
Tree Decomposition methods

Chapter 9

ICS-275

Spring 2010

Radcliffe 2

Tree-solving

Belief updating

(sum-prod)

MPE (max-prod)

CSP – consistency

(projection-join)

#CSP (sum-prod)

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR

Trees are processed in linear time and memory

Radcliffe 3

Inference and Treewidth

E
K

F

L

H

C

B
A

M

G

J

D

ABC

BDEF

DGF

EFH

FHK

HJ KLM

treewidth = 4 - 1 = 3

treewidth = (maximum cluster size) - 1

The dual graph of a constraint problem associates a node with each constraint

scope and an arc for each two nodes sharing variables. This transforms a

non-binary constraint problem into a binary one, called the dual problem:

Variables: constraints,

Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables,

enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the

tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look

like a

The Dual problem/The acyclic problem

ICS 275, Fall 2010

Dual Constraint Problems

 Constraints can be: C= AVE

 F=AVE and so on…

ICS 275, Fall 2010

Dual Constraint Problems

 Constraints can be: C= AVE

 F=AVE and so on…

ICS 275, Fall 2010

Graph concepts reviews:

Hyper graphs and dual graphs

 A hypergraph is H = (V,S) , V=
{v_1,..,v_n} and a set of subsets
Hyperegdes: S={S_1, ..., S_l }.

 Dual graphs of a hypergaph: The nodes
are the hyperedges and a pair of nodes
is connected if they share vertices in V.
The arc is labeled by the shared
vertices.

 A primal graph of a hypergraph H =
(V,S) has V as its nodes, and any two
nodes are connected by an arc if they
appear in the same hyperedge.

 if all the constraints of a network R are
binary, then its hypergraph is identical to
its primal graph.

ICS 275, Fall 2010

Acyclic Networks

 The running intersection property

(connectedness): An arc can be

removed from the dual graph if the

variables labeling the arcs are shared

along an alternative path between the

two endpoints.

 Join graph: An arc subgraph of the

dual graph that satisfies the

connectedness property.

 Join-tree: a join-graph with no cycles

 Hypertree: A hypergraph whose dual

graph has a join-tree.

 Acyclic network: is one whose

hypergraph is a hypertree.

ICS 275, Fall 2010

Example

 Constraints are:

 R_{ABC} = R_{AEF} = R_{CDE} = {(0,0,1) (0,1,0)(1,0,0)}

 R_{ACE} = { (1,1,0) (0,1,1) (1,0,1) }.

 d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
• When processing R_{ABC}, its parent relation is R_{ACE};

• processing R_{AEF} we generate relation

• processing R_{CDE} we generate:

• R_{ACE} = \pi_{ACE} (R_{ACE} x R_{CDE}) = {(0,1,1)}.

 A solution is generated by picking the only allowed tuple for R_{ACE},
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is
only D=0, and then similarly extending the assignment to F=0 and B=0, to
satisfy R_{AEF} and R_{ABC}.

)}1,0,1)(1,1,0{()( ABCACEACEACE RRR 

)}1,1,0{()( AEFACEACEACE RRR 

ICS 275, Fall 2010

Solving acyclic networks

 Algorithm acyclic-solving applies a tree algorithm to

the join-tree. It applies (a little more than) directional

relational arc-consistency from leaves to root.

 Complexity: acyclic-solving is O(r l log l) steps, where

r is the number of constraints and l bounds the number

of tuples in each constraint relation

 (It assumes that join of two relations when one’s scope

is a subset of the other can be done in linear time)

ICS 275, Fall 2010

Recognizing acyclic networks

 Dual-based recognition:
• perform maximal spanning tree over the dual graph

and check connectedness of the resulting tree.

• Dual-acyclicity complexity is O(e^3)

 Primal-based recognition:
• Theorem (Maier 83): A hypergraph has a join-tree iff

its primal graph is chordal and conformal.

• A chordal primal graph is conformal relative to a
constraint hypergraph iff there is a one-to-one
mapping between maximal cliques and scopes of
constraints.

ICS 275, Fall 2010

Primal-based recognition

 Check cordality using
max-cardinality ordering.

 Test conformality

 Create a join-tree:
connect every clique to
an earlier clique sharing
maximal number of
variables

ICS 275, Fall 2010

Tree-based clustering

 Convert a constraint problem to an acyclic-one: group subset of
constraints to clusters until we get an acyclic problem.

 Tree-decomposition: Hypertree embedding of a hypergraph H
= (X,H) is a hypertree S = (X, S) s.t., for every h in H there is
h_1 in S s.t. h is included in h_1.

 This yield algorithm join-tree clustering and tree-decomposition
in general

 Hypertree decomposition: Hypertree partitioning of a
hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every h
in H there is h_1 in S s.t. h is included in h_1 and X is the

union of scopes in h_1.

ICS 275, Fall 2010

Join-tree clustering
 Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).

 Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C ‘})

 1. Select an d = (x_1,...,x_n)

 2. Triangulation(create the induced graph along d and call it G^*:)

 for j=n to 1 by -1 do

 E  E U {(i,k)| (i,j) in E,(k,j) in E }

 3. Create a join-tree of the induced graph G^*:

 a. Identify all maximal cliques (each variable and its parents is a clique).

 Let C_1,...,C_t be all such cliques,

 b. Create a tree-structure T over the cliques:

 Connect each C_{i} to a C_{j} (j < I) with whom it shares largest subset of variables.

 4. Place each input constraint in one clique containing its scope, and let

 P_i be the constraint subproblem associated with C_i.

 5. Solve P_i and let {R'}_i $ be its set of solutions.

 6. Return C' = {R'}_1,..., {R'}_t the new set of constraints and their join-tree, T.

 Theorem: join-tree clustering transforms a constraint network into an acyclic
network

ICS 275, Fall 2010

Example of tree-clustering

ICS 275, Fall 2010

Complexity of JTC

 complexity of JTC: join-tree clustering is O(r k^
(w*(d)+1)) time and O(nk^(w*(d)+1)) space, where k
is the maximum domain size and w*(d) is the
induced width of the ordered graph.

 The complexity of acyclic-solving is O(n w*(d) (log k)
k^(w*(d)+1))

ICS 275, Fall 2010

Let R=<X,D,C> be a CSP problem. A tree decomposition for R is
<T,,>, such that

T=(V,E) is a tree
 associates a set of variables (v)X with each node v
 associates a set of functions (v)C with each node v

such that

1. RiC, there is exactly one v such that Ri(v) and scope(Ri)(v).
2. xX, the set {vV|x(v)} induces a connected subtree.

Unifying tree-decompositions

ICS 275, Fall 2010

Let R=<X,D,C> be CSP problem. A tree decomposition is <T,,>,
such that

T=(V,E) is a tree
 associates a set of variables (v)X with each node
 associates a set of functions (v)C with each node

such that
1. RiC, there is exactly one v such that Ri(v) and scope(Ri)(v).
1a. v, (v)  scope((v)).

2. xX, the set {vV|x(v)} induces a connected subtree.

HyperTree Decomposition

w (tree-width) = maxvV |(v)|
hw (hypertree width) = maxvV | (v)|

sep (max separator size) = max(u,v) |sep(u,v)|

ICS 275, Fall 2010

Example of two join-trees again

hyperTree-

decomposition

Tree

decomposition

ICS 275, Fall 2010

Cluster Tree Elimination

 Cluster Tree Elimination (CTE) works by passing

messages along a tree-decomposition

 Basic idea:

• Each node sends one message to each of its neighbors

• Node u sends a message to its neighbor v only when u

received messages from all its other neighbors

ICS 275, Fall 2010

)(

:message theCompute

)(),(),(iuclusterRvusepvu Rm
i

 

Constraint Propagation

u v

x1

x2

xn

m(u,v)

)},(),,(),...,,(),,({)()(21 uvmuxmuxmuxmuucluster n 

ICS 275, Fall 2010

Example of CTE message propagation

ICS 275, Fall 2010

 Each function in a

cluster

 Satisfy running

intersection property

 Tree-width: number

of variables in a

cluster-1

 Equals induced-

widthG

E

F

C D

B

A

A B C

R(a), R(b,a), R(c,a,b)

B C D F

R(d,b), R(f,c,d)

B E F

R(e,b,f)

E F G

R(g,e,f)

2

4

1

3

EF

BC

BF

Join-Tree Decomposition
(Dechter and Pearl 1989)

ICS 275, Fall 2010

),,(),()(),()2,1(bacRabRaRcbh a 

A B C

R(a), R(b,a), R(c,a,b)

B C D F

R(d,b), R(f,c,d),h(1,2)(b,c)

B E F

R(e,b,f), h(2,3)(b,f)

E F G

R(g,e,f)

),(),,(),(),()2,1(,)3,2(cbhdcfRbdRfbh dc 

2

4

1

3

EF

BC

BF
sep(2,3)={B,F}

elim(2,3)={C,D}

Cluster Tree Elimination

joinproject

ICS 275, Fall 2010

),,(),()(),()2,1(bacRabRaRcbh a 

),(),,(),(),()2,3(,)1,2(fbhdcfRbdRcbh fd 

),(),,(),(),()2,1(,)3,2(cbhdcfRbdRfbh dc 

),(),,(),()3,4()2,3(fehfbeRfbh e 

),(),,(),()3,2()4,3(fbhfbeRfeh b 

),,(),()3,4(fegRfeh g

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

BCDF

Time: O (exp(w*+1))
Space: O (exp(sep))
Time: O(exp(hw)) (Gottlob et. Al., 2000)

CTE: Cluster Tree Elimination

G

E

F

C D

B

A

ICS 275, Fall 2010

Cluster Tree Elimination - properties

 Correctness and completeness: Algorithm CTE is sound and

complete for generating minimal subproblems over chi(v) for

every v: i.e. the solution of each subproblem is minimal.

 Time complexity: O (deg  (r+N)  kw*+1)

 Space complexity: O (N  d sep)

where deg = the maximum degree of a node

r = number of of CPTs

N = number of nodes in the tree decomposition

k= the maximum domain size of a variable

w* = the induced width

sep = the separator size

 JTC is O (r  k w*+1) time and space

ICS 275, Fall 2010

Cluster-Tree Elimination (CTE)

...
m(v1,u)

m(v2,u)
m(vi,u)

(u)
(u)

m(u,w) = sep(u,w) [j {m(vj,u)}  (u)]

ICS 275, Fall 2010

Adaptive-consistency as tree-decomposition

 Adaptive consistency is a message-passing along a
bucket-tree

 Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

• The variables are the clicue of the triangulated graph

• The functions are those placed in the initial partition

ICS 275, Fall 2010

Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

 d ordering along widthinduced -(d)
 ,

*

*

w
(d)))exp(w O(n :Complexity












E

D

A

C

B

}2,1{

}2,1{}2,1{

}2,1{ }3,2,1{

:)(

AB :)(

BC :)(

AD :)(

BE C,E D,E :)(

ABucket

BBucket

CBucket

DBucket

EBucket









A

E

D

C

B

:)(

EB :)(

EC , BC :)(

ED :)(

BA D,A :)(

EBucket

BBucket

CBucket

DBucket

ABucket









E

A

D

C

B

|| R
D

BE ,

|| RE

|| RDB

|| RDCB

|| RACB

|| RAB

RA

R
C

BE

ICS 275, Fall 2010

From bucket-elimination to bucket-tree propagation

ICS 275, Fall 2010

The bottom up messages

ICS 275, Fall 2010

Adaptive-Tree-Consistency as tree-decomposition

 Adaptive consistency is a message-passing along a
bucket-tree

 Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

 Theorem: A bucket-tree is a tree-decomposition
Therefore, CTE adds a bottom-up message passing
to bucket-elimination.

 The complexity of ATC is O(r deg k^(w*+1)) time and
O(n k^(sep*+1)) space.

ICS 275, Fall 2010

Radcliffe 33

Conditioning

A=yellow A=green

• Inference may require too much memory

• Condition on some of the variables

C

B K

G

L

D

F
H

M

J

E

C

B K

G

L

D

F
H

M

J

E

A
C

B K

G

L

D

F
H

M

J

E

Graph

Coloring

problem

Radcliffe 34

Conditioning

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

• Inference may require too much memory

• Condition on some of the variables

A
C

B K

G

L

D

F
H

M

J

E

Graph

Coloring

problem

Radcliffe 35

Cycle cutset

C
P

J A

L

B

E

DF M

O

H

K

G N

C
P

J

L

B

E

DF M

O

H

K

G N

A

C
P

J

L

E

DF M

O

H

K

G N

B

P

J

L

E

DF M

O

H

K

G N

C

Cycle cutset = {A,B,C}

C
P

J A

L

B

E

DF M

O

H

K

G N

C
P

J

L

B

E

DF M

O

H

K

G N

C
P

J

L

E

DF M

O

H

K

G N

C
P

J A

L

B

E

DF M

O

H

K

G N

Radcliffe 36

Transforming into a tree

 By Inference

• Time and spacde exponential in tree-width

 By Conditioning-search

• Time exponential in the cycle-cutset

Radcliffe 37

Treewidth equals cycle cutset

E
K

F

H

C

B
A

L

G

J

D

M

N

K

C

A

L

G

J

D

M

N

treewidth = cycle cutset = 4

Radcliffe 38

Treewidth smaller than cycle cutset

E
K

F

H

C

B
A

L

G

J

D

F

C

B

GD

E

treewidth = 2

cycle cutset = 5

