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Tree-solving
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Trees are processed in linear time and memory
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Inference and Treewidth
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The dual graph of a constraint problem associates a node with each constraint 

scope and an arc for each two nodes sharing variables. This transforms  a

non-binary constraint problem into a binary one, called the dual problem:

Variables: constraints,

Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables, 

enforcing equality on the values assigned to the shared variables. 

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the 

tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look 

like a

The Dual problem/The acyclic problem
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Dual Constraint Problems

 Constraints can be: C= AVE

 F=AVE and so on…
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Dual Constraint Problems
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Graph concepts reviews:

Hyper graphs and dual graphs

 A hypergraph is H = (V,S) , V= 
{v_1,..,v_n} and a set of subsets 
Hyperegdes: S={S_1, ..., S_l }.

 Dual graphs of a hypergaph: The nodes 
are the hyperedges and a pair of nodes 
is connected if they share vertices in  V. 
The  arc is labeled by the shared 
vertices. 

 A primal graph of a hypergraph H = 
(V,S) has V as its nodes, and any two 
nodes are connected by an arc if they 
appear in the same hyperedge.

 if all the constraints of a network R are 
binary, then its hypergraph is identical to 
its primal graph.
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Acyclic Networks

 The running intersection property 

(connectedness): An arc can be 

removed from the dual graph if the 

variables labeling the arcs are shared 

along an alternative path between the 

two endpoints. 

 Join graph: An arc subgraph of the 

dual graph that satisfies the 

connectedness property. 

 Join-tree: a join-graph with no cycles

 Hypertree: A hypergraph whose dual 

graph has a join-tree.

 Acyclic network: is one whose 

hypergraph is a hypertree.
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Example

 Constraints are: 

 R_{ABC} = R_{AEF} = R_{CDE} = {(0,0,1) (0,1,0)(1,0,0)}

 R_{ACE} = { (1,1,0) (0,1,1) (1,0,1) }.

 d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}). 
• When processing R_{ABC}, its parent relation is R_{ACE}; 

• processing R_{AEF} we generate relation 

• processing R_{CDE} we generate: 

• R_{ACE} = \pi_{ACE} ( R_{ACE} x R_{CDE} ) = {(0,1,1)}. 

 A solution is generated by picking the only allowed tuple for R_{ACE}, 
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is 
only D=0, and then similarly extending the assignment to F=0 and B=0, to 
satisfy R_{AEF} and R_{ABC}.

)}1,0,1)(1,1,0{()(  ABCACEACEACE RRR 

)}1,1,0{()(  AEFACEACEACE RRR 
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Solving acyclic networks

 Algorithm acyclic-solving applies a tree algorithm to 

the join-tree. It applies (a little more than) directional 

relational arc-consistency from leaves to root.

 Complexity: acyclic-solving is O(r l  log l) steps, where 

r is the number of constraints and l bounds the number 

of tuples in each constraint relation

 (It assumes that join of two relations when one’s scope 

is a subset of the other can be done in linear time)
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Recognizing acyclic networks

 Dual-based recognition: 
• perform maximal spanning tree over the dual graph 

and check connectedness of the resulting tree.

• Dual-acyclicity complexity is O(e^3)

 Primal-based recognition: 
• Theorem (Maier 83): A hypergraph has a join-tree iff 

its primal graph is chordal and conformal.

• A chordal primal  graph is conformal relative to a 
constraint hypergraph iff there is a one-to-one 
mapping between maximal cliques and scopes of 
constraints.
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Primal-based  recognition

 Check cordality using 
max-cardinality ordering.

 Test conformality

 Create a join-tree: 
connect every clique to 
an earlier clique sharing 
maximal number of 
variables

ICS 275, Fall 2010



Tree-based clustering

 Convert a constraint problem to an acyclic-one: group subset of 
constraints to clusters until we get an acyclic problem.

 Tree-decomposition: Hypertree embedding of a hypergraph H
= (X,H) is a hypertree S = (X, S)  s.t., for every h in H there is 
h_1 in S s.t. h is included in  h_1.

 This yield algorithm join-tree clustering and tree-decomposition 
in general

 Hypertree decomposition: Hypertree partitioning of a 
hypergraph H = (X,H) is a hypertree S = (X, S)  s.t., for every h 
in H there is h_1 in S s.t. h is included in  h_1 and X is the 

union of scopes in h_1.
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Join-tree clustering
 Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).

 Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C ‘})

 1. Select an d = (x_1,...,x_n)

 2. Triangulation(create the induced graph along $d$ and call it G^*: )

 for  j=n to 1 by -1 do 

 E  E U {(i,k)| (i,j) in E,(k,j) in E }

 3. Create a join-tree of the induced graph G^*:

 a.  Identify all maximal cliques (each variable and its parents is a clique).

 Let C_1,...,C_t be all such cliques,  

 b.  Create a tree-structure T over the cliques:

 Connect each C_{i} to a C_{j}  (j < I)  with whom it shares largest subset of variables. 

 4. Place each input constraint in one clique containing its scope, and let

 P_i be the constraint subproblem associated with C_i.

 5. Solve P_i and let {R'}_i $ be its set of solutions.

 6.  Return C' = {R'}_1,..., {R'}_t  the new set of constraints and their join-tree, T.

 Theorem: join-tree clustering transforms a constraint network into an acyclic 
network
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Example of tree-clustering
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Complexity of JTC

 complexity of JTC:  join-tree clustering is O(r k^ 
(w*(d)+1)) time and  O(nk^(w*(d)+1)) space, where k 
is the maximum domain size and w*(d) is the 
induced width of the ordered graph.

 The complexity of acyclic-solving is  O(n w*(d) (log k) 
k^(w*(d)+1))
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Let R=<X,D,C> be a CSP problem. A tree decomposition for R is 
<T,,>, such that

T=(V,E) is a tree
 associates a set of variables (v)X with each node v
 associates a set of functions (v)C with each node v

such that

1. RiC, there is exactly one v such that Ri(v) and scope(Ri)(v).
2. xX, the set {vV|x(v)} induces a connected subtree.

Unifying tree-decompositions
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Let R=<X,D,C> be  CSP problem. A tree decomposition is <T,,>, 
such that

T=(V,E) is a tree
 associates a set of variables (v)X with each node
 associates a set of functions (v)C with each node

such that
1. RiC, there is exactly one v such that Ri(v) and scope(Ri)(v).
1a. v, (v)  scope((v)).

2. xX, the set {vV|x(v)} induces a connected subtree.

HyperTree Decomposition

w (tree-width) =   maxvV |(v)| 
hw (hypertree width) =   maxvV | (v)| 

sep (max separator size) =   max(u,v) |sep(u,v)|
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Example of two join-trees again

hyperTree-

decomposition

Tree

decomposition
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Cluster Tree Elimination

 Cluster Tree Elimination (CTE) works by passing 

messages along a tree-decomposition

 Basic idea:

• Each node sends one message to each of its neighbors

• Node u sends a message to its neighbor v only when u

received messages from all its other neighbors
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Constraint  Propagation
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Example of CTE message propagation
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 Each function in a 

cluster

 Satisfy running 

intersection property

 Tree-width: number 

of variables in a 

cluster-1

 Equals induced-
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Cluster Tree Elimination

joinproject
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Time: O ( exp(w*+1 ))
Space: O ( exp(sep))
Time: O(exp(hw)) (Gottlob et. Al., 2000)

CTE: Cluster Tree Elimination
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Cluster Tree Elimination - properties

 Correctness and completeness: Algorithm CTE is sound and 

complete for generating minimal subproblems over chi(v) for 

every v: i.e. the solution of each subproblem is minimal.

 Time complexity: O ( deg  (r+N)  kw*+1 )

 Space complexity: O ( N  d sep)

where deg = the maximum degree of a node

r = number of of CPTs

N = number of nodes in the tree decomposition

k= the maximum domain size of a variable

w* = the induced width

sep = the separator size

 JTC is O ( r  k w*+1 ) time and space
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Cluster-Tree Elimination (CTE)

...
m(v1,u)

m(v2,u)
m(vi,u)

(u)
(u)

m(u,w) = sep(u,w) [j {m(vj,u)}  (u)]

ICS 275, Fall 2010



Adaptive-consistency as tree-decomposition

 Adaptive consistency is a message-passing along a 
bucket-tree

 Bucket trees: each bucket is a node and it is 
connected to a bucket to which its message is sent.

• The variables are the clicue of the triangulated graph

• The functions are those placed in the initial partition
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Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)
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From bucket-elimination to bucket-tree propagation
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The bottom up messages
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Adaptive-Tree-Consistency as tree-decomposition

 Adaptive consistency is a message-passing along a 
bucket-tree

 Bucket trees: each bucket is a node and it is 
connected to a bucket to which its message is sent.

 Theorem: A bucket-tree is a tree-decomposition 
Therefore, CTE adds a bottom-up message passing 
to bucket-elimination.

 The complexity of ATC is O(r deg k^(w*+1)) time and 
O(n k^(sep*+1)) space.
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Conditioning

A=yellow A=green

• Inference may require too much memory

• Condition on some of the variables
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Conditioning
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Cycle cutset
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Transforming into a tree 

 By Inference

• Time and spacde exponential in tree-width

 By Conditioning-search

• Time exponential in the cycle-cutset
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Treewidth equals cycle cutset
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Treewidth smaller than cycle cutset
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