]
C:[6..15]

2-A:[2..10]
C:[6..14]

3-B:[5..13]

/
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/Is arc-consistency enough? \

Example: a triangle graph-coloring with 2 values.

Is it arc-consistent?

Is it consistent?

It is not path, or 3-consistent.

o /
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Path-consistency

(a) (b)

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical
picture of path-consistency using the matching diagram.

Fall 2010 19




Path-consistency

Definition 3.3.2 (PatﬁjﬂdﬁmﬁtMaSt@Eﬁ%@Mﬁﬁn network R = (X,D,C), a

Coarnrnnd Invinl

| -

Alternatively, « binary constraint Ry s path-consistent relative to xy tff for every pair

|, 05), € Ry, where a; and a; are from their respective domains, there is a value ay € Dy
st (a;a) € Ry and (ag,a5) € Ry A subnetwork over three variables {x;, x5, 2y} is
path-consistent iff for any permutation of (4, 7,k). Ry is path consistent relative to zy. A
network is path-consistent iff for every Ry; (including universal binary relations) and for
every k4 1,7 Ry; 15 path-consistent relative to zy,.
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REVISE-3((x,y), 2)
input: a three-variable subnetwork over (z,y, 2). R
output: revised R,, path-consistent with z.
1. for each pair (a,b) € R,
2. if no value ¢ € D, exists such that (a,¢) € R, and (b, ¢) € Ry.
3. then delete (a,b) from R,,.
4
5.

R,.., R,..

Ty

endif
endfor

Figure 3.9: Revise-3
Rij - Rij N mj(Rik U Dk U Rkj)

Complexity: O(k"3)
Best-case: O(t)

Fall 2010
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PC-1

PC-1(R)
input: a network R = (X, D, ().
output: a path consistent network equivalent to K.
l. repeat
for k— 1ton
fori,j«— 1lton

endfor
endfor
until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)
Complexity:  O(n’k’)
O(n"3) triplets, each take O(k"3) steps [] O(n"3 k"3)

Max number o

nN*Z K’ ‘Z) .
Fall 2010

2
3.
4. Ri; — Ry nmy; (R M Dy M Ry;)/* (Revise — 3((i,7),k))
D
6
7.
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PC-3(R)
input: a network R = (X, D,C).

output: R’ a path consistent network equivalent to R.
L Q—{kj|l<i<jsnlsk<nk#Fik#j}
2. while () is not empty

3. select and delete a 3-tuple (i, k, j) from @

4. Ri; — Ri; N mi;(Ri M Dy, X Ry ) /* (Revise-3((4,7), k))
5. if R;; changed then

6. Q— QU {(Li NI ji)|1<li<nl#il#j)

7. endwhile

Figure 3.11: Path-consistency-3 (PC-3)
Complexity: O(n3k5)
Optimal PC-4: o(n’k>)

(each pair deleted may add: 2n-1 triplets, number of pairs: O(n"2 k”2) [] size of

is O(n"3 k"2), processing is O(k"3))
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Example: before and after path- \
consistency
a N

S /

(a) fb)

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

PC-1 requires 2 processings of each arc while PC-2 may not

Ca :
Fall 2010 24



Example: before and after path- \
consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

PC-1 requires 2 processings of each arc while PC-2 may not

Ca :
Fall 2010 25




ﬂath-consistency Algorithms \

Apply Revise-3 (O(k”3)) until no change

Rij N Rij M n;'j(Rik Dk Rkj)

Path-consistency (3-consistency) adds binary
constraints.

PC-1: o(n’k>)
PC-2: O(n’k’)

31,3
QCA optimal: O(n°k”) /

Fall 2010 26




|-consistency

TNk 0 edit Master text styles
=2 Setond level
* Third level
PATH - CONSISTENCY * Fourth level
* Fifth hey

v
-

—————

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(c) i-consistency
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Higher levels of consistency,
global-consistency

Definition:
s S ront il i TOUTUTTEVET BYEE e
[ | 4 network is i-consistent iff given any }ﬂﬁﬁﬁ‘]ﬂi?g\/éﬁmiﬂniMimﬂ of any 1 — 1

distinct warwables, there erists an mstantiation of any ith varable such that the 1 values
taken together satisfy all of the constraints among the @ variables. A network 1s strongly
i-consistent iff i is j-consistent for all 3 <o, A strongly n-consistent network, where n
5 the number of variables in the network, is called globally consistent.

Fall 2010 28




evise-|

REVISE-i({z1, 22, ..., Ti_1 }, ;)
input: a network R = (X, D,C)
output: a constraint Rg, S = {1, ....,x;_1} i-consistent relative to x;.
1. for each instantiation @, = (< x1,a1 >, < r9,a2 >,.... < T;_1,a,_1 >) do,
2. if no value of a; € D; exists s.t. (a;_y,a,) is consistent
then delete @,_; from Rg
(Alternatively, let § be the set of all subsets of {xy,...,x;} that contain z;
and appear as scopes of constraints of ‘R, then
RS — RS M WS(MS’-;S RSF))
3. endfor

Figure 3.14: Revise-i '
Complexity: for binary constraints O(k')

or arbitrary constraints:  O((2k)")
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ﬂ-queen example

\

o

Q

Q
(a) (b)

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent

/

Fall 2010
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|-consistency

I-CONSISTENCY(R) Click to edit Master text styles

input: a network %econd level
output: an i—consiste.ntl_ﬁﬁavrorkl equivalent to W

1. repeat eve

2. for every subsecr Bodfrtixlevekize i — 1. and for every a,. do
3. let & be the set of Riftlgildyelts in of {a. ..., x;} scherme(R)

that contain a;
4. Rg «+— RaMmmg(Hges Rs) ([ this is Revise-i(.S, x;))
G. endfor
7. until no constraint is changed.

Figure 3.15: i-consistency-1
Theorem 3.4.3 {compleifikdbieauisiagie) BxtsiyIed spce complesity of brute-
foree i-consistency O(E%?ﬁﬁ%ﬁ}ﬁ?i@%@l respectively. A lower bound for enforcing

reonsistency is n'k'). O = Fourth level
* Fifth level

Fall 2010
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|-consistency

TNk 0 edit Master text styles
=2 Setond level
* Third level
PATH - CONSISTENCY * Fourth level
* Fifth hey

v
-

—————

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(c) i-consistency

Fall 2010 32




Arc-consistency for non-binary

'CD'n'S’Cldlan

o~ wem o wm e I—A — e o~ AAIAAIA o~ mm omw #

Deﬁmtmn 3 5.1 (generallzeﬁom'w@@ﬁtsm%ﬁr&‘gxta styledraint network R =

with Rg € C. a variable x iSeconsideviebclative to Rg if and only if for cvery value
a € D, there erists a tuple t € REwehIgMelz| = a. t can be r:af.fed a support for a.
The constramnt Rg s called arc- fﬂnsﬁﬂﬂftﬂjlﬁvﬁlarf consistent relative to each of the

Fifth level
variables in its scope and a constraint Betuonc s dre-consistent if all
arc-consistent.

D, « D, nm(R; UDg )
Complexity: O(t k), t bounds number of tuples.

Relational arc-consistency:.
Rs—{x} N S—{x}(RS L] Dx)

its constraints are

Fall 2010

(X! I)? {1)"
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ﬂxamples of generalized arc-

consistency

\

X+y+z <= 15 and z >= 13 implies
X<=2, y<=2

AUB - G,mG,l A

o

Example of relational arc-consistency

- B

/

Fall 2010
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ﬂllore arc-based consistency \

Global constraints: e.g., all-different constraints

Special semantic constraints that appears often in practice
and a specialized constraint propagation. Used in constraint
programming.

Bounds-consistency: pruning the boundaries of domains

o /
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Sudoku -

onstraint _Safricrarfinn
) 2| 4 6
‘Constraint g 6 51 .
‘Propagation - —
pag 1 8|6 9
‘Inference 2 4 8 6
4 7 1 9
5 8 6 3
4 6|9 7
0 415 8 1
3 219

‘Variables: empty slots

‘Domains =

‘Constraints:

{ 112'3'4'5'6'7l8'9}

- 27 all-
different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints

Fall 2010
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Example for alldiff

A ={3,4,5,6}

B ={3,4}

C={2,3,4,5}

D={2,3,4}

E ={3,4}

F={1,2,3,4,5,6}

Alldiff (A,B,C,D,E}
Arc-consistency does nothing
Apply GAC to sol(A,B,C,D,E,F)?
JA={6}, F={1}....

Alg: bipartite matching kn*1.5

(Lopez-Ortiz, et. Al, IICAI-03 pp 245 (A fast and simple algorithm for bounds
consistency of alldifferent constraint)

Fall 2010
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/Global constraints

™

Alldifferent

others)
Global cardinality constraint (a value can

a set of variables)

The cummulative constraint (related to

Qcheduling tasks)

Sum constraint (variable equal the sum of

be assigned a bounded number of times to

/

Fall 2010
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Bounds consistency

Definition 3.5.4 (boglidk ¢ersiitenastdritexesyldsgiint C over a scope S and do-
main constraints, a variable Ec®nthraydy-consistent relative to C if the value min{ D, }
(respectively, maz{D;}) can be cxbermsirly |avdel! tuple t of C. We say that t sup-
ports man{D,}. A constraint C is bounds-eoyslyifith devish of its variables is bounds-

consistent. * Fifth level

Fall 2010 39




ﬂBounds consistency

Example 3.5.5 Considglidictecgaditaagterient stylegariables zy, ...xg, cach with do-
mains 1,..., 6. and constraints§econd level

rd level
Cy x4 > 3 Cyimy > 'E (% 3, Cyixs 1
Azt 2T IEI o&lel » Crims Tt L

* Fifth level
Cy : alldi f ferent{ T, zs, x3, x4, 5}

The constraints are not bounds consistent.  For example, the minimum value 1 in the
domain of zy does not have support in constraint €4 as there is no corresponding value
for x1 that satisfies the constraint. Enforecing bounds consistency using constraints €
through Cy reduces the domains of the variables as follows: Dy = {1,2}, Dy = {1,2},
Dy = {1,2,3} Dy = {4,5} and D5 = {5,6}. Subsequently. enforeing bounds consistency
using constraints Cy further reduees the domain of € to Dy = {3} .Now constraint Cy is
no longer bound consistent. Reestablishing bounds consistency causes the domain of sy
to be reduced to {6}, Is the resulting problem already arc-consistent? O

/
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ﬂsoolean constraint propagatioh

A

(AV ~B) and (B)

B Is arc-consistent relative to A but not vice-versa

B — G,_IG,

Arc-consistency by resolution:
res((AV ~B),B) = A

- A

Given also (B V C), path-consistency:
res(AV~B),BVC)=(AVC)

Relational arc-consistency rule = unit-resolution

5/

Fall 2010
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Constraint propagation for Boolean
constraints: Unit propagation

Click to edit Master text styles
Procedure U Wégaﬁlaxgevg
» @n.

Input: A enf theory
Output: An equival -Eftlrt@iclﬁvellm that every unit clause

does not appear in sav ot eyvelc.

1. gqueue = all unit clauchlfth Ievel
2. while qucue is not cmpty. do

3. T — next unit clause leTﬂ Qucue.

4. for every clause 3 containing T or =T
5. if 3 contains T delete 3 (subsumption elimination)
6. else, For cach clause v = resolve(3,T).
if ~. the resolvent, 1s empty, the theory is unsatisfiable.
T. else, add the resolvent « to the theory and delete 4.
if v is a unit clause, add to Quene.
5. endfor.

0. endwhile.

Theorem 3.6.1 Algoritiplick ¥ ediBMBster i806tylesa lincar time complerity.
N Second level B

Fall 2010  Third level 42
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Example (if there

IS time)

— M: The unicorn is mythical

— I: The unicorn is immortal

— L: The unicorn is mammal

— H: The unicorn is horned

— G: The unicorn is magical

M)A (=M (mIAL)AVL) o HAH-S G)

A Logic Puzzle IV

« Is the unicorn mythical? Is it magical? Is it horned?

Mo IDA(=M S (mIAL)AVL) oHAH-S G
(mMVI)AMV(—=IAL)AVL -sHAH-G) -
(—mMVI)AMY =I)AMVLA(VL) - HAMH- G
gvLbya(@vL)-HAMH-GFHHAG

» Hence, the unicorn is not necessarily mythical, but it is horned and

magical !

Fall 2010
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ﬁ:onsistency for numeric \
constraints (Gausian

x+y=10

arc — consistency [1 x[[1,5], y LI[5,9]
by —adding —x+y =10,—y < -5

z J[-10,10],
y+z<3

path —consistency [1 x—z2>7

\ obtained —by —adding,x+y =10,—y -z > -3 /

Fall 2010 44




Changes in the network graph as a result of
arc-consistency, path-consistency and 4-
consistency.

Q o
@nsm}ncy

Fall 2010 45
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Distributed arc-consistency
(Constraint propagation)

Implement AC-1 distributedly.

Node x_j sends the message to node
X_i

Node x_i updates its domain:

Relational and generalized arc-consistency
can be implemented distributedly: sending
messages between constraints over the
dual graph

D, « D. NIt

(R; 0 D))

hiJ A ni(Rij [ Dj)

Di — Di N hl.j

Rs—{x} -

S—{x}(RS D Dx)

Fall 2010
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Relational Arc-consistency

AC

The message that R2 sends to R1 is

hf — 7, (R >a (b he%(@)h

R1 updates its relation and domains and
sends messages to neighbors

D; = D; N (< e ey D3)

Fall 2010 47




ﬁ)istributed Relational \

Arc-Consistency

DRAC can be applied to the dual problem
of any constraint network:

hi — Wﬂ@j(Ri > (Dﬂ kEne(z)hiﬁ)) (1)

\ R; — R; N (x ke;qe(z')hi) (2) /

Fall 2010 48
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Iteration 1

h! h; h? h? R,
i A B ii A B

h4 h4 4 h4

hh4
iiiABi ABD
R, he ke
Wii
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. Rg — R@ @ggﬁ ’%e%% M@ﬁhﬂk@ﬂ styles
Iteration 1 + Third level

1 o Fourth level

ﬁ * Fifth level

o

Fall 2010
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hi— o, (Begedpayeieishy) (1)

Second level

Iteration 2 + Third leve
R« Boufth 18vel
A A Fiffh |efvel

hl h

B i A B
h, h; h' R,
ﬁ ﬁ
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g By — B (b paghiyoves

eration « R, Third level

* Fourth level
ﬁ * Fifth level

o

Fall 2010
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h:} - Wi ICkEQjedlgMﬂskeré% t?M@?) (1)

Second level

lteration 3 - Third level \
Re Folirthilevdl

Al ° kiftalevg

he
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/It i — i (gt v

eration 3 + Third level

le Fourth level

ﬁ . Fifth level

o

Fall 2010
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lteration 4hj — m, ( BipkRedipasiz o)

. Thlrd Ievel

R R
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B = Rirgisepgehiyee (@)
lteration 4 - Third level

*Fourth level
Fifth level

o
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h3<—m(

lteration b

Rlckﬁgjedl Mg

Second level

R R

R. Th|rd Ievel "

o toxt sy ) (1

T e

Fall 2010
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. . (qli i tdxt styles

*RThird level

Fourth level
e Fifth level

(2)

o

Fall 2010
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Tractable classes

Theorem 3.7.1 L. The(ClickitGreditrMastertertistylelgorks having no cycles can
be decided by arc-conSdeoond level

* Third level
2. The consistency of binary eorpgaphne\srks with bi-valued domains can be decided
by path-consistency, e Fifth level

3. The consistency of Horn cnf theories can be decided by unit propagation.

Fall 2010 60




	Slide 1
	Consistency methods
	Slide 3
	Slide 4
	Arc-consistency
	Revise for arc-consistency
	Slide 7
	AC-1
	AC-3
	Slide 10
	AC-4
	Example applying AC-4
	Distributed arc-consistency
(Constraint propagation)
	Exercise: make the following network arc-consistent
	Arc-consistency  Algorithms
	Slide 16
	Constraint checking
	Is arc-consistency enough?
	Path-consistency
	Path-consistency
	Revise-3
	PC-1
	PC-2
	Example: before and after path-consistency
	Example: before and after path-consistency
	Path-consistency Algorithms
	I-consistency
	Higher levels of consistency, global-consistency
	Revise-i
	4-queen example
	I-consistency
	I-consistency
	Slide 33
	Examples of generalized arc-consistency
	More arc-based consistency
	
Sudoku –
Constraint Satisfaction
	Example for alldiff 
	Global constraints
	Bounds consistency
	Bounds consistency 
	Boolean constraint propagation
	Slide 42
	Example (if there is time)
	Consistency for numeric constraints (Gausian elimination)
	Slide 45
	Distributed arc-consistency
(Constraint propagation)
	Relational Arc-consistency
	Distributed Relational 
Arc-Consistency 
	DRAC on the dual join-graph
	Slide 50
	Iteration 1					
	Iteration 2					
	Iteration 2					
	Iteration 3					
	Iteration 3					
	Iteration 4					
	Iteration 4					
	Iteration 5					
	Iteration 5					
	 Tractable classes

