Group 7: RoboSoccer - KeepAway
Michael Scipione

Feliks Sharikov

Mathew Tinsley

Final Report

 Terminology:

A Game – the time between when we start up and manually quit the KeepAway system is hereby referred to as ‘a game’. A game is made up of many episodes.

Episode – the time between when the Keepers start up and get the ball to when they lose it to either the Takers or to kicking the ball out of bounds. An episode is made of Steps.
Step – unit of time the game runs in. One step equals 100 milliseconds. Displayed on the GUI.
Grid Learning – One of our types of Reinforcement Learning, see topic #6 for details.

Policy Learning – One of our types of Reinforcement Learning, see topic #6 for details.

Keeper – Where our AI is implemented, they try and keep the ball away from the Takers as long as possible. Keepers are Yellow circles on the GUI.
Taker – Automated adversaries, we do not control them. They simply follow around the ball and try to grab it. If they do an episode ends. Takers are Blue circles on the GUI.
1. Main Description:

Our primary goal was to create a Learning AI that can function within the RoboSoccer KeepAway game using the standard sized field (the one the framework defaults to) with 3 Keepers and 2 Takers. In order to do this we decided to use Reinforcement Learning for our Artificial Intelligence, which means that as it plays the game it will be able to make decisions on its own about how to improve its playing ability. Additionally we implemented to kinds of Reinforcement based AI’s, one we call Policy Learning and one we call Grid Learning. Both are based on the principles of how Reinforcement Learning works, but are otherwise our own creations. Improvement in our case means that the Keeper’s are able to hold the ball for longer periods of time against the Takers on average over the course of multiple episodes of RoboSoccer. Therefore, if the Keepers over time hold the ball longer on average, then the Learning AI is doing its job. At the start we will be comparing our AI average time vs. the average time of the random choice system (it’s not an AI) and the hand coded policy that comes with RoboSoccer. Random choice does not think and immediately picks a decision whenever a Keeper has the ball. Hand Coded has the Keeper with the ball go through a set decision making process where it considers how far away the other Keepers are and how close the Takers are before deciding on whether to pass or hold the ball.
There are a number of issues present within RoboSoccer KeepAway from an Artificial Intelligence standpoint. The game is played in real time, as opposed to turn based as many ‘standard’ games involving AI are, which means there is very little time for our AI to ‘think’ about what choices it’s going to make. Instead we have decided to make it learn from past mistakes/triumphs. Additionally the game state is ‘noisy’ and the Keepers have a view limited to what is within 90 degrees of the direction they are facing, which means that the Keepers lack accurate information regarding what is going on around them, and therefore make mistakes from time to time. Keepers are also unable to communicate with each other directly, which means that each one will have its own Reinforcement Learning AI and will improve itself independently of the other Keepers, which may have lead to either specialization or convergence.

There were a few framework issues that we had no real control over however. For one thing, a Keeper with the ball was only be able to pick whether it holds the ball or passes the ball to another Keeper. This is due to the fact that when a Keeper does not have the ball the framework of RoboSoccer takes over and makes automatic decisions regarding how the Keeper behaves. Simply put, our AI only takes over when a Keeper has the ball and then loses control as soon as the ball is passed or taken away. Additionally the KeepAway game tends to give out different average held times depending on the computer its being run on, with slower computers giving worse times while better computers give better times. However this happens to both the built in policies (Random and Hand Coded) and our own AI in a linear relationship, which is to say that if our AI is outperforming the Random policy then it always will. For example, if our AI vs Random produced average times of 4 seconds and 2 seconds respectively on a bad computer then on a good one it might produce times of 6 seconds and 4 seconds respectively. Another problem that is encountered is that occasionally the Takers or Keepers will just start spinning for no apparent reason; this is due to a bug somewhere in the framework and can be fixed by restarting the program. It also mainly shows up at the start of a game rather than in the middle.
2. Background

Our main source of background information comes from the RoboSoccer KeepAway website itself. There they have posted a very long and detailed pdf that states what their Reinforcement AI is and how it works. In their case they used the SARSA method to Reinforcement Learning, which is similar to Q-Learning (another popular Reinforcement Learning method) but differs in how it treats past actions. Q-Learning “…works by learning an action-value function that gives the expected utility of taking a given action in a given state and following a fixed policy thereafter” (Wikipedia.org). SARSA is similar to this but instead continues to look ahead to the next state as well as the next action within this next state. Therefore, SARSA works by creating reward values based on following its own policy while Q-Learning creates reward values based on exploration of the state spaces. Additionally the RoboSoccer team made a few other adjustments to their AI. For one thing their reinforcement algorithm also keeps track of what it’s most recent past actions have been. The purpose of this is that it allows the AI to see how well it actually performed and compare it to how well it assumed that it would perform by taking that action. Then if it received a lower reward value than expected, that action will be suppressed in the future while if it received a greater reward then that action will be reinforced. They also created a multiple graph system (they call it Tile-Coding) that maps out all of the different states that the game can be in. While this means that the graphs are quite enormous, the fact of the matter is that the game really only visits a small number of these situations (in comparison with how many potential states there are) and by using certain algorithms and optimizations this number of potential sates is further decreased. The point of this is, “An advantage of tile coding is that it allows us ultimately to learn weights associated with discrete, binary features, thus eliminating issues of scaling among features of different types.” (Stone 16). Essentially it allows the AI to keep track of various bits of information from previous runs/episodes so that it can better guess what action to take. Our Grid Learning is based off of this concept of keeping track of all the possible game states and making decisions depending on what state the game is currently in.
The results stated in their paper indicate that their Reinforcement Learning AI was successful. Not only did it out perform the random and always hold policies, but also managed to hold the ball longer than their hand coded policy. However it took quite a number of episodes before the learning algorithm finally started playing better than the hand coded policy. Additionally their work shows that if their reinforcement policy didn’t start off learning quickly and thus holding the ball longer earlier, then it would eventually level off at a lower average time of ball holding than if it had started off learning quickly. Furthermore, due to the Keepers swapping starting positions at the start of each episode, they eventually learn to have very similar playing styles, despite the fact that each Keeper AI cannot communicate directly with the other ones. Their data also shows that by adding noise and limiting the field of view of the Keepers, the reinforcement learning AI is also hampered and results in worse average times in holding the ball.

3. Tools:

We used the RoboSoccer framework given on their website as a basis for our AI project. For actual coding we used Microsoft Visual Studio 2008 in C++ language.
4. Data required:
Since our AI is evaluated by how long on average it can hold the ball we needed data on some benchmark times. The benchmarks that we used are Random and Hand Coded polices. These came from the RoboSoccer KeepAway framework itself and thus required no work on our part to implement and run. We did have to calculate average times by running each policy ourselves, as the times provided on the RoboSoccer website are from an out of date build and thus no longer accurate. In addition, we only compared our Grid Learning policy to the Random one as the two are similar in concept and thus make the best pair up. Our Policy Learning was compared to both Random and Hand Coded as it is essentially the Hand Coded policy with learning placed on top of it.
5. Input/Output

No real input is needed other than a batch file for each kind of AI player type (Keeper and Taker) as the rest of the program can be run using their provided applications. The exact start up order is: the server has to be started up first, then the monitor, then the Keepers and finally the Takers. After that the monitor has an option called “kick off” which will start the game, no other input is needed by the user after this, except to stop a game. The output is a text file that is automatically generated by the framework; this log is only really needed when calculating the average time that the Keepers held the ball over the course of the last running of the program. Although, it does contain other helpful data such as if the ball was taken or kicked out of bounds in each episode as well as the total amount of time a game ran.
6. Grid Learning and Policy Learning
Progress was slow at first as we had to manually reprogram various parts of their RoboSoccer files. This was due to the files being very out of date and apparently KeepAway is not really supported as much anymore. Yet, we got though this and have managed to build our Reinforcement AI’s. Both cases are essentially look-back methods as they decide current actions based on what happened in the past. The evaluation function we are using is the average amount of time that the Keepers hold the ball over the course of multiple episodes. More time held is better. In order to see if our AI is working at all we are using the Random and Hand Coded Policy that come with the RoboSoccer KeepAway program as a benchmark. Due to limited time to implement our AI’s, we considered them to be working correctly if they were able to outdo the Random policy in average time holding the ball.
In both cases we noticed that since the agents start positions are randomly shuffled around at the beginning of each episode they showed convergent behavior rather than specialization. That is, by the end of a game all 3 of our AI’s had similar policies/probabilities of what to do. The original RoboSoccer webpage write up also noted that this happened in their testing. It it’s likely that if the start positions were not randomized then specialization should occur, but this is research for another time.
Both types of learning also ran into a problem that the original RoboSoccer researchers also ran into which is the fact that if learning starts off improving very slowly, it remains slow. It isn’t totally clear why this happens. It seems in the case of Policy Learning that if the randomly generated policy values are bad to start, it’s hard to consciously improve them. While in Grid Learning’s case if it starts heavily favoring one action in certain high traffic parts of the grid that give it short term benefits, it can end up shooting itself in the foot so to speak by forcing itself to always make the same decision, even if later it is plateauing due to that being a bad decision in the long run.
Grid Learning -- Using an 5 dimensional grid, where 5 is the number of game state variables, decide an action for a given state. The 5-dimensional space uses for its coordinates:

K0 (nearest Keeper) distance, K1 (furthest Keeper) distance, T0 (closest Taker) distance, angle between K0 and taker, and angle between K1 and taker.

In-game distances are integer-divided by 2 to get the grid coordinate. Using a side 20 field, the longest distance between two objects is the diagonal of about sqrt(2)*20=28.##, so we have a range of 0-14 for distance grid coordinates. Angles are divided by 10, and possible angles are 0-180.0 (180 requiring ideal alignment) so the range is 0-17 for angle grid coordinates. These cells are saved into a hash table whenever they are accessed; areas that are never accessed are not saved in order to save space. Each cell of the grid corresponds to a game state and will store the probabilities for three actions; hold, pass to closest Keeper and pass to furthest away Keeper. The probabilities are then modified based on whether the action taken paid off. The idea behind this is that, like the Tile-Coding mentioned above, only a comparatively few of the potentially massive amount of states will be visited, and many of those will be visited frequently. Thus the learning is done by having the same states visited over and over which in turn should result in one or two of the three choices being favored when they have historically proven to be more beneficial. Additionally, choices that did not result in a net gain of time should be suppressed in the future by giving them a lower probability of happening. This did in fact happen when we tested our Grid Learning AI and showed that while in fact it was originally just making decisions randomly it managed to over time come up with a structured way to play. It is quite exciting to see this kind of emergent behavior from randomness being brought about through the principle of Reinforcement Learning.
From Felik’s tests we have the following average times over the course of 700 episodes:

Lab computers:

Random benchmark (all): 2.6-2.7 sec

Learned (all): 3.5-3.6 sec

Learned (episodes only ended by taking): 4.0-4.4 sec

Own computer:

Random benchmark (all): 3.5-3.8 sec

Learned (all): 4.4-4.6 sec

Learned (only ended by taking): 5.0-5.3 sec

Over the course of 2350 episodes:
Lab computers:

Learned (All): 3.7 sec

Learned (episodes only ended by taking): 4.9 sec
As can be seen here, our Grid Learning AI managed to outperform its benchmark, and thus can be considered successful. If the Grid Learning was run longer then it should continue to up its average time of holding the ball. Since the Grid Learning AI was more complex to create than the Policy Learning we had less time to test and tinker with it.
As an additional visual Feliks created a separate output that shows snap shots of the actual grid at certain places. The grid below shows when the distance from the Keeper holding the ball to the furthest Keeper is 7.
The grid key is:

Red = Hold, Blue = Pass to furthest, Green = pass to closest
Darker colors mean that a certain decision is more favored, mixed colors indicate that two decisions are being equally weighted. Grey means that none of the policies are favored, and most likely indicates that these bits of the grid have not been visited by the game.
Main X = Angle between furthest keeper (K1) and closest taker.

Main Y = Angle between nearest keeper (K0) and closest taker

Per-image X = Distance to nearest keeper (K0)

Per-image Y = Distance to nearest taker (T0)
[image: image1.png]= - o @ - “ ° ~ i £y 2 =

The grid as a whole is really 17 by 17, but the bottom 6 areas on the Y axis were cut off as they were all grey, and thus not exactly helpful to see. Note however that the areas between (3,8) and (6,11) consist of a lot of starting positions, and here we see that the AI has learned to hold more often here since its relatively safe as the Takers are still far away. On the left hand side of the picture we see faint squares of green mainly, and no red. This is because on that side the angle between the furthest keeper and the closest taker are very small which means that furthest keeper is blocked and a poor choice to pass to. Over many episodes of hitting this state the AI has realized that it’s best to pass to the nearest keeper. Another object of note is the sheer amount of grey area. This shows that while there are many possible states, only a few of these (comparatively speaking) are reached, which helps justify this Grid Learning approach as feasible.
Policy Learning – This AI has gone through quite a number of revamps and updates as we have worked on it. It consists of implementing a policy to map game states to actions. The policies utilized several different variables that can be adjusted to yield a better result. We currently have a system that adjusts the value of one variable (distance weight, which starts at a value of 1) in a policy based on the reward of several previous episodes. Simply put, this type of AI works by having a number of variables, selecting one variable and then increasing it every X episodes. If that gave a better average time during those episodes continue to increase that variable until the average time drops between updates, then try decreasing the variable. If the average time goes up, keep decreasing until the average time goes down between updates, when this happens move onto the next variable. Once all variables are cycled through, go back to the first variable and do it all again. Ideally though visiting these variables over and over, the AI should learn what works and what doesn’t and also avoid plateaus by constantly changing these variables.
Historically it used to work a bit differently. It used to update every episode, but due to noise in the system this didn’t work as well as it should have. Also we used to have multiple variables being changed, which were: distance weight, angle weight, and pass weight. The way the system worked is that when a Keeper has the ball it generates a number for how likely it is to pass the ball to a certain Keeper (it had one value for the furthest and a different one for the closest) using the distance and angle weights, and then compared this number to the pass weight. Whatever had the highest number would be given the ball, or it would be held. After a long period of testing and allowing the AI to fiddle with angle, distance and pass weight, we noticed that it would often give the distance a higher weight than the angle and lower the pass weight. This meant that the Keepers usually favored passing a lot over holding a lot in order to get better average times. So we have it fixed to pass near constantly.
To discover this data was also changed over time. At first all 3 Keepers were given the same amount of reward at the end of each episode and therefore they all updated at the same time. This method sounds like it should work, but we soon noticed that this commonly resulted in one Keeper being able to play bad and stay bad since the other two would carry the team as a whole. Additionally sometimes Keeper’s would update their policies, despite the fact that they had not even touched the ball during the past X episodes, which means it shouldn’t have any data to reinforce. The solution was to create a custom reward, which was only activated when a Keeper touched the Ball during an episode. This lead to the Keepers updating themselves independently of each other, and would only update their variables every X episodes where they touched the ball. This prevents them from learning from mistakes of other Keepers, they only learn from their own mistakes. In turn this creates more convergence as all have to get better instead of one being able to specialize in being bad.

From testing we got the following average times:

Random: 5.01 seconds

Hand Coded: 5.67 seconds

Policy Learning (newest version): 5.96 seconds

Matt also created a graph to show the learning that happened:

X axis is the episode number, Y axis is the number of steps the ball was held.

[image: image2.png]300

250

200

150

100

50

time held

17
25
33
41
49
57
65
73
81
89
97

AL

105
113
121
129
137
145

Linear (time held)

153
161
169
177
185
193

Its hard to see but the black line (the average time) does go up. This shows that some learning is happening. In addition the first half of this graph shows an average time of 5.81 seconds while the second half has an average time of 6.10 seconds in terms of holding the ball. Thus if we continue to run the AI it should continue to improve itself.
Division of work:

Mathew – Creation of Policy Learning AI, making policies for said AI.

Feliks – Creation of Grid Learning AI, making update method for said AI.
Michael – Writing reports, altering the two reinforcement AI’s to have different policies/update methods.
User’s Manual

There are three components to the Keepaway program: A server, a monitor, and the agents.

Running Keepaway:

-Step 1: Starting the server

Run the executable rcssserver.exe located in the Keepaway folder. A console window will open indicating the server is running (The console will display some error messages on startup, this is normal).

-Step 2: Starting the monitor

Locate and run rcssmonitor.exe located in the Keepaway folder. The keepaway window should appear. If the server is already running the monitor should connect automatically. If not you can connect manually using the 'Monitor' drop down menu.

-Step 3: Initialize the players
In the Keepaway/players directory there are three batch (.bat) files: Benchmark, GridAgent, and PolicyAgent. Running any one of these will initialze three keepers and two takers. Benchmark.bat will initialize the benchmark (hand coded) keepers. PolicyAgent.bat will initialize the policy learning agents and GridAgent.bat will initialize the Grid Learning agents. After running a batch file three keepers (yellow) and two takers (blue) should appear near the top of the field in the monitor. A console window for each player (5 total) should also appear.

-Step 4: Starting Keepaway (Optional)

In the monitor, select the 'KickOff' option in the 'Referee' drop down. The players should now move to the field and begin playing. The players will begin playing automatically after a short period of time even if you don't do this.

-Step 5: Stopping the program:

 You can stop the program by closing the server console window. Shortly afterward each of the players' console windows will also close.

Log:

When closed the server will generate a log file in the main Keepaway folder. The name of the file varies based on the batch file that was used, but it should always have the extension .kwy. The log consists of a table where each row corresponds to an episode. There are 5 columns: Episode Number, Start time in steps (100ms), end time in steps, episode duration in steps, and if the episode ended by the takers taking the ball or the ball going out of bounds (indicated by a t or an o).

Source Code:

The player source code can be found in the Keepaway/src directory. The code for the learning agents are located in the files GridAgent.cc, GridAgent.h, LearningAgent.cc, and LearningAgent.h.

Freezing:

At some point the players may stop playing and freeze (or spin), this should only be temporary. You should restart the program if this happens for a long time at the start of a game.

Works Cited
Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement Learning for RoboCup-Soccer Keepaway. Adaptive Behavior, 13(3):165–188, 2005. http://www.cs.utexas.edu/users/pstone/Papers/bib2html/b2hd-AB05.html
"Q-learning." Wikipedia.org. Web. 15 Feb. 2010. <http://en.wikipedia.org/wiki/Q-Learning>.

 Team 7 Page 6

