Freshman Course Counseling System

Final Project Report

3/16/2010

Group 6:

Jacob Marash

Jason Mooradian
Description:
The freshman course counseling system is a program that is intended to be used by a freshman university student, or any other university student who is interested in planning in advance the rest of his academic career. The goal of this program is to advise the student in the academic path he should take in order to complete his degree within the usual four year period or in a shorter amount of time specified by the student.
In order to gain a degree in a desired major, one must satisfy an array of major and institution requirements before graduation. These numerous requirements stipulate which courses or serious of courses a student must take, what order they must be taken in, and from what categories these courses can be chosen from. The addition of quarter scheduling restraints, different course offerings in each quarter, the limitation of how many classes an individual can take in each quarter, and the ability to choose from a massive course catalogue, make the task of planning a successful academic schedule especially complicated.

Background:
The problem behind the freshman course counseling system is a typical constraint satisfaction processing (CSP) problem. We are given a large amount of courses (78 in the computer science major) and have to assign a quarter during our full academic plan in which each course will be taken (or not). This process of assigning each course a quarter to be taken results in a vast amount of possible schedules (78 courses, 12 quarters in a 4 year quarter system + 1 quarter representing ‘course not being taken’ =
[image: image1.wmf]048

0,909,058,

092,264,80

3,955,759,

78

13

=

 possible combinations). Since in a CSP problem not every assignment is valid and each state has to satisfy certain constraints in order to be correct, many of the schedules generated are not considered valid due to not satisfying our constraints. The consequence of these “faulty” states or schedules is that a huge amount of the almost 4 septillion (4 x 1024) schedules constructed are not valid even before they are completed, thus wasting our time by even considering them.
In order to address this issue we should first explain how a schedule is constructed. When constructing a schedule, we look at every step consisting of assigning a particular course its quarter as a level in a tree. At each level, the assignment tree braches out to nodes that represent all the possible quarters in which a single class can be taken (13 for example). By going down all the way of one branch (depth-first search), we reach a leaf node and a state that represents a full schedule (for all 78 courses). This schedule is not necessarily valid for reasons described above.

To help us cut down (parse) the amount of nodes and branch paths we create, we use a tool which is often used in CSP called ‘Backtracking’. Since many of these non-valid schedules do not satisfy our constraints even before they reach the lower levels of the tree, we can disregard generating whole branches much closer to the root (the top of the tree) and thus save time dealing with states that have no chance in giving us a schedule that will solve our constraint problem. This is done by generating only valid nodes at each level of the tree (meaning exploring only schedules that have not yet violated any of our constraints). Once we reach a node that has no valid nodes from which we can proceed down the tree, we parse that subtree and move one step up in the tree to reconsider other still valid schedules.

The process of Backtracking eliminates searching through many non-valid schedules, but can still result in long search times due to schedules that violate our constraints all the way down at the lower parts of the tree. In order to address that, we also implement a ‘most constrained’ heuristic which will be explained in following sections.
Problem setup:

Decision Variables:

courseName.isTaken() = 0 or 1

courseName.whatTerm() = 0 or termName

termName.takingCourse(courseName) = 0 or 1

schedule.scheduled(courseName, termName) = 0 or 1
Objective Function:
We keep count of how many quarters deep each career path goes in a “last term” variable. We end up choosing the career path with the smallest or requested “last term” value.

lastTerm = nbTerm (some large number that guaranties sufficient time)

minimize lastTerm

Constraints:

For each possible combination of classes we cross check if it satisfies the constraints for that degree. These constraints are:

1) Fulfill all the major categories
2) Fulfill all the requirements for the categories

3) Don’t over book a quarter

4) Consider when courses are offered during the year

5) Meet a course’s prerequisite before taking that course

Here are the requirements for a CS degree:

*If a course is taken its equal to 1 if not its 0

*If a Requirement is satisfied its equal to 1 if not its 0

1) Fulfill all major categories:
[
[image: image2.wmf]]

)

(

T

S

R

Q

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ú

Ú

Ù

Ù

Ù

Ù

Ù

Ù

Ù

2) Fulfill all requirement categories:
Req A: sum{ICS 21, ICS 22, ICS 23, ICS 51, ICS 52, ICS 139, CS 132, CS 141, CS 142A, CS 143A, CS 151, CS 152, CS 161, CS 171, Math 2A, Math 2B} = 16

Req B: sum{ICS 6B, Math 6B}> = 1

Req C: sum{ICS 6D, Math 6D} >= 1

Req D: sum{Math 6G, Math 3A} >= 1

Req E: sum{Stat 67, Math 67} >= 1

Req F: sum{Phil 29, Phil 30, Math 13} >= 1
Req G: sum{CS 113, CS 114, CS 122B, CS 133, CS 142B, CS 143B, CS 153, CS 154, CS 165, CS 175, In4mtx 117} >= 3
Req H: sum{Phys 3A, Phys 3B, Phys 3C} = 3

Req I: sum{Chem 1A, Chem 1B, Chem 1C} = 3

Req J: sum{Bio 94, Bio 97, Bio E106} >= 2

Req K: sum{CS 162, CS 163, CS 164, CS 167, CS 168} >= 1

Req L: sum{In4mtx 111, In4mtx 113, In4mtx 115, In4mtx 117, In4mtx 119, In4mtx 123, In4mtx 125, In4mtx 131, In4mtx 132, In4mtx 141, In4mtx 153, In4mtx 161, In4mtx 162, In4mtx 163} >= 2

Req M: sum{WRIT 39B, WRIT 37} >=1

Req N: sum{WRIT 39C} = 1

Req O: sum{GEIIIVIIVIII1, GEIIIVIIVIII2, GEIIIVIIVIII3} = 3

Req P: sum{GEIV1, GEIV2, GEIV3} =3

Req Q: sum{GEVI} = 1

3) Don’t overbook a quarter:

Req R: For all quarters: coursesTaken(Quarter) < maxCoursesInQuarter

4) Consider when courses are offered during the year:
Req S: For all courses: if (courseName.whatTerm() > 0) then:

 (courseName.isOfferedIn(Quarter))

5) Meet a course’s prerequisite before taking that course:
Req T: For all courses: if courseName.isTaken() = 1 then: courseName.preReq.whatTerm() < courseName.whatTerm()
Note:
Once the definition of the problem is laid out as done in the section above, one can see that Degree = [
[image: image3.wmf]]

)

(

T

S

R

Q

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ú

Ú

Ù

Ù

Ù

Ù

Ù

Ù

Ù

 is very similar to the 3-Satisfiability problem. By understanding that, we realize that this scheduling problem is a complex problem, in fact it’s NP-Complete.

Algorithm:
Our system implements a combination of Backtracking and a ‘most constrained’ heuristic. In the beginning phases of the project it was concluded that Backtracking alone does not result in the system generating correct schedules in a reasonable time (no solution after an hour of running). The cause for this was that although Backtracking was eliminating a lot of non-valid combinations, there were still a lot of combinations being generated that yielded constraint contradictions towards the bottom of the tree or that required too many quarters to graduate. This was caused by the order in which courses were ‘picked’ to be scheduled in the beginning of the academic career. In fact, the courses that are at the top of the ‘list of courses’ provided by administration will be scheduled first.

Instead, a course that has the most constraints on it should be scheduled as soon as possible in order to yield more options in the future (most constrained heuristic). In turn, three categories were chosen to determine the ‘importance’ score of every single course offered. The courses that have the highest ‘importance’ are scheduled first at the top of the assignment tree in order to direct the scheduling system down a “correct” branch first.
The three categories are:

· Mandatory course – if a course is mandatory, meaning is has to be taken at some point of the academic career, it receives 2 importance points.

· Course is seldom offered – if a course is offered at all three quarters (Fall, Winter, and Spring) it receives no additional points. If a course is offered only twice a year, it receives one additional point. If a course is offered only once a year, it receives two additional points.
· Course is a pre-requisite to important classes – a course’s ‘importance’ receives the sum of the importance of all the courses that it is a prerequisite to.

By applying this heuristic, we will first attempt to schedule courses that are
1. a prerequisite to courses that need to be taken early (i.e. important courses)
2. a prerequisite to a large number of courses
3. are not frequently offered

4. must be taken to graduate (can not be substituted)

Once the heuristic is applied to our Backtracking algorithm, we tend to find valid branches much earlier in our search. This heuristic is actually used by humans as well. When we decide to schedule a course, we first try to pick a course that will allow us to take more courses in the future. We also want to take courses that are hard to get into (seldom offered) the first chance we get. It makes no sense for a human to try to build a schedule that puts an upper division course in the first quarter, and neither should it for the system.

EXAMPLE:
[image: image4.emf]Before

After

Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4

ROOT

CS 111

CS 112

ICS 21

Math 2A

Tools and Data:
For tools we used basic programming environments (Netbeans and Eclipse). Our GUI was built using Eclipse Visual Editor.
We also used Subversion, a data management tool to help coordinate parallel coding within the group.

As for data, we are using a few resources from the UCI website to aid our program in building a schedule. The UCI catalogue which can be found at: http://www.editor.uci.edu/catalogue/ics/ics.3.htm#top provided us with the needed information regarding what courses are offered for the Computer Science major and what these courses’ pre-requisites are. It also offers the list of requirements needed to be met in order to achieve a degree in Computer Science.

We also used the Bren School of ICS resources website located at: http://www.ics.uci.edu/ugrad/resources/ to determine during which quarters (Fall, Spring,Winter, etc…) each course is usually offered.

Input/Output:
The system needs four types of data files in order to operate. These data files consist of a course list file (REALclasslist.txt) which holds a current list of courses offered, a course scheduling file (REALclassOffered.txt) which stores the quarter in which each course is offered, a major requirements file (REALmajorReq.txt) which stores the requirements for a certain major, and a course pre-requisite file (REALclassPrereq.txt) which stores the prerequisites for each course. The data in these files was obtained through the resources mentioned in the section above and was put into a .TXT input file. These text files can be changed and updated by administration in order to keep the system relevant, thus eliminating the need to change any code when making adjustments. When a user logs on to our online program he chooses his major from a pre-existing list and the program outputs relevant schedules depending on his preferences (see user manual). The output for the system is a schedule printed in a user-friendly manner within the GUI.
System Evaluation:
Our system evaluation was done based on four questions:

1. Is system simple and useful?
Although this is a subjective question, the design goal of the GUI and the system in general was to be a user-friendly tool that can be accessed and used regardless of prior knowledge in computers. We approached this objective by building the system in such a way that it provides a simple solution with minimal complication (too many option fields) and with an intuitive GUI and operation process.
2. Did system return correct result?

This was answered by simply checking the system output manually. Each schedule that is generated can be checked against prerequisite, scheduling, university, and major constraints. During a full day of testing, 50 schedules were generated with different course constraints and quarter lengths and all (100%) schedules met the constraints.
3. Did system operate in reasonable time?

In order to be effective, the system needs to provide the student with a schedule in a reasonable amount of time. Deciding what this time interval is, is not obvious, but we concluded that under a minute is mandatory and less than 30 seconds is preferable.
Some system statistics:

Avi Dechter’s 12 course sub-problem:

Just backtracking: best solution found: 1296 nodes, 161 ms

Backtracking + heuristics: best solution found: 254 nodes, 29 ms

Full 78 course problem:

Just backtracking: no reasonable solution

Backtracking + heuristics: a solution: in 4112 nodes, 16539 ms
4. Did system offer best result?
A best result is considered to be a schedule that meets all constraints in the shortest possible time frame (fewest quarters). We have been able to do this with Avi Dechter’s 12 course sub-problem, and achieved the optimal solution (compared with optimal solution in the document). For the full 78 course problem the definition of ‘best solution’ varies. We aim to find a schedule with a correct solution that will fall within the four year limit. The system also finds an 11 quarter solution in a reasonable time (28 seconds), but slows down remarkably when attempting a 10 quarter solution.
User Manual:
Opening the program:

To access the Freshman Course Counseling System, open a page on your internet browser and visit the web page located at: www.ics.uci.edu/~jmooradi
Program Interface:

Top Button Field:

Location: at the top of the gray box (right under “Freshman Scheduling System”).
Contents: major selection field (drop-down menu), ‘Go’ button, and ‘Clear’ button.
Main Data Field:

Location: center of screen between top and bottom button fields.
Contents: 12 quarter box fields (each representing a university quarter). Each quarter box field is made up of four possible course selection fields.
Bottom Button Field:

Location: at the bottom of the gray box (right under ‘quarter box fields’).
Contents: ‘Find Faster Schedule’ button and ‘Find Another Schedule’ button.
Getting Started:

Picking major: use the scroll down menu labeled ‘major selection’ to choose the major in which you are attempting to complete a degree in.

Adding/limiting courses: before you choose to generate a schedule you can specify up to four specific courses you want to take at any given quarter. To do so, just choose one of the four course selection fields under the intended quarter and scroll down to pick the course you want. This will force the system to schedule that course in that specific quarter.

Instead of choosing a specific course you can also choose to fill the course selection fields with ‘No Course’ which will reduce the amount of courses scheduled for that quarter.

Leaving a field marked “Generate” will allow the system to choose an appropriate course.

Getting a Schedule:

Once you have chosen which courses you would like the system to generate, not schedule, and/or schedule a specific course, you should click the ‘Go’ button to generate your schedule. Once generated, a schedule will appear where every course that should be taken is located directly under its relevant quarter title. (i.e Spring 2014)

To start this process over you can press the ‘Clear’ button at anytime and start over. This will return all the course selection fields to their default ‘Generate’ state.

Advanced Schedule Options:

Once a schedule is generated two additional buttons located at the bottom will become available.

By clicking the ‘Find Another Schedule’ button, the system will generate another schedule (different then the previous) that will still satisfy the original chosen settings. This is useful if a schedule that you do not like was generated and you would like to see another option. This button can be clicked continuously resulting in a new schedule after every click.

A second option is the ‘Find Faster Schedule’ button. By clicking this button, the system will generate a schedule that will satisfy the original settings but will remove any courses that were scheduled during the last quarter of the previously generated schedule. This will result in a schedule that is one quarter shorter every time the button is clicked.
Pitfalls:

Make sure to first choose the correct major before generating a schedule.

If a “No Possible Solution” error message appears, your settings conflict with one or more scheduling/prerequisite limitations and no possible schedule can be generated. Try to reduce the amount of constraints you applied and start over.

Recommendations:
Freshman: it is recommended that you limit the first year (first three quarters) to only take 3 courses per quarter. This can be done by applying ‘No Course’ once to each of the first three quarters.

Non-freshman: you can fill in the quarters which you have already taken with the courses you have already passed and get an update of the future schedule you should be taking.

References:

Avi Dechter (2007). MODEL-BASED STUDENT ACADEMIC PLANNING.

The International Journal of Applied Management and Technology and Walden

University. http://www.ics.uci.edu/~dechter/courses/ics-175a/winter-2010/IJAMT_Paper.pdf

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Boston, MA: Kluwer Academic Publishers.
Tevfik Aytemiz (2001). A Probabilistic Study of 3-SATISFIABILITY. Dissertation submitted to the Faculty of theVirginia Polytechnic Institute and State University.
 http://scholar.lib.vt.edu/theses/available/etd-07042001-165926/unrestricted/TA-Dissertation.pdf

�

_1330003339.unknown

_1330007484.unknown

