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Example: 8-queen problem
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Choose a full assignment and iteratively
Improve it towards a solution

Requires a cost function: number of unsatisfied
constraints or clasuses. Neural networks use
energy minimization

Drawback: local minimas
Remedy: introduce a random element
Cannot decide inconsistency




Algorithm Stochastic Local search (SLS)

Procedure SLS

Input: A constraint network R = (X, D, ('), number of tries MAX_TRIES. A
cost function.

Output: A solution iff the problem is consistent, ”false” otherwise.

1. for i=1 to MAX_TRIES
e initialization: let @ = («a,....,a,) be a random initial assignment to
all variables.
e repeat
(a) if @ is consistent, return @ as a solution.
(b) else let Y = {< z;,a; >} be the set of variable-value pairs that
when z; is assigned «}, give a maximum improvement in the cost

of the assignment; pick a pair < z;,a; >€ Y,
a— (ay,...aq;_1,ad;, a;qq,...,a,) (just flip a; to a).

e until the current assignment cannot be improved.
2. endfor

3. return false




4 A

Example 7.1 Counsider the formula ¢ = {(=C)(=AV-BVvVC)(=AVvDVE)(~Bv-C)}.

Assume that in the initial assignment all variables are assigned the wvalue ”17. This
assignment violates two clauses, the first and the last, so the cost is 2. Next we see that
flipping A, E or D will not remove any inconsistency. Flipping C to 707 will satisfy the two
violated clauses but will violate the clause (—A VvV BV C), yielding a cost of 1. Flipping
B to =B will remove one inconsistency and has a cost of 1 as well. If we flip C' to =C,
and subsequently flipping Bto =B yields a cost of 0 — and a solution. 0

Example: z divides y,x,t z = {2,3,5}, x,y ={2,3,4}, t={2,5,6}
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Plateau search: atlocal minima continue search sideways.

Constraint weighting: use weighted cost function
The cost C_iis 1 if no violation. At local minima increase the weights of

violating constraints. - —
F(a)=)_ wC;(a)
Tabu search: 2.

prevent backwards moves by keeping a list of assigned variable-values. Tie-
breaking rule may be conditioned on historic information: select the value that

was flipped least recently

Automating Max-flips:
Based on experimenting with a class of problems
Given a progress in the cost function, allow the same number of flips used up to
current progress.
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Combine random walk with greediness
At each step:

® choose randomly an unsatisfied clause.

® with probabillity p flip a random variable in the
clause, with (1-p) do a greedy step minimizing the
breakout value: the number of new constraints that
are unsatisfied

/




Figure 7.2: Algorithm WalkSAT

Procedure WalkSAT

Input: A network R = (X, D, ), number of flips MAX FLIPS, MAX TRIES,
probability p.

Output: True iff the problem is consistent, false otherwise.

1. For i= 1 to MAX_TRIES do
2. Compare best assignment with a and retain the best.

(a) start with a random initial assignment a.
(b) for i=1 to MAX_FLIPS

e if ¢ is a solution, return true and a.
e else,
i. pick a violated constraint €', randomly
ii. choose with probability p a variable-value pair < x,a’ > for
x € scope(C'), or, with probability 1—p, choose a variable-value
pair < x,a’ > that minimizes the number of new constraints
that break when the value of 2 is changed to @', (minus 1 if the
current constraint is satisfied).

iii. Change ’s value to a’.
3. endfor

4. return false and the best current assignment.
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Example 7.2 Following our earlier example 7.1.1, we will first select an unsatisfied

clause, such as (=B V =), and then select a variable. If we try to minimize the num-
ber of additional constraints that would be broken, we will select B and flip its value.
Subsequently, the only unsatisfied clause is ~C' which is selected and flipped. 0
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Pick randomly a variable and a value and compute
delta: the change in the cost function when the variable
Is flipped to the value.

If change improves execute It, s

Otherwise it is executed with probability e T where T
is a temperature parameter.

The algorithm will converge if T is reduced gradually.
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Guarantee to terminate at local minima

Random walk on 2-sat Is guaranteed to
converge with probability 1 after N*2 steps,
when N is the number of variables.

Proof:

A random assignment is on the average N/2 flips away from a
satisfying assignment.

There is at least %2 chance that a flip of a 2-clause will reduce the
distance to a given satisfying assignment by 1.

Analysis breaks for 3-SAT
Empirical evaluation shows good performance

compared with comple\te algorithms (see chapter
—___and numerous papers)

Random walk will cover this distance in N2 steps on the average.

/




\_

We can use exact hybrids of search+inference

and replace search by SLS (Kask and Dechter
1996)

Good when cutset is small

The effect of preprocessing by constraint
propagation on SLS (Kask and Dechter 1995)
Great improvement on structured problems
Not so much on uniform problems
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Structured (hierarchical 3SAT cluster structures)
vs. (uniform) random.

Basic scheme :
Apply preprocessing (resolution, path consistency)
Run SLS
Compare against SLS alone
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A ASAT clanse over

vadables x, y and = \

http://www.ics.uci.edu/%7Ecsp/r34-gsat-
local-consistency.pdf




SLS and Local Consistency

Solvable 35AT cluster structures, 100 mstances, MaxFhps = 512K

5 variables per cluster, 50 clusters, 200 clauses between clusters

Restricted Bound-3 Resolution :
Running times, number of flips and clauses added are given as an average per problem solved

only original clauses resolved

Before Resolution After Resolution

C/cluster || Solved | Time | Flips || Solved | RBR-3 Time | Total Time | Flips | New Clauses Dp
30 100 0.52 sec | 4.5K 100 3.6 sec 3.7 sec 189 1736 1.03 sec
a1 100 0.71 5.1K 100 J.BR 3.91 176 1731 1.04
32 100 1.03 84K 100 4.16 4.20 162 1722 1.09
a3 100 1.54 12K 100 4.36 4.39 155 1708 1.11
34 100 3.44 261 100 4.66 4.70 151 1690 1.15
a5 100 6.38 49K 100 492 495 140 1668 1.18
J6 90 21.7 161K 100 5.23 5.26 135 1640 1.19
a7 41 A5.5 252K 100 5.42 5.45 131 1609 1.23
a8 3 284 2K 100 5.94 5.97 125 1574 1.27
39 0 - - 100 5.95 5.98 121 1540 1.29
40 0 - - 100 6.13 6.17 115 1503 1.29

Table 1: Bound-3 Resolution and GSAT
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SLS and Local Consistency

N=100, K=8, T=32/64, 200 instances, MaxFlips = 512K

C | Solvable Algorithm Solved | Tries | Flips | PPC Time | Total Time || BJ-DVO
260 | 88.5 % GSAT 139 336 | 147K 0 sec 36 sec 19 min
PPC 4+ GSAT 152 292 | 140K 8 sec 66 sec
270 66 % GSAT T8 406 | 191K 0 sec 45 sec 33 min
PPC 4+ GSAT 83 381 | 195K 14 sec 02 sec
N=30, K=64, T=2048/4096, 100 instances, MaxFlips = 128K, Coris=1807
163 FPPC + GSAT a6 276 | HUK 56 sec 153 sec
GSAT a8 247 | HIK 0 sec 89 sec

Table 2: Partial Path Consistency and (GSAT

Uniform random 3SAT, N=600, C=2550, 100 instances, MaxFlips = 512K
Algorithm Solved | Tries | Flips | BR-3 Time Total Time
GSAT a6 63 176K 0 sec 15.3 sec

BR-3 4+ GSAT 31 45 125K (0.3 sec 15.0 sec

Table 3: Bound-3 Resolution and GSAT
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Summary:

For structured problems, enforcing local consistency will
Improve SLS

For uniform CSPs, enforcing local consistency is not cost
effective: performance of SLS is improved, but not enough to
compensate for the preprocessing cost.
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Background:

Cycle cutset technigue improves backtracking
by conditioning only on cutset variables.
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Background:
Tree algorithm is tractable for trees.

Networks with bounded width are tractable*.

Basic Scheme:
|ldentify a cutset such that width is reduced to desired value.

Use search with cutset conditioning.
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Cutset 'Y

x;, =10, 1} xj={0,1}

Tree variables X =———%
S

Cmin = minC(y) = minmin{C(X | Y = y)}

\ Y=y Y=y X=r
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Results GSAT with Cycle-Cutset

(Kask and Dechter, 1996)

GSAT versus GSAT+CC

70
60
50

40 —e— GSAT

—m— GSAT+CC

# of problems solved
= N
o o

o

14 22 36 43

k cycle cutset size
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Summary:

A new combined algorithm of SLS and inference based on
cutset conditioning

Empirical evaluation on random CSPs

SLS combined with the tree algorithm is superior to pure SLS
when the cutset is small

\_ /
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Possible project

Program variants of SLS+Inference

Use the computed cost on the tree to guide SLS on
the cutset. This is applicable to optimization

Replace the cost computation on the tree with simple
arc-consistency or unit resolution

Implement the idea for SAT using off-the-shelves
code: unit-resolution from minisat, SLS from walksat.

Other projects: start thinking.

\_
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More project ideas

Combine local search with constraint propagation.
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