Towards Provably Complete Stochastic
Search Algorithms for Satisfiability

Inés Lynce, Lufs Baptista and Jodo Marques-Silva

Department of Informatics,
Technical University of Lisbon,
IST/INESC/CEL, Lisbon, Portugal
{ines,1mtb, jpms}@sat.inesc.pt

Abstract. This paper proposes a stochastic, and complete, backtrack
search algorithm for Propositional Satisfiability (SAT). In recent years,
randomization has become pervasive in SAT algorithms. Incomplete al-
gorithms for SAT, for example the ones based on local search, often re-
sort to randomization. Complete algorithms also resort to randomization.
These include, state-of-the-art backtrack search SAT algorithms that of-
ten randomize variable selection heuristics. Moreover, it is plain that the
introduction of randomization in other components of backtrack search
SAT algorithms can potentially yield new competitive search strategies.
As a result, we propose a stochastic backtrack search algorithm for SAT,
that randomizes both the variable selection and the backtrack steps of
the algorithm. In addition, we describe and compare different organiza-
tions of stochastic backtrack search. Finally, experimental results provide
empirical evidence that the new search algorithm for SAT results in a
very competitive approach for solving hard real-world instances.

1 Introduction

Propositional Satisfiability is a well-known NP-complete problem, with extensive
applications in Artificial Intelligence, Electronic Design Automation, and many
other fields of Computer Science and Engineering.

In recent years, several competitive solution strategies for SAT have been
proposed and thoroughly investigated [10,9, 11]. Advanced techniques applied to
backtrack search algorithms for SAT have achieved remarkable improvements [3,
7,9,11,12,15], having been shown to be crucial for solving large instances of
SAT derived from real-world applications. Current state-of-the-art SAT solvers
incorporate advanced pruning techniques as well as new strategies on how to
organize the search. Effective search pruning techniques include, among others,
clause recording and non-chronological backtracking [3,9,11], whereas recent
effective strategies include search restart strategies [7]. Moreover, the work of S.
Prestwich [12] (inspired by the previous work of others [6,13]) has motivated the
utilization of randomly picked backtrack points in incomplete SAT algorithms.
More recently, a stochastic systematic search algorithm has been proposed [8].

The remainder of this paper is organized as follows. Section 2 briefly sur-
veys SAT algorithms and the utilization of randomization in SAT. Afterwards,
Section 3 introduces a stochastic backtrack search SAT algorithm and the next
section details randomized backtracking. Preliminary experimental results are
presented and analyzed in Section 5. Finally, we conclude and suggest future
research work in Section 6.

2 SAT Algorithms

Over the years a large number of algorithms have been proposed for SAT,
from the original Davis-Putnam procedure [5], to recent backtrack search al-
gorithms [3,9,11,15], among many others.

SAT algorithms can be characterized as being either complete or incomplete.
Complete algorithms can establish unsatisfiability if given enough CPU time;
incomplete algorithms cannot. In a search context complete and incomplete al-
gorithms are often referred to as systematic, whereas incomplete algorithms are
referred to as non-systematic.

The vast majority of backtrack search SAT algorithms build upon the original
backtrack search algorithm of Davis, Logemann and Loveland [4]. A generic
organization of backtrack search for SAT considers three main engines:

— The decision engine (Decide) which selects an elective variable assignment
each time it is called.

— The deduction engine (Deduce) which applies Boolean Constraint Propaga-
tion, given the current variable assignments and the most recent decision
assignment, for satisfying the CNF formula.

— The diagnosis engine (Diagnose) which identifies the causes of a given con-
flicting partial assignment.

Recent state-of-the-art backtrack search SAT solvers [3,9,11,15] utilize so-
phisticated variable selection heuristics, implement fast Boolean Constraint Prop-
agation procedures, and incorporate techniques for diagnosing conflicting condi-
tions, thus being able to backtrack non-chronologically and record clauses that
explain and prevent identified conflicting conditions. Clauses that are recorded
due to diagnosing conflicting conditions are referred to as conflict-induced clouses
(or simply conflict clauses).

3 Stochastic Systematic Search

In this section we describe how randomization can be used within backtrack
search algorithms to yield a stochastic systematic search SAT algorithm.

As previously explained in Section 2, a backtrack search algorithm can be
organized according to three main engines: the decision engine, the deduction
engine and the diagnosis engine. Given this organization, we define a backtrack
search (and so systematic) SAT algorithm to be stochastic provided all three
engines are subject to randomization:

1. Randomization can be (and has actually been [2,3,11]) applied to the deci-
sion engine by randomizing the variable selection heuristic.

2. Randomization can be applied to the deduction engine by randomly picking
the order in which implied variable assignments are handled during Boolean
Constraint Propagation.

3. The diagnosis engine can be randomized by randomly selecting the point to
backtrack to.

For the deduction engine, randomization only affects the order in which as-
signments are implied, and hence can only affect which conflicting clause is
identified first, and so it is not clear whether randomization of the deduction
engine can play a significant role. As a result, we chose to randomize the two
other engines of the backtrack search SAT algorithm.

Since the randomization of the decision engine is simply obtained by ran-
domizing the variable selection heuristic [2,3,11], in the next section we focus
on the randomization of the diagnosis engine.

4 Randomized Backtracking

State-of-the-art SAT solvers currently utilize different forms of non-chronological
backtracking, for which each identified conflict is analyzed, its causes identified,
and a new clause created and added to the CNF formula. Created clauses are
then used to compute the backtrack point as the most recent decision assignment
from all the decision assignments represented in the recorded clause.

The diagnosis engine of a non-chronological backtrack search algorithm can
be randomized by randomly selecting the point to backtrack to. The conflict
clause is then used for randomly deciding which decision assignment is to be
toggled. This form of backtracking is referred to as random backtracking.

In SAT solvers implementing non-chronological backtracking and clause re-
cording, even with opportunistic clause deletion, the algorithms are guaranteed
to be complete, because there is always an implicit explanation for why a solution
cannot be found in the portion of the search space already searched. However,
in order to relax this backtracking condition and still ensure completeness, ran-
domized backtracking requires that all recorded clauses must be kept in the CNF
formula.

Moreover, there exists some freedom on how the backtrack step to the target
decision assignment variable is performed and on when it is applied. For example,
one can decide not to apply randomized backtracking after every conflict but
instead only once after every K conflicts.

4.1 Completeness Issues

With randomized backtracking, clause deletion may cause already visited por-
tions of the search space to be visited again. A simple solution to this problem is
to prevent deletion of recorded clauses, i.e. no recorded conflict clauses are ever

deleted. If no conflict clauses are deleted, then conflicts cannot be repeated, and
the backtrack search algorithm is necessarily complete. The main drawback of
keeping all recorded clauses is that the growth of the CNF formula is linear in
the number of explored nodes, and so exponential in the number of variables.
However, as will be described in Section 4.2, there are effective techniques to
tackle the potential exponential growth of the CNF formula. Moreover, experi-
mental data from Section 5 clearly indicate that the growth of the CNF formula
is not exponential in practice.

It is important to observe that there are other approaches to ensure com-
pleteness that do not necessarily keep all recorded conflict clauses:

1. One solution is to increase the value of K each time a randomized backtrack
step is taken.

2. Another solution is to increase the relevance-based learning [3] threshold
each time a randomized backtrack step is taken (i.e. after K conflicts).

3. One final solution is to increase the size of recorded conflict clauses each
time a randomized backtrack step is taken.

Observe that all of these alternative approaches guarantee that the search
algorithm is eventually provided with enough space and/or time to either iden-
tify a solution or prove unsatisfiability. However, all strategies exhibit a key
drawback: paths in the search tree can be visited more than once. Moreover, even
when recording of conflict clauses is used, as in [9, 11], clauses can eventually be
deleted and so search paths may be re-visited.

We should note that, as stated earlier in this section, if all recorded clauses
are kept, then no conflict can be repeated during the search, and so no search
paths can be repeated. Hence, as long as the search algorithm keeps all recorded
conflict clauses, no search paths are ever repeated.

4.2 Implementation Issues

After (randomly) selecting a backtrack point, the actual backtrack step can be
organized in two different ways:

— One can non-destructively toggle the target decision assignment, meaning
that all other decision assignments are unaffected.

— One can destructively toggle the target decision assignment, meaning that
all of the more recent decision assignments are erased.

The two randomized backtracking approaches differ significantly. Destruc-
tive randomized backtracking is more drastic and attempts to rapidly cause the
search to explore other portions of the search space. Non-destructive randomized
backtracking has characteristics of local search, in which the current (partial)
assignment is only locally modified.

Another significant implementation issue is memory growth. Despite the
growth of the number of clauses being linear in the number of searched nodes, for
some problem instances a large number of backtracks will be required. However,
there are effective techniques to tackle the potential exponential growth of the
CNF formula. Next we describe two of these techniques:

1. The first technique for tackling CNF formula growth is to opportunistically
apply subsumption to recorded conflict clauses. This technique is guaran-
teed to effectively reduce the number of clauses that are kept in between
randomized backtracks.

2. Alternatively, a second technique consists of just keeping recorded conflict
clauses that explain why each sub-tree, searched in between randomized
backtracks, does not contain a solution. This process is referred to as iden-
tifying the tree signature [1] of the searched sub-tree.

Regarding the utilization of tree signatures, observe that it is always possible
to characterize a tree signature for a given sub-tree T's that has just been searched
by the algorithm. Each time, after a conflict is identified and a randomized
backtrack step is to be taken, the algorithm defines a path in the search tree.
Clearly, the explanation for the current conflict, as well as the explanations for
all of the conflicts in the search path, provide a sufficient explanation of why
sub-tree Tg, that has just been searched, does not contain a solution to the
problem instance.

4.3 Randomized Backtracking and Search Restart Strategies

It is interesting to observe that randomized backtracking strategies can be inter-
preted as a generalization of search restart strategies. The latter always start the
search process from the root of the search tree, whereas the former randomly se-
lect the point in the search tree from which the search is to be restarted (assuming
destructive backtracking is used). Moreover, observe that both approaches im-
pose the same requirements in terms of completeness, and that the alternative
techniques for completeness described in Section 4.1 for random backtracking
also apply to search restart strategies.

It is also interesting to observe that the two strategies can be used together.
In this case, each strategy Sy (for randomized backtracking) or S, (for restarts)
is applied after every K, or K,z conflicts, respectively. In general we assume
K.y < K., since Sg causes the search to explore new portions of the search
space that differ more drastically from those explored by S;.

5 Experimental Results

This section presents and analyzes experimental results that evaluate the ef-
fectiveness of the techniques proposed in this paper in solving hard real-world
problem instances. Recent examples of such instances are the superscalar pro-
cessor verification problem instances developed by M. Velev and R. Bryant [14].
We consider four sets of instances: sss1.0a with 9 satisfiable instances, sss1.0
with 40 selected satisfiable instances, sss2.0 with 100 satisfiable instances, and
sss-sat-1.0 with 100 satisfiable instances. For all the experimental results pre-
sented in this section a PIIT @ 866MHz Linux machine with 512 MByte of RAM
was used. The CPU time limit for each instance was set to 200 seconds, except

for the sss-sat-1.0 instances for which it was set to 1000 seconds. Since random-
ization was used, the number of runs was set to 10 (due to the large number of
problem instances being solved). Moreover, the results shown correspond to the
median values for all the runs.

In order to analyze the different techniques, a new SAT solver — Quest0.5
— has been implemented. Quest0.5 is built on top of the GRASP SAT solver [9],
but incorporates restarts as well as random backtracking. Random backtracking
is applied non-destructively after every K backtracks !. Furthermore, in what
concerns implementation issues (see section 4.2), the backtracking point is se-
lected from the union of the recorded conflict clauses in the most recent K
conflicts and the tree signature of each sub-tree is kept in between randomized
backtracks.

Moreover, for the experimental results, a few configurations were selected:

— Rst1000+inc100 indicates that restarts are applied after every 1000 back-
tracks (i.e. the initial cutoff value is 1000), and the increment to the cutoff
value after each restart is 100 backtracks. (Observe that this increment is
necessary to ensure completeness.)

— Rst1000-+ts configuration also applies restarts after every 1000 backtracks
and keeps the clauses that define the tree signature when the search is
restarted. Moreover, the cutoff value used is 1000, being kept fixed, since
completeness is guaranteed.

— RB1 indicates that random backtracking is taken at every backtrack step;

— RB10 applies random backtracking after every 10 backtracks;

— Rst1000+RB1 means that random backtracking is taken at every back-
track and that restarts are applied after every 1000 backtracks. (The identi-
fication of the tree signature is used for both randomized backtracking and
for search restarts.)

— Rst1000+RB10 means that random backtracking is taken after every 10
backtracks and also that restarts are applied after every 1000 backtracks.
(The identification of the tree signature is used for both randomized back-
tracking and for search restarts.)

The results for Quest0.5 on the SSS instances are shown in Table 1. In this
table, Time denotes the CPU time, Nodes the number of decision nodes, and
X the average number of aborted problem instances. As can be observed, the
results for Quest0.5 reveal interesting trends:

— Random backtracking taken at every backtrack step allows significant reduc-
tions in the number of decision nodes.

— The elimination of repeated search paths in restarts, when based on identi-
fying the tree signatures and when compared with the use of an increasing
cutoff value, helps reducing the total number of nodes and CPU time.

— The best results are always obtained when random backtracking is used,
independently of being or not used together with restarts.

! For Quest0.5 we chose to use the number of backtracks instead of the number of
conflicts. original GRASP code is organized [9)].

Table 1. Results for the SSS instances

[Inst | sssl0a | sss1.0 | 5552.0 | sss-sat-1.0 |
|Quest 0.5 |Time| Nodes|X|Time| Nodes| X| Time| Nodes| X| Time] Nodes]| X|
Rist1000+inc100 208| 59511| 0| 508(188798| 0| 1412| 494049| 0|50512| 8963643|39
Rst1000+ts 161| 52850| 0| 345|143735| 0| 1111| 420717| 0(47334| 7692906 |28
RB1 79| 11623| 0| 231| 29677 0| 313| 31718| 0|10307| 371277| 1
RB10 204| 43609| 0| 278| 81882| 0| 464| 118150| 0| 6807, 971446| 1
Rst1000+RB1 79| 11623| 0| 221| 28635 0| 313| 31718| 0{10330| 396551 2
Rst10004+RB10| 84|24538|0| 147|56119| 0| 343| 98515| 0| 7747(1141575| O
[GRASP | 1603]257126] 8] 2242[562178]11]13298]3602026]65][83030]12587264[82]

— Rst1000+RB10 is the only configuration able to solve all the instances in
the allowed CPU time for all runs.

The experimental results reveal additional interesting patterns. When com-
pared with the results for GRASP, Quest 0.5 yields dramatic improvements. Fur-
thermore, even though the utilization of restarts reduces the amount of search,
it is also clear that more significant reductions can be achieved with random-
ized backtracking. In addition, the integrated utilization of search restarts and
randomized backtracking allows obtaining the best results, thus motivating the
utilization of multiple search strategies in backtrack search SAT algorithms.

6 Conclusions and Future Work

This paper proposes and analyzes the application of randomization in the dif-
ferent components of backtrack search SAT algorithms. A new, stochastic but
complete, backtrack search algorithm for SAT is proposed.

In conclusion, the contributions of this paper can be summarized as follows:

1. A new backtrack search SAT algorithm is proposed, that randomizes the
variable selection and the backtrack steps.

2. The proposed SAT algorithm is shown to be complete, and different ap-
proaches for ensuring completeness are described.

3. Randomized backtracking is shown to be a generalization of search restart
strategies, and their joint utilization is proposed.

4. Experimental results clearly indicate that significant savings in search effort
can be obtained for different organizations of the proposed algorithm.

In the near future, we expect to consider other variations of this new al-
gorithm. We can envision establishing a generic framework for implementing
backtracking strategies, allowing the implementation of different hybrids, all
guaranteed to be complete and so capable of proving unsatisfiability.

References

1.

2.

10.

11.

12.

13.

14.

15.

L. Baptista, I. Lynce, and J. Marques-Silva. Complete search restart strategies for
satisfiability. In IJCAI Workshop on Stochastic Search Algorithms, August 2001.
L. Baptista and J. P. Marques-Silva. Using randomization and learning to solve
hard real-world instances of satisfiability. In International Conference on Principles
and Practice of Constraint Programming, pages 489-494, September 2000.

R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the National Conference on Artificial Intelligence,
pages 203-208, 1997.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the Association for Computing Machinery, 5:394-397,
July 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the Association for Computing Machinery, 7:201-215, 1960.

M. Ginsberg and D. McAllester. GSAT and dynamic backtracking. In Proceedings
of the International Conference on Principles of Knowledge and Reasoning, pages
226-237, 1994.

C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In Proceedings of the National Conference on Artificial Intelligence,
July 1998.

I. Lynce, L. Baptista, and J. Marques-Silva. Stochastic systematic search algo-
rithms for satisfiability. In LICS Workshop on Theory and Applications of Satis-
fiability Testing, June 2001.

J. P. Marques-Silva and K. A. Sakallah. GRASP-A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506-521, May 1999.
D. McAllester, B. Selman, and H. Kautz. Evidence of invariants in local search. In
Proceedings of the National Conference on Artificial Intelligence, pages 321-326,
August 1997.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference, 2001.
S. Prestwich. A hybrid search architecture applied to hard random 3-sat and low-
autocorrelation binary sequences. In Proceedings of the International Conference
on Principles and Practice of Constraint Programming, pages 337-352, September
2000.

E. T. Richards and B. Richards. Restart-repair and learning: An empirical study
of single solution 3-sat problems. In CP Workshop on the Theory and Practice of
Dynamic Constraint Satisfaction, 1997.

M. N. Velev and R. E. Bryant. Superscalar processor verification using efficient
reductions from the logic of equality with uninterpreted functions to propositional
logic. In Proceedings of Correct Hardware Design and Verification Methods, LNCS
1703, pages 37-53, September 1999.

H. Zhang. SATO: An efficient propositional prover. In Proceedings of the Interna-
tional Conference on Automated Deduction, pages 272-275, July 1997.

