
Distance-based Goal-ordering heuristics for Graphplan

Subbarao Kambhampati
�

& Romeo Sanchez Nigenda
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

Email:
�
rao,rsanchez � @asu.edu

Abstract

We will discuss the shortcomings of known vari-
able and value ordering strategies for Graphplan’s
backward search phase, and propose a novel strat-
egy that is based on a notion of the difficulty of
achieving the corresponding subgoal. The diffi-
culty of achievement is quantified in terms of the
structure of the planning graph itself–specifically,
the earliest level of the planning-graph at which that
subgoal appears. We will present empirical results
showing the surprising effectiveness of this simple
heuristic on benchmark problems. We will end by
contrasting the way distance-based heuristics are
used in Graphplan and state-search planners like
UNPOP, HSP and HSP-R.

1 Introduction
It has been known for sometime now that the backward search
of Graphplan algorithm can be seen as solving a (dynamic)
CSP problem [8; 17]. Given this relation, the order in which
the backward search considers goals for expansion–the so-
called “variable ordering heuristic”, and the order in which
the actions supporting those goals are considered – i.e., the
“value ordering heuristic”–can have a very significant im-
pact on Graphplan’s performance [1; 5]. Despite this expec-
tation, experiments with the traditional CSP variable order-
ing strategies such as “most constrained variable first” and
“least constrained value first”–have been shown to be of at
best marginal utility [7].

In this paper, we note that the straightforward adaptation of
variable and value ordering strategies from CSP literature is
not likely to be effective given the fact that planning graph is a
dynamic CSP, where the assignment of values to variables at
one level activate other variables in the next lower level. We
then present a family of variable and value-ordering heuristics
�
Authors’ names listed alphabetically. Binh Minh Do, Jillian

Nottingham, Xuan Long Nguyen, Biplav Srivastava and Terry Zim-
merman have all contributed significantly to this work through dis-
cussions and feedback. This research is supported in part by NSF
young investigator award (NYI) IRI-9457634, ARPA/Rome Labo-
ratory planning initiative grant F30602-95-C-0247, Army AASERT
grant DAAH04-96-1-0247, AFOSR grant F20602-98-1-0182 and
NSF grant IRI-9801676.

that are based on the difficulty of achieving truth (or falsity)
value for a proposition, starting from the initial state. In all
these heuristics, the degree of difficulty of achieving a sin-
gle proposition is quantified by the index of the earliest level
of the planning graph in which that proposition first appears.
During backward search, we consider goals (variables) in the
order of highest to lowest difficulty, and the actions that sup-
port the chosen goal variable are considered in the order of
easiest to hardest to achieve preconditions. We will show that
these heuristics based on level information have several im-
portant properties:
� First and most important, use of these heuristics im-

proves the performance of Graphplan. The improve-
ments are particularly impressive when backward search
is applied to “solution-bearing” levels of the planning
graph (as is to be expected of any effective variable and
value ordering heuristic).
� The heuristics are surprisingly insensitive to the length

of the planning graph. Specifically, Graphplan with our
heuristics tends to return near-optimal quality plans in
about the same time, even if we are searching in a plan-
ning graph that is considerably longer than the length
of the minimal length solution. This makes it possible
to start with a rough upper-bound guess on the length
of the solution, expand the planning graph to that level,
and search it to find the solution directly, thereby avoid-
ing costly searches on shorter planning graphs that do
not contain any solution. Specifically, our heuristics al-
low Graphplan to solve a planning problem with a � -step
solution without first proving that no � -step solution is
possible for ���	� . This is in contrast to the standard
Graphplan algorithm, which, as mentioned in [2], cannot
improve its performance even if given additional steps
for planning.
� Our work presents an interesting way of incorporating

the “distance based heuristics” popularized by McDer-
mott’s UNPOP planner [11] and Bonet & Geffner’s HSP
and HSP-R planners [4; 3] into Graphplan, while keep-
ing the other advantages of Graphplan–such as the abil-
ity to generate parallel plans, and to exploit other CSP
search techniques (such as local consistency enforce-
ment strategies, EBL and DDB)

The rest of the paper is organized as follows. Section 2 re-

G
1

Q

A
1

G
1

P

R

W
 A
4

A
2

A
3

G
1

G
2
A
0

Figure 1: An example planning graph. To avoid clutter, we
do not show the no-ops corresponding to the persistence of
propositions Q, W, P and R.

views Graphplan, and discusses the inadequacy of traditional
dynamic variable ordering heuristics, as well as the “noop
first” heuristic used as default by the standard Graphplan im-
plementations. Section 3 review the variable ordering heuris-
tics that have been considered in the literature and discuss
their shortfalls. Section 4 describes the distance-based vari-
able and value ordering heuristics, and presents the empirical
evaluation of these heuristics. Section 5 discusses the rela-
tions between our heuristics and the distance based heuristics
used in UNPOP and HSP. Section 6 summarizes the contri-
butions of the paper.

2 Background on Graphplan
Graphplan algorithm [2] can be seen as a “disjunctive” ver-
sion of the forward state space planners [8]. It consists of
two interleaved phases – a forward phase, where a data struc-
ture called “planning-graph” is incrementally extended, and
a backward phase where the planning-graph is searched to
extract a valid plan. The planning-graph (see Figure 1) con-
sists of two alternating structures, called “proposition lists”
and “action lists.” Figure 1 shows a partial planning-graph
structure. We start with the initial state as the zeroth level
proposition list. Given a

�
level planning graph, the exten-

sion of structure to level
�����

involves introducing all actions
whose preconditions are present in the

�����
level proposition

list. In addition to the actions given in the domain model, we
consider a set of dummy “persist” actions, one for each con-
dition in the

�	���
level proposition list. A “persist-C” action

has
 as its precondition and
 as its effect. Once the ac-
tions are introduced, the proposition list at level

�����
is con-

structed as just the union of the effects of all the introduced
actions. Planning-graph maintains the dependency links be-
tween the actions at level

�
���
and their preconditions in level�

proposition list and their effects in level
�����

proposition
list. The planning-graph construction also involves computa-
tion and propagation of “mutex” constraints. The propagation
starts at level 1, with the actions that are statically interfering
with each other (i.e., their preconditions and effects are in-
consistent) labeled mutex. Mutexes are then propagated from
this level forward by using two simple propagation rules. In
Figure 1, the curved lines with x-marks denote the mutex re-
lations.

The search phase on a
�

level planning-graph involves
checking to see if there is a sub-graph of the planning-graph

that corresponds to a valid solution to the problem. This in-
volves starting with the propositions corresponding to goals
at level

�
(if all the goals are not present, or if they are present

but a pair of them are marked mutually exclusive, the search
is abandoned right away, and planning-graph is grown an-
other level). For each of the goal propositions, we then se-
lect an action from the level

�
action list that supports it, such

that no two actions selected for supporting two different goals
are mutually exclusive (if they are, we backtrack and try to
change the selection of actions). At this point, we recursively
call the same search process on the

�����
level planning-graph,

with the preconditions of the actions selected at level
�

as the
goals for the

�����
level search. The search succeeds when

we reach level � (corresponding to the initial state).
Previous work [8; 17; 9] had explicated the connections

between this backward search phase of Graphplan algorithm
and the constraint satisfaction problems (specifically, the dy-
namic constraint satisfaction problems, as introduced in [12]).
Briefly, the propositions in the planning graph can be seen as
CSP variables, while the actions supporting them can be seen
as their potential values. The mutex relations specify the con-
straints. Assigning an action (value) to a proposition (vari-
able) makes variables at lower levels “active” in that they too
now need to be assigned actions.

3 Variable and Value ordering in backward
search

The order in which the backward search considers the
(sub)goal propositions for assignment is what we term the
“goal ordering” heuristic. The order in which the actions
supporting a goal are considered for inclusion in the solu-
tion graph is the “value ordering” heuristic. In their original
paper, Blum & Furst [2] argue that the goal ordering heuris-
tics are not particularly useful for Graphplan. Their argu-
ment can be paraphrased as follows–in general, Graphplan
conducts backward search on a planning graph for several
iterations–searching for the solution, failing, extending the
planning graph by a single level, and searching for the solu-
tion again. In other words, a significant part of the search is
conducted on planning graphs that do not contain a solution.
When solving a CSP problem that does not contain a solu-
tion, variable ordering strategies, especially the static variable
ordering strategies, are not expected to have much of an im-
pact on the search efficiency, since the whole search space
has to be visited anyway.1 Blum & Furst argue, in essence,
that since a variable (goal) ordering strategy is not expected
to help much in failing levels, its impact on the overall effi-
ciency of Graphplan is likely to be minimal.

There are however reasons to pursue goal ordering strate-
gies for Graphplan:� In many problems, the search done at the final level does

account for a significant part of the overall search. Thus,
it will be useful to pursue variable ordering strategies,
even if they improve only the final level search.� There may be situations where one might have lower
bound information about the length of the plan, and us-

1Techniques like EBL [7] are however likely to help even in fail-
ing levels, as they let the search terminate faster in failing branches.

Problem Noops first without Noops first
Length Time Length Time

BW-large-A 12/12 .008 12/12 .009
BW-large-B 18/18 .76 18/18 .81
BW-large-C -

�
30 -

�
30

huge-fct 18/18 1.88 18/18 3.16
bw-prob04 8/20 33.5 8/18 27.96

Rocket-ext-a 7/30 1.51 7/30 .043
Rocket-ext-b -

�
30 7/29 .043

Att-log-a -
�

30 11/56 .17
Gripper-6 11/17 .076 11/17 .03
Gripper-8 -

�
30 15/23 1.08

Ferry41 27/27 .66 27/27 .42
Ferry-5 -

�
30 33/33 1.40

Tower-5 31/31 .67 31/31 1.00

Table 1: Experiments establishing the fallibility of the
“noops-first” heuristic. Times are in minutes on a Pentium
500MHz machine with 256M ram, running linux.

ing that information, the planning graph search may be
started from levels at or beyond the minimum solution
bearing level of the planning graph.

3.1 Fallibility of the noops-first heuristic

The original Graphplan algorithm did not commit to any par-
ticular goal or value ordering heuristic. The implementation
however does default to a value ordering heuristic that prefers
to support a proposition by a noop action, if available. Al-
though the heuristic of preferring noops seems like a rea-
sonable heuristic (in that it avoids inserting new actions into
the plan as much as possible), and has mostly gone unques-
tioned,2 it turns out that it is not infallible. Our experiments
with Graphplan implementations show that using noops first
heuristic can, in many domains, drastically worsen the per-
formance. Table 1 shows the results from our experiments.
As can be seen, in most of the problems, considering noops
first worsened performance over not having any specific value
ordering strategy (and default to the order in which the ac-
tions are inserted into the planning graph). The differences
were particularly striking in the rocket world and logistics
domain–in both of which, performance worsens significantly
with noops-first heuristic.

3.2 Ineffectiveness of “most constrained variable”
first heuristic

In CSP literature, the standard heuristic for variable ordering
involves trying most constrained variables first. A variable is
considered most constrained if it has least number of actions
supporting it. Although some implementations of Graphplan,
such as SGP [17] include this variable ordering heuristic, em-
pirical studies elsewhere have shown that by and large this
heuristic leads to at best marginal improvements. In particu-
lar, the results reported in [7] show that the most constrained
first heuristic leads to about 4x speedup at most.

2In fact, some of the extensions of Graphplan search, such
as Koehler’s incremental goal sets idea [10] explicitly depend on
Graphplan using noops first heuristic.

4 Level-based heuristics
One reason for the ineffectiveness of most-constrained-first
variable ordering is that it does not adequately capture the
structure of the planning graph. In contrast to normal CSP
problems, in Graphplan’s backward search, the search pro-
cess does not end as soon as we find an assignment for the
the current level variables. Instead, the current level assign-
ments activate specific goal propositions at the next lower
level and these need to be assigned; this process continues
until the search reaches the first level of the planning graph.
What we need to improve this search is a heuristic that finds
an assignment to the current level goals, which is likely to
activate fewer and easier to assign variables at the lower lev-
els. A strategy such as “most-constrained-variable first” that
quickens the process of assigning values to the variables at
the current level, may not be effective as it doesn’t concern it
self with the question of what types of variables get activated
at the lower levels based on the current level assignments.
Specifically, since a variable with fewer actions supporting
it may actually be much harder to handle than another with
many actions supporting it, if each of the actions supporting
the first one eventually lead to activation of many more and
harder to assign new variables.

A more appropriate class of heuristics are those that choose
among goals based on the “distance” of those goals from the
initial state where distance is interpreted as the number or
actions required to go from the initial state to a state where
that goal is true; under some relatively strong relaxation as-
sumptions. It turns out that the planning graph structure it-
self provides a significant leverage in gauging the distances
of various goal propositions. The main idea is simply this:

Propositions that are very easy to achieve would
have come into the planning graph at early levels,
while those that are harder to achieve come in at
later levels.

We talk about propositions “coming in to the planning
graph” since once a proposition enters the planning graph at
some level � , it will then be present in all subsequent levels.
We formalize this intuition as follows:

The level of the proposition � is defined as the ear-
liest level � of the planning graph that contains � .

Consider the planning graph in Figure 1. In this planning
graph, the level of the propositions ��� and � are 0, that of�	��

and � are 1, and finally the level of ��
 is 2. It is easy
to see that the level information can be calculated as an inex-
pensive by-product of planning graph expansion.

To support value ordering, i.e., the order in which actions
supporting a proposition are to be considered during search,
we need to define the cost of an action � supporting a propo-
sition � . Obviously this cost will be related to the costs of
the preconditions of � . This raises the question of how to de-
fine the cost of a set of propositions that constitute an action’s
preconditions. The following lists three possible alternatives,
with each alternative leading to a different heuristic. All of
them define the cost of a proposition the same way–as the in-
dex of the level at which that proposition first occurs in the
planning graph.

Problem Normal GP Mop GP Lev GP Sum GP Speedup
Length Time Length Time Length Time Length Time Mop Lev Sum

BW-large-A 12/12 .008 12/12 .005 12/12 .005 12/12 .006 1.6x 1.6x 1.3x
BW-large-B 18/18 .76 18/18 .13 18/18 .13 18/18 .085 5.8x 5.8x 8.9x
BW-large-C - � 30 28/28 1.15 28/28 1.11 - � 30 � 26x � 27x -

huge-fct 18/18 1.88 18/18 .012 18/18 .011 18/18 .024 156x 171x 78x
bw-prob04 - � 30 8/18 5.96 8/18 8 8/19 7.25 � 5x � 3.7x � 4.6x

Rocket-ext-a 7/30 1.51 7/27 .89 7/27 .69 7/31 .33 1.70x 2.1x 4.5x
Rocket-ext-b - � 30 7/29 .003 7/29 .006 7/29 .01 10000x 5000x 3000x

Att-log-a - � 30 11/56 10.21 11/56 9.9 11/56 10.66 � 3x � 3x � 2.8x
Gripper-6 11/17 .076 11/15 .002 11/15 .003 11/17 .002 38x 25x 38x
Gripper-8 - � 30 15/21 .30 15/21 .39 15/23 .32 � 100x � 80 � 93x
Ferry41 27/27 .66 27/27 .34 27/27 .33 27/27 .35 1.94x 2x 1.8x
Ferry-5 - � 30 33/31 .60 33/31 .61 33/31 .62 � 50x � 50x � 48x
Tower-5 31/31 .67 31/31 .89 31/31 .89 31/31 .91 .75x .75x .73x

Table 2: Effectiveness of level heuristic in solution-bearing planning graphs. The columns titled Level GP, Mop GP and Sum
GP differ in the way they order actions supporting a proposition. Mop GP considers the cost of an action to be the maximum
cost of any if its preconditions. Sum GP considers the cost as the sum of the costs of the preconditions and Level GP considers
the cost to be the index of the level in the planning graph where the preconditions of the action first occur and are not pair-wise
mutex.

Mop heuristic: The cost of a set of propositions is the max-
imum of the cost (distance) of the individual proposi-
tions. For example, the cost of ��� supporting � � in Fig-
ure 1 is 1 because ��� has two preconditions

�
and

,

and both have level 1 (thus maximum is still 1).
Sum heuristic: The cost of a set of propositions is the sum

of the costs of the individual propositions. For example,
the cost of � � supporting � � in Figure 1 is 2 because � �
has two preconditions

�
and

, and both have level 1.

Level heuristic: The cost of a set of propositions is the first
level at which that set of propositions are present and are
non-mutex. For example, the cost of � � supporting � �
in Figure 1 is 1 because ��� has two preconditions

�
and

, and both occur in level 1 of the planning graph, for
the first time, and they do not have any mutexes between
them.

Given this background, the level-based variable and value
ordering heuristics are stated as follows:

Propositions are ordered for consideration in de-
creasing value of their levels. Actions supporting
a proposition are ordered for consideration in in-
creasing value of their costs.

The distance heuristics can be seen as using a “hardest to
achieve goal (variable) first/easiest to support action (value)
first” idea, where hardness is measured in terms of the level
of the propositions.

It is easy to see that the cost assigned by level heuristic to
an action � is just 1 less than the index of the level in the
planning graph where � first occurs in the planning graph.
Thus, we can think of level heuristic as using the uniform
notion of “first level” of an action or proposition to do value
and variable ordering.

In general, the Mop, Sum and Level heuristics can give
widely different costs to an action. For example, consider

the following entirely plausible scenario: an action � has
preconditions

 �������
 �	� , where all 10 preconditions appear
individually at level 3. The first level where they appear
without any pair of them being mutually exclusive is at level
20. In this case, it is easy to see that � will get the cost
3 by Mop heuristic, 30 by the Sum heuristic and 20 by the
Level heuristic. In general, we have:
�� ��
 ��������� ��
 ���
and
�� ��
 ������������� ��
 ��� , but depending on the problem
������� ��
 ��� can be greater than, equal to or less than ��� ��
 ��� .
We have experimented with all three heuristics.

4.1 Evaluation of the effectiveness of level-based
heuristics

We have implemented the three level-based heuristics for
Graphplan backward search and evaluated its performance
as compared to normal Graphplan. Our extensions were
based on the version of Graphplan implementation bundled
in the Blackbox system [9], which in turn was derived from
Blum & Furst’s original implementation. Tables 2 and 3
show the results on some standard benchmark problems. The
columns titled “Mop GP”, “Lev GP” and “Sum GP” corre-
spond respectively to Graphplan armed with the Mop, Level
and Sum heuristics for variable and value ordering. Cpu time
is shown in minutes. For our Pentium Linux machine with
256 Megabytes of RAM, Graphplan would normally exhaust
the physical memory and start swapping after about 30 min-
utes of running. Thus, we put a time limit of 30 minutes for
most problems (if we increased the time limit, the speedups
offered by the level-based heuristics get further magnified).

Table 2 compares the effectiveness of standard Graphplan
(with noops-first heuristic), and Graphplan with the three
level-based heuristics in searching the planning graph con-
taining minimum length solution. As can be seen, the fi-
nal level search can be improved by 2 to 4 orders of magni-
tude with the level-based heuristics. Looking at the Speedup

Problem Normal GP Mop GP Lev GP Sum GP Speedup
Length Time Length Time Length Time Length Time Mop Lev Sum

BW-large-A 12/12 .008 12/12 .006 12/12 .006 12/12 .006 1.33x 1.33x 1.33x
BW-large-B 18/18 .76 18/18 0.21 18/18 0.19 18/18 0.15 3.62x 4x 5x

huge-fct 18/18 1.73 18/18 0.32 18/18 0.32 18/18 0.33 5.41x 5.41x 5.3x
bw-prob04 8/20 30 8/18 6.43 8/18 7.35 8/19 4.61 4.67x 4.08x 6.5x

Rocket-ext-a 7/30 1.47 7/26 0.98 7/27 1 7/31 0.62 1.5x 1.47x 2.3x
Rocket-ext-b - � 30 7/28 0.29 7/29 0.29 7/28 0.31 � 100x � 100x � 96x

Tower-5 31/31 0.63 31/31 0.90 31/31 0.89 31/31 0.88 .70x .70x .71x

Table 3: Effectiveness of level-based heuristics for standard Graphplan search (including failing and succeeding levels).

columns, we also note that all level-based heuristics have ap-
proximately similar performance on our problem set (in terms
of cpu time).

Table 3 considers the effectiveness when incrementally
searching from failing levels to the first successful level (as
the standard Graphplan does). The improvements are more
modest when you consider both failing and succeeding levels
(see Table 3). This is not surprising since in the failing levels,
we have to exhaust the search space, and thus we will do the
same amount of search no matter which heuristic we actually
use.

The impressive effectiveness of the level-based heuristics
for solution bearing planning graphs suggests an alterna-
tive (inverted) approach for organizing Graphplan’s search–
instead of starting from the smaller length planning graphs
and interleave search and extension until a solution is found,
we may want to start on longer planning graphs and come
down. One usual problem is that searching a longer planning
graph is both more costly, and is more likely to lead to non-
minimal solutions. To see if the level-based heuristics are less
sensitive to these problems, we investigated the impact of do-
ing search on planning graphs of length strictly larger than
the length of the minimal solution.

Table 4 shows the performance of Graphplan with the Mop
heuristic, when the search is conducted starting from the level
where minimum length solution occurs, as well as 3, 5 and 10
levels above this level. Table 5 shows the same experiments
with with the Level and Sum heuristics. The results in these
tables show that Graphplan with a level-based variable and
value ordering heuristic is surprisingly robust with respect to
searching on longer planning graphs. We note that the search
cost grows very little when searching longer planning graphs.
We also note that the quality of the solutions, as measured in
number of actions, remains unchanged, even though we are
searching longer planning graphs, and there are many non-
minimal solutions in these graphs. Even the lengths in terms
of number of steps remain practically unchanged–except in
the case of the rocket-a and rocket-b problems (where it in-
creases by one and two steps respectively) and logistics prob-
lem (where it increases by two steps). (The reason the length
of the solution in terms of number of steps is smaller than the
length of the planning graph is that in many levels, backward
search armed with level-based heuristics winds up selecting
noops alone, and such levels are not counted in computing the
number of steps in the solution plan.)

This remarkable insensitivity of level-based heuristics to

the length planning graph means that we can get by with very
rough information (or guess-estimate) about the lower-bound
on the length of solution-bearing planning graphs.

A way of explaining this behavior of the level-based
heuristics is that even if we start to search from arbitrarily
longer planning graph, since the heuristic values of the propo-
sitions remain the same, we will search for the same solution
in the almost the same route (modulo tie breaking strategy).
Thus the only cost incurred from starting at longer graph is at
the expansion phase and not at the backward search phase.

It must be noted that the default “noops-first” heuristic used
by Graphplan implementations does already provide this type
of robustness with respect to search in non-minimal length
planning graphs. In particular, the noops-first heuristic is bi-
ased to find a solution that winds up choosing noops at all the
higher levels–thereby ensuring that the cost of search remains
the same at higher length planing graphs. However, as the re-
sults in Table 1 point out, this habitual postponement of goal
achievement to earlier levels is an inefficient way of doing
search in many problems. Other default heuristics, such as the
most-constrained first, or the “consider goals in the default or-
der they are introduced into the proposition list”, worsen sig-
nificantly when asked to search on longer planning graphs.
By exploiting the structure of the planning graph, our level-
based heuristics give us the robustness of noops-first heuris-
tic, while at the same time avoiding its inefficiencies.

5 Relation to the HSP & UNPOP heuristics
The level heuristic, as described in the previous section, holds
some obvious similarities to the distance based heuristics
that have been popularized by McDermott’s UNPOP plan-
ner [11] and Geffner & Bonet’s HSP and HSP-r planners [4;
3]. In all these cases, the heuristic can be seen as computing
the number of actions required to reach a state where some
proposition � holds, starting from the initial state of the prob-
lem. The computation is done in a top-down demand-driven
fashion (starting from the goals) in UNPOP, and in a bottom-
up fashion starting from the initial state in the case of HSP
and HSP-r. To make the computation of the heuristic cheap,
all these systems assume that every pair of goals and subgoals
are strictly independent. This independence assumption im-
plies that the heuristic is not admissible. It is neither a lower
bound on the true distance (since we are ignoring positive in-
teractions between subgoals), nor is it an upper bound on the
true distance (since the negative interactions are also being ig-
nored). The fact that the heuristic is inadmissible means that

Problem Normal GP MOP GP
�

3 levels
�

5 levels
�

10 levels
Length Time Length Time Length Time Length Time Length Time

BW-large-A 12/12 .008 12/12 .005 12/12 .007 12/12 .008 12/12 .01
BW-large-B 18/18 .76 18/18 .13 18/18 .21 18/18 .21 18/18 .25
BW-large-C - � 30 28/28 1.15 28/28 4.13 28/28 4.18 28/28 7.4

huge-fct 18/18 1.88 18/18 .012 18/18 0.01 18/18 .02 18/18 .02
bw-prob04 - � 30 8/18 5.96 - � 30 - � 30 - � 30

Rocket-ext-a 7/30 1.51 7/27 .89 8/29 0.006 8/29 0.007 8/29 .009
Rocket-ext-b - � 30 7/29 .003 9/32 0.01 9/32 .01 9/32 .01

Att-log-a - � 30 11/56 10.21 13/56 8.63 13/56 8.43 13/56 8.58
Gripper-6 11/17 .076 11/17 .002 11/17 0.003 11/17 .003 11/15 .004
Gripper-8 - � 30 15/23 .30 15/23 0.38 15/23 0.57 15/23 0.33
Ferry41 27/27 .66 27/27 .34 27/27 0.30 27/27 0.43 27/27 .050
Ferry-5 - � 30 33/31 .60 31/31 0.60 31/31 .60 31/31 .61
Tower-5 31/31 .67 31/31 .89 31/31 0.91 31/31 .91 31/31 .92

Table 4: Results showing that level-based heuristics are insensitive to the length of the planning graph being searched.

a state-space search using such heuristics does not guarantee
minimal solutions. Although one can ensure admissibility by
severely underestimating the cost of achievement of subgoals
(for example, considering the cost of achievement of a set of
propositions to be the maximum of the distances of the indi-
vidual propositions, [4]), this makes the heuristic value stray
too far from the true distance, and makes it ineffective in con-
trolling search.3 Some researchers [14] have started looking
at ways of improving the differential between the distance
computed by the heuristics using independence assumptions,
and true distance (cost) of achieving a (sub)goal.

Given the context above, the use of level-based heuristics
in Graphplan presents several interesting contrasts:
� Distance-based heuristics have hither-to been used only

in the context of state-space planners. In fact, some
earlier papers suggested that the very existence of dis-
tance based heuristics attests to the supremacy of state-
space search over other ways of organizing the search
for plans. Our work foregrounds the fact that distance
heuristics, while computed from the state-space struc-
ture, are by no means restricted to a state-space planners.
In fact, the distance values can potentially be used to im-
prove search in partial order planners such as UCPOP
too–we can rank a partial plan with a set of open condi-
tions as a function of the distances of the individual open
conditions of that partial plan [15].
� The use of level (distance) based heuristics in Graphplan

do not have any obvious impact on the optimality of the
plans generated by Graphplan. In particular, since it is
used as a variable ordering heuristic for controlling CSP
search, the heuristic does not directly determine the op-
timality.
� Using the level-based heuristics in Graphplan does not

in any way compromise our ability to use other types of
CSP search improvement ideas. In particular, we can

3Even taking positive interactions into account completely
makes the heuristic computation intractable [4].

still use EBL/DDB type analysis [7], or local consis-
tency enforcement ideas [16], to further improve search.
Our preliminary experiments show that EBL/DDB and
level-heuristic complement each other. For example, for
the 8-ball problem in the Gripper domain (Gripper-8),
normal Graphplan is unable to solve the problem at all,
the level heuristic allows Graphplan to solve the prob-
lem in 10 minutes, EBL/DDB alone allows Graphplan
to solve it in 2 minutes, and the two techniques together
solve it in 0.13 minutes. (At the time of this writing, we
have not yet ported the EBL/DDB code to the C version
of Graphplan. Thus, the results being discussed are from
a Lisp implementation of Graphplan.)
� Unlike HSP, HSP-r and UNPOP planners, Graphplan

with level-based heuristics still retains the ability to find
parallel action plans. In fact, the “level” of a proposi-
tion (and action, in the case of level heuristic) already
implicitly takes into account the potential parallel struc-
ture of the solution plans. If a proposition � can be made
true by a single action � , which requires preconditions� � ����� ��� , and each of these preconditions can be given
by � � ����� � � respectively from the initial state, then the
level of � will be computed as � . Parallelism is possible
to achieve with state-space search too, but will signifi-
cantly increase the branching factor, as it will force the
planner to consider all subsets of non-interfering actions
[8]. Empirical studies in [6] seem to suggest that it is
hard to make state-search competitive with Graphplan
in generating parallel plans.� Our heuristics already exploits the mutex-propagation
phase of the planning graph to improve the distance es-
timates. This happens in two ways. First, recall that
Graphplan does not introduce actions into the planning
graph if their preconditions are marked mutex in the pre-
vious level. This ensures that the level of a proposition
is more truly indicative of the distance of the proposi-
tion from the initial state. In fact, mutexes ensure that
the distance heuristics take a better account of the nega-
tive interactions between subgoals. While we still ignore

Lev GP SUM GP
Problem

�
3 levels

�
5 levels

�
10 levels

�
3 levels

�
5 levels

�
10 levels

Length Time Length Time Length Time Length Time Length Time Length Time
BW-large-A 12/12 .007 12/12 .008 12/12 0.01 12/12 .007 12/12 .008 12/12 .008
BW-large-B 18/18 0.29 18/18 0.21 18/18 0.24 20/20 0.18 20/20 0.28 20/20 0.18
BW-large-C 28/28 4 28/28 3.9 28/28 4.9 - � 30 - � 30 - � 30

huge-fct 18/18 .014 18/18 .015 18/18 .019 18/18 .014 18/18 .015 18/18 .019
bw-prob04 11/18 18.88 - � 30 - � 30 - � 30 - � 30 - � 30

Rocket-ext-a 9/28 .019 9/28 0.02 9/28 0.02 8/28 .003 8/28 .004 8/28 .006
Rocket-ext-b 9/32 .007 9/32 .006 9/32 0.01 7/28 .011 7/28 .012 7/28 .014

Att-log-a 13/56 8.48 14/56 8.18 13/56 8.45 13/56 8 13/56 8.18 13/56 8.45
Gripper-6 11/15 .003 11/15 .003 11/15 .003 11/15 .004 11/15 .004 11/15 .004
Gripper-8 15/21 0.4 15/21 0.47 15/21 0.4 15/21 0.47 15/21 0.47 15/21 0.4
Ferry41 27/27 0.30 27/27 0.30 27/27 0.34 27/27 0.30 27/27 0.30 27/27 0.34
Ferry-5 31/31 0.60 31/31 0.60 31/31 0.60 31/31 0.59 31/31 0.60 31/31 0.61
Tower-5 31/31 0.89 31/31 0.89 31/31 0.89 31/31 0.87 31/31 0.87 31/31 0.87

Table 5: Performance of Level and Sum heuristics in searching longer planning graphs

positive interactions, the damage is much less given that
the planning graphs already take parallel action execu-
tion into account. Second, mutex propagation ensures
that during backward search, the infeasible goal sets are
detected earlier and pruned (instead of being expanded
further).

While we concentrated on the use of distance-based heuris-
tics in Graphplan, Geffner & Bonet [3] attempt to transfer
the advantages of Graphplan into a state-space search setting,
while using the distance heuristics. In particular, their plan-
ner, HSP-r, does a regression search in the space of (sub)goal
sets, and estimates the distance of these subgoal sets from the
initial state in terms of the distance heuristics augmented with
static mutex analysis.

In fact, it is easy to see that modifying the Graphplan algo-
rithm in the following ways gets us a Graphplan-variant that
is essentially isomorphic to a state-space regression planner
using dis-based heuristics:

1. Mark every pair of non-noop actions as mutex. This
ensures that only serial plans will be produced [8] by
Graphplan.

2. Modify the backward search so that it generates and
searches directly in the space of subgoal sets. As illus-
trated in Figure 2, this is done by picking a set of actions
to support all top level goals simultaneously, and then
considering the union of preconditions of the chosen ac-
tions as the new subgoal set. Once all subgoal sets at a
level a generated, they are ranked using one of the level-
based heuristics, and the most promising subgoal set is
expanded into the next level. (The tree shown in Figure 2
allows multiple non-noop actions to be applied together.
Once we mark every pair of non-noop actions to be mu-
tex however, each branch in this tree will correspond to a
set of actions, all but one of which will be noops. At that
point, the tree corresponds to the search tree generated
by a state-space planner using regression).

3. Search in a planning graph whose length is considerably
longer than the minimal length solution.

Using the normal backward search allows us to continue
exploiting other CSP techniques such as EBL/DDB, and al-
low generation of parallel plans, while using this variant of
backward search makes the whole process much closer to re-
gression search, and thus closer to HSP-R type planners.

While the current paper discusses ways in which level in-
formation can be used to devise variable and value ordering
heuristics, in [13], we consider the issue of using level in-
formation to devise state-search heuristics. In that work, we
investigate the admissibility and effectiveness of a large fam-
ily of state-search heuristics that compute the cost of a set of
propositions using the structure of the planning graph. Three
of the heuristics we investigated compute the cost of a set of
propositions the way Mop, Level and Sum heuristics do. In
contrast to the nearly equivalent performance of Mop, Level
and Sum heuristics in backward search, in state-space search,
we found these three heuristics to have significant differences
in performance. Indeed, we found that the most effective
(albeit inadmissible) heuristic is a combination heuristic that
sums the Level and Sum heuristics together! Our best expla-
nation for this difference is that the subgoal sets evaluated in
state-space search have a more “global” character than those
evaluated in guiding Graphplan’s backward search. Specifi-
cally, in the normal backward search, we are evaluating sub-
goal sets that correspond to set of preconditions of single ac-
tions. In contrast, the subgoal sets encountered in regression
search correspond to union of preconditions of the set of ac-
tions that can simultaneously support all goals in the previous
level. These larger sets thus encapsulate more global inter-
actions among the goals of the previous level, thereby pre-
senting opportunities for the three heuristics show case their
different talents.

One of the lessons of the work in [13] is that the mutex con-
straints in the planning graph structure are critical in gener-

G
1

Q

A
1

G
1

P

R

W
 A
4

A
2

A
3

G
1

G
2
A
0

(a) Planning Graph

G
1
G
2

W P

A
4
A
2

A
4
A
3

nop
 A
2

nop
 A
3

WPR
 G
1
W P
 G
1
R

A
1
A
0

Q
 G
1
 Q

nop
 A
1
A
0
 nop

A
0

G
1
 Q

(b) Searching with subgoal sets

Figure 2: Example illustrating searching the planning graph in the space of sub-goal sets. The search in the space of subgoal
sets is closely related to the search done by a state-space regression planner.

ating effective heuristics. One can view HSP-r as attempting
to mimic the advantages of mutex propagation in Graphplan,
without generating the planning graph. HSP-r does this with a
pre-processing stage where the “eternal mutexes”, i.e, propo-
sitions that are infeasible together, are computed. This com-
putation can be seen as an indirect way of using the structure
of the planning graph. An important difference is that HSP-
r seems to concentrate on propositions that are never feasi-
ble together, while Graphplan’s mutex relations give more
finer information–in that they tell us whether two proposi-
tions are feasible together in a state reachable from the initial
state in a certain number of moves (levels). As we show in
[13], these level-specific mutexes can be used to significantly
improve the informedness of the distance heuristics for state-
space planners.

6 Conclusion

In this paper, we described a family of distance-based vari-
able ordering heuristics, that are surprisingly effective in im-
proving Graphplan’s search. The heuristics are based on the
index of the first level in which a proposition enters the plan-
ning graph, and thus uses the already existing structure of
the planning graph. Empirical results demonstrate that these
heuristics can speedup backward search by several orders
in solution-bearing planning graphs. The results also show
that the heuristics retain the efficiency of search even when
searching non-minimal length planning graphs. Our heuris-
tics, while quite simple, are nevertheless significant in that
previous attempts to devise effective variable ordering tech-
niques for Graphplan’s search have not been successful. We
have also discussed the deep connections between our level-
based variable ordering heuristics and the use of distance-
based heuristics in controlling state-space planners.

References

[1] F. Bacchus and P. van Run. Dynamic variable ordering in
CSPs. In Proc. Principles and Practice of Constraint Program-
ming (CP-95), 1995. Published as Lecture Notes in Artificial
Intelligence, No. 976. Springer Verlag.

[2] A. Blum and M. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90(1-2), 1997.

[3] B. Bonet and H. Geffner. Planning as heuristic search: New
results. In Proc. 5th European Conference on Planning, 1999.

[4] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action
selection mechanism for planning. In In Proc. AAAI-97, 1999.

[5] D. Frost and R. Dechter. In search of the best constraint satis-
factions earch. In Proc. AAAI-94, 1994.

[6] P. Haslum and H. Geffner. Admissible heuristics for optimal
planning. In Proc. 5th Intl. Conference on AI Planning and
Scheduling, 2000.

[7] S. Kambhampati. Planning Graph as a (dynamic) CSP: Ex-
ploiting EBL, DDB and other CSP search techniques in Graph-
plan. Journal of Artificial Intelligence Research, 12:1–34,
2000.

[8] S. Kambhampati, E. Parker, and E. Lambrecht. Un-
derstanding and extending graphplan. In Proceedings
of 4th European Conference on Planning, 1997. URL:
rakaposhi.eas.asu.edu/ewsp-graphplan.ps.

[9] H. Kautz and B. Selman. Blackbox: Unifying sat-based and
graph-based planning. In Proc. IJCAI-99, 1999.

[10] J. Koehler. Solving complex planning tasks through extraction
of subproblems. In Proc. 4th AIPS, 1998.

[11] D. McDermott. Using regression graphs to control search in
planning. Aritificial Intelligence, 109(1-2):111–160, 1999.

[12] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction
problems. In Proc. AAAI-90, 1990.

[13] X. Nguyen and S. Kambhampati. Extracting effective and ad-
missible state-space heuristics from the planning graph. Tech-
nical Report ASU CSE TR 00-03, Arizona State University,
2000.

[14] I. Refanidis and I. Vlahavas. GRT: A domain independent
heuristic for strips worlds based on greedy regression tables.
In Proc. 5th European Planning Conference, 1999.

[15] D. Smith. Private Correspondence, August 1999.

[16] E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, San Diego, California, 1993.

[17] D. Weld, C. Anderson, and D. Smith. Extending graphplan to
handle uncertainty & sensing actions. In Proc. AAAI-98, 1998.

