Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Basic Numberjack Tutorial

Adapted from Hebrard et al.'s AAAI 2010 tutorial and parts of the Numberjack website

CS 175

April 5, 2011

A (1) > A (1) > A

문어 문

CS 175 Basic Numberjack Tutorial

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

▲ 同 ▶ → 三 ▶

문어 문

1 Introduction

- 2 Intro to Python
- 3 Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline	Introduction	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

1 Introduction

- 2 Intro to Python
- 3 Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline	Introduction	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

What is Numberjack?

- A platform for constraints
- \blacksquare Written in Python a front-end to C++-based solvers

A (1) > A (1) > A

문 문

Excellent for rapidly trying out models

Outline	Introduction	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

What is Numberjack?

- A platform for constraints
- Written in Python a front-end to C++-based solvers
- Excellent for rapidly trying out models
- "Cuts your exponential search tree into logs"

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

1 Introduction

2 Intro to Python

3 Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Overview of Python

- Scripting language
- Supports classes, objects, etc.
- Duck-typing

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Variables and Functions

Variables

a = 2

- No need to declare the variable
- Variables are untyped

Functions

def double(a):
 return a * 2

- Functions are also not typed
- Indentations based on whitespace and are part of the syntax

CS 175

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Lists and Tuples

Lists

foo = [1, 4, 5, 10, 2]
bar = ["this", "is", "a", "list"]

Tuples

```
triplet = (1, 2, 3)
course = ("CS", 175)
```

Again, types don't matter even within lists and tuples

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

if <boolean_exp>:
 do_stuff()

while <boolean_exp>:
 do_stuff()

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

For Loops

For loops in C/C++/Java
 for (int i = 0; i < n; ++i) {
 do_stuff(i)
 }</pre>

For loops in Python

for i in range(n):
 do_stuff(i)

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

More Fun with For Loops

```
for element in list:
   do_stuff_with(element)
teamProjects = [(0, "Asteroid Simulation"),
                (1. "Scrabble").
                (2. "Poker")]
for teamNumber, project in teamProjects:
   print "Team", teamNumber, ":", project
Team Q : Asteroid Simulation
Team 1 : Scrabble
Team 2 : Poker
```

(ロ) (同) (三) (三) (三) (○)

CS 175

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

List Comprehensions

A very useful feature!

```
>>> range(4)
[0, 1, 2, 3]
>>> [x * 2 for x in range(4)]
[0, 2, 4, 6]
>>> [x * 2 for x in range(4) if x >= 2]
[4, 6]
```

Generally,

[<expression> for x in <Iterable> (if <condition>)]

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

1 Introduction

- 2 Intro to Python
- 3 Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Constructs

- Variables
- Constraints
- Model
- A common API to interface with back-end solvers

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Variables

binary variable
Variable()
domain from 0 to N-1
Variable(N)
domain from L to U
Variable(L, U)
domain specified by a list
Variable(list)

Useful method (used after a solution has been found) get_value()

A (1) > A (1) > A

э

Outline		Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion
Varia	bles				

More constructors:

create a list of N binary variables
VarArray(N)
create a list of N variables with domains from 0 to D-1
VarArray(N, D)
create a list of N variables with domains from L to U
VarArray(N, L, U)

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Variables

...and even more constructors:

create a matrix of M x N binary variables m = Matrix(M, N) # create a matrix of M x N variables with domains from L to U m = Matrix(M, N, L, U)

Special operators

Return a VarArray containing all of the elements of the Matrix
m.flat

・ロ・ ・四・ ・ヨ・ ・ ヨ・

2

Return a list of VarArrays corresponding to each row

m.row

Return a list of VarArrays corresponding to each column

m.col

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

A (1) > A (1) > A

문어 문

Constraints

Arithmetic operators on variables

Global constructors

AllDiff([a, b, c, d, e])
AllDiff(myVarArray)
AllDiff(myMatrix)
Sum([a, b, c, d]) >= e

CS 175

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion
Mode				

Used to collect the constraints together to define a problem

<ロ> <同> <同> < 回> < 回>

3

Constructors

empty model
model = Model()

model with constraints
model = Model(constraints,...)

Adding more constraints

```
model.add(constraints)
#or
model += constraints
```

CS 175

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Using a Solver

Different solvers available (Mistral, MiniSat, Walksat)

Methods

Get a solver to solve the given problem specified # by the model, solver = model.load('nameOfSolver') # attempts to solve the problem solver.solve() # for search—based solvers only (to generate multiple solutions) solver.startNewSearch() while solver.getNewSolution(): # do something with solution

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Outline of Usage

- Specify variables
- Specify constraints over those variables
- Construct a model with the constraints
- Construct the solver using that model
- Call solve() and extract results from Variables using get_value()

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

Outline of Usage

- Specify variables
- Specify constraints over those variables
- Construct a model with the constraints
- Construct the solver using that model
- Call solve() and extract results from Variables using get_value()
- Can alternatively use the print statement on Variables directly to output their values

Outline		Intro to Python	Modeling in Numberjack	Examples ●00 ○00 ○00	Conclusion
N-Queens Prol	blem				

- 2 Intro to Python
- **3** Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline		Intro to Python	Modeling in Numberjack	Examples O●O ○○○ ○○○	Conclusion
N-Queens Pro	blem				

 Place queens on the chessboard such that no two queens are attacking each other

Outline	Introduction	Intro to Python	Modeling in Numberjack	Examples 00● 000 000	Conclusion
N-Queens Pro	oblem				
Model	ing				

What are the variables/domains of variables for the 4-queens problem presented?

- 4 回 > - 4 回 > - 4 回 >

= 900

Outline		Intro to Python	Modeling in Numberjack	Examples 00● 000 000	Conclusion
N-Queens Pr	oblem				
Mode	ling				

- What are the variables/domains of variables for the 4-queens problem presented?
- How about in general for the N-queens problem?

Outline		Intro to Python	Modeling in Numberjack	Examples 00● 000 000	Conclusion
N-Queens Pr	oblem				
Mode	ling				

- What are the variables/domains of variables for the 4-queens problem presented?
- How about in general for the N-queens problem?
- What constraints do we need?

Outline	Intro to Python	Modeling in Numberjack	Examples ○○○ ●○○ ○○○	Conclusion
Magic Squares				

- 2 Intro to Python
- 3 Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline	Intro to Python	Modeling in Numberjack	Examples ○○○ ○●○ ○○○	Conclusion
Magic Squares				

1	2	15	1 6
12	14	3	5
13	7	10	4
8	11	6	9

Given an $N \times N$ square, place numbers ranging from 1 to N^2 such that each row, column, and diagonal has the same sum

Outline		Intro to Python	Modeling in Numberjack	Examples ○○○ ○○● ○○○	Conclusion
Magic Squares					
Modeli	ng				

Same questions as before...(variables, domains, constraints?)

= 990

Outline		Intro to Python	Modeling in Numberjack	Examples 000 00● 000	Conclusion
Magic Squar	es				
Mode	ling				

- Same questions as before...(variables, domains, constraints?)
- Which Numberjack Variable constructor seems appropriate for this?

 문어 문

Outline		Intro to Python	Modeling in Numberjack	Examples 000 000 ●00	Conclusion
Combinatorial	Auctions				

- 2 Intro to Python
- 3 Modeling in Numberjack

4 Examples

- N-Queens Problem
- Magic Squares
- Combinatorial Auctions

Outline		Intro to Python	Modeling in Numberjack	Examples ○○○ ○○○ ○●○	Conclusion
Combinatoria	al Auctions				

ltems	Bid Amount	Variable
А, В	10	<i>x</i> 0
A, C	20	<i>x</i> ₁
B, D	20	<i>x</i> ₂
B, C, D	25	<i>x</i> 3
А	14	<i>X</i> 4

Choose bids such that sets of items across bids are disjoint

Outline		Intro to Python	Modeling in Numberjack	Examples ○○○ ○○○ ○●○	Conclusion
Combinatoria	al Auctions				

Items	Bid Amount	Variable
А, В	10	<i>x</i> 0
A, C	20	<i>x</i> ₁
B, D	20	<i>x</i> ₂
B, C, D	25	<i>x</i> 3
А	14	<i>x</i> 4

- Choose bids such that sets of items across bids are disjoint
-such that the selection maximizes the revenue

Outline		Intro to Python	Modeling in Numberjack	Examples ○○○ ○○○ ○●○	Conclusion
Combinatoria	al Auctions				

ltems	Items Bid Amount	
А, В	10	<i>x</i> 0
A, C	20	<i>x</i> ₁
B, D	20	<i>x</i> ₂
B, C, D	25	<i>x</i> 3
А	14	<i>x</i> 4

- Choose bids such that sets of items across bids are disjoint
-such that the selection maximizes the revenue
- Different from constraint satisfaction...known as constraint optimization
- In addition to constraints, we need to specify an objective function

3

Outline		Intro to Python	Modeling in Numberjack	Examples 000 000 00●	Conclusion
Combinatoria	al Auctions				
Mode	ling				

- The number of variables is given this time, but what are the domains?
- What is the objective function?
- What are the constraints?

Outline	Intro to Python	Modeling in Numberjack	Examples 000 000 000	Conclusion

- Rapid prototyping of problems
- Easy to test out different solvers
- Numberjack website: http://numberjack.ucc.ie (also linked from the course page)