
Using Temporal Logics to Express Search Control
Knowledge for Planning�

Fahiem Bacchus
Dept. Of Computer Science

University Of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

fbacchus@logos.uwaterloo.ca

Froduald Kabanza
Dept. De Math et Informatique

Universite De Sherbrooke
Sherbrooke, Quebec

Canada, J1K 2R1
kabanza@dmi.usherb.ca

August 31, 1998

Abstract
Over the years increasingly sophisticated planning algorithms have been developed. These

have made for more efficient planners, but unfortunately these planners still suffer from com-
binatorial complexity even in simple domains. Theoretical results demonstrate that planning is
in the worst case intractable. Nevertheless, planning in particular domains can often be made
tractable by utilizing additional domain structure. In fact, it has long been acknowledged that
domain independent planners need domain dependent information to help them plan effec-
tively. In this work we present an approach for representing and utilizing domain specific con-
trol knowledge. In particular, we show how domain dependent search control knowledge can
be represented in a temporal logic, and then utilized to effectively control a forward-chaining
planner. There are a number of advantages to our approach, including a declarative semantics
for the search control knowledge; a high degree of modularity (new search control knowl-
edge can be added without affecting previous control knowledge); and an independence of this
knowledge from the details of the planning algorithm. We have implemented our ideas in the
TLPLAN system, and have been able to demonstrate its remarkable effectiveness in a wide
range of planning domains.

1 Introduction

The classical planning problem, i.e., finding a finite sequence of actions that will transform a given
initial state to a state that satisfies a given goal, is computationally difficult. In the traditional

�This research was supported by the Canadian Government through their IRIS project and NSERC programs. A
preliminary version of the results of this paper were presented at the European Workshop on AI Planning 1995 and
appears in [BK96b].

1

context, in which actions are represented using the STRIPS representation and the initial and goal
states are specified as lists of literals, even restricted versions of the planning problem are known
to be PSPACE-complete [ENS92].

Although informative, these worst case hardness results do not mean that computing plans is
impossible. As we will demonstrate many domains offer additional structure that can ease the
difficult of planning.

There are a variety of mechanisms that can be used to exploit structure so as to make planning
easier. Abstraction and the related use of hierarchical task networks have been studied in the liter-
ature and utilized in planning systems [Kno94, Sac74, Wil88, Tat77], also mechanisms for search
control have received much attention. Truly effective planners will probably utilize a number of
mechanisms. Hence, it is important that each of these mechanisms be developed and understood.
This paper makes a contribution to the development of mechanisms for search control.

Search control is useful since most planning algorithms employ search to find plans. Planning
researchers have identified a variety of spaces in which this search can be performed. However,
these spaces are all exponential in size, and blind search in any of them is ineffective. Hence, a key
problem facing planning systems is that of guiding or controlling search.

The idea of search control is not new—the notion of search heuristics is one of the funda-
mental ideas in AI. Most planning implementations use heuristically guided search, and various
sophisticated heuristics have been developed for guiding planning search [GS96, JP94]. More
sophisticated knowledge-based systems for search control have also been developed. In partic-
ular, knowledge bases of forward chaining rules have been used to guide search (these are in
essence expert-systems for guiding search). The SOAR system was the first to utilize this approach
[LNR87], and a refined version is a prominent part of the PRODIGY system [VCP+95]. A similar
rule-based approach to search control has also been incorporated into the UCPOP implementation
[BGPW93], and a more procedural search control language has also been developed [Par96]. A
key difference between the knowledge-based search control systems and various search heuristics
is that knowledge-based systems generally rely on domain dependent knowledge, while the search
heuristics are generally domain independent.

The work reported on here is a new approach to knowledge-based search control. In particu-
lar, we utilize domain dependent search control knowledge, but we utilize a different knowledge
representation and a different reasoning mechanism from previous approaches.

In previous work, search control has utilized the current state of the planning algorithm to
provide advice as to what to do next. This advice has been computed either by evaluating domain
independent heuristics on the current planning state, or by using the current planning state to trigger
a set of forward chaining rules that ultimately generate the advice.

Our approach differs. First, the control it provides can in general depend on the entire sequence
of predecessors of the current state not only on the current state. As we will demonstrate this facil-
itates more effective search control. And second, the search control information we use does not
make reference to the state of the planning algorithm, rather it only makes reference to properties
of the planning domain. It is up to the planning algorithm to take advantage of this information,
by mapping that information into properties of its own internal state. This means that although

2

the control information we utilize is domain dependent, the provider of this information need not
know anything about the planning algorithm.

Obtaining domain dependent search control information does of course impose a significant
overhead when modeling a planning domain. This overhead can only be justified by increased
planning efficiency. In this paper we will give empirical evidence that such information can make
a tremendous difference in planning efficiency. In fact, as we will show, it can often convert an
intractable planning problem to a tractable one; i.e., it can often be the only way in which automatic
planning is possible.

Our work makes an advance over previous mechanisms for search control in two crucial areas.
First, it provides far greater improvements to planning efficiency that previous approaches. We
can sometimes obtain polynomial time planners with relatively simply control knowledge. In our
empirical tests, none of the other approaches have yielded speedups of this magnitude. And second,
although our approach is of course more difficult to use than domain-independent search heuristics,
it seems to be much easier to use than the previous rule-based mechanisms1 In sum, our approach
offers a lower overhead mechanism that yields superior end results.

Our approach uses a first-order temporal logic to represent search control knowledge. By uti-
lizing a logic we gain the advantage of providing a formal semantics for the search control knowl-
edge, and open the door to more sophisticated off-line reasoning for generating and manipulating
this knowledge. In other words, we have a declarative representation of the search control knowl-
edge which facilitates a variety of uses. Through examples we will demonstrate that this logic
allows us the express effective search control information, and furthermore that this information is
quite natural and intuitive.2

Logics have been previously used in work on planning. In fact, perhaps the earliest work
on planning was Green’s approach that used the situation calculus [Gre69]. Subsequent work
on planning using logic has included Rosenschein’s use of dynamic logic [Ros81], and Bauer
et al.’s use of temporal logic [BBD+91]. However, all of this work has viewed planning as a
theorem proving problem. In this approach the initial state, the action effects, and the goal, are all
encoded as logical formulas. Then, following Green, plans are generated by attempting to prove
(constructively) that a plan exists. Planning as theorem proving has to date suffered from severe
computational problems, and this approach has not yet yielded an effective planner.

Our approach uses logic in a completely different manner. In particular, we are not viewing
planning as theorem proving. Instead we utilize traditional planning representations for actions and
states, and we generate plans by search. Theorem provers also employ search to generate plans.
However, their performance seems to be hampered by the fact that they must search in the space
of proofs, a space that has no clear relation to the structure of plans.

In our approach we use logic solely to express search control knowledge. We then show how
this knowledge can be used to control search in a simple forward-chaining planner. We explain why
such a planner is particularly effective at utilizing information expressed in the chosen temporal

1The more recently developed procedural search control mechanisms seem to be just as hard to use [Par96].
2In fact, it can be argued that this information is no different from our knowledge of actions; it is simply part of

our store of domain knowledge. Hence, there is no reason why it should not be utilized in our planning systems.

3

logic. We have implemented this combination of a simple forward-chaining planner and temporal
logic search control in a system we call the TLPLAN system. The resulting system is a surprisingly
effective and powerful planner. The planner is also very flexible, for example, it can plan with
conditional actions expressed using the full ADL language [Ped89], and can handle certain types
of resource constraints. We will demonstrate its effectiveness empirically on a number of test
domains.

Forward chaining planners have fallen out of favor in the AI planning community. This is due
to the fact that there are alternate spaces in which searching for plans is generally more effec-
tive. Partial order planners that search in the space of partially ordered plans have been shown to
possess a number of advantages [BW94, MBD94]. And more recently planners that search over
GRAPHPLAN graphs [BF97] or over models of propositional theories representing the space of
plans [KS96], have been shown to be quite effective. Nevertheless, as we will demonstrate, the
combination of domain-specific search control information, expressed in the formalism we sug-
gest, and a forward chaining planner significantly outperforms competing planners in a range of
test domains. It appears that forward chaining planners, despite their disadvantages, are signifi-
cantly easier to control, and hence the ultimate choice of planning technology may still be open
to question. The point that forward chaining planners are easier to control has also been argued
by McDermott [McD96] and Bonet et al. [BLG97]. They have both presented planning systems
based on heuristically controlled forward chaining search. They have a methods for automatically
generating heuristics, but there is still considerable work to be done before truly effective con-
trol information can be automatically extracted for a particular planning problem. As a result the
performance of their systems is not yet competitive with the fastest domain-independent planning
systems like BLACKBOX [KS98a] or IPP [KNHD97] (check, e.g., the performance of Geffner’s
HSP planning system at the recent AIPS’98 planning competition [AIP98]). In this paper we uti-
lize domain-specific search control knowledge, and present results that demonstrate that with this
kind of knowledge our approach can reach a new level of performance in AI planning.

In the rest of the paper we will describe the temporal logic we use to express domain dependent
search control knowledge. Then we present an example showing how control information can be
expressed in this logic. In Section 4 we show how a planning algorithm can be designed that
utilizes this information, and in section 5 we describe the TLPLAN system, a planner we have
constructed based on these ideas. To show the effectiveness of our approach we present the results
of a number of empirical studies in section 6. There has been other work on domain specific control
for planning systems and we compare our approach with this work in Section 7. Finally, we close
with some conclusions and a discussion of what we feel are some of the important research issues
suggested by our work.

2 First-order Linear Temporal Logic

We use as our language for expressing search control knowledge a first-order version of linear tem-
poral logic (LTL) [Eme90]. The language starts with a standard first-order language, L, containing

4

some collection of constant, function, and predicate symbols. We also include in the language the
propositional constants TRUE and FALSE, which are treated as atomic formulas. LTL adds to L the
following temporal modalities: U (until), 2 (always), 3 (eventually), and
 (next). The standard
formula formation rules for first-order logic are augmented by the following rules: if f1 and f2 are
formulas then so are f1 U f2, 2f1, 3f1, and
f1. Note that the first-order and temporal formula
formation rules can be applied in any order, so, e.g., quantifiers can scope temporal modalities al-
lowing quantifying into modal contexts. We will call the extension of L to include these temporal
modalities LT .

LT is interpreted over sequences of worlds, and the temporal modalities are used to assert
properties of these sequences. In particular, the temporal modalities have the following intuitive
interpretations:
f means that f holds in the next world; 2f means that f holds in the current
world and in all future worlds; 3f means that f either holds now or in some future world; and
f1 Uf2 means that either now or in some future world f2 holds and until that world f1 holds. These
intuitive semantics are, however, only approximations of the true semantics of these modalities. In
particular, the formulas f , f1, and f2 can themselves contain temporal modalities so when we say,
e.g., that f holds in the next world we really mean that f is true of the sequence of worlds that
starts at the next world. The precise semantics are given below.

The formulas of LT are interpreted over models of the form M = hw0; w1; : : :i where M is a
sequence of worlds. We will sometimes refer to this sequence of worlds as the time-line. Every
world wi is a model suitable for interpreting the base first-order language L. Furthermore, we
require that each wi share the same domain of discourse D. A constant domain of discourse across
all worlds allows us to avoid the difficulties that can arise when quantifying into modal contexts
[Gar77].

We specify the semantics of the formulas of our language with the following set of interpreta-
tion rules. Let wi be the i’th world in the time-line M, V be a variable assignment function that
maps the variables of LT to the domain D, and f1 and f2 be formulas of LT .

� If f1 is an atomic formula then hM; wi; V i j= f1 iff (wi; V) j= f1. That is, atomic formulas
are interpreted in the world wi under the variable assignment V according to the standard
interpretation rules for first-order logic.

� The logical connectives are handled in the standard manner.

� hM; wi; V i j= 8x:f1 iff hM; wi; V (x=d)i j= f1 for all d 2 D, where V (x=d) is a variable
assignment function identical to V except that it maps x to d.

� hM; wi; V i j= f1Uf2 iff there exists j � i such that hM; wj; V i j= f2 and for all k, i � k < j

we have hM; wk; V i j= f1: f1 is true until f2 is achieved.

� hM; wi; V i j=
f1 iff hM; wi+1; V i j= f1: f1 is true in the next state.

� hM; wi; V i j= 3f1 iff there exists j � i such that hM; wj; V i j= f1: f1 is eventually true.

5

� hM; wi; V i j= 2f1 iff for all j � i we have hM; wj; V i j= f1: f1 is true in all states from the
current state on.

Finally, we say that the model M satisfies a formula f (M j= f) iff hM; w0; V i j= f (i.e., the
formula must be true in the initial world). It is not difficult to show that if f has no free variables
then variable assignment function V is irrelevant.

2.1 Discussion

One of the keys to understanding the semantics of temporal formulas is to realize that the temporal
modalities move us along the time-line. That is, the formulas that are inside of a temporal modality
are generally interpreted not at the current world, wi, but at some world further along the sequence,
wj with j � i. This can be seen from the semantic rules given above. The expressiveness of LT
arises from its ability to nest temporal modalities and thus express complex properties of the time-
line.

Another point worth making is that both the eventually and always modalities are in fact equiv-
alent to until assertions. In particular, 3� � TRUE U �. That is, since TRUE is “true” in all states
we see that the until formula simply reduces to the requirement that � eventually hold either now
or in the future. Always is the dual of eventually: 2� � :3:�. That is, no state now or in the
future can falsify �.

Finally, it should be noted that quantifiers require that the subformulas in their scope be in-
terpreted under a modified variable assignment function (this is the standard manner in which
quantifiers are interpreted). Since we can quantify into temporal contexts this means that variable
can be “bound” in the current world wi and then “passed on” to constrain future worlds.

Example 1 Here are examples of what can be expressed in LT .

� If M j=

on(A;B), then A must be on B in the third world of the time-line, w2.

� If M j= 2:holding(C), then at no world in the time-line is it true that we are holding C .

� If M j= 2(on(B;C)) (on(B;C) U on(A;B))), then whenever we enter a world in which
B is on C it remains on C until A is on B, i.e., along this time-line on(B;C) is preserved
until we achieve on(A;B).

� If M j= 2(9x:on(x;A))
9x:on(x;A)), then whenever something is on A there is some-
thing on A in the next state. This is equivalent to saying that once something is on A there
will always be something on A. Note that in this example the scope of the quantifier does
not extend into the “next” modal context. Hence, this formula would be true in a time-line
in which there was a different object on A in every world.

� If M j= 8x:ontable(x)) 2ontable(x), then all objects that are on the table in the initial
state remain on the table in all future states. In this example we are quantifying into a modal

6

context, binding x to the various objects that are on the table in the initial world and passing
these bindings on into the future worlds.

We need two additions to our languageLT . The first extension introduces an additional modal-
ity, that of a “goal”, while the second extension is a syntactic one.

2.2 The GOAL Modality.

We are going to use LT formulas to express domain dependent strategies for search control. We
are trying to control search so as to find a solution to a goal; hence, the strategies will generally
need to take into account properties of the goal. In our empirical tests we have found that making
reference to the current goal is essential in writing effective control strategies.

To facilitate this we augment our language with an additional modality, a goal modality. The
intention of this modality is to be able to assert that certain formulas are true in every goal world.
Syntactically we add the following formula formation rule: if f is in L, i.e., it is an atemporal
formula containing no temporal modalities, then GOAL(f) is a formula. To give semantics to these
formulas we augment the models of our languageLT so that they become pairs of the form (M; G),
where M is a time-line as described above, and G is a set of worlds w with domain D. Intuitively,
G is the set of all worlds that satisfy the agent’s goal, i.e., the agent wants to modify its current
world so as to reach a (any) world in G. Now we add the following interpretation rule to the ones
given above:

� (hM; wi; V i; G) j= GOAL(f1) iff for all w 2 G we have (w; V) j= f1.3

Finally, if f is a formula in the full language (i.e., the language LT with the goal modality added)
containing no free variables, then we say that the model (M; G) satisfies f ((M; G) j= f) iff
(hM; w0i; G) j= f . From now on we will use LT to refer to the full language generated by the
formation rules given above including the formation rule that allows use of the goal modality.

It should be noted that our semantics mean that we are taking the goal modality as a notion of
entailment. A goal formula is true if it is true in all goal worlds. If the planning system is given a
goal to achieve, where the goal is specified as a logical formula �,4 then we can take G to be the
set of worlds that satisfy �. The standard definition of entailment and the semantics given above
then implies that GOAL() is true iff � j= .5

3Remember that each w is a first order model for L and V is a variable assignment. Hence (w; V) j= f1 can be
decided by the standard interpretation rules for first order formulas.

4In all of the standard planning systems goals are equivalent to logical formulas. Often, goals are restricted to
being simply conjunctions of ground literals.

5That is, GOAL() is true every world where � holds (all worlds in the set G) also holds. The direction
GOAL()) � j= requires thatG include every world that satisfies � [Lev90].

7

2.3 Bounded Quantification.

In Section 4.2 we will demonstrate one method by which information expressed in our temporal
logic can be used computationally. To facilitate such usage, we eschew standard quantification and
use bounded quantification. Hence, it is convenient at this point to introduce some addition syntax.
For now we will take bounded quantification to be purely a syntactic extension. Later we will see
that some additional semantic restrictions are required to achieve computational effectiveness.

Definition 2.1 Let � be any formula. Let
 be any atomic formula or any atomic formula inside
of a GOAL modality. The bounded quantifiers are defined as follows:

1. 8[x:
(x)]�
4
= 8x:
(x)) �.

2. 9[x:
(x)]�
4
= 9x:
(x) ^ �.

3. For convenience we further define:
9[x:
(x)]

4
= 9x:
(x).

It is easiest to think about bounded quantifiers semantically: 8[x:
(x)]� for some formula �
holds iff � is true for all x such that
(x) holds, and 9[x:
(x)]� holds iff � is true for some x such
that
(x) holds. That is, the quantifier bound
(x) simply serves to limit the range over which the
quantified variable ranges. Without further restrictions bounded quantification is just as expressive
as standard quantification: simply take
(x) to be the propositional constant TRUE.

We can also use bounded quantifiers in the context of a GOAL modality. Again semantically
this has a fairly simple meaning: 8[x:GOAL(
(x))]� holds iff � is true for all x such that
(x) is
true in all goal worlds.

Two uses of the language.
We have defined a formal language that possess a declarative semantics. It is possible to use this
language as a logic, i.e., to perform inference from collections of sentences, by defining a standard
notion of entailment. Let f1 and f2 be two formulas of the full language LT , then we can define
f1 j= f2 iff for all models (M; G) such that (M; G) j= f1 we have that (M; G) j= f2.

We will not explore the use of LT as a logic in this paper, (except for a few words in about
the possibilities in Section 8). Rather we will explore its use as a means for declaratively speci-
fying search control information, and utilize the formal semantics to verify the correctness of the
algorithms that utilize the control knowledge.

3 An Extended Example

In this section we demonstrate how LT can be used to express domain specific information. This
information can be viewed as simply being additional knowledge of the dynamics of the domain.

8

Operator Preconditions and Deletes Adds

pickup(x) ontable(x), clear(x), handempty. holding(x).
putdown(x) holding(x). ontable(x), clear(x), handempty.
stack (x; y) holding(x), clear(y). on(x; y), clear(x), handempty.
unstack (x; y) on(x; y), clear(x), handempty. holding(x), clear(y).

Table 1: Blocks World operators.

Traditionally, the planning task has been undertaken using very simple knowledge of the domain
dynamics. In particular, all that is usually specified in a planning problem is information about the
primitive actions, when they can be applied and what their effects are. Given this knowledge the
planner is expected to be able to construct plans. Our experience with AI planners indicates that
this problem is difficult, both from the point of view of the theoretical worst-case behaviour, and
from the point of view of practical empirical experience.6

Part of the motivation for this work is our opinion that successful planning agents will have ac-
cess to addition useful knowledge about the dynamics of the domain, knowledge that goes beyond
a simple specification of the primitive actions. Some of this knowledge can come from the designer
of the planning agent, but in the long term we would expect that much of this knowledge would
be learned or computed by the agent itself. For example, human agents often use experimentation
and exploration to gather additional knowledge of a dynamical domain, and we would expect that
eventually an autonomous planning agent would have to do the same.

For now, however, since our work on automatically generating such knowledge is preliminary,
we will explore its use by a designer of a planning agent. In this section we will give an extended
example, using the familiar blocks world, that serves to demonstrate that there is often consid-
erable additional knowledge available to the designer. And we will advance the argument that
our temporal logic LT serves as a useful and flexible means to represent this knowledge. In the
next section we will discuss how this knowledge can be put to computational use to reduce search
during planning.

Blocks World. Consider the standard blocks world, which we describe using the four STRIPS

operators given in table 1. Despite its age the blocks world is still a hard domain for even the
most sophisticated domain independent AI planners. Our experiments indicate (see Section 6) that
generating plans to reconfigure 11-12 blocks seems to be the limit of current planners

Nevertheless, the blocks world does have a special structure that makes planning in this domain
easy [GN92, KM81]. And it is easy write down additional information about the dynamics of the
domain, information that could potentially be put to use during planning.

6It can be noted that the AI planning systems that have had the most practical impact have been HTN-style planners.
HTN (hierarchical task network) planners utilize domain knowledge (in the form of task decomposition schema) that
goes well beyond the simple knowledge of action effects utilized by classical planners [Wil88, CT91].

9

E

A

B

C

Initial State

B

A

C

Goal State

D

D F

Figure 1: A Blocks World Example

The most basic idea in the blocks world is that towers can be built from the bottom up. That is,
once we have built a good prefix of a tower we need never dismantle that prefix in order to finish
our task.

For example, consider the planning problem shown in Figure 1. To solve this problem it is
clear that we need not unstack B from C . This tower of blocks is what can be called a good tower,
i.e., a tower that need not be dismantled in order to achieve the goal.

More generally, we can write a straightforward, albeit lengthy, first-order formula that for any
single world describes when a clear block sits on top of a good tower, i.e., a tower of blocks that
does not need to be dismantled.

goodtower(x)
4
= clear(x) ^ :GOAL(holding(x)) ^ goodtowerbelow(x)

goodtowerbelow(x)
4
= (ontable(x) ^ :9[y:GOAL(on(x; y))]))

_ 9[y:on(x; y)]:GOAL(ontable(x)) ^ :GOAL(holding(y)) ^ :GOAL(clear(y))
^ 8[z:GOAL(on(x; z))] z = y ^ 8[z:GOAL(on(z; y))] z = x

^ goodtowerbelow(y)

A block x satisfies the predicate goodtower(x) if it is on top of a tower, i.e., it is clear, it is not
required that the robot be holding it, and the tower below it does not violate any goal conditions.
The various tests for the violation of a goal condition in the tower below are given in the definition
of goodtowerbelow. If x is on the table, the goal cannot require that it be on another block y.
On the other hand, if x is on another block y, then x should not be required to be on the table,
nor should the robot be required to hold y, nor should y be required to be clear, any block that is
required to be below x should be y, any block that is required to be on y should be x, and finally
the tower below y cannot violate any goal conditions.

We can represent our insight into the dynamics of the blocks world that good towers can be
preserved using LT . A plan for reconfiguring a collection of blocks is a sequence of actions for
manipulating those blocks. As these actions are executed the world passes through a sequence of
states, the states brought about by the actions. Any “good” plan to reconfigure blocks should never
dismantle or destroy a good tower, i.e., it should not generate a sequence of states in which a good
tower is destroyed. If a good tower is destroyed it would eventually have to be reassembled, and

10

there will be a better plan that preserved the good tower. Formulas of LT specify properties of
sequences of states, so we can write the following formula that characterizes those state sequences
that do not destroy good towers.

2

�
8[x:clear(x)] goodtower(x))
(clear(x) _ 9[y:on(y; x)] goodtower(y))

�
; (1)

If a plan generates a state sequence that wastefully destroys good towers, then that state sequence
will fail to satisfy this formula.

In the example given in Figure 1, the state transitions caused by unstacking B from C or by
stacking any block except A on B will violate this formula.

Note also that by our definition of goodtower, a tower will be a good tower if none of its blocks
are mentioned in the goal: such a tower of irrelevant blocks cannot violate any goal conditions.
Hence, this formula also rules out state sequences that wastefully dismantle towers of irrelevant
blocks. The singleton tower F in our example is satisfies our definition of a good tower.

What about towers that are not good towers? Clearly they violate some goal condition. Hence,
there is no point in stacking more blocks on top of them as eventually we must disassemble these
towers. We can define:

badtower(x)
4
= clear(x) ^ :goodtower(x)

And we can augment our characterization of good state sequences by ruling out those in which bad
towers grow using the formula:

2

�
8[x:clear(x)] goodtower(x))
(clear(x) _ 9[y:on(y; x)] goodtower(y))

^ badtower(x))
(:9[y:on(y; x)])
� (2)

This formula rules out sequences that place additional blocks onto a bad tower. Furthermore, by
conjoining the new control with the previous one, the formula continues to rule out sequences that
dismantle good towers. With this formula a good sequence can only pickup blocks on top of bad
towers. This is what we want, as bad towers must be disassembled. In our example, the tower
of blocks under E is a bad tower. Hence, any action that stacks a block on E will cause a state
transition that violates the second conjunction of Formula 2.

However, Formula 2 does not rule out all useless actions. In particular, by our definitions a
single block on the table that is not intended to be on the table is also a bad tower. In our example,
block D is such a singleton bad tower. D is intended to be on blockA but is currently on the table.
Formula 2 still permits us to pick up blocks that are on top of bad towers, however, there is no
point in picking up D until we have stacked A on B. In general, there is no point in picking up
singleton bad tower blocks unless their final position is ready. Adding this insight we arrive at our
final characterization of good state sequences for the blocks world:

2

�
8[x:clear(x)] goodtower(x))
(clear(x) _ 9[y:on(y; x)] goodtower(y))
^ badtower(x))
(:9[y:on(y; x)])
^ (ontable(x) ^ 9[y:GOAL(on(x; y))]:goodtower(y))

)
(:holding(x))
�

(3)

11

In the next section we show how an LT formula like Formula 3 can be used to guide the search
for a plan.

4 Finding Good Plans

Our approach to using LT formulas to guide planning search involves the checking of candidate
plans against the formula. First, we formalize the notion of a plan satisfying an LT formula, then
we describe a mechanism for checking a plan prefix to see if it might possibly satisfy a formula,
and finally we describe a planning algorithm that can be constructed from this mechanism.

4.1 Checking Plans

Since actions map worlds to new worlds, a plan, which we take to be a finite sequence of actions,
will generate a finite sequence of worlds: the worlds that would arise as the plan is executed.
Hence, a plan gives rise to a finite sequence of worlds—almost a suitable model for LT .

The only difficulty is that models of LT are infinite sequences. Intuitively, our plan is intended
to control the agent for some finite time, up until the time the agent completes the execution of the
plan.7

In classical planing it is assumed that the agent executing the plan is the only source of change.
Since this paper addresses the issue of search control in the context of classical planning, we adopt
the same assumption. This means that once execution of the plan is completed the world remains
unchanged, or to use the phrase common in the verification literature, the world idles [MP92]. We
can model this formally in the following manner:

Definition 4.1 Let plan P be the finite sequence of actions ha1; : : : ; ani. Let S = hw0; : : : ; wni
be the sequence of worlds such that w0 is the initial world and wi = ai(wi�1). S is the sequence
of worlds visited by the plan. Then the LT model corresponding to P and w0 is defined to be
hw0; : : : ; wn; wn; : : :i, i.e., S extended to an infinite sequence by infinitely replicating the final
world. In the verification literature this is know as idling the final world.

Therefore, every finite sequence of actions we generate corresponds to a unique model in which
the final state is idling. Thus, given any formula of LT a given plan will either falsify or satisfy it.

Definition 4.2 Let P be a plan and w0 be the initial world. We say that (P;w0) satisfies (or
falsifies) a formula � 2 LT just in case the model corresponding to P and w0 satisfies (or falsifies)
�.

7Work on reactive plans [BKSD95] and policies [DKKN93, TR94, BD94] has concerned itself with on-going
interactions between the agent and its environment. However, there are still many applications where we only want
the agent to accomplish a task that has a finite horizon, in which case plans that are finite sequences of actions can
generally suffice.

12

Given a formula like the blocks world control formula (Formula 3 above) designed to charac-
terize good sequences of blocks world transformations, we can then check any plan to see if it is a
good plan. That is, given an LT control formula �, we say that a plan P is a good plan if (P;w0)

satisfies �. Unfortunately, although it can be tractable to check whether or not a P satisfies an
arbitrary formula �8 knowing this does not directly help us when searching for a plan.

When we are searching for a plan we need to be able to test partially constructed plans, as these
are the objects over which we are searching. Furthermore, we need to be able to determine if a
good plan could possible arise from any further expansion of a partial plan. With such a test we
will be able to mark partial plans as deadends, pruning them from the search space; thus avoiding
having to search any of their successors.

One of the contributions of this paper is a method for doing this in the space of partial plans
searched by a forward chaining planner.

4.2 Checking Plan Prefixes

A forward chaining planner, searches in the space of world states. In particular, it examines all
executable sequences of actions that emanate from the initial world, keeping track of the worlds
that arise as the actions are executed. Such sequences, besides being plans in their own right, are
prefixes of all the plans that could result from their expansion.

We have developed an incremental mechanism for checking whether or not a plan prefix, gen-
erated by forward chaining, could lead to a plan that satisfies an arbitraryLT formula. Our method
is subject to the restriction that all quantifiers in the formula must range over finite sets, i.e., the
quantifier bounds in the formula must specify finite sets. The key to our method is the progression
algorithm given in Table 2. This algorithm takes as input an LT formula and produces a new
formula as output. As can be seen from clauses 9 and 10, the algorithm treats quantification by
expanding all instances. This is where our assumption about bounded quantification comes into
play; the algorithm must iterate over all instances of the quantifier bounds.9

The progression algorithm also does Boolean simplification on its intermediate results at vari-
ous stages. That is, it applies the following transformation rules:

1. [FALSE ^ �j� ^ FALSE] 7! FALSE,

2. [TRUE ^ �j� ^ TRUE] 7! �,

3. :TRUE 7! FALSE,

4. :FALSE 7! TRUE.
8In particular, it is tractable to check whether or not a plan satisfies various formulas when we have that (1) there is

a bound on the size of the sets over which any quantification can range, (2) there is a bound on the depth of quantifier
nesting in the formulas, and (3) it is tractable to test at any worldwi visited by the plan whether or not wi satisfies any
ground atomic formula.

9This is very much like the technique of expanding the universal base used in the UCPOP planner [Wel94], and in
a similar manner UCPOP must assume that the universal base is finite.

13

Inputs: An LT formula f and a world w.
Output: A new LT formula f+ representing the progression of f through the world w.

Algorithm Progress(f ,w)
Case
1. f = � 2 L (i.e., � contains no temporal modalities):

f+ := TRUE if w j= f; FALSE otherwise.
2. f = f1 ^ f2: f+ := Progress(f1; w) ^ Progress(f2; w)
3. f = :f1: f+ := :Progress(f1; w)
4. f =
f1: f+ := f1
5. f = f1 U f2: f+ := Progress(f2; w) _ (Progress(f1; w) ^ f)
6. f = 3f1: f+ := Progress(f1; w) _ f
7. f = 2f1: f+ := Progress(f1; w) ^ f
8. f = 8[x:
(x)] f1: f+ :=

V
fc:wj=
(x=c)g Progress(f1(x=c); w)

9. f = 9[x:
(x)] f1: f+ :=
W
fc:wj=
(x=c)g Progress(f1(x=c); w)

Table 2: The Progression Algorithm.

These transformations allow the algorithms to occasionally short circuit some of its recursive calls.
For example, if the first conjunct of an ^ connective progresses to FALSE, there is no need to
progress the remaining conjunctions.

The key property of the algorithm is characterized by the following theorem:

Theorem 4.3 Let M = hw0; w1; : : :i be any LT model. Then, we have for any LT formula f in
which all quantification is bounded, hM; wii j= f if and only if hM; wi+1i j= Progress(f;wi).

Proof: We prove this theorem by induction on the complexity f .

� When f is an atemporal formula then hM; wii j= f iff wi j= f . Line 1 of the algorithm
applies, so Progress(f;wi) = TRUE or FALSE dependent on whether or not wi j= f . Ev-
ery world satisfies TRUE and none satisfy FALSE. Hence, hM; wi+1i j= Progress(f;wi) iff
hM; wii j= f as required.

� When f is of the form f1 ^ f2, then hM; wii j= f iff hM; wii j= f1 and hM; wii j= f2,
iff (by induction) hM; wi+1i j= Progress(f1; wi) and hM; wi+1i j= Progress(f2; wi), iff
hM; wi+1i j= Progress(f1; wi)^Progress(f2; wi), iff (by line 2 of the algorithm) hM; wi+1i j=

Progress(f;wi).

� When f is of the form :f1. This case is similar to the previous one.

� When f is of the form
f1, then hM; wii j= f iff (by the semantics of
) hM; wi+1i j= f1, iff
(by line 4 of the algorithm) hM; wi+1i j= Progress(f;wi).

14

� When f is of the form f1 U f2, then hM; wii j= f iff (by the semantics of U) there exists wj

(j � i) such that hM; wji j= f2 and for all k (i � k < j) hM; wki j= f1, iff hM; wii j= f2
(f2 is satisfied immediately) or hM; wii j= f1 and hM; wi+1i j= f (the current state sat-
isfies f1 and the next state satisfies the entire formula f), iff (by induction) hM; wi+1i j=

Progress(f2; wi) _ (Progress(f1; w1) ^ f), iff (by line 5) hM; wi+1i j= Progress(f;wi).

� When f is of the form2f1 or 3f1. Both cases are similar to previous ones.

� When f = 8[x:
(x)] f1, then hM; wii j= f iff hM; wii j= f1(x=c) for all c such that w j=

(x=c), iff (by induction) hM; wi+1i j= Progress(f1(x; c); wi) for all such c, iff (since by
assumption
(x) is only satisfied by a finite number of objects in wi) hM; wi+1i satisfies
the conjunction of the formulas Progress(f1(x=c); wi) for all such c (if there are not a finite
number of such c the resulting conjunction would be infinite and not a valid formula of LT),
iff (by line 8) hM; wi+1i j= Progress(f;wi).

� When f = 9[x:
(x)] f1. This case is similar to the previous one.

Say that we wish to check plan prefixes to determine whether or not they could satisfy an LT
formula � starting in the initial world w0. By Theorem 4.3, any plan starting from w0 will satisfy
� if and only if the subsequent sequence of worlds it visits satisfies �1 = Progress(�;w0). If �1 is
the formula FALSE, then we know that no plan starting in the worldw0 can possibly satisfy �, as no
model can satisfy FALSE. Similarly, if �1 is the formula TRUE then every plan starting in the world
w0 will satisfy �, as every model satisfies TRUE. Otherwise, we will have to check the subsequent
sequences against the progressed formula �1. The progression through w0 serves to check the null
plan, which is a prefix of every plan.

Now suppose we apply action a in w0 generating the successor world w1. If we compute
�2 = Progress(�1; w1), then we know that any plan starting with the sequence of worlds hw0; w1i

(i.e., any plan starting with the action a) will satisfy � if and only if the sequence of worlds it visits
after w1 satisfies �2. Once again if �2 is FALSE then no such plan can satisfy �, and if �2 is TRUE

then every such plan satisfies �. Otherwise, we will have to continue to check all extensions of the
action sequence hai against the formula �2.

It is not difficult to see that this process can be iterated to yield a mechanism that given any
plan prefix (a sequence of actions) will continually update the original formula � to a new formula
�0 that characterizes the property that must be satisfied by the subsequent actions in order that the
entire action sequence satisfy �. If at any stage the progressed formula becomes one of TRUE or
FALSE, we can stop, as we then have a definite answer about any possible extension of the current
plan prefix.

Although progression often has the ability to give us an early answer to our question, it cannot
always give us a definite answer. The progression algorithm will not always be able to determine
when a finite plan falsifies a formula �. In particular, it cannot check for the achievement of
eventualities in the formula (more generally it cannot check for the achievement of the right hand

15

operand of until formulas)—given just the current world it does not have sufficient information to
determine whether or not these eventualities will be achieved in the future. Furthermore, it does not
employ theorem proving. For example, if we have the LT formula 3� where � is unsatisfiable,
then progressing this formula will never discover this. When we apply progression we obtain
Progress(�;w) _ 3�. The algorithm may be able to reduce Progress(�;w) to FALSE, but then it
would still be left with the original formula 3�. It will not reduce this formula further. We know
that that no world in the future can ever satisfy an unsatisfiable formula, so from the semantics of3
we can see that in fact no plan can satisfy this formula. To detect deadends at this level of generality,
we would require a validity checker, i.e., a theorem prover for LT . Ignoring quantification, the
progression algorithm has complexity linear in the size of the formula (assuming that the tests in
line 1 can be performed in time linear in the length of the formula �).10 While the complexity of
validity checking for quantifier free LT (i.e., propositional linear temporal logic) is known to be
PSPACE complete [SC85].

It should be noted however, that progression can detect unsatisfiable formulas when they are
not buried inside of an eventuality. For example, if we have the formula 2� where � is atemporal
and unsatisfiable, then the progression of this formula through any world w will be FALSE. The
progression of � will (due to case 2 of the algorithm) return FALSE ^2� which will be simplified
to FALSE. In this case progression is model checking the atemporal formula � against the model w
and determining it to be falsified by w. This is not the same as proving that � is falsified by every
world, a process that requires a validity checker. Model checking a formula against a particular
world is a much more tractable computation than checking the formula’s validity (see [HV91] for
a further discussion of this issue).

Example 2 Say that we progress the formula 2on(A;B) through the world w in which on(A;B)

is true. This will result in the formula TRUE ^ 2on(A;B), which will be reduced to 2on(A;B).
On the other hand, says that w falsified on(A;B), then the progressed formula would be FALSE ^

2on(A;B), which will be reduced to FALSE. This example shows that 2 formulas generate a test
on the current world and propagate the test to the next world.

As another example say that we progress the formula 2(on(A;B))
clear(A)) through the
world w in which on(A;B) is true. The result will be the formula 2(on(A;B))
clear(A)) ^
clear(A). That is, the always test will be propagated to the next world, and in addition the next
world will be required to satisfy clear(A) since on(A;B) is currently true. On the other hand, if w
falsified on(A;B) the progressed formula would simply be 2(on(A;B))
clear(A)). That is,
we would simply propagate the constraint without any additional requirements on the next world.

It is possible to add to the progression algorithm an “idling” checking algorithm so that we can
receive a definite answer to the question of whether or not a plan prefix satisfies an LT formula in
the sense of Definition 4.2, see [BK96a] for details. However, for the purposes of search control
this is not necessary. In particular, the plan prefixes we are checking are not the final plan; all that
we want to know is if they could possibility lead to a good final plan. For this purpose the partial
information returned by progression is sufficient.

10We will return to the issue of quantification and the tests in line 1 later.

16

Inputs: An world w, an LT formula f a goal G, a set of domain actions A, and the current plan
prefix P . To start planning we call TLPLAN(w0 ,f0,G,A,hi), where w0 is the initial world, f0 is the
initial LT control formula, and the current plan prefix is empty.
Output: A plan (a sequence of actions) that will transform w0 into a world that satisfies G.

Algorithm TLPLAN(w, f , G, A, P)
1. if w satisfies G then return P .
2. Let f+ = Progress(f;w).
2. if f+ is FALSE return failure.
3. choose an action a from the set of actions A whose preconditions are satisfied in w.
4. if no such action exists return failure.
5. Let w+ be the world that arises from applying a to w.
6. return TLPLAN(w+ , f+, G, A, P + a).

Table 3: The planning algorithm.

4.3 The Planning Algorithm

The progression algorithm admits the planning algorithm shown in Table 3. This algorithm is used
in the TLPLAN system described in Section 5.

The algorithm is described non-deterministically, search will have to be performed to explore
the correct choice of action a to apply at each world w. This algorithm is essentially a simple
forward chaining planner (a progressive world-state planner by the terminology of [Wel94]). The
only difference is that every world is labeled with an LT formula f , with the initial world being
labeled with a user supplied formula expressing a control strategy for this domain. When we
expand a worldw we progress its formula f throughw using the progression algorithm, generating
a new formula f+. This new formula becomes the label of all of w’s successor worlds (the worlds
generated by applying all applicable actions to w). If f progresses to FALSE, (i.e., f+ is FALSE),
then Theorem 4.3 shows that none of the sequences of worlds emanating from w can satisfy our
LT formula. Hence, we can immediately mark w as a dead-end in the search space and avoid
exploring any of its successors.

5 The TLPLAN System

We have constructed a planning system called the TLPLAN system that utilizes the planning algo-
rithm shown in Table 3. In this section we describe the system, concentrating on the new features
it supports and the restrictions that must be placed on the formalism described above to achieve
computational effectiveness.

17

Search
Engine

State Expander
Formula

Progressor

Formula
Evaluator

Goal Tester

Figure 2: The TLPLAN system

TLPLAN is a very simple system, as the diagram of its components shown in Figure 2 demon-
strates. The distinct components of the system are:

� A search engine which implements a range of search algorithms.

� A goal tester that is called by the search engine to determine if it has reached a goal world.
The goal tester in turn calls the formula evaluator to implement this test.

� A state expander that is called by the search engine to find all the successors of a world. The
state expander in turn calls the formula evaluator to determine the actions that are applicable
at a world. It also calls the formula progressor to determine the formula label of these new
worlds.

� A formula progressor which implements the progression algorithm shown in Table 2. The
progression algorithm uses the formula evaluator to realize line 1 of the algorithm.

� A formula evaluator that evaluates first-order formulas on individual worlds.

Forward-chaining planners like TLPLAN are inherently simple. Nevertheless, is it worth point-
ing out that all of the functionality needed in such a planner can be implemented by a first-order
formula evaluator. As Figure 2 shows, this is the design used by TLPLAN. A properly designed
formula evaluator also provides considerable additional flexibility and expressiveness to the sys-
tem. Understanding its operation provides the essential insights into the worst case complexity
of the planner’s basic operations. For these reasons it is worth explaining the operation of the
evaluator in more detail.

18

5.1 Worlds

The formula evaluator evaluates the truth of formulas in individual worlds. In TLPLAN the ba-
sic structure of an individual world is determined by a distinguished set of predicates called the
described predicates (TLPLAN also allows for a set of described functions). Each world has a
database containing all positive ground instances of the described predicates that hold in the world.
The closed world assumption is employed to derive the negations of ground atomic facts. Actions
map worlds to worlds, and their effects are ultimately specified as updates to the world database.
This is the standard operational semantics for STRIPS actions, and in fact these semantics are also
applicable to ADL actions.11

Despite the simplicity of this underlying structure, considerable additional expressiveness can
be implemented in the formula evaluator. In particular, although all changes to the world must be
expressed in terms of changes to the set of described predicates, many other notions can be defined
on top of these “primitive” predicates. TLPLAN provides for a fairly rich set of additional language
constructs. An explanation of the formula evaluator will provide insight into these features.

5.2 Evaluating First-Order Formulas

The formula evaluator is a full first-order formula evaluator that can determine the truth or falsity
of any first-order formula in a particular world. The algorithm is given in Tables 4–6.

The lowest level of the recursive algorithm is EvalTerm (Table 6) which is used to convert
complex first-order terms (containing functions and variables) into constants. Variables are easy,
we simply look up their value in the current set of variable bindings. It is not hard to see that as
long as the top level formula passed to Eval contains no free variables (i.e., it is a sentence), the set
of bindings will have a value for every variable by the time that variable must be evaluated.12

Also of note is that the specified algorithm, and the version implemented in TLPLAN, can
handle different types of functions. In particular, TLPLAN allows for three types of functions:
computed, described and defined functions. Computed functions can invoke arbitrary computa-
tions on a collection of constant arguments (the arguments to the function are evaluated prior to
being passed as arguments). The value of the function can depend on the current world or the
function may be independent of the world. For example, it is possible to declare all of the standard
arithmetic functions to be computed functions. Then when the evaluator encounters a term like
t1 + t2 it first recursively evaluates t1 and t2 and then invokes the standard addition function to
compute their sum.

Described functions act much like the described predicates mentioned above. Every world
contains a database of values for each described function, and these functions can be evaluated by
simple database lookup. The user must ensure that these function values are specified in the initial
state and that the action descriptions properly update these values. For example, in the blocks

11ADL actions can have more complex first-order preconditions along with conditional add/deletes. However, the
set of add/deletes each action generates is always a set of ground atomic facts.

12The quantifier clauses in Eval will set the variable values prior to their use.

19

Inputs: An atemporal LT formula f , a world w, and a set of variable bindings V .
Output: TRUE or FALSE dependent on whether or not (w; V) j= f .

Algorithm Eval(f ,w,V)
Case
1. f = P (t1; : : : ; tn) (an atomic formula)

return (EvalAtomic(P (EvalTerm(t1; w; V); : : : ;EvalTerm(tn; w; V))); w)

2. f = f1 ^ f2: if not Eval(f1; w; V) then return (FALSE)

else return (Eval(f1; w; V))

3. f = :f1: return (not Eval(f1; w; V))

3.1 Similar processing for the other boolean connectives.

4. f = 8[x:
(x)] f1: generator := make-generator(
(x); w; V)
tval := TRUE

while (c := generator.next() ^ tval)
tval := tval ^ Eval(f1; w; V [fx = cg)

return (tval)

5. f = 9[x:
] f1: generator := make-generator(
(x); w; V)
tval := FALSE

while (c := generator.next() _ :tval)
tval := tval _ Eval(f1; w; V [fx = cg)

return (tval)

6. f = (x := t): V (x) := EvalTerm(t; w; V)

return (TRUE)

Table 4: The formula evaluator.

world we could specify a function below such that below(x) is equal to the object that is below of
block x in the current world (using the convention that the table is below itself). The initial state
would specify the initial values for below, and the actions stack and putdown would have to update
these function values. Updating function values by an action is accomplished by utilizing the ADL

representation of actions that allows for the specification of updates to function values [Ped89].
Defined functions are functions whose value is defined by a formula. Evaluating such functions

requires a recursive call to the top-level of the formula evaluator. Hence, we describe the rest of
the evaluator prior to describing defined functions.

The next level up from terms is the evaluation of atomic formulas (ground atomic formulas
since all terms are evaluated prior to evaluating the formula). Once again the evaluator imple-
mented in TLPLAN allows for different types of predicates. Described predicates are the standard
type. Each world maintains a database of all positive instances of such predicates, and the truth of
any ground instance can be determined by a database lookup. As is standard the initial state must

20

Inputs: An ground atomic formula P (c1; : : : ; cn) and a world w.
Output: TRUE or FALSE dependent on whether or not w j= P (c1; : : : ; cn).

Algorithm EvalAtomic(P (c1; : : : ; cn),w)
Case
1. P is a described predicate:

return (lookup(P (c1; : : : ; cn); w))

2. P is defined by a computed predicate:
return (P (c1; : : : ; cn; w)).

3. P is defined by the formula �:
Let x1; : : : ; xn be the arguments of �.

return (Eval(�;w; V [fx1 = c1; : : : ; xn = cng)).

Table 5: Evaluating Atomic Formulas.

Inputs: A term t, a world w, and a set of variable bindings V .
Output: A constant that is the value of t in the world w.

Algorithm EvalTerm(t,w,V)
Case
1. t = x where x is a variable:

return (V (x)) (i.e., return x’s binding)
2. t = c where c is a constant:

return (c).
3. t = f(t1; : : : ; tk) where f is a described function:

return (lookup(f(EvalTerm(t1; w; V); : : : ;EvalTerm(tk; w; V)); w)).
4. t = f(t1; : : : ; tk) where f is a computed function:

return (f(EvalTerm(t1; w; V); : : : ;EvalTerm(tk; w; V); w)).
5. t = f(t1; : : : ; tk) where f is defined by the formula �:

For i = 1; : : : ; k, let ci = EvalTerm(ti; w; V), xi be the arguments for �,
and V 0

= V [ff =?; x1 = c1; : : : ; xk = ckg
Eval(�;w; V 0

)

return (V 0
(f))

Table 6: Evaluating Terms.

21

specify all positive instances of the described predicates and the actions must specify correct adds
and deletes to keep the database up to date.

Computed predicates, like computed functions, can be used to invoke an arbitrary computation
(which in this case must return true or false). In this way we can include, e.g., arithmetic predicates
in our formulas. For example, weight(A) > weight(B), would be a legitimate formula given that
weight has been declared to a function. The formula evaluator would first evaluate the terms
weight(A) and weight(B) prior to invoking the standard numeric comparison function to compare
the two values.

Finally, the most interesting type of predicate are the defined predicates. Like the defined func-
tions these predicates are defined by first-order formulas. The predicate goodtower (defined in
Section 3) is an example of a defined predicate. Defined predicates can be evaluated by simply
recursively invoking the formula evaluator on the formula that defines the predicate (with appro-
priate modifications to the set of bindings). The key feature is that this mechanism allows us to
write and evaluate recursively defined predicates. For example, we can define above to be the
transitive closure of on:

above(x; y)
4
= on(x; y) _ 9[z:on(z; y)] above(x; z):13

At the top level the evaluator simply decomposes a formula into an appropriate set of atomic
predicate queries. The decomposition is determined by the semantics of the formula connectives.

Quantifiers are treated in a special manner. As previously mentioned TLPLAN utilizes bounded
quantification. Inside of the evaluator this is implemented by using each quantifier bound to con-
struct a generator of instances over that bound. The function make-generator does this, and every
time we send the returned generator a “next” message it returns the next value for the variable.
Any described predicate can be used as a quantifier bound, as a generator over its instances is easy
to construct given the world’s database. The implementation also allows for computed genera-
tors which invoke arbitrary computations to return the sequence of variable bindings.14 There is
considerable generality in the implementation. N-ary predicates can be used as generators. Such
generators will bind tuples of variables; e.g., when evaluating the formula “8[x; y:on(x; y)] : : :”
a generator of all pairs (x; y) such that on(x; y) holds in the current world will be constructed.
The generators will also automatically take into account previously bound variables. For example,
when evaluating “8[x:clear(x)]9[y:on(x; y)] : : :”, the outer generator will successively bind x to
each clear block and the inner generator will bind y to the single block that is below the block
currently bound to x.

The last clause of the formula evaluator algorithm is used to deal with defined functions. Con-
sider a function depth(x) that returns the depth of a block x, where clear blocks have depth zero.

13Of course the user has to write their recursively defined predicates in such a manner that the recursion terminates.
The short circuiting of booleans and quantifiers (e.g., not evaluating the remaining disjunctions of an _ once one of
the disjunctions evaluates to true) is essential to this process.

14This is often useful when we want a quantified variable to range over a finite set of integers.

22

We can specify such a function using the following formula:

depth(x)
4
=

clear(x)) depth := 0

^ 9[y:on(y; x)]) depth := 1 + depth(y)

That is, the depth of x is zero if x is clear, otherwise there must exist another block y that is on top
of x and then the depth of x is one more than the depth of y.

Formulas defining functions utilize the “assignment” function “:=” that is handled by the last
clause of the evaluator’s algorithm. The convention used is that the function’s value is set by
assigning to the function’s name. Internally, defined functions are handled by adding the function
name as a new unassigned variable to the set of variable bindings (see clause 5 of the EvalTerm
algorithm Table 6). We then evaluate the formula defining the function using this augmented set
of variable bindings. When the evaluator encounters an assignment “predicate” like depth := 0 it
modifies the binding of that variable. Thus, after the evaluator has processed the defining formula,
the function’s name variable has been set to a value, and that value is used as the function’s value.
This simple mechanism adds considerable flexibility when defining a planning domain.15

5.2.1 Evaluating GOAL Formulas

As mentioned in Section 2.2 the language utilized to express control formulas (and action pre-
conditions in ADL formulas) includes a GOAL modality. We have specified the semantics of this
modality as that of entailment, i.e., GOAL(�) is true iffG j= �, whereG is the goal specified by the
user. When the temporal control formula includes a goal modality (most control formulas do), then
at every world when we progress the control formula through that world we may have to invoke
the evaluator to determine the truth of such formulas. Hence, evaluating GOAL formulas must be
efficient. In general, checking entailment is not efficient.

When GOAL formulas are used in the control formulas (or as preconditions of ADL actions)
we must enforce some restrictions in our implementation to ensure that they can be evaluated
efficiently. In particular, if GOAL formulas are used in specifying a domain we require that the
goal, G, be specified as a list of ground atomic facts, f�1; : : : ; �kg, and we restrict GOAL formulas
to be of the form GOAL(�) where � is an atomic formula. Under these restrictions we can evaluate
GOAL formulas efficiently with a simple lookup operation. Any set of ground atomic formulas like
G has a model that falsifies every atomic formula not in the set. Hence, GOAL(�) will be true (by
the semantics given in Section 2.2) if and only if � 2 G.

Example 3 Let the goal be the set of ground atomic facts fontable(A); clear(A)g.

� GOAL(ontable(A)) will evaluate to true.

15Our implementation extends this mechanism to allow defined functions (and predicates) to have local variables
that can be assigned to. Such local variables are not essential, but they can speedup certain computations.

23

� GOAL(ontable(C)) will evaluate to false.

� 8[x:ontable(x)] GOAL(ontable(x)) will evaluate to true iff all the blocks on the table in the
current world are equal to A. The quantifier is evaluated in the current world w, and x is
successively bound to every instance satisfying ontable in w. If x is bound to A, i.e., if
ontable(A) is true in w, then GOAL(ontable(x)) will evaluate to true. It will evaluate to false
for every other binding. Hence, the formula will be true if there are no blocks on the table in
w or if the only block on the table is A.

� 8[x:GOAL(ontable(x))] ontable(x), in this case the quantifier is evaluated in the goal world,
and the only binding for x satisfying the bound is fx = Ag. Hence, this formula will evaluate
to true in a world w iff A is on the table in w. There may be any number of other blocks on
the table in w.

5.3 Implementing the Remaining Components

Once the formula evaluator is in place the remaining components of the planner are quite easy to
implement.

5.3.1 The Progression Algorithm

As shown in Table 2 case one of the progression algorithm needs to evaluate whether or not various
subformulas holds in the current world. This is accomplished by calling the formula evaluator. A
useful illustration of the working of the progression algorithm and the formula evaluator is provided
by the following example.

Example 4 Consider a control formula from the blocks world:

2

�
8[x:clear(x)] ontable(x) ^ :9[y:GOAL(on(x; y))])
(:holding(x))

�
: (4)

This formula asserts that a good plan will never pickup a block x from the table if that block is not
required to be on another block y. Say that we wish to progress this formula through a world w in
which the fontable(a), ontable(b)g, and fclear(a), clear(b)g, are the set of ontable and clear facts
that hold in w. Further, say that the goal is specified by the set fon(b; a)g. On encountering the 2
modality the progressor will compute the progression of

8[x:clear(x)] ontable(x) ^ :9[y:GOAL(on(x; y))])
(:holding(x)); (5)

and then return the conjunction of the result and the original formula 4 (case 7 of Table 2).
To progress the subformula the evaluator will be called to make a generator of the instances of

clear(x) that hold in w, and for each of these instances the progressor will progress the subformula

ontable(x) ^ :9[y:GOAL(on(x; y))])
(:holding(x)): (6)

24

The first call to this generator will return fx = ag. Using this binding subsequent calls to the
evaluator will return true for ontable(x), and then true for :9[y:GOAL(on(x; y))] , as there are no
instantiations for y that satisfy on(a; y) in the goal world. This terminates the progression of the
antecedent of the implication. Since the antecedent is true the progressor is forced to progress the
consequent of the implication
(:holding(x)). The end result of the first instantiation for x is the
progressed formula :holding(a).

The next call to the top level generator returns the binding fx = bg. Under this new binding
ontable(x) evaluates to true but :9[y:GOAL(on(x; y))] evaluates to false, as the binding fy = ag

satisfies the existential. Thus the conjunction evaluates to false, and the entire implication then
progresses to true.

The final result is the formula

:holding(a) ^
2

�
8[x:clear(x)] ontable(x) ^ :9[y:GOAL(on(x; y))])
(:holding(x))

�
;

which says that in the subsequent state we should not be holding a (remember that the progressed
formula is used to label all of the successor worlds of w).

5.3.2 Encoding Operators as Formulas

Actions are specified as either STRIPS or ADL operators. When we instantiate the parameters of
the operators we obtain an action instance with instantiated precondition, add, and delete clauses.
An action can be applied to the current world if its instantiated precondition is satisfied in the
world.

It is easy to use the formula evaluator to determine if an action precondition is satisfied in the
current world. However, we can go further than this. We can use the formula evaluator to find all
of the instantiations of the operators that are applicable in the current world.

This process is best illustrated by an example. Consider the STRIPS operator unstack specified
in Table 1. Its precondition list is fon(x; y); clear(x); handemptyg, its add list is fholding(x); clear(y)g,
and its delete list is fon(x; y); clear(x); handemptyg. This operator can be encoded as the formula

handempty ^
8[x:clear(x)]8[y:on(x; y)]MakeNewWorld
^ Del(on(x; y)) ^ Del(clear(x)) ^ Del(handempty)
^ Add(holding(x)) ^ Add(clear(y)):

When this formula is evaluated in the current world the first thing that is done by the evaluator is to
test if handempty is true. If it is not then no instance of unstack is applicable and no further com-
putation is necessary. Then the quantified subformulas are evaluated. The variables x and y will be
instantiated only to objects that satisfy the preconditions of the operator; i.e., by representing the
operator’s parameters as quantified variables we can use the standard processing of quantifiers to
find all executable actions. The pseudo-predicates “MakeNewWorld”, “Add”, and “Del”, act like

25

computed predicates. In particular, “MakeNewWorld”, generates a new copy of the current world,
and “Add” and “Del” modify the databases that describe the instances of the various predicates
that hold in that copy. That is, by “evaluating” these predicates the world generated by applying
the current action (given by the current bindings of x and y) is computed.16 It is not difficult to see
that any STRIPS operator can be translated into a formula of this form.17

Using the same mechanism it is also easy to handle ADL operators (in their full generality).
ADL operators can take arbitrary first-order formulas as their preconditions, and have conditional
add and delete lists. Furthermore, these operators can update function values. Every ADL operator
is converted into a formula with the following form

8~x:�(~x)
) MakeNewWorld
^ 8~y1: 1(~x; ~y1)) Add(`1(~x; ~y1))

...
^ 8~yn: n(~x; ~yn)) Del(`n(~x; ~yn)):

The formula �(~x) is the precondition of the operator. It contains a vector of free variables ~x. Ever
instantiation of ~x that makes �(~x) true in the current world specifies a single executable action. For
every action all of the conditional updates i(~x; ~yi) are activated. Each of these conditional updates
can potentially add or delete many instances of a predicate ì. That is, for a fixed instantiation of
~x there may be many instantiations of ~yi that satisfy the conditional update formula i(~x; ~yi). The
action instance will add or delete an instance of the predicate ì for every distinct instantiation of
~yi that satisfies i(~x; ~yi) (in the current world).

Function updates are handled in a uniform manner using equality as the predicate. That is, a
term like Add(f(c) = y) will update the function f so that its value on c is equal to y (i.e., the
current binding of y). Since functions have unique values, the add of a function value automatically
deletes the old value.

The actual ADL and STRIPS operators are specified using a sightly more standard syntax and
then translated to the above form. Once in this form we can make direct use of the formula
evaluator to apply these operators to the current world.

5.4 Testing Goal Achievement

As discussed above the goal is usually specified as a list of ground atomic facts f 1̀; : : : ; `kg. To
test if a worldw satisfies the goal we evaluate the conjunction `1^ : : :^`k in w. Thus the evaluator
is used directly to test for goal achievement.

16These pseudo-predicates are not standard first-order predicates as they do not really assert things about the current
world. Rather they are evaluated purely for their “side-effects”.

17An interesting point is that since we convert operator into formulas universally quantified by the operator param-
eters, there is never any need to do unification. In particular, the unification algorithm plays no role in the TLPLAN

system.

26

As we will point out below checking arbitrary formulas against a world is efficient. So we could
in principle give the planner goals, G, expressed as complex first-order formulas. The planner can
perform search and at every world evaluate the formula G in the current world to see if the goal
has been achieved. This would produce a planner capable of generating plans for achieving, e.g.,
disjunctive or quantified goals, and in fact TLPLAN can be configured to accept an arbitrary first-
order formula as its goal.

The only problem with general goals of this form is that if G is an arbitrary formula, then
checking if GOAL(�) holds for various � (i.e., checking if G j= �) becomes hard (it requires
theorem proving). For this reason TLPLAN cannot accept formulas as goals when the domain
utilizes GOAL formulas.

5.5 Complexity of the Planner’s Components

The domain specifications accepted by TLPLAN are sufficiently general that it is quite possible to
write specifications which cause the planner’s basic operations to be intractable. Nevertheless, we
have found that in practice the planner is very efficient in its basic operations. Since the formula
evaluator is at the heart of the system, we start by examining its complexity.

5.5.1 Evaluating Formulas

Evaluating a formula is usually very efficient. In particular, if � is a quantifier free formula in
which no computed functions or predicates appear, then evaluating � has complexity linear in the
length of �. The basic set of described functions and predicates in � can be evaluated in near
constant time,18 as can the boolean connectives.

If � contains computed predicates or functions then, since these can invoke arbitrary computa-
tions, nothing can be said in general about the performance of the evaluator. In our test domains
have we found computed predicates and functions to be very useful, but have never found a need
to define ones that were particularly expensive to compute.

Once we allow � to contain quantifiers, formula evaluation becomes PSPACE-complete. This
is easily shown by reduction to the quantified boolean formula problem, which is known to be
PSPACE-complete [Joh90]. A quantified boolean formula is a formula of the form

Q1x1:Q2x2 : : : Qkxk(F (x1; x2; : : : ; xj));

where each Qi is either a universal or existential quantifier, each xi is a boolean variable, and F
is a boolean expression involving the xi. The problem is to determine whether or not this formula
is true. For example, 8x:9y:x_ y is a true formula, as no matter what value x takes there exists a
value for y (namely TRUE) that makes the formula x _ y true. On the other hand, 8x; y:x _ y is
false, as the values x = FALSE and y = FALSE make x _ y false.

18Using indexing or hashing techniques we can perform these database lookups in near constant time. In the actual
implementation, however, we found that a simpler albeit log-time binary tree representation of the world databases
gave excellent performance.

27

Consider a world w in which we have two predicates, a type predicate Bool, and a “truth”
predicate T . The only positive instances of these two predicates true in w are Bool(TRUE),
Bool(FALSE), and T (TRUE). We can convert any quantified boolean formula � by replacing
each universal (existential) quantifier 8x (9x) in � by the bounded quantification 8[x:Bool(x)]
(9[x:Bool(x)]). Similarly in �’s boolean expression F (x1; : : : ; xn) we replace every variable xi
by the atomic formula T (xi). For example, the quantified boolean formula 8x:9y:x_ y becomes
the formula 8[x:Bool(x)]8[y:Bool(y)]T (x) _ T (y). It is not difficult to see that the converted
formula evaluates to true in the world w if and only if the original quantified boolean formula was
true. This shows that evaluating quantified formulas is PSPACE-hard. That the algorithm is in
PSPACE is also an easy observation: although we may need to test many different sets of bindings
for the quantified variables, at any stage the algorithm need store only one set of bindings.

This observation indicates that we can easily write quantified formulas that would be intractable
for the formula evaluator. However, in practice things are not as bad. Let N be the total number
of objects in the domain, and let the deepest level of quantifier nesting in the formula � be k.
Then at worst, evaluating � will take time O(Nk

). The PSPACE result holds because we can write
formulas with k nested quantifiers in length O(k). Every increase in quantifier nesting adds to the
size of the exponent. In practice we have rarely found a need to nest quantifier more than 3 deep,
in which case evaluating these formulas remains polynomial in complexity, O(N3

) in fact. The
formula evaluator has not been a performance bottleneck in any of our test domains.

There is one area, however, where we must be careful about evaluating quantified formulas.
As mentioned above we determine the set of actions that can be executed in the current world
by evaluating a formula in which the operator’s parameters made into quantified variables. The
way in which we convert the operator description into a quantified formula can make a significant
difference in the planner’s performance. This is best illustrated by an example.

Consider the formula that encodes the unstack operator (previously given in Section 5.3.2):

handempty ^
8[x:clear(x)]8[y:on(x; y)]MakeNewWorld
^ Del(on; x; y) ^ Del(clear; x) ^ Del(handempty)
^ Add(holding; x) ^ Add(clear; y):

An alternate encoding of this operator would be the formula

8[x:clear(x)]8[y:on(x; y)] handempty
) MakeNewWorld
^ Del(on; x; y) ^ Del(clear; x) ^ Del(handempty)
^ Add(holding; x) ^ Add(clear; y):

This formula is logically equivalent, yet far less efficient. In worlds where handempty is false, the
evaluator can immediately recognize that no instance of unstack is applicable when using the first
formula. When using the second formula, however, the evaluator must iterate over every pair of
object x, y such that clear(x) and on(x; y). For every iteration, the evaluation of handempty will

28

fail to produce an applicable instance of unstack . Thus the first formula evaluates in constant time,
while the second takes O(N2

) where N is the number of blocks in the domain.
Since the action formulas must be evaluated at every world in the forward chaining search

such differences can have a significant impact on the planner’s efficiency. The issues involved in
choosing which of the logically equivalent formulas to generate when converting an action into
a formula (e.g., how to choose the ordering of two adjacent universal quantifiers) are essentially
the same as the issues that arise in the area of query optimization in databases. And needless to
say there is a considerable body of work in this area that could be applied to this problem. Our
implementation employs some simple heuristics along these lines when it converts operators into
formulas.

The final issue that arises when examining the complexity of the formula evaluator is that of
defined predicates. As mentioned above, defined predicates invoke the evaluator on a new formula,
the formula that defines the predicate. The new formula can be recursive. This means that a single
predicate instance in a formula may end up invoking considerable additional computation as the
evaluator recurses over its definition. Again it is easy to see that there can be no a-priori bound on
the complexity of this process. However, in as in the previous cases we have not found this to be a
particular problem in our test domains.

5.5.2 State Expansion and Goal Testing

As described above, state expansion (i.e., finding and applying the set of actions that can be applied
to the current world) and testing for goal achievement both involve utilizing the formula evaluator.
Hence, the complexity of these two components is determined by the complexity of the formula
evaluator.

5.5.3 Progressing Formulas

The process of progressing formulas is another area where expensive computations might be in-
voked. As can be seen from Table 2, the progression algorithm is generally quite efficient. In
particular, except for quantification the process is essentially linear in the size of the input for-
mula.19 With quantification, however, it is possible to specify a short formula that takes a long
time to progress.

The difficulty with progression lies not so much with progressing a formula once, but rather
with the repeated progression of a formula through a sequence of worlds. During planning when we
explore a sequence of states w0; : : : ; wk we have to progress the original temporal control formula
k times, one through every worldwi. The formula might grow in length with each progression, and
if we are not careful this can lead to excessive space and time requirements. For example, consider
the progression of the temporal formula

P (a) U (P (b) U (P (c) UQ(a)))

19Progression also invokes the evaluator on atemporal subformulas, and as noted above this also has the potential to
be intractable.

29

through a world w in which P (a), P (b), and P (c) all hold, but Q(a) does not. The progression
algorithm yields the new formula

P (c) UQ(a)

_ P (b) U (P (c) U Q(a))

_ P (a) U (P (b) U (P (c) UQ(a))):

Formulas of this form progress to formulas that have grown quadratically in size. Furthermore, the
formula grows even longer as we progress it through multiple worlds.

The key to an efficient implementation of the progression algorithm is to realize that the pro-
gressed formula has many subformulas in common with the original formula. Hence, considerable
efficiency can be gained by sharing these subformulas. In fact, in the above example, if we share
substructures the progressed formula only requires us to store two new top level “_” connec-
tives. Structure sharing is a well known technique in automated theorem provers, and we have
employed similar techniques in our implementation. In addition to space efficiency structure shar-
ing also yields computational efficiency. Progression distributes over the logical connectives (e.g.,
Progress(� ^) = Progress(�) ^ Progress()). Hence, once we have computed the progression
of subformula that progression can be spliced in where ever the subformula appears, i.e., we need
only compute the progress of a subformula once. In the above example, if we have to progress the
new formula one more time we only need to progress the subformula “P (c) U Q(a)” once, even
though it appears three times in the formula.

With these structure sharing techniques it is quantification that has the main impact on the
efficiency of progression in practice. Consider the formula

28[x:object(x)]3P (x):

If we progress this formula through a world w in which no object satisfies P and object(a),
object(b), and object(c) all hold, then we get the new formula

28[x:object(x)]3P (x)

^3P (a) ^3P (b) ^3P (c):

Since the progression algorithm deals with quantifiers by expanding each of the particular in-
stances, we see that the progression of the formula grows in length by a factor determined by the
number of objects satisfying object that currently fail to satisfy P . When there are k nested quan-
tifiers the progressed formula can be of length O(Nk

), where N is the number of objects in the
domain. This behaviour is analogous to the behaviour of the formula evaluator in the face of nested
quantification. And as in that case, we have rarely found a need to nest quantifiers more than 3
deep in our temporal control formulas.

Furthermore, many natural control formulas never continue to grow in length. Consider, for
example, the control formula specified for the blocks world (Formula 3). This formula when
progressed through any world will generate a collection of conditions that must hold in the next
world. In particular, there will be a collection of goodtowers that must be preserved, a collection

30

of blocks that nothing can be placed on top of, and a collection of blocks that cannot be held in the
next state. These conditions are all checked and discharged in the next world (and a new collection
of conditions is generated for its own successor). Thus, the length of the control formula grows
and shrinks, but never grows monotonically as we progress it through a sequence of worlds.

In summary, TLPLAN allows for very expressive domain specifications. It is sufficiently ex-
pressive that it is quite possible to express domains in which the basic operations of the planner
become intractable. In practice, however, we have have found the planner’s expressiveness to be
a boon not a bane. It allows for a easy specification of domains and the potential of intractability
of the basic operations has not been a major issue so far. Note that the tractability of planning
in any domain is a separate issue from the tractability of the planner’s basic operations. That is,
although tractability of the basic operations is a necessary condition for tractable planning, it is by
no means sufficient. Our empirical results (Section 6), however, do show that with the right control
knowledge TLPLAN can plan very effectively in many test domains.

6 Empirical Results

We have implemented a range of test domains to determine how easy it is specify control informa-
tion in our formalism and how effective that information is in controlling planning search.

In our empirical tests we ran TLPLAN on a Pentium Pro 200MHz machine with 128MB of
RAM. This amount of memory was more than sufficient for TLPLAN in all of the tests. We also
ran various tests using the BLACKBOX [KS98a], IPP [KNHD97], SATPLAN [KS96], PRODIGY

[VCP+95], and UCPOP [BGPW93] systems.
BLACKBOX and SATPLAN are similar systems both of which encode planning problems as sat-

isfiability problems. SATPLAN uses a different encoding that can be more efficient, while BLACK-
BOX employs various simplification steps interleaved with its generation of the encodings. IPP is
based on the GRAPHPLAN [BF97] algorithm, but has been optimized in various ways and extended
to handle a subset of the ADL language. BLACKBOX and IPP are both state of the art planning
systems. They were the best performers in the AIPS’98 planning competition [AIP98] and are
both coded in C (as is TLPLAN). However both of these systems have tremendous appetites for
memory, and so we ran them on a SUN Ultra 2 296MHz machine with 256MB of RAM. This still
was not sufficient memory for these systems, but we were careful to record the cpu time used so as
not to count the time taken by swapping. Furthermore, fairly clear trends were already established
by time the problems got large enough to start excessive thrashing. It should be noted however
that BLACKBOX’s and IPP’s high memory consumption is not something that should be ignored.
Space can be as much of a limiting resources as time, and in some cases more so.

The older systems UCPOP and PRODIGY are coded in lisp, and so we ran them on a 196MHz
SUN Ultra 2 that had support for lisp. However, the performance difference between these systems
and the others was so great that recoding in C and running of the faster machine would not have
helped much.

31

6.1 Blocks World

TLPLAN’s performance with the three different control formulas, (Formulas 1–3 given in Sec-
tion 3), using depth-first search is shown in Figure 3. Each (x,y) data point represents the average
time y taken to solve 10 randomly generated blocks world problems involving x blocks. In par-
ticular, for each value of x we generated a random initial configuration of blocks and asked the
planner to transform this configuration to a randomly generated goal configuration.

The graph also shows the time taken by the planner when it employed breadth-first search
using the final control strategy, and the time taken by blind breadth-first search. (Blind breath-first
outperforms blind depth-first search in this domain). The data shows that control information acts
incrementally, as we add more clauses to the control formula the planner is able to search more
efficiently by pruning more paths from the search space. It also shows just how effective the search
control can be—TLPLAN is able to solve 100 blocks problems in about 8 minutes when using
depth-first search and control strategy 3 (compare this with the performance of other state of the
art planners shown in Fig. 5).

The data generated by the breadth-first search represent the time to find optimal plans.20 The
data shows that control strategies can be a considerable aid in solving the optimization problem
as well. Using control 3 TLPLAN is able to generate optimal plans for 18 block problems in
reasonable time (42 seconds on average), while without control optimal 6 block problems are
about the limit (7 blocks take more than 1000 seconds). Nevertheless, generating optimal plans in
the blocks world is known to be NP-hard [GN92], and even the control strategies are insufficient
for generating optimal solutions to all of the 19 blocks problems.

In the blocks world depth-first search can always find a solution,21 but the solution may be
very long. Figure 4 shows the length of the plan found by the planner using the different control
strategies. (Control 2 generates identical plans to Control 3, but takes longer). The data also
shows that the plans generated by control 3 are quite high quality plans (measuring quality by
plan length). They are only slightly longer then the optimal length plans. In fact, it can be show
that the plans generated by control 3 (and control 2) are no longer than 2 times the length of the
optimal plan.22 Furthermore, TLPLAN is able to generate plans using these strategies without
backtracking. Hence, these control strategies yield a polynomial-time blocks world planner with a
reasonable plan quality guarantee.

The blocks world remains a very difficult domain for current domain-independent planners.
Figure 5 shows how a range of the other planning systems perform in the blocks world.

20A control strategy could eliminate optimal plans from the search space: if no optimal plan satisfies the control
strategy the strategy will stop the planner from finding an optimal plans. However, it is easy to show that no optimal
plan is eliminated by these blocks world control strategies.

21In the blocks world every state is reachable from every other state, so any depth-first path must eventually reach
the goal, as long as it does not contain any cycles.

22Control 3 encodes a strategy very similar to the reactive strategy given by Selman in [Sel94], and he proves that
this reactive strategy never exceeds the optimal by more than a factor of 2.

32

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

S
ec

on
ds

 C
P

U
 T

im
e

Number of Blocks

Control 1 fails on 1 problem of size 11

No Control (breadth-first)
Control 1
Control 2
Control 3

Control 3 (breadth-first)

Figure 3: Performance of TLPLAN search control in the Blocks world

33

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

P
la

n
L

en
gt

h

Number of Blocks

Control 1 generates very long plans (note log scale)

Control 3 generates near optimal plans

Control 3 (breadth-first), BlackBox, and IPP
 generate optimal plans in this domain

Control 1
Control 3

Control 3 (breadth-first)

Figure 4: Length of plans generated by TLPLAN in the Blocks world

34

0

50

100

150

200

250

300

350

400

450

500

2 4 6 8 10 12

S
ec

on
ds

 C
P

U
 T

im
e

Number of Blocks

UCPOP fails on all problems of size 6

IPP fails on 2 problems of size 11 and 12
exceeds 1GB RAM on problems of size 13

SatPlan fails on 3 problems of size 10

BlackBox fails on 1 problem of size 10

IPP
UCPOP
SatPlan

BlackBox

Figure 5: Performance of other planners in the Blocks world

35

6.2 Briefcase World

The briefcase world is a very simple domain invented by Pednault to illustrate his ADL action
representation [Ped89]. In this domain we have a briefcase that can be moved between different
locations. Objects can be put in and taken out of the briefcase, and when they are in the briefcase
they are moved with it. There is a simple and intuitive search control formula that can be written for
this domain. What is most interesting however, is that the ideas in this search control appear almost
unchanged in another popular test domain, the logistics domain (see below). We have found that
there are many “meta-level” strategies that are applicable across different domains under slightly
different concrete realizations.

The operators in this domain are given in Table 7.

(def-adl-operator (MOVE-BRIEFCASE ?to) (def-adl-operator (PUT-IN ?x)
(pre (pre

(?from) (at briefcase ?from) (?loc) (at briefcase ?loc)
(?to) (location ?to) (?x) (at ?x ?loc)

(not (= ?from ?to))) (and (not (= briefcase ?x))
(add (at briefcase ?to)) (not (in-briefcase ?x))))
(del (at briefcase ?from)) (add (in-briefcase ?x)))
(forall (?z) (in-briefcase ?z)

(and (def-strips-operator (TAKE-OUT ?x)
(add (at ?z ?to)) (pre (in-briefcase ?x))
(del (at ?z ?from))))) (del (in-briefcase ?x)))

Table 7: The Briefcase World Operators.

The operators are given in TLPLAN’s input language, which is basically first-order logic writ-
ten in a lisp syntax. Two types of operators are accepted, standard STRIPS operators and ADL

operators. Each consists of a sequence of clauses. The first clause is the name of the operator, and
it may contain variables (e.g., ?x in the “take-out” operator).23

Taking something out of the briefcase can be specified as a simple STRIPS-style operator with
a precondition, an add and a delete list. Each of these is a list of atomic predicates. The other two
operators, “move-briefcase” and “put-in” are specified as ADL-style operators.

ADL operators are specified by using a precondition clause that acts exactly like a quanti-
fier clause. In particular, all of the variables in the clause must be specified first (as with all
quantifiers). All quantification is bounded quantification, so we must specify a quantifier bound
for each of these variables. For example, for the “put-in” operator, ?loc ranges over all of the
locations the briefcase is at (there is in fact only one such location), while ?x ranges over all
objects that are at that location. Note that ?x is scoped by ?loc. Thus for each binding of
?loc we compute a distinct range of bindings for ?x. After the variable bindings the precondi-
tion can include an additional first-order formula that can test the variable bindings and any other
required features of the current world. Note that this formula is an arbitrary first-order formula,

23Variables in TLPLAN are always prefixed with “?”.

36

it may include disjunction, other quantifiers, etc.24. For example, the operator “put-in” includes
the formula (and (not (= briefcase ?x)) (not (in-briefcase ?x))). Each
binding of the precondition variables that satisfies the precondition formula generates a unique in-
stance of the operator (an operator instance is also called an action). The bindings of the variables
appearing in the operator name are then used to give each action a unique name.25

Subsequent to the precondition formula come a sequence of clauses. These clauses are all
scoped by the precondition’s variables (and thus may access their bindings) and they are each
individually evaluated by the formula evaluator (see Section 5). During evaluation any “add” or
“del” clause always evaluates to TRUE and has the side-effect of modifying the new world. The
current state of the world as well as the manner in which the evaluator works (i.e., its rules for the
early termination of formula evaluation) precisely specifies the set of adds and deletes generated
by this instance of the operator.

Thus, in the “move-briefcase” action, we add the briefcase’s new location and delete its old
location26 Then a universal quantifier is used to successively bind?z to all objects that are currently
in the briefcase. For each such binding the body of the universal is evaluated. The body of the
universal is a conjunction, so we evaluate the first add. All terms in the add clause are evaluated,
and in this case the variables ?z and ?to evaluate to the objects they are currently bound to (see
Table 6). This results in a ground atomic fact being added to the world database.27 The add clause
always evaluates to TRUE, so the evaluator moves on to evaluate the second conjunct, the delete.
The end result is that we update the locations of the briefcase and all the objects in the briefcase.

Search control formulas for this domain are easy to write. They embody the following obvious
ideas:

1. Don’t move the briefcase from its current location if there is an object that needs to be taken
out or put into the briefcase.

2. Don’t take an object out of the briefcase if the briefcase is not at the object’s goal location.

3. Don’t put objects that don’t need to be moved into the briefcase.

4. Don’t move the briefcase to an irrelevant location. In this domain a location is irrelevant if
there is no object to be picked up there, there is no object in the briefcase that needs to be
dropped off there, and it is not a goal to move the briefcase to that location.

The control formula given in Table 9 realizes these rules. We give the formula exactly as it is
input to the planner. The planner can take as control input any formula ofLT . The only differences

24Other planning systems that accept ADL specified actions, e.g., UCPOP and IPP, accept only a restricted subset
of the ADL specification. For example, disjunctive preconditions are usually not allowed.

25Every operator instance need not have a unique name. Sometimes it is useful to treat different instances as being
the same action.

26TLPLAN internally reorders the adds and deletes so that all deletes are executed prior to any adds.
27All of the predicates and functions that appear inside of an add or a delete must be described symbols, as only

these can be directly updated.

37

are that (1) we use a prefix lisp syntax and (2) all of the logical symbols and modalities are given
text names, e.g., the universal quantifier “8” is specified by forall.

The performance of TLPLAN using this control rule is demonstrated in Table 9. The table
shows the planning time in seconds required by TLPLAN and by IPP to solve a suite of problems
taken from the IPP distribution. (Briefcase world requires ADL actions, so cannot be solved with
the current version of BLACKBOX; UCPOP can handle ADL actions but its performance is far
worse than IPP). The suite of problems includes the standard “getpaid” problem (the briefcase,
a dictionary, and a paycheque are at home with the paycheque in the briefcase, and we want the
take the dictionary to the office along with the briefcase, but leave the paycheque at home), “ti”
problems that involve picking up i objects at i different locations and taking them home, and “exi”
problems that involve permuting the locations of i objects.

TLPLAN is faster on all of these problems. In fact, none of them is difficult for TLPLAN.
However, IPP was unable to solve a number of the larger problems. The entries with values > n

for some n indicate that IPP was aborted after that many seconds of CPU time without having
found a plan.

6.3 Logistics World

A popular test domain is the logistics world. In this domain we have two types of vehicles: trucks
and airplanes. Trucks can be used to transport goods within a city, and airplanes can be used
to transport goods between two airports. The problems in this domain typically start off with
a collection of objects at various locations in various cities, and the goal is to redistribute these
objects to their new locations. If the object’s new location is in the same city it can be transported
solely by truck. If its new location is in a different city it might have to be transported by truck to
the city’s airport, and then by plane to the new city, and then by truck to its final location within
the new city.

The operators in this domain are given in Table 10. We have encoded this domain using ADL-
operators, simply because we find them to be simpler to write than STRIPS-operators. However,
these operators can written as standard STRIPS operators as they have simple preconditions, modify
no function values, and have no conditional effects. We have also compressed the load and
unload operators into a single case by using a defined predicate that tells us that an object is
a vehicle when it is either a truck or an airplane. The standard STRIPS encoding would have
four actions load-truck, unload-truck, load-plan, and unload-plane. It should be
apparent that the search space is identical (e.g., whenever an instance of one of our load operators
is executable with?vehicle bound to a truck, an equivalent instance of aload-truck operator
will be executable). The other planners we ran were supplied with the standard STRIPS encoding.

A control strategy very similar to the briefcase world is applicable in the logistics world (and
in fact in many domains that involve transporting goods the same meta-level principles appear). In
particular, we can write a control strategy that embodies the following ideas:

1. Don’t move a vehicle if there is an object at the current location that needs to be loaded into

38

(always
(and
(forall (?l) (at briefcase ?l)

(forall (?x) (at ?x ?l)
(implies (not (= ?x briefcase))

(and
;; 1.
(implies (goal (at ?x ?l))

(until (at briefcase ?l) (not (in-briefcase ?x))))
;; 1.
(implies (not (goal (at ?x ?l)))

(until (at briefcase ?l) (in-briefcase ?x)))
;; 2.
(implies (and (in-briefcase ?x) (not (goal (at ?x ?l))))

(next (in-briefcase ?x)))
;; 3.
(implies (and (goal (at ?x ?l)) (not (in-briefcase ?x)))

(next (not (in-briefcase ?x))))))))

(forall (?l) (location ?l)
;; 4.
(implies
(and
;;If we are not at location ?l
(not (at briefcase ?l))
;;and we don’t need to deliver something in the briefcase to ?l
(not (exists (?x) (in-briefcase ?x) (goal (at ?x ?l))))
;;and we don’t need to pickup something from that location
(not (exists (?x) (at ?x ?l)

(or
(exists (?gl) (goal (at ?x ?gl))

(not (= ?gl ?l)))
(goal (in-briefcase ?x)))))

;;and we don’t need to move briefcase there
(not (goal (at briefcase ?l))))

;;Then don’t go there
(next (not (at briefcase ?l)))))))

Table 8: The BriefCase World Control Strategy.

39

Problem Name TLPLAN time IPP time
CPU Seconds CPU Seconds

getpaid 0.002 0.01
getpaid3 0.004 0.02
ex3a 0.009 0.05
ex3b 0.005 0.01
ex4a 0.020 0.52
ex4b 0.009 0.04
ex4c 0.009 0.05
ex4d 0.021 0.51
ex4f 0.022 0.36
ex4g 0.022 0.20
ex4h 0.029 0.15
ex4i 0.020 0.09
ex4j 0.026 0.11
ex5 0.046 0.91
ex5a 0.029 37.50
ex5b 0.030 22.23
ex5c 0.039 7.85
ex5d 0.043 15.46
ex5e 0.042 03.95
ex5max 0.045 0.92
ex10 0.174 > 1669.9
ex12a 0.029 571.52
ex12b 0.030 691.47
ex12c 0.046 21.85
ex12d 0.026 14.85
ex13a 0.051 1057.65
ex13b 0.051 1887.27
t1 0.002 0.01
t2 0.004 0.01
t3 0.008 0.04
t4 0.021 0.52
t5 0.029 35.32
t6 0.047 3094.26
t7 0.070 > 11053.00
t8 0.098 > 7178.20
t9 0.131 > 7639.00
t10 0.186 > 3288.50

Table 9: Performance of TLPLAN and IPP in the Briefcase World

40

(def-defined-predicate (vehicle ?vehicle)
(or
(truck ?vehicle)
(airplane ?vehicle)))

(def-adl-operator (load ?obj ?vehicle ?loc)
(pre
(?obj ?loc) (at ?obj ?loc)
(?vehicle) (at ?vehicle ?loc)
(and
(vehicle ?vehicle) (object ?obj)))

(add
(in ?obj ?vehicle))

(del
(at ?obj ?loc)))

(def-adl-operator (unload ?obj ?vehicle ?loc)
(pre
(?obj ?vehicle) (in ?obj ?vehicle)
(?loc) (at ?vehicle ?loc))

(add
(at ?obj ?loc))

(del
(in ?obj ?vehicle)))

(def-adl-operator (drive-truck ?truck ?from ?to)
;;; We only allow trucks to move around in the same city.
(pre
(?truck) (truck ?truck)
(?from) (at ?truck ?from)
(?city) (loc-at ?from ?city)
(?to) (loc-at ?to ?city)
(not (= ?from ?to)))

(add
(at ?truck ?to))

(del
(at ?truck ?from)))

(def-adl-operator (fly-airplane ?plane ?from ?to)
;;; Airplanes may only fly from airport to airport.
(pre
(?plane) (airplane ?plane)
(?from) (at ?plane ?from)
(?to) (airport ?to)
(not (= ?from ?to)))

(add
(at ?plane ?to))

(del
(at ?plane ?from)))

Table 10: The Logistics World Operators

41

it. Similarly, don’t move a vehicle if there is an object in it that needs to be unloaded at the
current location.

2. Don’t move a vehicle to a location unless, (1) the location is a where we want the vehicle to
be in the goal, (2) there is an object at that location that needs to be picked up by this kind
of vehicle, or (3) there is an object in the vehicle that needs to be unloaded at that location.

3. Don’t load an object into a vehicle unless it needs to be moved by that type of vehicle.

4. Don’t unload an object from a vehicle unless it needs to be unloaded at that location.

There are two types of vehicles, each used for a distinct purpose. So it is helpful to define a
collection of auxiliary predicates.28

(def-defined-predicate (in-wrong-city ?obj ?curr-loc ?goal-loc)
;;TRUE IFF an object in ?curr-loc with goal location ?goal-loc
;;is in right city. (loc-at ?loc ?city) is true if ?loc is located
;;in city ?city.
;;
(exists (?city) (loc-at ?curr-loc ?city)

(not (loc-at ?goal-loc ?city))))

(def-defined-predicate (need-to-move-by-truck ?obj ?curr-loc)
;;We need to move an object located at curr-loc by truck iff
;;the object is in the wrong city and is not at an airport
;;or the object is in the right city but not at the right location.
;;
;;Note if there is no goal location we don’t need to move by truck.
;;
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(if-then-else
(in-wrong-city ?obj ?curr-loc ?goal-loc)

(not (airport ?curr-loc))
;;in right city
(not (= ?curr-loc ?goal-loc)))))

(def-defined-predicate (need-to-unload-from-truck ?obj ?curr-loc)
;;We need to unload an object from a truck at the current location
;;iff, ?curr-loc is the goal location of the object, or the object
;;is in the wrong city and the current-location is an airport.
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(or
(= ?curr-loc ?goal-loc)
(and (in-wrong-city ?obj ?curr-loc ?goal-loc)

(airport ?curr-loc)))))

(def-defined-predicate (need-to-move-by-airplane ?obj ?curr-loc)
;;We need to move an object at curr-loc by airplane iff

28The logical connective (if-then-else f1 f2 f3) is simply short hand for
(and (implies f1 f2)(implies (not f1) f3)).

42

;;the object is in the wrong city.
;;
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(in-wrong-city ?obj ?curr-loc ?goal-loc)))

(def-defined-predicate (need-to-unload-from-airplane ?obj ?curr-loc)
;;We need to unload an object from an airplane at the current location
;;iff, ?curr-loc is in the right city.
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(not (in-wrong-city ?obj ?curr-loc ?goal-loc))))

With these predicates we can define the following control strategy that realizes the above rules.

(always
(and

(forall (?x ?loc) (at ?x ?loc)
(and
(implies (vehicle ?x)
(and
;;; don’t move a vehicle if there is an object that needs to be moved by
;;; it, or if there is an object that needs to be unloaded from it
;;; at the current location.
(implies
(exists (?obj) (object ?obj)
(or
(and
(at ?obj ?loc)
(implies (truck ?x) (need-to-move-by-truck ?obj ?loc))
(implies (airplane ?x) (need-to-move-by-airplane ?obj ?loc)))
(and
(in ?obj ?x)
(implies (truck ?x) (need-to-unload-from-truck ?obj ?loc))
(implies (airplane ?x) (need-to-unload-from-airplane ?obj ?loc)))))

(next (at ?x ?loc)))
;;;Similarly when we move a vehicle one of these conditions should be meet.
(next
(exists (?newloc) (at ?x ?newloc)
;;at the next location of the vehicle
(or
;;either we didn’t move it.
(= ?newloc ?loc)
;;or the location was a goal location for the vehicle
(goal (at ?x ?newloc))
;;or there is an object such that
(exists (?obj) (object ?obj)
(or
;;the object is at the new location and needs a pickup.
(and
(at ?obj ?newloc)
(implies (truck ?x) (need-to-move-by-truck ?obj ?newloc))
(implies (airplane ?x) (need-to-move-by-airplane ?obj ?newloc)))

43

;;or the object is in the vehicle and needs to be unloaded
(and
(in ?obj ?x)
(implies (truck ?x) (need-to-unload-from-truck ?obj ?newloc))
(implies (airplane ?x) (need-to-unload-from-airplane ?obj ?newloc)))))

)))))

(implies (object ?x)
(and
;;;don’t load into a vehicle unless we need to move by that type of vehicle.
(forall (?truck) (truck ?truck)

(implies (not (need-to-move-by-truck ?x ?loc))
(next (not (in ?x ?truck)))))

(forall (?plane) (airplane ?plane)
(implies (not (need-to-move-by-airplane ?x ?loc))

(next (not (in ?x ?plane)))))))))

;;;Finally, don’t unload objects unless we need to.

(forall (?obj ?vehicle) (in ?obj ?vehicle)
(exists (?loc) (at ?vehicle ?loc)
(implies
(or
(and (truck ?vehicle) (not (need-to-unload-from-truck ?obj ?loc)))
(and (airplane ?vehicle) (not (need-to-unload-from-airplane ?obj ?loc))))

(next (in ?obj ?vehicle)))))
))

With this control rule we obtain the performance shown in Figure 6. The data shows the planner
solving problems where there are n objects to be moved (plotted on the x-axis). In the initial state
we place 3 objects in each city (and thus we have bn=3c different cities), one truck per city, two
locations per city (a post-office and an airport), and bn=10c airplanes. The final locations of the
objects are chosen at random from the 2 � bn=3c different locations. Each data point show the
average time require to solve 10 random problems of that size.

Figure 6 also shows how well the other planners perform in this domain. It can be seen that the
control strategy gives TLPLAN a multiple order of magnitude improvement in performance over
these planners.

BLACKBOX’s performance was hindered by the fact that our machine only had 256 of RAM,
although it was significantly slower than TLPLAN even on smaller problems prior to the onset of
thrashing. The timing routines do a fairly good job of accounting just for the CPU time taken
(i.e., the time taken by the program while waiting for a page to be swapped in is not counted),
but to check whether or not this was a significant bias we ran a suite of 30 problems that come
with the BLACKBOX distribution. BLACKBOX’s solutions to these problems also come with the
distribution, and were generated on a machine that is slightly faster than the machines used in our
experiments (judging by the solution times for the smaller problems on which BLACKBOX was not
thrashing) and more significantly had 8GB of RAM. Table 11 shows TLPLAN’s performance on
this test suite (run on our 128MB machine). (TLPLAN had no difficulty completing much larger

44

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

S
ec

on
ds

 C
P

U
 T

im
e

Number of Packages

Satplan fails on 2 problems of size 14 and 15

BlackBox fails on problems of size > 15
IPP fails on problems of size > 9

TLPlan
BlackBox

SatPlan
IPP

Figure 6: Performance of various planners in the Logistics world

45

Problem TLPLAN BLACKBOX TLPLAN BLACKBOX

time time length length
log001 0.260 0.575 25 25
log002 0.281 95.977 27 31
log003 0.245 98.998 27 28
log004 1.371 130.748 51 71
log005 1.105 231.938 42 69
log006 1.918 321.272 51 82
log007 5.547 264.046 70 96
log008 6.844 317.422 70 110
log009 3.792 1609.455 70 121
log010 2.427 84.046 41 71
log011 2.245 137.93 46 68
log012 1.936 136.229 38 49
log013 6.543 165.844 66 85
log014 9.348 77.749 73 89
log015 5.364 424.369 63 91
log016 1.146 926.967 39 85
log017 1.242 758.471 43 83
log018 9.270 152.35 46 105
log019 2.660 149.224 45 78
log020 10.180 538.220 89 113
log021 6.838 190.490 59 87
log022 6.406 846.842 75 111
log023 4.693 173.966 62 85
log024 4.714 74.832 64 87
log025 4.099 73.995 57 84
log026 3.646 233.406 55 80
log027 5.529 145.164 70 97
log028 14.533 867.349 74 118
log029 5.998 89.515 45 84
log030 3.482 495.373 51 92

Table 11: Performance of TLPLAN and BLACKBOX on Logistics Problems

46

0

50

100

150

200

250

0 5 10 15 20 25 30 35

P
la

n
L

en
gt

h

Number of Packages

BlackBox generates longer plans

IPP generates sightly shorter plans

TLPlan
BlackBox

IPP

Figure 7: Length of Plans generated in the Logistics world

problems than these while using less than 128MB or RAM.) The results show that the memory
bottleneck was not a significant factor in our experiments: TLPLAN with this control strategy
remains significantly faster than BLACKBOX.

Finally, Figure 7 compares the total number of actions in the plans generated by the three
planners. Again we see that TLPLAN is generating very good plans, as good as the other two
planners. These other planners both search for a plan incrementally, looking for shorter plans first.
Hence, we would expect them to be generating relatively short plans. TLPLAN employs no such
strategy. It simply does a depth-first search. It is the control strategy that stops “stupid” moves
from being included in the plan. Similar results can be seen in Table 11, where again TLPLAN is
generating shorter plans than BLACKBOX.

47

6.4 Tire World

The tire world is another standard test domain due originally to Russell [RN95]. In this domain
the general task is to change a flat tire with a sequence of actions involving jacking the wheel up,
loosening and tightening nuts, etc. The branching factor in this domain is large in the forward
direction with 14 different operators. We wrote a control strategy for this domain that included the
following ideas:

1. Only fetch an object from a container if you need it. This rule involved defining predicates
that determine, e.g., when one needs the wrench, the jack, the pump, etc.

2. A number of rules to deal with the wheels and nuts:

� Don’t inflate a wheel unless it needs to be inflated.

� Don’t jack up a wheel unless it needs to be jacked up.

� Keep correctly placed wheels on their current hubs, and don’t place a wheel on an
incorrect hub.

� If a wheel needs to be removed from a hub, don’t undo any of the removal steps.

� Keep a hub jacked up until its wheel is on and the nuts are tight.

� Execute the actions for putting wheels on hubs and removing them from hubs in a
particular order.

3. Only open containers that contain something you need.

4. Don’t put away any objects until you don’t need them anymore.

5. Keep containers open until you have removed everything you need and everything that needs
to be stored there has been put away.

Each of these rules is fairly intuitive, and their encoding as formulas of LT is straightforward
(albeit lengthy).

With this control strategy we obtain the performance shown in Figure 8. With one set of tools
we designed a suite of test problems that involved changing an increasing number of tires. The
data shows the planner solving problems in which the goal has n literals (plotted on the x-axis).
As the n increases we need to increase the number of tires in order to generate n different goal
literals. Each data point shows the time required to solve the problem of that size. The final
problem (n = 74 involved changing 15 tires). The data also shows the performance of the IPP and
BLACKBOX planners on these problems.

Once again since we are generating plans using depth-first search we compare the length of the
generated plans in Figure 9. The data shows that TLPLAN once again is able to achieve exceptional
performance once it is given an appropriate control strategy.

48

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70

S
ec

on
ds

 C
P

U
 T

im
e

Number of Goal Literals

Blackbox runs out of memory on problems larger than size 18

IPP takes 6180 seconds on problem of size 17 TLPlan
IPP

BlackBox

Figure 8: Performance of TLPLAN and other planners in the Tire world

49

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

P
la

n
L

en
gt

h

Number of Object-Features

BlackBox generates considerably longer plans

TLPlan
IPP

BlackBox

Figure 9: Length of plans generated the Tire world

50

6.5 Schedule World

The schedule world involves scheduling a set of objects on various machines in order to achieve
various effects, e.g., shaping the object, painting it, polishing it, etc. Some of the operations undo
the effects of other operations, and sometimes make other operations impossible. This domain has
8 operators, and when the number of objects climbs so does the branching factor in the forward
direction.

It is worth while noting that in this domain the actions are inherently concurrent. Every machine
can be run in parallel. This is not a problem for TLPLAN even though it explores linear sequences
of actions. In particular, the sequence of worlds we explore can have whatever structure we choose,
so a linear sequence of worlds need not correspond to a linear sequence of times in the domain
being modeled. In this domain we added a time stamp to the world, the time stamp denotes the
current time in the partial schedule. The actions generate new worlds by scheduling currently
unscheduled objects on currently unscheduled machines (i.e., neither the object nor the machine
can be marked as being scheduled in the current time step). When no further scheduling actions
are possible, or desirable, there is an action that can increment the time stamp. This has the
effect of making all of the objects and machines available for scheduling (in the new current time
step).29 In other words, TLPLAN explores a sequence of worlds in which there are a sequence
of scheduling actions, all scheduling operations that occur concurrently, followed by a time step,
followed by a sequence of scheduling actions that schedule the next set of concurrent operations.
Other types of concurrent actions can be modeled in this manner, e.g., we have implemented a
job-shop scheduling domain that solves standard job-shop scheduling problems using TLPLAN.

The performance of TLPLAN is shown in Figure 10. The data shows the planner solving
problems where there are n objects and n randomly chosen properties involving those objects to be
achieved (a single object might be randomly selected to require more than one property). n forms
the x-axis. Each data point represents the average time required to solve 10 random problems of
that size. The graph also shows the performance of IPP in this domain. The domain requires
ADL-actions so we were unable to run BLACKBOX in this test.

The control strategy used by TLPLAN included the following ideas:

1. Never schedule an operation twice. This is a particularly simple scheduling domain in which
there is never a need to perform an operation twice: there is always a better plan in which
the operations are sequenced in such a manner that no needed effects are undone.

2. All scheduled operations must add at least one unachieved goal.

3. Once a goal condition has been achieved do not allow it to be destroyed. In this domain we
never need to undo achieved goals.

29There are two common versions of this domain, a much simplified one that first appeared in the UCPOP distri-
bution. The UCPOP version discarded all notion of time, it simply computes what operations need to be run on what
objects. The original version that appeared in the PRODIGY distribution involves a non-trivial use of time. We coded
the PRODIGY version for our tests, both in TLPLAN and IPP and ran this version in our experiments.

51

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

S
ec

on
ds

 C
P

U
 T

im
e

Number of Object-Features

IPP takes an average of 2153 sec. on problems of size 10

TLPlan
IPP

Figure 10: Performance of TLPLAN and IPP in the Schedule world

52

0

5

10

15

20

25

30

0 5 10 15 20 25

P
la

n
L

en
gt

h

Number of Object-Features

TLPlan generates slightly shorter plans

TLPlan
IPP

Figure 11: Length of plans generated the Schedule world

53

4. Some ordering constraints on goal achievements:

� Rolling (to make an object cylindrical) destroys a number of things that can never be
reachieved after rolling (as the object’s temperature goes up). So prohibit rolling if one
of these conditions is a goal.

� Do any shaping operations prior to any surface conditioning operations, as these destroy
the surface condition.

� Do any grinding or lathing prior to painting, as these destroy the paint.

Figure 11 shows the average number of actions in the plans generated by the two different
planners. Once again we see that the search control allows TLPLAN to construct good plans
despite using depth-first search.

6.6 Bounded Blocks World

Another interesting problem is the bounded blocks world in which the table has a limited amount
of space. It is easy to specify and plan in the bounded blocks world using TLPLAN. However, none
of the other standard domain-independent planners can deal effectively with resource constraints,
even simple ones like this.30

In this domain, it is easier to use a single operator that simply moves blocks from one location
to another (thus avoiding the intermediate “holding” a block state present in the blocks world
specification used in Section 3). Table 12 gives the domain’s operator. In this case the operator’s
precondition is quite simple, we must move the object ?x to a new location, we cannot move
the table, and if we move ?x to the table there must be space on the table. For this domain,
table-space is a 0-ary described function that must be specified in the initial state and must be
properly updated by the operator. The term (table-space) evaluates to the quantity of space
on the table in the current world (table-space = nmeans that there is space for nmore blocks on the
table), and the precondition simply tests to ensure that there is space on the table if that is where
we intend on moving ?x.

This gives an example of TLPLAN ability to handle functions. In particular, by adding the
equality predicate (add (= (table-space) (- (table-space) 1))) we are speci-
fying that the function (table-space) is to have the new value given by its current value
minus one. All terms inside of the add and deletes are evaluated in the current world prior to being
committed. The evaluator computes the value of the term (- (table-space) 1) by looking
up the current value of (table-space) and subtracting 1 from it using the standard computed
function ‘�’.

The conditional updates are specified using “implies”. In particular, since the evaluator short-
circuits the evaluation of formulas, the consequent of the implication (in this case the adds and
deletes) will not be executed if the antecedent evaluates to FALSE.

30HTN-style planners often have some facilities for dealing with resource constraints, e.g., [Wil88].

54

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 T

im
e

(s
ec

.)

Number of Blocks

No Control
Control 1
Control 2

Figure 12: Search control in the bounded blocks world

55

(def-adl-operator (puton ?x ?y)
(pre

(?x) (clear ?x)
(?y) (clear ?y)
(?z) (on ?x ?z)
(and

(not (= ?z ?y)) ;Don’t put it back where it came from
(not (= ?x ?y)) ;Can’t put a block on itself
(not (= ?x table)) ;Can’t move the table
(implies (= ?y table) ;can move to table only if

(> (table-space) 0)))) ;table has space.

(add (on ?x ?y))
(del (on ?x ?z))
(implies (= ?y table)

(add (= (table-space) (- (table-space) 1))))
(implies (= ?z table)

(add (= (table-space) (+ (table-space) 1))))
(implies (not (= ?y table))

(del (clear ?y)))
(implies (not (= ?z table))

(add (clear ?z))))

Table 12: The Bounded Blocks World Operators

Figure 12 illustrates the performance of TLPLAN in this domain. Each data point represents
the average time taken to solve 10 randomly generated bounded blocks problems, were we have
only 3 spaces on the table. The data shows that this domain, like the standard blocks world, is very
hard without domain-specific search control. There are two different control strategies that can be
easily specified for this domain. First, the meta-level notion of a goodtower continues to be useful
in this modified version of the blocks world. It has, however, a slightly different realization. In
particular, may now need to dismantle a tower of blocks to free some space on the table. We can
define an appropriately modified version of goodtower as follows:

(def-defined-predicate (goodtower ?x)
;;Note this goodtower takes into account table space. In particular,
;;goodtowers must not occupy needed tablespace.
(and
(clear ?x)
(if-then-else
(= ?x table)
;;then
(> (table-space) 0) ;table is a goodtower if it has space.
;;else
(goodtowerbelow ?x))))

(def-defined-predicate (goodtowerbelow ?x)
(or
(and (on ?x table) (goal (on ?x table)))
(and (on ?x table)

56

(not (exists (?y) (goal (on ?x ?y))))
(forall (?z) (goal (on ?z table)) (on ?z table)))

(exists (?y) (on ?x ?y)
(and
(not (goal (on ?x table)))
(not (goal (clear ?y)))
(forall (?z) (goal (on ?x ?z)) (= ?z ?y))
(forall (?z) (goal (on ?z ?y)) (= ?z ?x))
(goodtowerbelow ?y)))))

In this version, we classify the table as being a goodtower if it can be stacked on (i.e., if there is
space). The main difference lies in goodtowerbelow, where a block on the table is a goodtower if it
needs to be on the table, or there is nowhere else it need be and all other blocks that must be on the
table are already there. In both of these cases the goal can be achieved without moving that block
from the table. The recursive case is just as in the standard goodtowerbelow given in Section 3.

Now we can define the following predicate:

(def-defined-predicate (can-move-to-final ?x)
;;we can move ?x to its final location when it has a final location
;; location and that final location is a goodtower.
(and
(clear ?x)
(exists (?y) (goal (on ?x ?y))

(and
(not (on ?x ?y))
(goodtower ?y)))))

This predicate is true of a block when it can be moved to its final location. Withcan-move-to-final
we can define the following very simple control strategy:

(define bbw-control1
;;simple trigger control.
(always
(and
;;never destroy goodtowers.
(forall (?x) (clear ?x)

(implies (and (not (= ?x table)) (goodtower ?x))
(next (goodtowerbelow ?x))))

;;if a block exists that can be moved immediately, move it.
(implies
(exists (?x) (clear ?x)
(can-move-to-final ?x))

(exists (?x) (clear ?x)
(and (can-move-to-final ?x)

(next (goodtower ?x)))))

)))

This control strategy is a simple “trigger” control. If we are at a state where a block can be moved
to its final location do so. Note that if there are multiple blocks that can be moved to their final

57

location the trigger (the existential condition) will remain active until all have been moved. The
choice of which block to move first is “non-deterministic”.31 The strategy also involves the obvious
of not dismantling towers that don’t need to be dismantled.

Figure 12 shows that the trigger control is quite effective for small problems, and serves to
illustrate the fact that considerable gain can often be achieved with minor effort. Nevertheless,
although the trigger control knows what to do if it finds certain fortuitous situations, it has no idea
of how to achieve those fortuitous situations. Hence, as we increase the size of the problems it
becomes less and less useful.

A more complete strategy can also be written. This strategy is more complex, but it is able
to solve problems quite effectively without requiring any backtracking. Again the idea is quite
simple. The strategy has four components. The first two are taken from the previous strategy.

1. Never dismantle goodtowers.

2. If there are blocks that can be moved to their final positions we pick one such block and
move it to its final position.

3. If locations exists that can be stacked on (i.e., they are goodtowers that are waiting for their
next block) then we pick one such location and clear the block that is intended to go there
while keeping the location clear. Once the next block is clear we are back to a situation
where the previous rule applies: there is a block that can be moved into its final location.

4. If there are no clear locations that can be stacked on, we pick one such location and clear it.
Once we have achieved this we are in a situation where rule 3 applies.

To facilitate the implementation of this strategy we make the following definitions:

(def-defined-predicate (can-stack-on ?x) ()
;;this block is ready to be stacked on.
(and
(goodtower ?x)
(exists (?y) (goal (on ?y ?x))

(not (on ?y ?x)))))

(def-defined-function (depth ?x) ()
;;return the depth of location ?x
(if-then-else
(clear ?x)
;;then
(:= depth 0)
;;else
(exists (?y) (on ?y ?x)

(:= depth (+ 1 (depth ?y))))))

;;;A function to find a location that would become a can-stack-on
;;;location if it was clear.

31Of course, the implementation picks the blocks in a particular order.

58

;;;
(def-defined-function (find-can-stack-on-if-clear) ()

;;pick the table if that is possible
(or
(if-then-else
(and (= (table-space) 0)

(exists (?x) (goal (on ?x table)) (not (on ?x table))))
;;then return the table
(:= find-can-stack-on-if-clear table)
;;else return the top of a goodtower prefix
(exists (?x) (on ?x table)

(and (goodtowerbelow ?x)
(exists (?y) (= ?y (top-of-goodblocks ?x))

(and
;;such that the tower is incomplete.
(exists (?z) (goal (on ?z ?y))

(not (on ?z ?y)))
(:= find-can-stack-on-if-clear ?y))))))

;;first clause fails, so no stackable location exists.
(:= find-can-stack-on-if-clear *NOSUCHLOCATION*)))

(def-defined-function (top-of-goodblocks ?x) ()
;;If we pass this function a block (which should be a block that has
;; a goodtower below it) it will examine the tower above the block
;; looking for the top of the longest good tower above.

(if-then-else
(clear ?x)
;;if ?x is clear then it is the top of the goodtower prefix.
(:= top-of-goodblocks ?x)
;;else there is a block on ?x
(exists (?y) (on ?y ?x)

(if-then-else
(and

(not (goal (on ?y table)))
(not (goal (clear ?x)))
(forall (?z) (goal (on ?y ?z)) (= ?z ?x))
(forall (?z) (goal (on ?z ?x)) (= ?z ?y)))

;;if the block on top does not violate any
;;goal on-relations, then recurse upwards.
(:= top-of-goodblocks (top-of-goodblocks ?y))
;;else stop at ?x.
(:= top-of-goodblocks ?x)))))

The predicate can-stack-on is true of a location ?x if that location is ready to be stacked
on; it is used to implement rule 3 of the strategy. The function depth has already been ex-
plained. The function find-can-stack-on-if-clear is a function that returns a location
that once cleared can be stacked on; it is used to implement rule 4 of the strategy. The function
checks to see if the table is such a location (e.g., when we have a tower of blocks that we have
not yet started to build) and returns that if possible. Otherwise it employs the recursive function
top-of-goodblocks to find the top block of a partly completed goodtower. If we can clear

59

that top block we will once again have a location that can be stacked on. One thing to notice in the
function find-can-stack-on-if-clear is the use of a functional binding of the existential
variable ?y in the line:

(exists (?y) (= ?y (top-of-goodblocks ?x))

This line specifies that the variable ?y is to range over the set of objects that are equal to

(top-of-goodblocks ?x):

There is of course only one such object, and it is computed by evaluating the function (?x has
already been bound at this point).

With these definitions the second strategy can be specified as follows:

(define bbw-control2
;;more complex control
(always
(and
;;1. never destroy goodtowers.
(forall (?x) (clear ?x)

(implies (and (not (= ?x table)) (goodtower ?x))
(exists (?y) (on ?x ?y)

(next (on ?x ?y)))))

;;2. Immediate moves
(implies
;;if We can make an immediate move.
(exists (?x) (clear ?x)

(can-move-to-final ?x))
;;pick one and do it.
(exists (?x) (clear ?x)

(and (can-move-to-final ?x)
(next (goodtower ?x)))))

;;3. Clear a next block.
(if-then-else
;;if there is a stackable-location (including the table)
(exists (?x) (clear ?x)

(can-stack-on ?x))
;; then make progress towards uncovering the next block of at
;; least one such location. We do this by asserting that there is
;; one such block, and an unachieved (on ?y ?x) relation
;; such that until we achieve it we decrease the depth of ?y
;; (i.e., we uncover ?y) while keeping ?x clear.
(exists (?x) (clear ?x)
(and
(can-stack-on ?x)
;;Need also to pick the next block to clear as if ?x is the
;;table there could be more than one "next block"
(exists (?y) (goal (on ?y ?x))
(and (not (on ?y ?x))

60

(until
(and
(can-stack-on ?x) ;;Keep ?x clear
(exists (?d) (= ?d (depth ?y)) ;;and decrease ?y’s depth
(next (or (on ?y ?x) (< (depth ?y) ?d)))))

(on ?y ?x)))))) ;;the constraint is active
;;until we achieve (on ?y ?x)

;;4. else we are either completed or we should pick a location that once
;;clear will become a can-stack-on location and clear it. (This
;;might include the table).

(exists (?loc) (= ?loc (find-can-stack-on-if-clear))
(or
(= ?loc *NOSUCHLOCATION*)
(exists (?x) (on ?x ?loc)
(and
(implies (= ?loc table) (not (goodtowerbelow ?x)))
(until

(exists (?d) (= ?d (depth ?x))
(next (or (can-stack-on ?loc) (< (depth ?x) ?d))))

(can-stack-on ?loc))))))
))))

The specification is a fairly straightforward translation of the four components mentioned above.
There are two similar clauses in the strategy, the second one of which is

(until
(exists (?d) (= ?d (depth ?x))

(next (or (can-stack-on ?loc) (< (depth ?x) ?d))))
(can-stack-on ?loc))

where ?x is on ?loc.
This clause asserts a condition that must be true of every state until we reach a state where

(can-stack-on ?loc). Its intent is to force the planner to uncover ?x so that we reach a
state where we can clear it off ?loc in one move. The formula is made a bit cumbersome by the
fact that ?loc can be the table, thus we cannot simply force a decrease in the depth of ?loc—
depth does not apply to the table.

The uncovering of ?x is accomplished by asserting that every state, prior to the state where
(can-stack-on ?loc), the depth of ?x decreases. One thing to be careful about, however, is
that once we reach a state where ?x is clear, its depth will not decrease in the next state. Instead in
the next state we remove ?x from ?loc. Hence, we have the disjunction as the next condition.

This example shows that our approach can represent a wide range of control strategies. In
the previous examples the control strategies expressed obvious “myopic” information about that
was bad to do in various situations. The control strategy above is migrating towards a domain
specific program, specifying (in a loose manner) an entire sequence of activities. There are couple
of points to be made about such complex strategies. First, our data shows that simple strategies

61

like the trigger strategy can offer a tremendous improvement. So it could be that simple strategies
are sufficient to solve the size of problems we are faced with. Second, from a pragmatic point of
view there is no reason why a planner should not be able to take advantage of a detailed domain
specific strategy if one is available.

7 Other Approaches To Utilizing Domain Information

Our work is by no means the first to suggest the use of domain specific information in plan-
ning. One of the first planning systems to take this suggestion seriously was the PRODIGY system
[CBE+92]. PRODIGY employed search-control rules, which act like an expert system for guiding
search. The PRODIGY approach to specifying control information has two main disadvantages.
First, the approach was very hard to use. In particular, their control rules required one to under-
stand the planning algorithm, as many of the rules had to do with algorithmic choices made by the
algorithm. That is, unlike the approach presented here, simple knowledge of the domain was not
sufficient to write these control rules. And second, although the control rules give some speed ups,
these speed ups were not that great. In particular, even with search control PRODIGY remains a
relatively slow planner.

The blocksworld illustrates these difficulties well. PRODIGY employed 11 rules for the blocks
world. For example, one of the rules is

(CONTROL-RULE SELECT-BINDINGS-UNSTACK-CLEAR
(if (and (current-goal (clear <y>))

(current-ops (UNSTACK))
(true-in-state (on <x> <y>))))

(then select bindings ((<ob> . <x>) (<underob> . <y>))))

This rule says that if the planner is currently working on the goal to clear a block y, x is on y in the
current state, and it is currently considering regressing the goal through an unstack operator, then
it should select a specific binding for the unstack operator. Such “binding” rules require the user to
understand how the planner utilizes bindings during planning search. The notion of a binding has
nothing to do with the domain, rather it has to do with the planning algorithm.

Another example is the rule

(CONTROL-RULE ARM-EMPTY-FIRST
(if (and (candidate-goal (arm-empty))

(true-in-state (holding <x>))))
(then select goal (arm-empty)))

This rule says that if the planner is considering the goal of having the robot have its hand empty,
and it is true in the current state that it is holding a block x, then it could commit to working on
the goal hand empty. Again this rule requires that the user know about the difference between a
candidate goal and the current goal, and how this difference can affect the planner’s operation.

62

Even with these 11 rules, PRODIGY was unable to solve any of our random blocksworld prob-
lems involving more than 9 blocks (and it failed to solve 6 out of the 10 problems involving 9
blocks). In summary, although a lot of innovative work on learning and reasoning with planning
domains came out of the PRODIGY project, it would appear that the representation they choose for
search control was flawed.

There has also been some more recent work on utilizing domain dependent control knowledge
by Srivastava and Kambhampati [SK98] and by Kautz and Selman [KS98b]. Srivastava and Kamb-
hampati present a scheme for taking domain specific information similar to that used by TLPLAN

and using that information as input to a complex program synthesis system. The end result is an
semi-automatically constructed planning system that is customized for that domain. For example,
in the logistics domain some of the domain specific information they utilize include:

1. Planes should not make consecutive flights without loading or unloading a package.

2. Once a package reaches its goal location it should not be moved.

The reader will recognize these rules as part of the domain information we encoded in TLPLAN. In
fact, TLPLAN’s representation is more general than that allowed by Srivastava and Kambhampati,
and all of the domain specific information mentioned in their paper can easily be encoded in the
logic TLPLAN utilizes. Unlike TLPLAN however, their approach requires a complex program
synthesis step to make use of this information (a customized planner must first be synthesized). In
TLPLAN the control information is simply part of the planner’s input. Furthermore, the empirical
results presented in [SK98] show performance that is orders of magnitude inferior to TLPLAN.
For example, their customized planners took about one minute to solve the standard tire “fixit”
problem, a 12 package logistics problem, and a 14 block problem. TLPLAN takes 0.06 seconds
to solve the tire fixit problem, about 3 seconds on average to solve 12 package logistics problems,
and about 0.24 of a second on average to solve 14 block problems. Nevertheless, the methods they
developed for synthesizing customized planners demonstrate an interesting alternative approach to
utilizing domain specific information.

Finally, Kautz and Selman [KS98b] have recently investigated the use of domain specific infor-
mation in their SATPLAN paradigm. Like us they have adopted an approach in which the domain
information is logically represented and independent of the planner’s operation. Specifically, they
represent extra domain knowledge as additional propositional clauses, and like us they have no-
ticed that a state-based representation seems to be the most promising for exploiting such knowl-
edge. Their results are still preliminary, but show some promise. In particular, they also show
that speedups are possible, but do not attain a speed up that is competitive with TLPLAN’s perfor-
mance. The major hurdle that their approach faces, if it is to be scaled up to the size of problems
TLPLAN can handle, is the size of the propositional theories it generates. More effective ways need
to be found for dealing with theories of this size or for incrementally simplifying these theories so
that smaller theories can be generated. For example, in our experiments we found that logistics
problems with 16 packages generated theories containing more than 10

6 clauses and 10
5 variables.

With theories of this size even polynomial time processing takes a considerable amount of time.

63

8 Conclusions and Future Work

In this paper we have presented a rich representation for domain specific control knowledge and
we have shown how such knowledge can be utilized by an AI planning system to make planning
more efficient. Our empirical evidence indicates that (1) such information is available in many,
if not most, domains and that (2) with such information we can reach a new level of planning
performance. We believe that the size of problems TLPLAN can solve has never been approached
before.

Given the success of this approach the natural and most pressing question becomes: where does
the control information come from? In this paper we have taken a pragmatic approach, and have
assumed that it will come from the user just like the other forms of knowledge the user needs to
specify when developing a planning domain. Our empirical studies do show that this is not an un-
reasonable approach, and that some form of control knowledge is usually available. Nevertheless,
it is equally clear that much of this knowledge has a more abstract form—many of the domains
have similar meta-level strategies. Furthermore, it is also clear that some of this knowledge could
be automatically derived from the operator descriptions (in conjunction, perhaps, with the initial
state). So an important area for future research will be to employ learning and reasoning techniques
to automatically generate this domain-specific knowledge. There is a considerable body of work
that can be built on in this area, e.g., [Min88, Kno94, Etz93, PS93], but much more needs to be
done.

Another area in which work could be done is to develop ways in which the temporal logic
developed here can be utilized to control other kinds of planning algorithms. It should be relatively
easy convert the temporal logic expressions into propositional logic (once we have a fixed initial
and goal state), and thus find ways to use our representation in SATPLAN based approaches.

Finally, we are actively working on methods for extending our approach beyond classical plan-
ning. The basic system already handles resources, but we still have empirical work to do to test just
how effective it can be in domains that make heavy use of resource reasoning. We have extended
our approach to generate plans that satisfy temporally extended goals [BK98]. Such goals general-
ize the safety and maintenance goals mentioned in [WE94]. And most recently we have developed
a STRIPS database approach to planning and sensing under incomplete knowledge [BP98]. In fu-
ture, work we plan to combine this with search control to construct a planner capable of planning
and sensing under incomplete knowledge.

On Line Material

The TLPLAN planning system, all of the test suites, and the raw data collected in our experiments
will be posted to the web site http://www.lpaig.uwaterloo.ca/˜fbacchus.

64

References

[AIP98] AIPS98. Artificial Intelligence Planning Systems 1998 planning competition.
http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html, 1998.

[BBD+91] M. Bauer, S. Biunod, D. Dengler, M. Hecking, J. Koehler, and Merziger G. Integrated
plan generation and recognition—a logic-based approach. Technical Report RR-91-
26, DFKI, 1991.

[BD94] Craig Boutilier and Richard Dearden. Using abstractions for decision-theoretic plan-
ning with time constraints. In Proceedings of the AAAI National Conference, pages
1016–1022, 1994.

[BF97] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. Arti-
ficial Intelligence, 90:281–300, 1997.

[BGPW93] A. Barrett, K. Golden, J. S. Penberthy, and D. Weld. UCPOP user’s manual, (ver-
sion 2.0). Technical Report TR-93-09-06, University of Washington, Department of
Computer Science and Engineering, ftp://cs.washington.edu/pub/ai/, 1993.

[BK96a] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals. In
Proceedings of the AAAI National Conference, pages 1215–1222, 1996.

[BK96b] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control search in a
forward chaining planner. In M. Ghallab and A. Milani, editors, New Directions in AI
Planning, pages 141–153. ISO Press, Amsterdam, 1996.

[BK98] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals.
Annuals of Mathematics and Artificial Intelligence, 22:5–27, 1998.

[BKSD95] M. Barbeau, F. Kabanza, and R. St-Denis. Synthesizing plant controllers using real-
time goals. In Procceedings of the International Joint Conference on Artifical Intelli-
gence (IJCAI), pages 791–798, 1995.

[BLG97] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism
for planning. In Proceedings of the AAAI National Conference, pages 714–719, 1997.

[BP98] Fahiem Bacchus and Ron Petrick. Modeling and agent’s incomplete knowledge during
planning and execution. pages 432–443, 1998.

[BW94] A. Barrett and D.S. Weld. Partial-order planning: evaluating possible efficiency gains.
Artificial Intelligence, 67(1):71–112, 1994.

65

[CBE+92] J.G. Carbonell, J. Blythe, O. Etzioni, Y. Gill, R. Joseph, D. Khan, C. Knoblock,
S. Minton, A. Pérez, S. Reilly, M. Veloso, and X. Wang. Prodigy 4.0: The man-
ual and turorial. Technical Report CMU–CS–92–150, School of Computer Science,
Carnegie Mellon University, 1992.

[CT91] Ken Currie and Austin Tate. O-plan: the open planning architecture. Artificial Intel-
ligence, 52:49–86, 1991.

[DKKN93] T. Dean, L. P. Kaelbling, J. Kerman, and A. Nicholson. Planning with deadlines in
stochastic domains. In Proceedings of the AAAI National Conference, pages 574–579,
1993.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B, chapter 16, pages 997–1072. MIT, 1990.

[ENS92] K. Erol, D.S. Nau, and V.S. Subrahmanian. On the complexity of domain-independent
planning. In Proceedings of the AAAI National Conference, pages 381–386, 1992.

[Etz93] Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial Intel-
ligence, 62(2):255–302, 1993.

[Gar77] J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, ed-
itors, Handbook of Philosophical Logic, Vol. II, pages 249–307. Reidel, Dordrecht,
Netherlands, 1977.

[GN92] N. Gupta and D.S. Nau. On the complexity of blocks-world planning. Artificial
Intelligence, 56:223–254, 1992.

[Gre69] Cordell Green. Application of theorem proving to problem solving. In Procceedings
of the International Joint Conference on Artifical Intelligence (IJCAI), pages 219–239,
1969.

[GS96] A. Gerevini and L. Schubert. Accelerating partial-order planners: Some techniques
for effective search control and pruning. Journal of Artificial Intelligence Research,
5:95–137, 1996.

[HV91] J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving: a manifesto.
In J. A. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning, pages 325–
334. Morgan Kaufmann, San Mateo, California, San Mateo, CA, 1991.

[Joh90] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume A, chapter 2, pages 69–161. MIT, 1990.

66

[JP94] D. Joslin and M. Pollack. Least-cost flaw repair: a plan refinement strategy for partial-
order planning. In Proceedings of the AAAI National Conference, pages 1004–1009.
Morgan Kaufmann, San Mateo, California, 1994.

[KM81] D. Kibler and P. Morris. Don’t be stupid. In Procceedings of the International Joint
Conference on Artifical Intelligence (IJCAI), pages 345–347, 1981.

[KNHD97] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs to
an ADL subset. In European Conference on Planning, pages 273–285, 1997. (System
available at http://www.informatik.uni-freiburg.de/˜koehler/ipp.html).

[Kno94] Craig Knoblock. Automatically generating abstractions for planning. Artificial Intel-
ligence, 68(2):243–302, 1994.

[KS96] Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional logic,
and stochastic search. In Proceedings of the AAAI National Conference, pages 1194–
1201, 1996.

[KS98a] Henry Kautz and Bart Selman. Blackbox: A new approach to the ap-
plication of theorem proving to problem solving. (System available at
http://www.research.att.com/˜kautz), 1998.

[KS98b] Henry Kautz and Bart Selman. The role of domain-specific knowledge in the plan-
ning as satisfiability framework. In Proceedings of the International Conference on
Artificial Intelligence Planning, pages 181–189, 1998.

[Lev90] Hector J. Levesque. All I Know: A study in autoepistemic logic. Artificial Intelli-
gence, 42:255–287, 1990.

[LNR87] J. Laird, A. Newell, and P. Rosenbloom. SOAR: An architecture for general intelli-
gence. Artificial Intelligence, 33(1):1–67, 1987.

[MBD94] S. Minton, J. Bresina, and M. Drummond. Total-order and partial-order planning: A
comparative analysis. Journal of Artificial Intelligence Research, 2:227–262, 1994.

[McD96] D. McDermott. A heuristic estimator for means-end analysis in planning. In Proceed-
ings of the Third International Conference on A.I. Planning Systems, 1996.

[Min88] Steve Minton. Learning Search Control Knowledge. Kluwer Academic Publishers,
1988.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent sys-
tems: Specication. Springer-Verlag, New York, 1992.

[Par96] Sujay Parekh. A study of procedural search control in simon.
http://www.cs.washington.edu/homes/sparekh/quals.ps, 1996.

67

[Ped89] E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation
calculus. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, pages 324–332, 1989.

[PS93] M. Poet and D.E. Smith. Threat-removal strategies for partial-order planning. In
Proceedings of the AAAI National Conference, pages 492–499, 1993.

[RN95] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice Hall,
1995.

[Ros81] Stanley J. Rosenschien. Plan synthesis: A logical perspective. In Procceedings of
the International Joint Conference on Artifical Intelligence (IJCAI), pages 115–119,
1981.

[Sac74] Earl Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5:115–135, 1974.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.
Journal of the ACM, 32:733–749, 1985.

[Sel94] B. Selman. Near-optimal plans, tractability and reactivity. In Proceedings of the
International Conference on Principles of Knowledge Representation and Reasoning,
pages 521–529, 1994.

[SK98] B. Srivastava and S. Kambhampati. Synthesizing customized planners from specifi-
cations. Journal of Artificial Intelligence Research, 8:93–128, 1998.

[Tat77] Austin Tate. Generating project networks. In Procceedings of the International Joint
Conference on Artifical Intelligence (IJCAI), pages 888–893, 1977.

[TR94] Jonathan Tash and Stuart Russell. Control strategies for a stochastic planner. In
Proceedings of the AAAI National Conference, pages 1079–1085, Seattle, 1994.

[VCP+95] M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and J. Blythe. Integrating
planning and learning: The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence, 7(1), 1995.

[WE94] Daniel Weld and Oren Etzioni. The first law of robotics (a call to arms). In Proceed-
ings of the AAAI National Conference, pages 1042–1047, 1994.

[Wel94] Daniel S. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27–61, 1994.

[Wil88] David Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann, San Mateo, California, 1988.

68

