
A Heuristic for Domain Independent Planning and its Use in an

Enforced Hill-climbing Algorithm

J�org Ho�mann

Institute for Computer Science

Albert Ludwigs University

Am Flughafen 17

79110 Freiburg, Germany

ho�mann@informatik.uni-freiburg.de

Abstract. We present a new heuristic method to evaluate planning states, which is based on

solving a relaxation of the planning problem. The solutions to the relaxed problem give a good

estimate for the length of a real solution, and they can also be used to guide action selection during

planning. Using these informations, we employ a search strategy that combines Hill-climbing with

systematic search. The algorithm is complete on what we call deadlock-free domains. Though it

does not guarantee the solution plans to be optimal, it does �nd close to optimal plans in most

cases. Often, it solves the problems almost without any search at all. In particular, it outperforms

all state-of-the-art planners on a large range of domains.

1 Introduction

The standard approach to obtain a heuristic is to relax the problem P at hand into some easier problem

P 0. The optimal solution length to a situation in P 0 can then be used as an admissible estimate for the

optimal solution length of the same situation in P . An application of this idea to domain independent

planning was �rst used in the HSP system [3]. The planning problem P is relaxed by simply ignoring

the delete lists of all operators. However, computing the optimal solution length for a planning problem

without delete lists is still NP-hard, as was �rst shown by Bylander [4]. Therefore, the HSP heuristic is

only a rough estimate of the optimal relaxed solution length. In short, it is obtained by summing up the

minimal distances of all atomic goals.

In this paper, we go one step further. We introduce a method that computes some, not necessarily

optimal, solution to the relaxed problem. These solutions are helpful in two ways:

{ their length provides an informative estimate for the di�culty of a situation;
{ one can use them as a guidance for action selection.

The solution length estimates are used to control a local search strategy similar to Hill-climbing,

which is combined with systematic breadth �rst search in order to escape local minima or plateaus.

The guidance information is employed to cut down the branching factor during systematic search. The

method shows good behavior over all domains that are commonly used in the planning community. In

particular, we will see that it is complete on the class of problems we call deadlock-free. Performing local

search, the method can not guarantee its solution plans to be optimal. In spite of this, it �nds close to

optimal plans in most cases. As a bene�t from the severe restriction of its search space, it shows very

competitive runtime behavior. For example, logistics problems are solved faster than by any other domain

independent planning system known to the author at the time of writing.

2 Background

Throughout the paper, we consider simple STRIPS domains. We brie
y review two standard notations.

An action o has the form

o = h pre(o)) add(o); del(o) i

where pre(o), add(o) and del(o) are sets of ground facts. Plans P are sequences P = ho1; : : : ; oni of

actions, i.e., we consider only linear plans.

3 Heuristic

In this section, we introduce a method for heuristically evaluating planning states S. Basically, the method

consists of two parts.

1. First, the relaxed �xpoint is built on S. This is a forward chaining process that determines in how

many steps, at best, a fact can be reached from S, and with which actions.
2. Then, a relaxed solution is extracted from the �xpoint. This is a sequence of parallel action sets that

achieves the goal from S, if their delete e�ects are ignored.

The �rst part corresponds directly to the heuristic method that is used in HSP [3]. The second part goes

one step further: while in HSP, the heuristic is extracted as a side e�ect of the �xpoint, we invest some

extra e�ort to �nd a relaxed plan, and use the plan to determine our heuristic value. The �xpoint process

is depicted in Figure 1.

F0 := S

k := 0

while G 6� Fk do

Ok := fo 2 O j pre(o) � Fkg

Fk+1 :=
S

o 2 Ok

add(o)

if Fk+1 = Fk then

break

endif

k := k + 1

endwhile

max := k

Fig. 1. Computing the relaxed �xpoint on a planning state S. O and G denote the action set and goal state of

the problem at hand, respectively.

The algorithm can be seen as building a layered graph structure, where fact and action layers are

interleaved in an alternating fashion. The process starts with the initial fact layer, which are the facts

that are true in S. Then, the �rst action layer comprises the actions whose preconditions are contained

in S. The e�ects of these actions lead us to the second fact layer, which, in turn, determines the next

action layer and so on. The process terminates, and remembers the number max of the last layer, if all

goals are reached or if the new fact layer is identical to the last one.
The crucial information that the �xpoint process gives us are the levels of all facts and actions. These

are de�ned as the number of the �rst fact- or action layer they are members of.

level(f) :=

(
minfi j f 2 Fig ex. i : f 2 Fi

1 otherwise

level(o) :=

(
minfi j o 2 Oig ex. i : o 2 Oi

1 otherwise

We now show how to extract a relaxed plan from the �xpoint structure. This is done in a backward

chaining manner, where we simply use any action with minimal level to make a goal true. The exact

algorithm is depicted in Figure 2. Note that we do not need to search, we can proceed right away to the

initial state and are guaranteed to �nd a solution.

for i := 1; : : : ;max do

Gi := fg 2 G j level(g) = ig

endfor

h := 0

for i := max; : : : ; 1 do

for all g 2 Gi; g not true at i do

select o with g 2 add(o) such that level(o) = i� 1

h := h+ 1

for all f 2 pre(o); f not true at i� 1 do

Glevel(f) := Glevel(f) [ffg

endfor

for all f 2 add(o) do

mark f as true at i� 1 and i

endfor

endfor

endfor

Fig. 2. The algorithm that extracts a relaxed solution to a state S after the �xpoint has been built.

Before plan extraction starts, an array of goal sets Gi is initialized by inserting all goals with corre-

sponding level. The mechanism then proceeds down from layer max to layer 1, and selects an action o

for each goal g at the current layer i, incrementing the plan length counter h. No actions are selected for

goals that are marked true at the time being, as they are already added. The achiever o is required to

have level(o) = i� 1. This is minimal as the goal g has level i, i.e., the �rst action that achieved g in the

�xpoint came in at level i� 1. The preconditions of o are inserted as new goals into their corresponding

goal sets. If the current layer is i, then the levels of o's preconditions are at most i�1, so these new goals

will be made true later during the process.

3.1 Goal Distance

To obtain the heuristic goal distance value h(S) of a given planning state S, we now simply chain the two

algorithms together. First, we perform the �xpoint computation from Figure 1. If the process terminates

without reaching the goals, we set h(S) := 1. Otherwise, we extract a relaxed plan, Figure 2, and use

the plan length for evaluation, i.e., h(S) := h.

The overall structure of the relaxed planning process is quite similar to planning with planning graphs

[1]. It amounts to a very special case, as no interactions at all occur between facts or actions in the relaxed

problem.

3.2 Helpful Actions

We can also use the extracted plan to determine a set of actions that seem to be helpful in reaching the

goal. To do this, we turn our look on the actions that are contained in the �rst time step of the relaxed

solution, i.e., the actions that are selected at level 0. These are often the actions that are useful in the

given situation. Let us see a simple example for that, taken from the gripper domain, as it was used in

the 1998 AIPS planning systems competition. We do not repeat the exact de�nition of the domain here,

as it is easily understood intuitively. There are two rooms, A and B, and a certain number of balls, which

shall be moved from room A to room B. The planner changes rooms via the move operator, and controls

two grippers which can pick or drop balls. Each gripper can only hold one ball at a time. We look at a

small problem where 2 balls must be moved into room B. A relaxed solution to the initial state that our

heuristic might extract is

< f pick ball1 A left,

pick ball2 A left,

move A B g,

f drop ball1 B left,

drop ball2 B left g >

This is a parallel relaxed plan consisting of two time steps. Note that the move A B action is selected

parallel to the pick actions, as the relaxed planner does not notice that it can not pick balls in room A

anymore once it has moved into room B. In a similar fashion, both balls are picked with the left gripper.

Nevertheless, two of the three actions in the �rst step are helpful in the given situation: both pick actions

are starting actions of an optimal solution. Thus, one might be tempted to de�ne the set H(S) of helpful

actions as only those that are contained in the �rst time step of the relaxed plan. However, this is too

restrictive in some cases. We therefore de�ne our set H(S) as follows.

H(S) := fo 2 O0 j add(o) \G1 6= ;g

After plan extraction, O0 contains the actions that are applicable in S, and G1 contains the facts that

were goals or subgoals at level 1. Thus, we consider as helpful those actions which add at least one fact

that was a (sub)goal at the lowest time step of our relaxed solution.

4 Search

We now introduce a search algorithm that makes e�ective use of the heuristics we de�ned in the last

section. The key observation that leads us to the method is the following. On some domains, like the

gripper problems from the competition and Russel's tyreworld, it is su�cient to use our heuristic in a

naive Hill-climbing strategy. In these problems, one can simply start in the initial state, pick, in each

state, a best valued successor, and ends up with an optimal solution plan. This strategy is very e�cient

on the problems where it �nds plans.

However, the naive method does not �nd plans on most problems. Usually, it runs into an in�nite

loop. To overcome this problem, one could employ standard Hill-climbing variations, like restarts, limited

plateau moves, or a memory for repeated states. We use an enforced Hill-climbing method instead, see

the de�nition in Figure 3.

The algorithm combines Hill-climbing with systematic breadth �rst search. Like standard Hill-climbing,

it picks some successor of the current state at each stage of the search. Unlike in standard Hill-Climbing,

initialize the current plan to the empty plan <>

S := I

obtain h(S) by evaluating S

if h(S) =1 then

output "No Solution", stop

endif

while h(S) 6= 0 do

breadth �rst search for a state S0 with h(S0) < h(S)

if no such state can be found then

output "No Solution", stop

endif

add the actions on the path to S0 at the end of the current plan

S := S0

endwhile

Fig. 3. The Enforced Hill-climbing algorithm. I denotes the initial state of the problem to be solved.

this successor does not need to be a direct one, and, unlike in standard Hill-Climbing, we do not pick any

best valued successor, but enforce the successor to be one that is better than our current state.

More precisely, at each stage during search a successor state is found by performing breadth �rst

search starting out from the current state S. For each search state S0, all successors are generated and

evaluated heuristically. Doubly occuring states are pruned from the search by keeping a hashtable of past

states in memory, and the search stops as soon as it has found a state S
0 that has a better heuristic

value than S. This way, the Hill-climbing search escapes plateaus and local minima by simply performing

exhaustive search for an exit, i.e., a state with strictly better heuristic evaluation.

4.1 Helpful Actions

So far, we have only used the goal distance heuristic. We integrate the helpful actions heuristic into our

search algorithm as follows. During breadth �rst search, we do not generate all successors of any search

state S0 anymore, but consider only those that are obtained by applying actions from H(S0). This way,

the branching factor for the search is cut down. However, considering only the actions in H(S0) might

make the search miss a goal state. If this happens, i.e., if the search can not reach any new states anymore

when restricting the successors to H(S0), we simply switch back to complete breadth �rst search starting

out from the current state S and generating all successors of search nodes.

5 Completeness

The Enforced Hill-climbing algorithm is complete on deadlock-free planning problems. We de�ne a deadlock

to be a state S that is reachable from the initial state I, and from which the goal can not be reached

anymore. A planning problem is called deadlock-free, if it does not contain any deadlock state. We remark

that a deadlock-free problem is also solvable, cause otherwise the initial state itself would already be a

deadlock.

Theorem 1. Let P be a planning problem. If P is deadlock-free, then the Enforced Hill-climbing algorithm,

as de�ned in Figure 3, will �nd a solution.

Due to space restrictions, we do not show the (easy) proof of Theorem 1 here and refer the reader to

[5]. In short, if the complete breadth �rst search starting from a state S can not reach a better evaluated

state, then, in particular, it can not reach a goal state, which implies that the state S is a deadlock in

contradiction to the assumption.

In [5], it is also shown that most of the commonly used benchmark domains are in fact deadlock-free.

Any solvable planning problem that is invertible in the sense that one can �nd, for each action sequence

P , an action sequence P that undoes P 's e�ects, does not contain deadlocks. One can always go back

to the initial state �rst and execute an arbitrary solution thereafter. Moreover, planning problems that

contain an inverse action o to each action o are invertible: simply undo all actions in the sequence P by

executing the corresponding inverse actions. Finally, most of the benchmark domains do contain inverse

actions. For example in the blocksworld, we have stack and unstack. Similarly in domains that deal

with logistics problems, for example logistics, bulldozer, gripper etc., one can often �nd inverse pairs of

actions. If an action is not invertible, its role in the domain is often quite limited. A nice example is the

in
ate operator in the tyreworld, which can be used to in
ate a spare wheel. Obviously, there is not

much point in de�ning something like a de
ate operator. More formally speaking, the operator does not

destroy a goal or a precondition of any other operator in the domain. In particular, it does not lead into

deadlocks.

6 Empirical Results

For empirical evaluation, we implemented the Enforced Hill-climbing algorithm, using relaxed plans to

evaluate states and to determine helpful actions, in C. We call the resulting planning system ff, which

is short for fast-forward planning system. All running times for ff are measured on a Sparc Ultra

10 running at 350 MHz, with a main memory of 256 M Bytes. Where possible, i.e., for those planners

that are publicly available, the running times of other planners were measured on the same machine.

We indicate run times taken from the Literature in the text. All planners were run with the default

parameters, unless otherwise stated in the text, and all benchmark problems are the standard examples

taken from the Literature. Some benchmark problems have been modi�ed in order to show how planners

scale to bigger instances. We explain the modi�cations made, if any, in the text. Dashes indicate that the

corresponding planner failed to solve that problem within half an hour.

6.1 The logistics Domain

This is a classical domain, involving the transportation of packets via trucks and airplanes. There are

two well known test suites. One has been used in the 1998 AIPS planning systems competition, the other

one is part of the blackbox distribution. The problems in the competition suite are very hard. In fact,

they are so hard that, up to date, no planner has been reported to solve them all. fast-forward is the

�rst one that does. See Figure 4, showing also the results for GRT [12] and HSP-r [2], which are|as far

as the author knows|the two best other domain independent logistics planners at the time being.1

The times for GRT in Figure 4 are from the paper by Refanidis and Vlahavas [12], where they are

measured on a Pentium 300 with 64 M Byte main memory. ff outperforms both HSP-r and GRT by an

order of magnitude. Also, it �nds shorter plans than the other planners.

1 It is important to distinct the results shown in Figure 4 for HSP-r from those reported by Bonet and Ge�ner

[2]. Those results were taken on the problems from the blackbox distribution, while our results are taken on

the competition test suite.

HSP-r GRT ff
problem time steps time steps time steps

prob-01 0.36 35 0.28 30 0.06 27

prob-02 3.13 36 1.32 34 0.19 32

prob-03 25.45 64 5.55 60 0.71 54

prob-04 50.13 63 19.28 69 0.98 58

prob-05 0.62 27 0.39 26 0.08 22

prob-06 293.60 83 14.39 80 1.95 73

prob-07 6.20 37 1.76 37 0.38 36

prob-08 - - 16.37 48 2.04 41

prob-09 371.03 97 50.48 98 2.08 91

prob-10 287.64 121 23.13 117 3.20 103

prob-11 4.58 34 1.54 36 0.21 30

prob-12 - - 43.06 48 2.01 41

prob-13 - - 85.58 79 7.73 67

prob-14 - - 60.20 104 6.97 98

prob-15 19.52 120 67.50 106 1.27 93

prob-16 92.75 69 31.58 62 1.23 55

prob-17 29.35 61 12.19 53 0.63 44

prob-18 - - 335.05 193 50.76 167

prob-19 - - 238.98 174 16.26 151

prob-20 - - 324.12 169 24.40 139

prob-21 - - 294.23 120 8.93 102

prob-22 - - - - 246.05 282

prob-23 100.67 145 16.86 118 3.84 126

prob-24 - - 98.54 49 4.17 40

prob-25 - - - - 106.23 181

prob-26 - - - - 71.15 183

prob-27 - - - - 71.26 141

prob-28 - - - - 679.43 265

prob-29 - - - - 589.75 323

prob-30 - - - - 62.4 131

Fig. 4. Results of the three domain independent planners best suited for logistics problems on the competition

suite. Times are in seconds, steps counts the number of actions in a sequential plan. For HSP-r, the weighting

factor W is set to 5, as was done in the experiments described by Bonet and Ge�ner in [2].

We also ran ff on the benchmark problems from the blackbox distribution suite, and it solved all

of them in less than half a second. Compared to the results shown by Bonet and Ge�ner [2] for these

problems, ff was between 2 and 10 times faster than HSP-r, �nding shorter plans in all cases.

6.2 Mixed classical Problems

fast-forward shows competitive behavior on all commonly used benchmark domains. To exemplify

this, we show a table of running times on a variety of di�erent domains in Figure 5, comparing ff against

a collection of state-of-the-art planning systems: IPP [8], STAN [9], blackbox [7], and HSP [3].

In Figure 5, the planning problems shown are the following. The tyreworld problem was originally

formulated by Russell, and asks the planner to replace a
at tire. The problem is modi�ed in a natural

way so as to make the planner replace n
at tires. ff is the only planner that is capable of replacing

more than three tires, scaling up to much bigger problems.

The hanoi problems make the planner solve the well known Towers of Hanoi problem, with n discs to

be moved. ff also outperforms the other planners on these problems.

The sokoban problem encodes a small instance of a well known computer game, where a single stone

must be pushed to its goal position. Although the problem contains deadlocks, ff has no di�culties in

solving it.

The manhattan domain was �rst introduced by McDermott [10]. In these problems, the planner

controls a robot which moves on a n � n grid world, and has to deal with di�erent kinds of keys and

locks. The original problem taken from [10] corresponds to the mh-11 entry in Tabular 5, where the robot

moves on a 11 � 11 grid. The other entries refer to problems that have been modi�ed to encode 7 � 7,

IPP STAN blackbox HSP ff
domain problem time steps time steps time steps time steps time steps

tyreworld fixit-1 0.04 19 0.10 19 0.43 19 1.19 19 0.04 19

tyreworld fixit-2 11.29 30 1.25 30 114.32 30 - - 0.09 30

tyreworld fixit-3 - - - - 933.14 41 - - 0.20 41

tyreworld fixit-4 - - - - - - - - 0.42 52

hanoi tower-3 0.03 7 0.03 7 0.23 7 0.15 7 0.01 7

hanoi tower-5 0.11 31 0.27 31 680.6 31 162.01 31 0.09 31

hanoi tower-7 1.93 127 6.10 127 - - - - 0.52 127

hanoi tower-9 39.31 511 230.20 511 - - - - 6.45 511

sokoban sokoban-1 1.15 25 1.51 25 1283.29 25 28.17 40 0.22 25

manhattan mh-7 4.82 35 20.04 35 - - 1260.01 40 0.09 38

manhattan mh-11 65.12 40 1013.96 40 - - - - 0.26 43

manhattan mh-15 - - - - - - - - 0.64 59

manhattan mh-19 - - - - - - - - 1.53 87

blocksworld bw-large-a 0.47 10 0.57 10 10.30 10 2.55 13 0.04 7

blocksworld bw-large-b 2.20 14 4.04 14 160.14 14 2.12 12 0.10 10

blocksworld bw-large-c 88.17 25 267.08 26 - - 11.71 18 0.56 16

blocksworld bw-large-d 362.19 33 - - - - 37.29 29 1.42 20

Fig. 5. Running times and quality (in terms of number of actions) of plans for ff and state-of-the-art planners

on various classical domains. All planners are run with the default parameters, except HSP, where solution length

cuto� needs to be increased.

15� 15 and 19� 19 grid worlds, respectively. ff easily handles all of them, �nding slightly suboptimal

plans.

Finally, the blocksworld problems in Figure 5 are benchmark examples taken from [6]. ff outperforms

the other planners in terms of running time as well as in terms of solution length.

7 Related Work

The closest relative to the work described in this paper is, quite obviously, the HSP system [3]. In short,

HSP does Hill-climbing search, with the heuristic function

h(S) :=
X
g2G

weightS(g)

The weight of a fact with respect to a state S is, roughly speaking, the minimum over the sums of the

precondition weights of all actions that achieve it. The weights are obtained as a side e�ect of doing

exactly the same �xpoint computation as we do. The main problem in HSP is that the heuristic needs

to be recomputed for each single search state, which is very time consuming. Inspired by HSP, a few

approaches have been developed that try to cope with this problem, like HSP-r [2] and the GRT-planner

[12].

The authors of HSP themselves handle the problem by sticking to their heuristic, but changing the

search direction, going backwards from the goal in HSP-r instead of forward from the initial state in HSP.

This way, they need to compute a weight value for each fact only once, and simply sum the weights up

for a state later during search.

The authors of [12] invert the direction of the HSP heuristic instead. While HSP computes distances by

going towards the goal, GRT goes from the goal to each fact, and estimates its distance. The function that

then extracts, for each state during forward search, the state's heuristic estimate, uses the pre-computed

distances as well as some information on which facts will probably be achieved simultaneously.

For the fast-forward planning system, a somewhat paradoxical extension of HSP has been made.

Instead of avoiding the major drawback of the HSP strategy, we even worsen it, at �rst sight: the heuristic

keeps being fully recomputed for each search state, and we even put some extra e�ort on top of it, by

extracting a relaxed solution. However, the overhead for extracting a relaxed solution is marginal, and

the relaxed plans can be used to prune unpromising branches from the search tree.

To verify where the enormous run time advantages of ff compared to HSP come from, we ran HSP

using Enforced Hill-climbing search with and without helpful actions pruning, as well as ff without helpful

actions on the problems from our test suite. Due to space restrictions, we can not show our �ndings in

detail here. It seems that the major steps forward are our variation of Hill-climbing search in contrast

to the restart techniques employed in HSP, as well as the helpful actions heuristic, which prunes most of

the search space on many problems. Our di�erent heuristic distance estimates seem to result in shorter

plans and slightly, about a factor two, better running times, when one compares ff to a version of HSP

that uses Enforced Hill-climbing search and helpful actions pruning. We did not yet �nd the time to do

these experiments the other way round, i.e., integrate our heuristic into the HSP search algorithm, as this

would involve modifying the original HSP code, which means a lot of implementation work.

There has been at least one more approach in the Literature where goal distances are estimated by

ignoring the delete lists of the operators. In [10], Greedy Regression-Match Graphs are introduced. In a

nutshell, these estimate the goal distance of a state by backchaining from the goals until facts are reached

that are true in the current state, and then counting the estimated minimal number of steps that are

needed to achieve the goal state.

To the best of our understanding, the action chains that lead to a state's heuristic estimate in [10] are

similar to the relaxed plans that we extract. However, the backchaining process seems to be quite costly.

For example, building the Greedy Regression-Match Graph for the initial state of the manhattan world

11� 11 grid problem is reported to take 25 seconds on a Sparc 2 station. For comparison, we ran ff on

a Sparc 4 station. Finding a relaxed plan for the initial state takes less than one hundredth of a second,

i.e., the time measured is 0:00 CPU seconds.

The helpful actions heuristic shares some similarities with what is known as relevance from the liter-

ature [11]. The main di�erence is that relevance in the usual sense refers to what is useful for solving the

whole problem. Being helpful, on the other hand, refers to something that is useful in the next step.

8 Conclusion and Outlook

In this paper, we presented two heuristics for domain independent STRIPS planning, one estimating the

distance of a state to the goal, and one collecting a set of promising actions. Both are based on an

extension of the heuristic that is used in the HSP system. We showed how these heuristics can be used

in a variation of Hill-climbing search, and we have seen that the algorithm is complete on the class of

deadlock-free domains. We collected empirical evidence that the resulting planning system is among the

fastest planners in existence nowadays, outperforming the other state-of-the-art planners on quite a range

of domains, like the logistics, manhattan and tyreworld problems.

To the author, the most exciting question is this: Why is the heuristic information obtained in this

simple manner so good? It is not really di�cult to construct abstract examples where the approach

produces arbitrarily bad plans, or uses arbitrarily much time, so why does it almost never go wrong on

the benchmark problems? Why is the relaxed solution always so close to a real solution, except for the

Tower of Hanoi problems? Is it possible to de�ne a notion of \natural" planning domains, where relaxed

solutions have desirable properties?

First steps into that direction seem to indicate that, in fact, there might be some underlying theory in

that sense. In particular, it can be proven that the Enforced Hill-climbing algorithm �nds optimal solutions

when the heuristic used is goal-directed in the following sense:

h(S) < h(S0)) min(S) < min(S0)

Here, min(S) denotes the length of the shortest possible path from state S to a goal state, i.e., Enforced

Hill-climbing is optimal when heuristically better evaluated states are really closer to the goal.

It can also be proven that the length of an optimal relaxed solution is, in fact, a goal-directed heuristic

in the above sense on the problems from the gripper domain that was used in the planning systems

competition. We have not yet, however, been able to identify some general structural property that

implies goal-directedness of optimal relaxed solutions.

Apart from these theoretical investigations, we want to extend the algorithms to handle richer planning

languages than STRIPS, in particular ADL and resource constrained problems.

Acknowledgments: The author thanks Bernhard Nebel for helpful discussions and suggestions on de-

signing the paper.

References

1. A. Blum and M. Furst. Fast planning through planning graph analysis. Arti�cial Intelligence, 90(1{2):279{

298, 1997.

2. B. Bonet and H. Ge�ner. Planning as heuristic search: New results. In Proceedings of the 5th European

Conference on Planning, pages 359{371, 1999.

3. B. Bonet, G. Loerincs, and H. Ge�ner. A robust and fast action selection mechanism for planning. In

Proceedings of the 14th National Conference of the American Association for Arti�cial Intelligence, pages

714{719, 1997.

4. T. Bylander. The computational complexity of propositional STRIPS planning. Arti�cial Intelligence, 69(1{

2):165{204, 1994.

5. J. Ho�mann. A heuristic for domain independent planning and its use in a fast greedy planning algorithm.

Technical Report 133, Albert-Ludwigs-University Freiburg, 2000.

6. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In

Proceedings of the 14th National Conference of the American Association for Arti�cial Intelligence, pages

1194{1201, 1996.

7. H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proceedings of the 16th Inter-

national Joint Conference on Arti�cial Intelligence, pages 318{325, 1999.

8. J. Koehler, B. Nebel, J. Ho�mann, and Y. Dimopoulos. Extending planning graphs to an ADL subset. In

Proceedings of the 4th European Conference on Planning, pages 273{285, 1997.

9. D. Long and M. Fox. E�cient implementation of the plan graph in STAN. Journal of Arti�cial Intelligence

Research, 10:87{115, 1999.

10. D. McDermott. A heuristic estimator for means-ends analysis in planning. In Proceedings of the 3rd Interna-

tional Conference on Arti�cial Intelligence Planning Systems, pages 142{149, 1996.

11. B. Nebel, Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts and operators in plan generation. In

Proceedings of the 4th European Conference on Planning, pages 338{350, 1997.

12. I. Refanidis and I. Vlahavas. GRT: A domain independent heuristic for strips worlds based on greedy regression

tables. In Proceedings of the 5th European Conference on Planning, pages 346{358, 1999.

