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Tree-solving

CSP — consistency

Belief updating (projection-join)

(sum-prod)

@E (max-prod) #CSP (sum-prod) /
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Inference and Treewidth

treewidth=4-1=3
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treewidth = (maximum cluster size) - 1
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The Dual problem/The acyclic problem

The dual graph of a constraint problem associates a node with each constraint
scope and an arc for each two nodes sharing variables. This transforms a
non-binary constraint problem into a binary one, called the dual problem:

Variables: constraints,

Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables,
enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the
tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look

\ /
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Dual Constraint Problems

« Constraints can be: C= AVE
+~ F=AVE and so on...
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Dual Constraint Problems

« Constraints can be: C= AVE
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A hypergraph isH = (V,S), V=
{v_1,..,v_n} and a set of subsets
Hyperegdes: S={S 1,...,S | }.

Dual graphs of a hypergaph: The nodes
are the hyperedges and a pair of nodes
is connected if they share vertices in V.
The arc is labeled by the shared
vertices.

A primal graph of a hypergraph H =
(V,S) has V as its nodes, and any two
nodes are connected by an arc if they
appear in the same hyperedge.

if all the constraints of a network R are
binary, then its hypergraph is identical to
its primal graph.

(c)

(d)
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The running intersection property
(connectedness): An arc can be
removed from the dual graph if the
variables labeling the arcs are shared
along an alternative path between the
two endpoints.

Join graph: An arc subgraph of the
dual graph that satisfies the
connectedness property.

Join-tree: a join-graph with no cycles
Hypertree: A hypergraph whose dual
graph has a join-tree.

Acyclic network: is one whose
hypergraph is a hypertree.
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Constraints are:
R _{ABC} =R _{AEF} =R_{CDE}={(0,0,1) (0,1,0)(1,0,0)}
R {ACE}={(1,1,0) (0,1,1) (1,0,2) }.

d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
When processing R_{ABC}, its parent relation is R_{ACE};

Race = Zace (Race ® Rpge ) ={(01)(L0D}

processing R_{AEF} we generate relation

Race = Tace (Race ®Raer ) ={(01D)}
® processing R_{CDE} we generate:
* R_{ACE}=\pi_{ACE}(R_{ACE} x R_{CDE}) = {(0,1,1)}.
A solution is generated by picking the only allowed tuple for R_{ACE},
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is
only D=0, and then similarly extending the assignment to F=0 and B=0, to
satisfy R_{AEF} and R_{ABC}.
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Algorithm acyclic-solving applies a tree algorithm to
the join-tree. It applies (a little more than) directional
relational arc-consistency from leaves to root.

Complexity: acyclic-solving is O(r | log I) steps, where
r is the number of constraints and | bounds the number
of tuples in each constraint relation

(It assumes that join of two relations when one’s scope
IS a subset of the other can be done in linear time)
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Dual-based recognition:

perform maximal spanning tree over the dual graph
and check connectedness of the resulting tree.

Dual-acyclicity complexity is O(e”3)
Primal-based recognition:

Theorem (Maier 83): A hypergraph has a join-tree iff
its primal graph is chordal and conformal.

A chordal primal graph is conformal relative to a
constraint hypergraph iff there is a one-to-one
mapping between maximal cliques and scopes of
constraints.
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Check cordality using
max-cardinality ordering.

Test conformality

Create a join-tree:
connect every clique to
an earlier cligue sharing
maximal number of
variables

\_ /
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Convert a constraint problem to an acyclic-one:

Tree-decomposition: Hypertree embedding of a hypergraph H
= (X,H) is a hypertree S = (X, S) s.t., for every h in H there is
h 1inSs.t hisincludedin h_1.

This yield algorithm join-tree clustering and tree-decomposition
In general

Hypertree decomposition: Hypertree partitioning of a

hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every h
InHthereish_1inSs.t. hisincludedin h_1and Xis the

union of scopesin h_1. /
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Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).
Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C })
1. Selectand =(x_1,...,x_n)
2. Triangulation(create the induced graph along $d$ and call it G™*: )
for j=nto 1 by -1 do
E < EU{GK) () inE,(k,))inE}
3. Create a join-tree of the induced graph G"*:
a. ldentify all maximal cliqgues (each variable and its parents is a clique).
LetC_1,...,C_tbe all such cliques,
b. Create a tree-structure T over the cliques:
Connecteach C_{i}toa C_{j} (j<1) with whom it shares largest subset of variables.
4. Place each input constraint in one clique containing its scope, and let
P_i be the constraint subproblem associated with C_i.
5. Solve P_i and let {R'}_i $ be its set of solutions.
6. Return C'={R'} 1,..., {R'}_t the new set of constraints and their join-tree, T.

Theorem: join-tree clustering transforms a constraint network into an acyclic
network
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complexity of JTC: join-tree clustering is O(r k®
(w*(d)+1)) time and O(nk™(w*(d)+1)) space, where k
IS the maximum domain size and w*(d) is the
Induced width of the ordered graph.

The complexity of acyclic-solving is O(n w*(d) (log k)
k*(w*(d)+1))

/
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Let R=<X,D,C> be a CSP problem. A tree decomposition for R is
<T,x,w>, such that

s[=(V,E) is a tree
=y associates a set of variables y(v)<X with each node v
=y associates a set of functions y(v)cC with each node v

such that

=l. VR eC, there is exactly one v such that R,ey(v) and scope(R;)cy (V).

=2. VxeX, the set {veV|xcy(v)} induces a connected subtree.

/
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Let R=<X,0,C>Dbe CSP problem. A tree decomposition is <T,y,y>,
such that

=[=(V,E) is a tree
=y associates a set of variables y(v)cX with each node
=y associates a set of functions y(v)cC with each node

such that

=l. VR, eC, there is exactly one v such that R,ey(v) and scope(R;)<y (V).
mla. Vv, x(v) < scope(y(V)).

x2. VXxeX, the set {veV|xcy(v)} induces a connected subtree.

w (tree-width) = max,_, |x(v)I
k hw (hypertree width) = maxveV | y(v)| /
sep (max separator size) = max,,,, | sep(u,v) |
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Cluster Tree Elimination (CTE) works by passing
messages along a tree-decomposition

Basic idea:
Each node sends one message to each of its neighbors

Node u sends a message to its neighbor v only when u
received messages from all its other neighbors
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Constraint Propagation

Compute the message :

m(u,v) = ﬂ-sep(u,v) (® R; ecluster (u) R|)
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Example of CTE message propagation

% (D) =p(Rpp)
ey (D)= (R PR,
Mo (D) = Tp(Rpp™ R p?Im; 5))
N ”’F{M}(B.‘ C)= Tff;({RmeRmM m 2))

M )(B,C) = T (R 7R, Pm g 5))

M 4(A4,B) =T 3R PIR , PImys 5)

\ M (A,B) =T (R PR ) /
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Join-Tree Decomposition
(Dechter and Pearl 1989)

~

ABC
R(a), R(b,a), R(c,a,b)

BC

BCDF
R(d,b), R(f,c,d)

BF

BEF
R(e,b,f)

EF

EFG
R(9.e.)

Each function in a
cluster

Satisfy running
intersection property

Tree-width: number
of variables in a
cluster-1

Equals induced-
width

/
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Cluster Tree Elimination

ABC | ~
R(a), R(b,a), R(c,a,b) prgject ]an
BC l hy o (b,c)=U, R(a)® R(b,a)® R(c,a,b)
BCDF

2 R(d,b), R(f,c,d),

sep(2,3)={B,F}

elim(2,3)={C,D}
3 BEF
R(e,b,f), i, 5(b,f)

BF

EF

EFG
\ 4 R(g.e,f) /
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CTE: Cluster Tree Elimination

1 ABC
l hy,(b,c)=U, R(a)®R(b,a) ® R(c,a,b)
BC
P Nay®,0) =l R(Ab)®R(F,c,d) @y, (b, 1)
2 BCDF
hos(d, £)=U,, R(d,b)®R(f,c,d)®hg, (b,c)
BF
T hea (. f)=U, R(e,b, f)®h, (e f)
3 BEF
EE l has (e, F)=U, R(e,b, f)@h,, (b, f)
Time: T

Space: h.o(e f) =0, R(ge f)
we: 4 EFG /
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Correctness and completeness: Algorithm CTE is sound and
complete for generating minimal subproblems over chi(v) for
every Vv: i.e. the solution of each subproblem is minimal.
Time complexity: O (deg x (r+N) x kw+1)
Space complexity: O (N xd sep)
where  deg = the maximum degree of a node

r = number of of CPTs

N = number of nodes in the tree decomposition

k= the maximum domain size of a variable

w* = the induced width
sep = the separator size

JTCis O (r xkW*1) time and space
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My, ,u)

\\\; Mv,,u)

My w) = Usep(u,w) [®j {m(vj,u)} ® y(u)]

x(u)
w(u)

My.,u)
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Adaptive consistency is a message-passing along a
bucket-tree

Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.
The variables are the clicue of the triangulated graph
The functions are those placed in the initial partition
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Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

Bucket(E): E=«D, E#C, E=B
Bucket(D): D= A

Bucket(C): C=B

Bucket(B): B= A

Bucket(A) :

Bucket(D): D#E
Bucket(C): C=B, C#E
Bucket(B): B#E
Bucket(E):

QGO 6> &R eF
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Bucket G: R(G.F) —l

E(F)
Bucket F: R(FB,C) 7
(a) Bucket [): R(D.A4,B) A
Bucket C: R(C.4) AC(B.C)
. ~ F J

L 4
Bucket B: R(B.A) )\g{fi.ﬂ} L A\ B(A4.5)
L9 y

Bucket 4: R(A4) —'3g{A}<—T

(a) (b)
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Bucket G: R( G, F}\ EF)
Bucket £ R(F B, ) E{F/,/ {;-;(B- )
Bucket D: R(D, A, B}] D4, B)

C(B.Cy % (4. B)

Bucket {i’{ A

*_\_p
Bucket B: 5{8, A) g (4. B) {E{A. BJ} _f{fi}
Bucket 4: R(.4) gi-‘” by

C(B.C)
|R{D. A, B]Il

5‘3- )
BA, Brl'

T P(A.B)
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Adaptive consistency is a message-passing along a
bucket-tree

Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

Theorem: A bucket-tree Is a tree-decomposition
Therefore, CTE adds a bottom-up message passing
to bucket-elimination.

The complexity of ATC is O(r deg k*(w*+1)) time and
k O(n k™(sep*+1)) space.
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Conditioning

™

Graph
Coloring
problem

* Inference may require too much memory

on some of the variables

Radcliffe 33



4 A

Conditioning

* Inference may require too much memor
Graph Y Ieq y

Coloring

on some of the variables
problem
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Cycle cutset

Radcliffe
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Transforming into a tree

\_

By Inference

Time and spacde exponential in tree-width

By Conditioning-search

Time exponential in the cycle-cutset

/
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Treewidth equals cycle cutset

-

\ treewidth = cycle cutset = 4 /
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Treewidth smaller than cycle cutset

™

treewidth = 2

cycle cutset =5

Radcliffe 38



