Tree Decomposition methods

Chapter 9

ICS-275
Spring 2010

4 A

Tree-solving

CSP — consistency

Belief updating (projection-join)

(sum-prod)

@E (max-prod) #CSP (sum-prod) /

Radcliffe 2

e

Inference and Treewidth

treewidth=4-1=3

>\/\/<
€

treewidth = (maximum cluster size) - 1

Radcliffe

4 h

The Dual problem/The acyclic problem

The dual graph of a constraint problem associates a node with each constraint
scope and an arc for each two nodes sharing variables. This transforms a
non-binary constraint problem into a binary one, called the dual problem:

Variables: constraints,

Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables,
enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the
tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look

\ /

ICS 275, Fall 2010

e

Dual Constraint Problems

« Constraints can be: C= AVE
+~ F=AVE and so on...

ICS 275, Fall 2010

e

Dual Constraint Problems

« Constraints can be: C= AVE
+~ F=AVE and so on...

ICS 275, Fall 2010

A hypergraph isH = (V,S), V=
{v_1,..,v_n} and a set of subsets
Hyperegdes: S={S 1,...,S | }.

Dual graphs of a hypergaph: The nodes
are the hyperedges and a pair of nodes
is connected if they share vertices in V.
The arc is labeled by the shared
vertices.

A primal graph of a hypergraph H =
(V,S) has V as its nodes, and any two
nodes are connected by an arc if they
appear in the same hyperedge.

if all the constraints of a network R are
binary, then its hypergraph is identical to
its primal graph.

(c)

(d)

ICS 275, Fall 2010

The running intersection property
(connectedness): An arc can be
removed from the dual graph if the
variables labeling the arcs are shared
along an alternative path between the
two endpoints.

Join graph: An arc subgraph of the
dual graph that satisfies the
connectedness property.

Join-tree: a join-graph with no cycles
Hypertree: A hypergraph whose dual
graph has a join-tree.

Acyclic network: is one whose
hypergraph is a hypertree.

ICS 275, Fall 2010

Constraints are:
R _{ABC} =R _{AEF} =R_{CDE}={(0,0,1) (0,1,0)(1,0,0)}
R {ACE}={(1,1,0) (0,1,1) (1,0,2) }.

d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
When processing R_{ABC}, its parent relation is R_{ACE};

Race = Zace (Race ® Rpge) ={(01)(L0D}

processing R_{AEF} we generate relation

Race = Tace (Race ®Raer) ={(01D)}
® processing R_{CDE} we generate:
* R_{ACE}=\pi_{ACE}(R_{ACE} x R_{CDE}) = {(0,1,1)}.
A solution is generated by picking the only allowed tuple for R_{ACE},
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is
only D=0, and then similarly extending the assignment to F=0 and B=0, to
satisfy R_{AEF} and R_{ABC}.

ICS 275, Fall 2010

Algorithm acyclic-solving applies a tree algorithm to
the join-tree. It applies (a little more than) directional
relational arc-consistency from leaves to root.

Complexity: acyclic-solving is O(r | log I) steps, where
r is the number of constraints and | bounds the number
of tuples in each constraint relation

(It assumes that join of two relations when one’s scope
IS a subset of the other can be done in linear time)

ICS 275, Fall 2010

4 h

Dual-based recognition:

perform maximal spanning tree over the dual graph
and check connectedness of the resulting tree.

Dual-acyclicity complexity is O(e”3)
Primal-based recognition:

Theorem (Maier 83): A hypergraph has a join-tree iff
its primal graph is chordal and conformal.

A chordal primal graph is conformal relative to a
constraint hypergraph iff there is a one-to-one
mapping between maximal cliques and scopes of
constraints.

ICS 275, Fall 2010

4 h

Check cordality using
max-cardinality ordering.

Test conformality

Create a join-tree:
connect every clique to
an earlier cligue sharing
maximal number of
variables

_ /

ICS 275, Fall 2010

Convert a constraint problem to an acyclic-one:

Tree-decomposition: Hypertree embedding of a hypergraph H
= (X,H) is a hypertree S = (X, S) s.t., for every h in H there is
h 1inSs.t hisincludedin h_1.

This yield algorithm join-tree clustering and tree-decomposition
In general

Hypertree decomposition: Hypertree partitioning of a

hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every h
InHthereish_1inSs.t. hisincludedin h_1and Xis the

union of scopesin h_1. /

ICS 275, Fall 2010

Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).
Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C })
1. Selectand =(x_1,...,x_n)
2. Triangulation(create the induced graph along d and call it G™*:)
for j=nto 1 by -1 do
E < EU{GK) () inE,(k,))inE}
3. Create a join-tree of the induced graph G"*:
a. ldentify all maximal cliqgues (each variable and its parents is a clique).
LetC_1,...,C_tbe all such cliques,
b. Create a tree-structure T over the cliques:
Connecteach C_{i}toa C_{j} (j<1) with whom it shares largest subset of variables.
4. Place each input constraint in one clique containing its scope, and let
P_i be the constraint subproblem associated with C_i.
5. Solve P_i and let {R'}_i $ be its set of solutions.
6. Return C'={R'} 1,..., {R'}_t the new set of constraints and their join-tree, T.

Theorem: join-tree clustering transforms a constraint network into an acyclic
network

ICS 275, Fall 2010

F
C E
D
D
C
F B

(a) (b) (c)

ICS 275, Fall 2010

™

complexity of JTC: join-tree clustering is O(r k®
(w*(d)+1)) time and O(nk™(w*(d)+1)) space, where k
IS the maximum domain size and w*(d) is the
Induced width of the ordered graph.

The complexity of acyclic-solving is O(n w*(d) (log k)
k*(w*(d)+1))

/

ICS 275, Fall 2010

™

Let R=<X,D,C> be a CSP problem. A tree decomposition for R is
<T,x,w>, such that

s[=(V,E) is a tree
=y associates a set of variables y(v)<X with each node v
=y associates a set of functions y(v)cC with each node v

such that

=l. VR eC, there is exactly one v such that R,ey(v) and scope(R;)cy (V).

=2. VxeX, the set {veV|xcy(v)} induces a connected subtree.

/

ICS 275, Fall 2010

4 h

Let R=<X,0,C>Dbe CSP problem. A tree decomposition is <T,y,y>,
such that

=[=(V,E) is a tree
=y associates a set of variables y(v)cX with each node
=y associates a set of functions y(v)cC with each node

such that

=l. VR, eC, there is exactly one v such that R,ey(v) and scope(R;)<y (V).
mla. Vv, x(v) < scope(y(V)).

x2. VXxeX, the set {veV|xcy(v)} induces a connected subtree.

w (tree-width) = max,_, |x(v)I
k hw (hypertree width) = maxveV | y(v)| /
sep (max separator size) = max,,,, | sep(u,v) |

ICS 275, Fall 2010

Tree

. h Tree-
decomposition yperTree

decomposition

§ 1 i P
Rpr | \Rpp Rpe Ry |

I [
IRBE!R,-‘!EI

(a) (b)

ICS 275, Fall 2010

Cluster Tree Elimination (CTE) works by passing
messages along a tree-decomposition

Basic idea:
Each node sends one message to each of its neighbors

Node u sends a message to its neighbor v only when u
received messages from all its other neighbors

ICS 275, Fall 2010

s

Constraint Propagation

Compute the message :

m(u,v) = ﬂ-sep(u,v) (® R; ecluster (u) R|)

ICS 275, Fall 2010

4 A

Example of CTE message propagation

% (D) =p(Rpp)
ey (D)= (R PR,
Mo (D) = Tp(Rpp™ R p?Im; 5))
N ”’F{M}(B.‘ C)= Tff;({RmeRmM m 2))

M)(B,C) = T (R 7R, Pm g 5))

M 4(A4,B) =T 3R PIR , PImys 5)

\ M (A,B) =T (R PR) /

ICS 275, Fall 2010

s

Join-Tree Decomposition
(Dechter and Pearl 1989)

~

ABC
R(a), R(b,a), R(c,a,b)

BC

BCDF
R(d,b), R(f,c,d)

BF

BEF
R(e,b,f)

EF

EFG
R(9.e.)

Each function in a
cluster

Satisfy running
intersection property

Tree-width: number
of variables in a
cluster-1

Equals induced-
width

/

ICS 275, Fall 2010

4 A

Cluster Tree Elimination

ABC | ~
R(a), R(b,a), R(c,a,b) prgject]an
BC l hy o (b,c)=U, R(a)® R(b,a)® R(c,a,b)
BCDF

2 R(d,b), R(f,c,d),

sep(2,3)={B,F}

elim(2,3)={C,D}
3 BEF
R(e,b,f), i, 5(b,f)

BF

EF

EFG
\ 4 R(g.e,f) /

ICS 275, Fall 2010

4 N

CTE: Cluster Tree Elimination

1 ABC
l hy,(b,c)=U, R(a)®R(b,a) ® R(c,a,b)
BC
P Nay®,0) =l R(Ab)®R(F,c,d) @y, (b, 1)
2 BCDF
hos(d, £)=U,, R(d,b)®R(f,c,d)®hg, (b,c)
BF
T hea (. f)=U, R(e,b, f)®h, (e f)
3 BEF
EE l has (e, F)=U, R(e,b, f)@h,, (b, f)
Time: T

Space: h.o(e f) =0, R(ge f)
we: 4 EFG /

ICS 275, Fall 2010

™

Correctness and completeness: Algorithm CTE is sound and
complete for generating minimal subproblems over chi(v) for
every Vv: i.e. the solution of each subproblem is minimal.
Time complexity: O (deg x (r+N) x kw+1)
Space complexity: O (N xd sep)
where deg = the maximum degree of a node

r = number of of CPTs

N = number of nodes in the tree decomposition

k= the maximum domain size of a variable

w* = the induced width
sep = the separator size

JTCis O (r xkW*1) time and space

ICS 275, Fall 2010

™

My, ,u)

\\\; Mv,,u)

My w) = Usep(u,w) [®j {m(vj,u)} ® y(u)]

x(u)
w(u)

My.,u)

ICS 275, Fall 2010

™

Adaptive consistency is a message-passing along a
bucket-tree

Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.
The variables are the clicue of the triangulated graph
The functions are those placed in the initial partition

ICS 275, Fall 2010

Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

Bucket(E): E=«D, E#C, E=B
Bucket(D): D= A

Bucket(C): C=B

Bucket(B): B= A

Bucket(A) :

Bucket(D): D#E
Bucket(C): C=B, C#E
Bucket(B): B#E
Bucket(E):

QGO 6> &R eF

ICS 275, Fall 2010

Bucket G: R(G.F) —l

E(F)
Bucket F: R(FB,C) 7
(a) Bucket [): R(D.A4,B) A
Bucket C: R(C.4) AC(B.C)
. ~ F J

L 4
Bucket B: R(B.A))\g{fi.ﬂ} L A\ B(A4.5)
L9 y

Bucket 4: R(A4) —'3g{A}<—T

(a) (b)

ICS 275, Fall 2010

Bucket G: R(G, F}\ EF)
Bucket £ R(F B,) E{F/,/ {;-;(B-)
Bucket D: R(D, A, B}] D4, B)

C(B.Cy % (4. B)

Bucket {i’{ A

*__p
Bucket B: 5{8, A) g (4. B) {E{A. BJ} _f{fi}
Bucket 4: R(.4) gi-‘” by

C(B.C)
|R{D. A, B]Il

5‘3-)
BA, Brl'

T P(A.B)

ICS 275, Fall 2010

Adaptive consistency is a message-passing along a
bucket-tree

Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

Theorem: A bucket-tree Is a tree-decomposition
Therefore, CTE adds a bottom-up message passing
to bucket-elimination.

The complexity of ATC is O(r deg k*(w*+1)) time and
k O(n k™(sep*+1)) space.

ICS 275, Fall 2010

7

Conditioning

™

Graph
Coloring
problem

* Inference may require too much memory

on some of the variables

Radcliffe 33

4 A

Conditioning

* Inference may require too much memor
Graph Y Ieq y

Coloring

on some of the variables
problem

Radcliffe

7

Cycle cutset

Radcliffe

35

/

Transforming into a tree

_

By Inference

Time and spacde exponential in tree-width

By Conditioning-search

Time exponential in the cycle-cutset

/

Radcliffe 36

- N

Treewidth equals cycle cutset

-

\ treewidth = cycle cutset = 4 /

Radcliffe 37

7

Treewidth smaller than cycle cutset

™

treewidth = 2

cycle cutset =5

Radcliffe 38

