Tree Decomposition methods

Chapter 9

ICS-275 Spring 2010

Inference and Treewidth

The Dual problem/The acyclic problem

The dual graph of a constraint problem associates a node with each constraint scope and an arc for each two nodes sharing variables. This transforms a non-binary constraint problem into a binary one, called the *dual problem:*

Variables: constraints,

Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables, enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look like a

Dual Constraint Problems

- Constraints can be: C= AVE
- F=AVE and so on...

Dual Constraint Problems

- Constraints can be: C= AVE
- F=AVE and so on...

Graph concepts reviews: Hyper graphs and dual graphs

- A hypergraph is H = (V,S), V= {v_1,...,v_n} and a set of subsets
 Hyperegdes: S={S_1, ..., S_I}.
- **Dual graphs** of a hypergaph: The nodes are the hyperedges and a pair of nodes is connected if they share vertices in V. The arc is labeled by the shared vertices.
- A primal graph of a hypergraph H = (V,S) has V as its nodes, and any two nodes are connected by an arc if they appear in the same hyperedge.
- if all the constraints of a network R are binary, then its hypergraph is identical to its primal graph.

Acyclic Networks

- The running intersection property (connectedness): An arc can be removed from the dual graph if the variables labeling the arcs are shared along an alternative path between the two endpoints.
- Join graph: An arc subgraph of the dual graph that satisfies the connectedness property.
- **Join-tree:** a join-graph with no cycles
- **Hypertree:** A hypergraph whose dual graph has a join-tree.
- Acyclic network: is one whose hypergraph is a hypertree.

(a)

Example

- Constraints are:
- $R_{ABC} = R_{AEF} = R_{CDE} = \{(0,0,1), (0,1,0), (1,0,0)\}$
- $R_{ACE} = \{ (1, 1, 0) (0, 1, 1) (1, 0, 1) \}.$
- d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
 - When processing R_{ABC}, its parent relation is R_{ACE};

 $R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{ABC}) = \{(0,1,1)(1,0,1)\}$

processing R_{AEF} we generate relation

 $R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{AEF}) = \{(0,1,1)\}$

- processing R_{CDE} we generate:
- $R_{ACE} = pi_{ACE} (R_{ACE} x R_{CDE}) = {(0,1,1)}.$
- A solution is generated by picking the only allowed tuple for R_{ACE}, A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is only D=0, and then similarly extending the assignment to F=0 and B=0, to satisfy R_{AEF} and R_{ABC}.

Solving acyclic networks

- Algorithm <u>acyclic-solving</u> applies a tree algorithm to the join-tree. It applies (a little more than) directional relational arc-consistency from leaves to root.
- Complexity: acyclic-solving is O(r I log I) steps, where r is the number of constraints and I bounds the number of tuples in each constraint relation
- (It assumes that join of two relations when one's scope is a subset of the other can be done in linear time)

Recognizing acyclic networks

• Dual-based recognition:

- perform maximal spanning tree over the dual graph and check connectedness of the resulting tree.
- Dual-acyclicity complexity is O(e^3)
- Primal-based recognition:
 - Theorem (Maier 83): A hypergraph has a join-tree iff its primal graph is chordal and conformal.
 - A chordal primal graph is conformal relative to a constraint hypergraph iff there is a one-to-one mapping between maximal cliques and scopes of constraints.

Primal-based recognition

- Check cordality using max-cardinality ordering.
- Test conformality
- Create a join-tree: connect every clique to an earlier clique sharing maximal number of variables

Tree-based clustering

- Convert a constraint problem to an acyclic-one: group subset of constraints to clusters until we get an acyclic problem.
- Tree-decomposition: Hypertree embedding of a hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every h in H there is h_1 in S s.t. h is included in h_1.
- This yield algorithm join-tree clustering and tree-decomposition in general
- Hypertree decomposition: Hypertree partitioning of a hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every h in H there is h_1 in S s.t. h is included in h_1 and X is the union of scopes in h_1.

Join-tree clustering

- **Input**: A constraint problem R = (X,D,C) and its primal graph G = (X,E).
- **Output:** An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C '})
- 1. Select an d = (x_1,...,x_n)
- 2. Triangulation(create the induced graph along \$d\$ and call it G^*:)
- for j=n to 1 by -1 do

- $E \leftarrow E \cup \{(i,k)| (i,j) \text{ in } E,(k,j) \text{ in } E \}$
- 3. Create a join-tree of the induced graph G^*:
 - a. Identify all maximal cliques (each variable and its parents is a clique).
 - Let C_1,...,C_t be all such cliques,
 - b. Create a tree-structure T over the cliques:
- Connect each C_{i} to a C_{j} (j < I) with whom it shares largest subset of variables.
- 4. Place each input constraint in one clique containing its scope, and let
- P_i be the constraint subproblem associated with C_i.
- 5. Solve P_i and let {R'}_i \$ be its set of solutions.
- 6. Return C' = {R'}_1,..., {R'}_t the new set of constraints and their join-tree, T.

Theorem: join-tree clustering transforms a constraint network into an acyclic network

Complexity of JTC

- complexity of JTC: join-tree clustering is O(r k^ (w*(d)+1)) time and O(nk^(w*(d)+1)) space, where k is the maximum domain size and w*(d) is the induced width of the ordered graph.
- The complexity of acyclic-solving is O(n w*(d) (log k) k^(w*(d)+1))

Unifying tree-decompositions

Let $R = \langle X, D, C \rangle$ be a CSP problem. A tree decomposition for R is $\langle T, \chi, \psi \rangle$, such that

■T=(V,E) is a tree ■ χ associates a set of variables $\chi(v) \subseteq X$ with each node v ■ ψ associates a set of functions $\psi(v) \subseteq C$ with each node v

such that

■1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(v)$ and scope $(R_i) \subseteq \chi(v)$. ■2. $\forall x \in X$, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.

HyperTree Decomposition

Let $R = \langle X, D, C \rangle$ be CSP problem. A tree decomposition is $\langle T, \chi, \psi \rangle$, such that

■T=(V,E) is a tree ■ χ associates a set of variables $\chi(v) \subseteq X$ with each node = ψ associates a set of functions $\psi(v) \subseteq C$ with each node

such that 1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(v)$ and scope $(R_i) \subseteq \chi(v)$. 1a. $\forall v, \chi(v) \subseteq \text{scope}(\psi(v))$. 2. $\forall x \in X$, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.

w (tree-width) = $\max_{v \in V} |\chi(v)|$ hw (hypertree width) = $\max_{v \in V} |\psi(v)|$

sep (max separator size) = $\max_{(u,v)} |sep(u,v)|$

Cluster Tree Elimination

Cluster Tree Elimination (CTE) works by passing messages along a tree-decomposition

• Basic idea:

- Each node sends one message to each of its neighbors
- Node u sends a message to its neighbor v only when u received messages from all its other neighbors

Constraint Propagation

Compute the message :

$$m_{(u,v)} = \pi_{sep(u,v)}(\bigotimes_{R_i \in cluster(u)} R_i)$$

Join-Tree Decomposition

(Dechter and Pearl 1989)

CTE: Cluster Tree Elimination

Cluster Tree Elimination - properties

- Correctness and completeness: Algorithm CTE is sound and complete for generating minimal subproblems over chi(v) for every v: i.e. the solution of each subproblem is minimal.
- Space complexity:

Time complexity: O ($deg \times (r+N) \times k^{w^{*+1}}$)

O (
$$N \times d^{sep}$$
)

where

deg = the maximum degree of a node r = number of of CPTsN = number of nodes in the tree decomposition k= the maximum domain size of a variable w^* = the induced width

sep = the separator size

JTC is O ($r \times k^{w^{*+1}}$) time and space

Adaptive-consistency as tree-decomposition

- Adaptive consistency is a message-passing along a bucket-tree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
 - The variables are the clicue of the triangulated graph
 - The functions are those placed in the initial partition

Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

 $Bucket(E): E \neq D, E \neq C, E \neq B$ $Bucket(D): D \neq A \mid\mid R_{DCB}$ $Bucket(C): C \neq B \mid\mid R_{ACB}$ $Bucket(B): B \neq A \mid\mid R_{AB}$ $Bucket(A): R_A$

Bucket(A): $A \neq D$, $A \neq B$ Bucket(D): $D \neq E \mid \mid R_{DB}$ Bucket(C): $C \neq B$, $C \neq E$ Bucket(B): $B \neq E \mid \mid R^{D}_{BE}, R^{C}_{BE}$ Bucket(E): $\mid \mid R_{E}$

Complexity : $O(n \exp(w^{*}(d)))$, $w^{*}(d)$ - *induced widthalong ordering d*

From bucket-elimination to bucket-tree propagation

The bottom up messages

Adaptive-Tree-Consistency as tree-decomposition

- Adaptive consistency is a message-passing along a bucket-tree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
- Theorem: A bucket-tree is a tree-decomposition Therefore, CTE adds a bottom-up message passing to bucket-elimination.
- The complexity of ATC is O(r deg k^(w*+1)) time and O(n k^(sep*+1)) space.

Conditioning

Conditioning Ε D Μ Inference may require too much memory Graph \mathbf{C} Α Coloring B Condition on some of the variables Κ problem н F G J A=yellow A=green **B**=blue **B**=blue **B**=yellow **B**=red B=red **B**=green D M` M) M) D ์ M Μ ์ M Ε D D D Ε E E D Ľ Ľ (L) (L) (L) ́С С С Κ Η н Н Н (F)(F)(F)(F)(F)F G G G G G G Radcliffe 34

Radcliffe

Transforming into a tree

• By Inference

Time and spacde exponential in tree-width

By Conditioning-search

• Time exponential in the cycle-cutset

Treewidth equals cycle cutset

Treewidth smaller than cycle cutset

cycle cutset = 5

Radcliffe