

Fall 2010

Consistency methods

Approximation of inference:

Arc, path and i-consistecy

Methods that transform the original network into tighter and tighter representations

Figure 3.1: A matching diagram describing the arc-consistency of two variables x and y. In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and the variables are now arc-consistent.

Definition 3.2.2 (arc-consistency) of intrasterore straint performs twork $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_{ij} \in C$, a variable x_i is arc-consistent relative to x_j if and only if for every value $a_i \in D_i$ there exists a value $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$. The subnetwork (alternatively, the arc) defined by $\{x_i, x_j\}$ is arc-consistent if and only if x_i is arc-consistent relative to x_j and x_j is arc-consistent relative to x_i . A network of constraints is called arc-consistent iff all of its arcs (e.g., subnetworks of size 2) are arc-consistent.

Revise for arc-consistency

 $\operatorname{Revise}((x_i), x_j)$

input: a subnetwork defined by two variables X = {x_i, x_j}, a distinguished variable x_i, domains: D_i and D_j, and constraint R_{ij}
output: D_i, such that, x_i arc-consistent relative to x_j
1. for each a_i ∈ D_i
2. if there is no a_j ∈ D_j such that (a_i, a_j) ∈ R_{ij}
3. then delete a_i from D_i
4. endif
5. endfor

Figure 3.2: The Revise procedure

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j)$$

A matching diagram describing a network of constraints that is not arc-consistent (b) An arc-consistent equivalent network.

(a)

(b)

AC-1(\mathcal{R}) input: a network of constraints $\mathcal{R} = (X, D, C)$ output: \mathcal{R}' which is the loosest arc-consistent network equivalent to \mathcal{R} 1. repeat 2. for every pair $\{x_i, x_j\}$ that participates in a constraint 3. Revise $((x_i), x_j)$ (or $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j))$ 4. Revise $((x_j), x_i)$ (or $D_j \leftarrow D_j \cap \pi_j(R_{ij} \bowtie D_i))$ 5. endfor

6. until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

Complexity (Mackworth and Freuder, 1986): $O(enk^3)$

e = number of arcs, *n* variables, *k* values

(*ek*^2, each loop, *nk* number of loops), best-case = *ek*, $\Omega(ek^2)$

Arc-consistency is:

AC-3

 $AC-3(\mathcal{R})$

```
—input: a network of constraints \mathcal{R} = (X, D, C)
  output: \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R}
       for every pair \{x_i, x_j\} that participates in a constraint R_{ij} \in \mathcal{R}
   1.
             queue \leftarrow queue \cup \{(x_i, x_j), (x_j, x_i)\}
   2.
   3
       endfor
       while queue \neq \{\}
   4.
   5.
             select and delete (x_i, x_j) from queue
   6.
             Revise((x_i), x_j)
  7.
             if Revise((x_i), x_j) causes a change in D_i
   8.
                    then queue \leftarrow queue \cup \{(x_k, x_i), i \neq k\}
   9.
             endif
   10. endwhile
```

Figure 3.5: Arc-consistency-3 (AC-3)

Complexity:

 $O(ek^{3}s)$ ince each arc may be processed in O(2k)

Best case O(ek),

Example: A 3 variables network with 2 constraints: z divides x and z divides y (a) before and (b) after AC-3 is applied.


```
AC-4
```

```
AC-4(\mathcal{R})
                                                                                                                    2.4
                                                                              2.5
input: a network of constraints \mathcal{R}
output: An arc-consistent network equivalent to \mathcal{R}
1. Initialization: M \leftarrow \emptyset,
2.
          initialize S_{(x_i,c_i)}, counter(i, a_i, j) for all R_{ij}
3.
          for all counters
                  if counter(x_i, a_i, x_i) = 0 (if \langle x_i, a_i \rangle is unsupported by x_i)
4.
5.
                         then add \langle x_i, a_i \rangle to LIST
                  endif
6.
7.
          endfor
    while LIST is not empty
8.
          choose \langle x_i, a_i \rangle from LIST, remove it, and add it to M
9.
          for each \langle x_j, a_j \rangle in S_{(x_i, a_i)}
10.
                  decrement counter(x_i, a_i, x_i)
11.
12.
                  if counter(x_i, a_i, x_i) = 0
                         then add \langle x_i, a_i \rangle to LIST
13.
                  endif
14.
15.
          endfor
16. endwhile
```

Ζ

Complexity: $O(ek^2)^{\text{Figure 3.7: Arc-consistency-4 (AC-4)}}$

(Counter is the number of supports to ai in xi from xj. S_(xi,ai) is the set of pairs that (xi,ai) supports)

Example applying AC-4

Example 3.2.9 Consider the problem in Figure 3.6. Initializing the $S_{(x,a)}$ arrays (indicating all the variable-value pairs that each $\langle x, a \rangle$ supports), we have : $S_{(z,2)} = \{ \langle x, 2 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle \}, S_{(z,5)} = \{ \langle x, 5 \rangle \}, S_{(x,2)} = \{ \langle z, 2 \rangle \},$ $S_{(x,5)} = \{\langle z, 5 \rangle\}, S_{(y,2)} = \{\langle z, 2 \rangle\}, S_{(y,4)} = \{\langle z, 2 \rangle\}.$ For counters we have: counter(x, 2, z) = 1, counter(x, 5, z) = 1, counter(z, 2, x) = 1, counter(z,5,x) = 1, counter(z,2,y) = 2, counter(z,5,y) = 0, counter(y,2,z) = 1, counter(y, 4, z) = 1. (Note that we do not need to add counters between variables that are not directly constrained, such as x and y.) Finally, $List = \{\langle z, 5 \rangle\}, M = \emptyset$. Once $\langle z, 5 \rangle$ is removed from *List* and placed in *M*, the counter of $\langle x, 5 \rangle$ is updated to counter(x,5,z) = 0, and $\langle x,5 \rangle$ is placed in *List*. Then, $\langle x,5 \rangle$ is removed from List and placed in M. Since the only value it supports is $\langle z, 5 \rangle$ and since $\langle z, 5 \rangle$ is already in M, the *List* remains empty and the process stops. \Box

Distributed arc-consistency (Constraint propagation)

Implement AC-1 distributedly.

Node x_j sends the message to node x_i

 $D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j)$ $h_i^j \leftarrow \pi_i(R_{ij} \otimes D_j)$

Node x_i updates its domain:

Messages can be sent asynchronously or scheduled in a topological order

$$D_i \leftarrow D_i \cap \pi_i (R_{ij} \otimes D_j) = D_i \leftarrow D_i \cap h_i^j$$

Exercise: make the following network arc-consistent

Draw the network's primal and dual constraint graph

Network =

Domains {1,2,3,4}

Constraints: y < x, z < y, t < z, f<t, x<=t+1, Y<f+2

Arc-consistency Algorithms

 $O(nek^3)$ $O(ek^3)$ **AC-1**: brute-force, distributed AC-3, queue-based $O(ek^2)$ AC-4, context-based, optimal AC-5,6,7,.... Good in special cases **Important:** applied at every node of search (*n* number of variables, e=#constraints, k=domain size) Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

Using constraint tightness in analysis t = number of tuples bounding a constraint O(nekt) $O(nek^3)$ **AC-1**: brute-force, $O(ek^3)$ O(ekt)AC-3, queue-based O(et)AC-4, context-based, optimal AC-5,6,7,.... Good in special cases **Important:** applied at every node of search (n number of variables, e=#constraints, k=domain size) Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

Is arc-consistency enough?

Example: a triangle graph-coloring with 2 values.

Is it arc-consistent?

Is it consistent?

It is not path, or 3-consistent.

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical picture of path-consistency using the matching diagram.

Path-consistency

Definition 3.3.2 (PatG-licknspstedic) asternext styles int network $\mathcal{R} = (X, D, C)$, a

Alternatively, a binary constraint R_{ij} is path-consistent relative to x_k iff for every pair $(a_i, a_j), \in R_{ij}$, where a_i and a_j are from their respective domains, there is a value $a_k \in D_k$ s.t. $(a_i, a_k) \in R_{ik}$ and $(a_k, a_j) \in R_{kj}$. A subnetwork over three variables $\{x_i, x_j, x_k\}$ is path-consistent iff for any permutation of (i, j, k), R_{ij} is path consistent relative to x_k . A network is path-consistent iff for every R_{ij} (including universal binary relations) and for every $k \neq i, j$ R_{ij} is path-consistent relative to x_k .

Revise-3

Revise-3((x, y), z)

input: a three-variable subnetwork over (x, y, z), R_{xy} , R_{yz} , R_{xz} . **output**: revised R_{xy} path-consistent with z.

- 1. for each pair $(a, b) \in R_{xy}$
- 2. **if** no value $c \in D_z$ exists such that $(a, c) \in R_{xz}$ and $(b, c) \in R_{yz}$
 - then delete (a, b) from R_{xy} .
- 4. endif

5. endfor

3.

Figure 3.9: Revise-3 $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \otimes D_k \otimes R_{kj})$ Complexity: O(k^3) Best-case: O(t) Worst-case O(tk)

Fall 2010

PC-1

 $PC-1(\mathcal{R})$

```
input: a network \mathcal{R} = (X, D, C).

output: a path consistent network equivalent to \mathcal{R}.

1. repeat

2. for k \leftarrow 1 to n

3. for i, j \leftarrow 1 to n

4. R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})/* (Revise - 3((i, j), k)))

5. endfor

6. endfor
```

7. **until** no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)

Complexity: O

 $O(n^{5}k^{5})$

O(n^3) triplets, each take O(k^3) steps \Box O(n^3 k^3)

Max number of loops: $O(n^2 k^2)$.

 $\begin{array}{l} \operatorname{PC-3}(\mathcal{R}) \\ \text{input: a network } \mathcal{R} = (X, D, C). \\ \text{output: } \mathcal{R}' \text{ a path consistent network equivalent to } \mathcal{R}. \\ \hline 1. \ Q \leftarrow \{(i,k,j) \mid 1 \leq i < j \leq n, 1 \leq k \leq n, k \neq i, k \neq j \} \\ \hline 2. \ \text{while } Q \text{ is not empty} \\ \hline 3. \qquad \text{select and delete a 3-tuple } (i,k,j) \text{ from } Q \\ \hline 4. \qquad R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj}) \ /^* (\operatorname{Revise-3}((i,j),k)) \\ \hline 5. \qquad \text{if } R_{ij} \text{ changed then} \\ \hline 6. \qquad Q \leftarrow Q \cup \{(l,i,j)(l,j,i) \mid 1 \leq l \leq n, l \neq i, l \neq j\} \\ \hline 7. \ \text{endwhile} \end{array}$

Figure 3.11: Path-consistency-3 (PC-3)

Complexity: $O(n^3k^5)$

Optimal PC-4: $O(n^3k^3)$

(each pair deleted may add: 2n-1 triplets, number of pairs: $O(n^2 k^2) \square$ size of

Q is $O(n^3 k^2)$, processing is $O(k^3)$)

Example: before and after pathconsistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

PC-1 requires 2 processings of each arc while PC-2 may not

Can we do path-consistency distributedly? Fall 2010

Example: before and after pathconsistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

PC-1 requires 2 processings of each arc while PC-2 may not

Can we do path-consistency distributedly? Fall 2010

Path-consistency Algorithms

Apply Revise-3 (O(k^3)) until no change

$$R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \otimes D_k \otimes R_{kj})$$

Path-consistency (3-consistency) adds binary constraints.

 PC-1:
 $O(n^5k^5)$

 PC-2:
 $O(n^3k^5)$

 PC-4 optimal:
 $O(n^3k^3)$

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency, (c) i-consistency

Higher levels of consistency, global-consistency

Definition:

A network is *i*-consistent iff given any consistent instantiation of any i-1 distinct variables, there exists an instantiation of any *i*th variable such that the *i* values taken together satisfy all of the constraints among the *i* variables. A network is strongly *i*-consistent iff it is *j*-consistent for all $j \leq i$. A strongly *n*-consistent network, where *n* is the number of variables in the network, is called globally consistent.

Revise-i

REVISE- $i(\{x_1, x_2, ..., x_{i-1}\}, x_i)$ input: a network $\mathcal{R} = (X, D, C)$ output: a constraint R_S , $S = \{x_1, ..., x_{i-1}\}$ *i*-consistent relative to x_i . 1. for each instantiation $\bar{a}_{i-1} = (\langle x_1, a_1 \rangle, \langle x_2, a_2 \rangle, ..., \langle x_{i-1}, a_{i-1} \rangle)$ do, 2. if no value of $a_i \in D_i$ exists s.t. (\bar{a}_{i-1}, a_i) is consistent then delete \bar{a}_{i-1} from R_S (Alternatively, let S be the set of all subsets of $\{x_1, ..., x_i\}$ that contain x_i and appear as scopes of constraints of \mathcal{R} , then $R_S \leftarrow R_S \cap \pi_S(\bowtie_{S' \subseteq S} R_{S'}))$

3. endfor

Figure 3.14: Revise-i Complexity: for binary constraints $O(k^i)$ For arbitrary constraints: $O((2k)^i)$

I-consistency
I-CONSISTENCY(\mathcal{R}) Click to edit Master text styles input: a network \mathcal{R} second level output: an i-consistent network equivalent to \mathcal{R} . 1. repeat Init's level 2. for every subset \mathbb{R} output levels is $i - 1$, and for every x_i , do 3. let \mathcal{S} be the set of \mathbb{R} to $\{x_1,, x_i\}$ scheme(\mathcal{R}) that contain x_i 4. $R_S \leftarrow R_S \cap \pi_S(\bowtie_{S' \in \mathcal{S}} R_{S'})$ (this is Revise-i(S, x_i)) 6. endfor 7. until no constraint is changed.
Figure 3.15: i-consistency-1
Theorem 3.4.3 (complexity of i-consistency) $(H) \times (I) \times $

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency, (c) i-consistency

Arc-consistency for non-binary constraints:

Definition 3.5.1 (generalized arc-consistence) Given styles traint network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_S \in C$, a variable x is **Secondiver** belative to R_S if and only if for every value $a \in D_x$ there exists a tuple $t \in R_S$ bitch $|\mathcal{GMet}[x] = a$. t can be called a support for a. The constraint R_S is called arc-consistent $|\mathcal{GMet}[x]| = a$. t can be called a support for a. The constraint R_S is called arc-consistent $|\mathcal{GMet}[x]| = a$. t consistent relative to each of the variables in its scope and a constraint network is arc-consistent if all its constraints are arc-consistent.

 $D_x \leftarrow D_x \cap \pi_x(R_S \otimes D_{S-\{x\}})$

Complexity: O(t k), t bounds number of tuples.

Relational arc-consistency:

$$R_{S-\{x\}} \leftarrow \pi_{S-\{x\}}(R_S \otimes D_x)$$

Examples of generalized arcconsistency

x+y+z <= 15 and z >= 13 implies x<=2, y<=2

Example of relational arc-consistency $A \land B \rightarrow G, \neg G, \Rightarrow \neg A \lor \neg B$

More arc-based consistency

Global constraints: e.g., all-different constraints

Special semantic constraints that appears often in practice and a specialized constraint propagation. Used in constraint programming.

Bounds-consistency: pruning the boundaries of domains

Sudoku -Constraint Satisfaction

[•]Constraint •Propagation

Inference

T	5		 		<u>rti</u>		n	
		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	
		9			4	5	8	1
			3		2	9		

Variables: empty slots

Domains =
{1,2,3,4,5,6,7,8,9}

Constraints: 27 alldifferent

Each row, column and major block must be all different

"Well posed" if it has unique solution: 27 constraints

Fall 2010

Example for alldiff

- $A = \{3, 4, 5, 6\}$
- B = {3,4}
- $C = \{2, 3, 4, 5\}$
- $D = \{2, 3, 4\}$
- $E = \{3, 4\}$
- $F = \{1, 2, 3, 4, 5, 6\}$

Alldiff (A,B,C,D,E}

Arc-consistency does nothing

Apply GAC to sol(A,B,C,D,E,F)?

□ A = {6}, F = {1}....

Alg: bipartite matching kn^1.5

(Lopez-Ortiz, et. Al, IJCAI-03 pp 245 (A fast and simple algorithm for bounds consistency of all different constraint)

Global constraints

Alldifferent

Sum constraint (variable equal the sum of others)

Global cardinality constraint (a value can be assigned a bounded number of times to a set of variables)

The cummulative constraint (related to scheduling tasks)

Bounds consistency

Definition 3.5.4 (booligk consistence) over a scope S and domain constraints, a variable $S\in Since Perepresent relative to <math>C$ if the value $min\{D_x\}$ (respectively, $max\{D_x\}$) can be extended over Perepresent relative to <math>C. We say that t supports $min\{D_x\}$. A constraint C is bounds-completed to f C. We say that t supconsistent. • Fifth level

Bounds consistency

Example 3.5.5 Considering the constraints Second level

The constraints are not bounds consistent. For example, the minimum value 1 in the domain of x_4 does not have support in constraint C_1 as there is no corresponding value for x_1 that satisfies the constraint. Enforcing bounds consistency using constraints C_1 through C_4 reduces the domains of the variables as follows: $D_1 = \{1,2\}, D_2 = \{1,2\}, D_3 = \{1,2,3\} D_4 = \{4,5\}$ and $D_5 = \{5,6\}$. Subsequently, enforcing bounds consistency using constraints C_5 further reduces the domain of C to $D_3 = \{3\}$. Now constraint C_3 is no longer bound consistent. Reestablishing bounds consistency causes the domain of x_5 to be reduced to $\{6\}$. Is the resulting problem already arc-consistent?

Boolean constraint propagation

 $(A V \sim B)$ and (B)

B is arc-consistent relative to A but not vice-versa Arc-consistency by resolution: $res((A \lor ~B),B) = A$ Given also (B ∨ C), path-consistency: $res((A \lor ~B),(B \lor C) = (A \lor C)$

Relational arc-consistency rule = unit-resolution

$$A \land B \to G, \neg G, \Rightarrow \neg A \lor \neg B$$

Constraint propagation for Boolean constraints: Unit propagation

Theorem 3.6.1 Algoritlowick to Tedit RM BAGE A TEXINStryles a linear time complexity.

Fall 2010

- Third level
 - Fourth level

Example (if there is time)

- M: The unicorn is mythical
- I: The unicorn is immortal
- L: The unicorn is mammal
- H: The unicorn is horned
- G: The unicorn is magical

 $(M \rightarrow I) \land (\neg M \rightarrow (\neg I \land L)) \land ((I \lor L) \rightarrow H) \land (H \rightarrow G)$

A Logic Puzzle IV

- Is the unicorn mythical? Is it magical? Is it horned?
- $(M \rightarrow I) \land (\neg M \rightarrow (\neg I \land L)) \land ((I \lor L) \rightarrow H) \land (H \rightarrow G) \vdash$
- $(\neg M \lor I) \land (M \lor (\neg I \land L)) \land ((I \lor L) \rightarrow H) \land (H \rightarrow G) \vdash$
- $(\neg M \lor I) \land (M \lor \neg I) \land (M \lor L) \land ((I \lor L) \rightarrow H) \land (H \rightarrow G) \vdash$
- $(I \lor L) \land ((I \lor L) \rightarrow H) \land (H \rightarrow G) \vdash H \land G$
- Hence, the unicorn is not necessarily mythical, but it is horned and

magical !

Consistency for numeric constraints (Gausian elimination) $x \in [1,10], y \in [5,15],$

x + y = 10

```
arc-consistency \Rightarrow x \in [1,5], y \in [5,9]
```

$$by - adding - x + y = 10, -y \le -5$$

$$z \in [-10,10],$$

$$y + z \le 3$$

$$path - consistency \Rightarrow x - z \ge 7$$

$$obtained - by - adding, x + y = 10, -y - z \ge -3$$

Changes in the network graph as a result of arc-consistency, path-consistency and 4-consistency.

Distributed arc-consistency (Constraint propagation)

Implement AC-1 distributedly.

Node x_j sends the message to node x_i

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j)$$

$$h_i^j \leftarrow \pi_i(R_{ij} \otimes D_j)$$

 $D_i \leftarrow D_i \cap h_i^j$

Node x_i updates its domain:

Relational and generalized arc-consistency can be implemented distributedly: sending messages between constraints over the dual graph

 $R_{S-\{x\}} \leftarrow \pi_{S-\{x\}}(R_S \otimes D_x)$

Relational Arc-consistency

The message that R2 sends to R1 is

$$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$$

R1 updates its relation and domains and sends messages to neighbors

$$D_i \leftarrow D_i \cap (\bowtie_{k \in ne(i)} D_k^i)$$

Distributed Relational Arc-Consistency

DRAC can be applied to the dual problem of any constraint network:

$$h_{i}^{j} \leftarrow \pi_{l_{ij}}(R_{i} \bowtie (\bowtie_{k \in ne(i)} h_{k}^{i}))$$
(1)
$$R_{i} \leftarrow R_{i} \cap (\bowtie_{k \in ne(i)} h_{k}^{i})$$
(2)

Fall 2010

Tractable classes

- Theorem 3.7.1 1. TheoliokitorediteMasternextistylesvorks having no cycles can be decided by arc-considered level
 - Third level
 - 2. The consistency of binary composition every with bi-valued domains can be decided by path-consistency,
 Fifth level
 - 3. The consistency of Horn cnf theories can be decided by unit propagation.