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This paper describes a network-based decision support system approach to the most general form of the academic course 
scheduling problem. The dimensions of faculty, subject, time, and room are considered by incorporating a penalty 
function into a network optimization approach. The approach, based on a network algorithm, is capable of solving very 
large problems. This methodology can be applied to other scheduling situations where there are competing objectives 
and multiple resources. Such situations include: scheduling of exams, times, and rooms in an academic setting, and 
scheduling of clients, times, and facilities for physicians, hospitals, dentists, counselors, and clinics. Common problems 
in such settings include the utilization of available space, and dissatisfaction with assigned times and locations. The 
proposed system results in more effective room utilization patterns, improved instructor satisfaction levels, and streamlines 
the tedious scheduling process. We describe the use of the model to schedule all graduate and undergraduate courses in 
the College of Business Administration at Texas A&M University. This involves 175 faculty, over 300 sections, 20 rooms, 
and 16 time slots for each semester's scheduling problem. 

T he poor utilization of available classrooms and 
the dissatisfaction of faculty with their teaching 

assignments are common problems encountered when 
attempting to schedule university classes. This paper 
presents a network-based decision support system 
(DSS) that has been successfully used to improve the 
utilization of classroom resources as well as to consider 
faculty preferences for subject, room, and time 
schedules. 

During the period 1983-1985, when one of the 
authors (Dinkel) was in the Dean's Office, this model 
was used to schedule all undergraduate and graduate 
classes for the College of Business Administration at 
Texas A&M University. The use of this decision sup- 
port system provided an effective method for dealing 
with a large, complex, and time consuming process in 
a way that allowed the decision makers, that is, the 
department heads, to maintain control of the process. 

The use of the model resulted in improved schedules 
with a significant reduction in the amount of time 
required to produce the schedule. Due to the ease of 
solving the model, it was possible to allow changes in 
priorities and preferences and to easily present alter- 
native solutions. 

The major benefits of the model, which are 
described in detail in Section 5, were: improved 
room utilization, significant reduction in unassigned 
courses, and a consistent approach to time period 
shifts. In addition, the model greatly reduced the time 
necessary to produce an acceptable schedule. 

The model was used from 1983 to 1985. Since 1985, 
all the authors have moved to other universities (Mote 
and Venkataramanan) or have different responsibili- 
ties (Dinkel). While the model was used effectively 
during the rapid growth of the college in the early 
1980s, it is apparently no longer used to schedule 
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courses partly due to the leaving of the authors and 
partly due to the fact that the data have become stable 
and more predictable. 

With little effort, the underlying model can be mod- 
ified to serve a variety of scheduling environments. 
The general problem of scheduling faculty, courses, 
time slots, and classrooms has attracted a great deal 
of interest. Numerous solution procedures have been 
proposed and tested. Each approach is designed to 
address certain aspects of the general scheduling prob- 
lem. Andrew and Collins (1971) suggested a linear 
programming model; Dyer and Mulvey (1976) pro- 
posed a network model in the context of an integrated 
decision system. Large-scale integer programming 
models have been developed by Tillet (1975), Breslaw 
(1976), and McClure and Wells (1984). None of these 
optimization models considers the problem of assign- 
ing a faculty, subject, or room combination to a 
particular time slot. 

Optimization models that address the time compo- 
nent of the scheduling problem have been proposed 
by Harwood and Lawless (1975), Shih and Sullivan 
(1977), and Mulvey (1982). The Harwood and Lawless 
approach uses a mixed integer goal programming 
model; the Shih and Sullivan method is based on a 
two-stage optimization of a zero-one integer program- 
ming model; and Mulvey (1982) uses a network 
model. Selim (1982, 1983) presents a linear program 
for constructing timetables. 

Timetabling methods (Knauer 1974, Schmidt and 
Strohlein 1979, and De Werra 1985) have been used 
widely to schedule courses and exams. The overview 
of such methods, presented by De Werra, stresses the 
graph theoretic approach. 

Other approaches include a heuristic procedure of 
Barham and Westwood (1978), and a Lagrangian 
relaxation procedure of Tripathy (1980). None of 
these approaches considers the classroom availability 
aspect of the scheduling problem. 

The works of Dyer and Mulvey, and Mulvey (1982) 
placed special emphasis on the inherent network struc- 
ture of the basic course scheduling problem. They 
developed a model that allows this embedded network 
structure to be fully exploited. The objective of their 
model is to determine an optimal matching of faculty 
preferences for the courses that are to be offered. While 
their model does not specifically address the issue of 
classroom and time slot availability, it serves as an 
important foundation for our work. Like the work of 
Dyer and Mulvey, and Glassey and Mizrach (1986), 
we have developed a DSS that allows us to exploit the 
underlying network structure of the scheduling prob- 
lem but unlike their earlier work, we simultaneously 

consider the dimensions of faculty, courses, class- 
rooms, and time. 

1. THE PROBLEM 

The general problem of scheduling faculty to courses, 
to classrooms, and to time of day is faced by every 
educational institution. From the faculty's point of 
view, the objective is to maximize their preferences 
including the room and time of day; from the admin- 
istration's point of view, the efficient utilization of the 
physical facilities is a concern as well. The problem of 
scheduling faculty and subject assignments is well 
documented in the references and can be viewed as a 
network optimization model with the usual con- 
straints of 

* requiring that all scheduled sections be staffed; 
* a maximum, and perhaps a minimum, number of 

assignments for a faculty member. 

The classroom and time assignments introduce the 
additional constraints that 

* a faculty member cannot be assigned more than one 
course per time period; 

* a room cannot be assigned more than one class per 
time period. 

The consideration of classroom and time assignments 
are important preferences for the faculty. The faculty 
may express preferences for certain times of day, 
certain days of the week, back-to-back scheduling, and 
to avoid certain times of day. In addition, because of 
pressures on room utilization, there may be a mini- 
mum size requirement; for example, a course section 
must have an enrollment of at least 75 % of the room 
capacity into which it is scheduled. This avoids the 
problems associated with scheduling a course section 
of 20 into a room seating 100 in a space-constrained 
environment. 

These last two constraints complicate the situation 
because they require a large-scale integer program- 
ming model in order to deal with the most general 
setting. In addition, we have the potentially competing 
objectives of faculty preference and space utilization. 
In a resource-constrained environment, with great 
pressure on the rooms, this is an important tradeoff 
that must be carefully analyzed. 

To illustrate the problem and our approach, we use 
the College of Business Administration at Texas A&M 
University. The 7,000 full-time students represent a 
doubling of enrollment over the past 7 years. The 
college has 175 faculty and direct control over 20 
classrooms of a variety of sizes in two buildings. In 
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addition to the growth in the college, the university's 
enrollment has increased by almost 30% in this period. 
As a result, there is tremendous pressure on the avail- 
able classroom space. Thus, in addition to meeting 
faculty preferences, it is important to utilize space 
controlled by the college. It is in this constrained 
setting that a network-based faculty, subject, class- 
room, and time DSS was developed. 

Prior to the adoption of this approach, the admin- 
istrative personnel of the College of Business Admin- 
istration made the assignments manually. Each 
department was given priority over a subset of the 
classrooms in which they could schedule any of their 
sections, provided that they were not smaller than 
75% of the classroom seating capacity. This approach 
led to inefficient room scheduling, particularly with 
respect to small graduate seminar rooms and large 
lecture halls. For the remaining unscheduled class 
sections and unused room and time slots, the assign- 
ments were made during a group bargaining session. 
Finally, a list of remaining unscheduled sections was 
provided to the university for scheduling elsewhere on 
campus; and unused room and time slots were used 
to schedule other university courses. This scheduling 

process was time consuming and resulted in a sub- 
optimal utilization of resources. 

2. THE MODEL 

The proposed scheduling model is a capacitated, pure 
network flow problem with a penalty structure in the 
objective function. There are five classes of nodes or 
constraints in this network model, as illustrated in 
Figure 1. 

The first and fifth classes are the master source and 
master sink nodes used to circularize the network. 
Between these two nodes are three levels of nodes: a 
departmental level (i = 1, ..., I), a faculty/subject 
level (j = 1, . . ., J), and a classroom size (s = 1, . . .. 
S)/time (t = 1, ..., T) level. Associated with these 
nodes are the following arcs. 

XC Connects the master sink to the master source. 
The flow on this arc is the total number of sections 
scheduled by the model. 

XD(i) Connects the master source to each depart- 
ment node (i). The upper and lower bounds on 
these arcs can be used to set the maximum and 

Jones ~~~~~~Size50 - ? 

Dept 1J , +XU(,1,3 - & <\\ 

XD(i) o TTg9l 

s ~~~~~~~XU(1,1,3,2) 0 

* 0 0 
* 0 0 
* XC 

Master Department Faculty/Staff Room Size/Time Master 
Source Level Level Level Sink 

Figure 1. General network based model. 
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minimum number of sections to be offered by each 
department. 

The objective function coefficients CD(i) can be 
used to set relative preferences among the depart- 
ments. For example, we can prioritize the depart- 
ments by assigning weights to these arcs that reflect 
the order in which each department's courses should 
be scheduled. 

XS(i, j) Connects each department node (i) to each 
faculty/subject node (j). The model builder can 
control the complexity of the model at this point by 
which faculty and subject combinations are allowed. 
The most general model includes all possible com- 
binations of faculty and subjects. A more realistic 
model restricts the combinations to all faculty and 
all subjects by department. In those cases where 
there are specializations within departments, the 
combinations can be restricted further to only those 
within specializations. Or, the faculty may be 
allowed to state their preferences and only those 
combinations are included. The upper and lower 
bounds can be used to define teaching loads by 
individual faculty. 

The objective function coefficients CS(i, j) can 
be the faculty preferences for a particular subject. 
They also can be used to give preference to certain 
faculty or faculty/subject combinations over and 
above the stated faculty preferences. For example, 
we can state a preference to first schedule all full 
professors, then associate professors, and so on. 

XA(i, j, s, t) Connects the faculty and subject nodes 
(i, j) to the room size (s) and time (t) nodes. As 
with the previous set of nodes, the complexity of 
the model can be controlled by which combinations 
are included. The most general model allows the 
inclusion of all possible combinations of faculty and 
subjects with rooms and times. A more realistic 
model includes only those arcs that represent the 
assignment to rooms with sufficient capacity, and 
does not violate size restrictions, if any. 

Departments specify an upper limit on the enroll- 
ment in each section, and since the university 
enforces a 75% of capacity rule, it is not in their 
best interest to overestimate enrollment. If a class 
falls below the 75% limit, it will be moved, possibly 
across campus, to make room for a larger class that 
better utilizes the space. 

In general terms, all arcs can be included and 
those deemed unacceptable eliminated by setting 
the upper bound to zero. A model of more reason- 
able size can be constructed by including only those 
arcs that meet the local restrictions. We chose the 
latter approach in our implementation, and include 

only the upgrade to the next largest sized room, and 
denote this variable by XU(s, t). This greatly reduces 
the size of the model and meets the restrictions on 
space utilization. The lower bounds are set to zero 
and the upper bound is set to 1 because each faculty 
member can teach only one class at a time. 

The objective function coefficients, CA(i, j, s, t), 
reflect the instructors' preferences for rooms and 
time of day. The structure of these coefficients will 
be discussed in Section 3. Also, as explained in that 
section, we can use these coefficients to control the 
assignment of classes to larger rooms. 

XR(s, t) and XO(s, t) Connects each room and time 
node to the master sink. There is a pair of these arcs 
for each node (s, t) with XR representing the sched- 
uling of courses into room and time slots; and XO 
representing the overflow of such slots. That is, 
XO(s, t) represents the excess number of required 
classrooms and time combinations in order to com- 
plete the schedule. 

The upper bounds on XR(s, t) represent the 
number of classrooms of size (s) that are available 
at time (t). 

The objective function coefficients, CR(s, t), can 
be used to give preference to certain assignments of 
rooms and time. There are no upper bounds on 
XO(s, t). 

The objective function coefficients, CO(s, t), are 
set to large numbers to minimize the number of 
shortages. A positive flow on an XO(s, t) arc repre- 
sents an assignment that cannot be met within the 
current space and must be scheduled within the 
larger pool of university resources. 

The network component of the scheduling problem 
is given as 

minimize E CD(i)XD(i) 

+ E E CS(i, j)XS(i, j) 

+ E E E CA(i, j, s, t)XA(i, j, s, t) 
i j s t 

+ E E CU(s, t)XU(s, t) 
s I 

+ E E CR(s, t)XR(s, t) 
s t 

+ E E CO(s, t)XO(s, t) (1) 
s t 
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subject to 

XC-E XD(i) = 0 (2) 

XD(i) - XS(i, j) = 0 (3) 
j 

XS(i, j) XA(i, j, s, t) = 0 (4) 

E XA(i, j, s, t) + XU(s - 1, t) 
ij 

- XU(s, t) - XR(s, t) - XO(s, t) = 0 (5) 

XR(s, t) + E E XO(s, t)-XC = O (6) 
s I s t 

OS 1 XC 

LD(i) -< XD(i) -< UD(i) 

LS(i, j) S XS(i, j) < US(i, j) 

O XA(i, j, s, t) S 1 

O XU(s, t) < UU(s, t) (7) 
0 S XR(s, t) < UR(s, t) 

O XO(s, t) 

where 

i = 1, ...,5I; j = 1, ...,5 J; 

s= 1,...,S; t= 1,..., T. 

Table I presents a summary of the model parameters 
and variables. The range of the indices will depend 
upon the generality of the model. For example, J will 
depend upon the generality of the faculty and subject 
assignments allowed; if there were 100 faculty and 
300 sections, there can be as many as 30,000 assign- 
ments, or a much smaller number if only certain 
combinations are allowed (for example, only account- 
ing faculty teach accounting courses, no teaching 
assistants teach graduate courses, and so on). 

This is particularly true when considering the assign- 
ment of faculty and subjects to room and size nodes. 
In the case of 10 different room sizes and 16 possible 
time slots, we can have 160 possible arcs for each 
faculty and subject node. In reality, the number of 
feasible assignments may be much smaller due to 
considerations such as the 75% of capacity rule and 
the minimum number of seats based on estimated 
enrollment. 

Constraints 2-5 are the typical conservation of flow 
restrictions. Since the network is presented in circu- 
larized form, all right-hand side coefficients are zero. 
The summations in all but constraint set 4 should be 
readily apparent. For (4), there is no summation over 

the room size index because the assignment arcs 
(XA[i, j, s, t]) are only constructed into the room size 
and time nodes of the smallest feasible size. The 
variables XU(s, t) represent the upgrade to a room of 
the next largest capacity. Constraints 7 represent the 
upper and lower bounds as defined in the previous 
paragraphs. 

In the context of the example of the College of 
Business Administration at Texas A&M University, 
the model has 

5 departments (I= 5), 
150 faculty/subject assignments 

(J= 150) for each i, 
16 time slots (T = 16), 
7 room sizes (S = 7). 

By considering only the minimum room size per 
course section and the upgrade to only the next largest 
size, we have at most 32 arcs for each faculty/subject 
node. 

The model, (1-7), is a capacitated, pure network 
flow problem. Due to the unimodularity property 
of the conservation of flow constraints and the 
integrality of the lower and upper bounds, any extreme 
point optimal solution to the problem will possess 
integer decision variables. Large problems of this type 
can be solved efficiently; see, for example, Ali et al. 
(1978). 

Unfortunately, the basic model is not yet complete. 
Specifically, conflict problems arise when the model 
elects to assign a single instructor multiple classes at 
the same time, or to assign multiple classes to the 
same room at the same time. These conflicts are not 
prohibited by any of the constraints. To prevent this 
situation, the model should have the following set of 
conflict avoidance constraints 

E E XA(i, j, s, t) S 1 for each i, j. (8) 
s I 

There is one such generalized upper bound or multiple 
choice constraint for each combination of depart- 
ment/instructor/subject (i and j) and room size/time 
(s and t). The summation is defined over the different 
subjects that a given instructor may teach. These 
constraints destroy the inherent integrality property 
of the solution. While the initial formulation, (1)-(7), 
is a capacitated network flow problem that can be 
solved routinely by a variety of optimization algo- 
rithms (Ali et al., Glover and Klingman 1975, Mulvey 
1978), the expanded formulation, (1)-(8), is a con- 
strained network flow or a large-scale integer program- 
ming problem that only can be solved by a specialized 
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Table I 
Description of Decision Variables 

Decision Objective Function 
Variable Description Flows Bounds Coefficient 

XC Circularization arc Total number of 0 
sections 

XD(i) Connect master source Number of sections Maximum or minimum Relative preferences 
to each department by department number of sections to among depart- 
(i) be offered by depart- ments 

ment 

XS(i, j) Connect department Number of sections Number of sections to Preferences for 
(i) with faculty/sub- taught by faculty be taught faculty/subject 
ject (j) combination 

XA(i, j, Connect faculty/sub- Assigns section (i, j) Upper bound of 1 Preferences for 
s, t) ject (i, j) with room to room (s), time room, time 

(s) and time (t) (t) assignments 

XU(s, t) Connect room (s) to Number of upgrades Number of rooms of Preferences for 
room (s + 1) at time from room size (s) size (s + 1) available allowing room 
(t) to (s + 1) at time at time (t) upgrades 

(t) 

XR(s, t) Connect room (s), Number of rooms of Number of rooms avail- Relative preference 
time (t) to sink size (s) used at able of size (s) at time among size, time 

time (t) (t) assignments 

XO(s, t) Assignments that can- Number of classes of None Arbitrary (large) 
not be made for size (s) that can- 
room (s), time (t) not be scheduled 

at time (t) 

algorithm. The next section describes how we deal 
with constraints of the form (8) in the context of the 
network flow model, (1)-(7). 

3. PENALTY STRUCTURES 

The cost coefficients associated with the faculty/sub- 
ject to room/time arcs and the room upgrade and 
overflow arcs are important in the construction and 
analysis of the model. The structure of the coefficients 
provides the mechanism to incorporate certain pref- 
erences and to avoid certain scheduling conflicts. 

3.1. Faculty/Subject to Room/Time Arcs 

Faculty, in addition to picking a most preferred time 
slot, may desire a shorter span of the teaching day and 
want to avoid 5-day teaching schedules. They may 
also want to avoid particular time slots. These criteria 
are incorporated into the model through the time shift 
cost coefficients, CA(i, j, s, t). These coefficients allow 
the consideration of a variety of such preferences while 
maintaining the flexibility to allow movement of sec- 
tions to achieve effective space utilization. In addition, 
these cost coefficients can be used to assist in avoiding 
the multiple assignments of faculty to time slots, but 
they will not guarantee the avoidance of multiple 

assignments. The example of Figures 2 and 3 will 
show such a use of these coefficients. 

Each arc connecting a faculty/subject node to a 
room/time node is given a cost coefficient that indi- 
cates the preference for a room/time allocation. For 
example 

F2 

for most preferred time 
|F' for next most preferred time 

CA(i, , s, t) = F2 for next most preferred time 

oo for infeasible assignments 

where the relationship between F', F2, ... can be 
linear or nonlinear for each person. The choice of the 
relationship among the levels of preference will affect 
the ease with which courses are moved to other time 
slots. 

For the example, we can use a linear, V-shaped 
function. That is, the preferred time as stated by the 
faculty member is given a cost of zero, and each time 
period is given a coefficient of 1 for each period away 
from the preferred time. 

Unacceptable times are assigned a value of 99, and 
the mechanism for dealing with back-to-back requests 
is given in the following example. The Smith/ 
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Figure 2. Time shift cost coefficient for Smith/ACC 101, TTh 9:30. 

Accounting 101 assignment has a requirement for 125 
seats and a preferred time of TTh 9:30; Smith/Ac- 
counting 410 has a requirement for 50 seats and a 
preferred time of TTh 11; Smith does not want to 
teach in the 3:30 time slot and wants to teach only 
on Tuesday and Thursday. Figures 2 and 3 illustrate 
the assignment of costs for arcs from these two nodes 
to different times. Note that Smith/Accounting 

101, TTh 11:00 arc is assigned a cost of 99 and 
Smith/Accounting 410, TTh 9:00 is assigned a cost of 
99, so that if one of the desired times is assigned, 
conflicts regarding multiple assignments to that time 
choice constraint slot are avoided. 

The penalty scheme is a simple linear one, with a 
unit increase in the penalty for each time slot away 
from the desired time. This helps to schedule classes 

99_ * 0 0 0 0 0 0 0 S 0 0 

I- 7 
0 
0) 6 

LL 

E 5 
(I) 
W 4 0 

1 3 

2 - 

1 0 0 

0 C0 0 0 0 0 C0 C C0 0 C0 C0 C0 C0 0 0 
9 9 999 99 9 9~?99~9 ~?999?9 
co cC 0 , C , C cC , co .) 0) ) ) U 

UL LL LL LL L?- LL LL - 7 - 

TIME SLOTS 

Figure 3. Time shift cost coefficient for Smith/ACC 101, TTh 1 1:00. 
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back to back, when one of the desired time slots is not 
available. It also tends to reduce the span of a teaching 
day. Assignment of 99 to the TTh 3:30 time avoids 
scheduling classes for Smith during that time slot. 
Also, by assigning all MW and MWF times a cost of 
99, a 5-day schedule is avoided. 

One of the attractive features of this penalty struc- 
ture is the ability to generate and change automatically 
such a structure for a large number of faculty. For 
example, all values are initially set at 99, the most 
preferred time is reset to a value of 0 and the V-shaped 
costs are generated automatically with the excep- 
tion of any nonpreferred times. Also, back-to-back 
considerations are incorporated by resetting certain 
costs to 99. 

3.2. Room Upgrade Coefficients 

A scheme similar to that used for time preferences 
can be used for the room upgrades coefficients CU. 
The form of the cost function can reflect the cost of 
the upgrade. In the case of no prohibition on upgrades, 
it might reflect unused seats (capacity-enrollment); in 
the case of certain limitations, a high cost can be 
assigned to those upgrades, which allows upgrades but 
only at a high cost. In those cases where there are strict 
limitations on upgrades, certain arcs can be eliminated 
or given an upper bound on the flow of zero. 

3.3. Room Overflow Coefficients 

Room overflow refers to the situation where a partic- 
ular class cannot be scheduled with the existing re- 
sources. Since we want to schedule as much as we can 
in space we control, and that space may not be suffi- 
cient to meet all requirements, we want to make use 
of these coefficients. We assign a positive value to 
these coefficients and use them in conjunction with 
the weighting scheme of the next section. We can use 
the coefficients to express certain preferences. For 
example, we can set to 1 the cost of overflows for 
teaching assistants and a cost of 99 for a certain 
professor. In this way, we can force the overflows to 
occur in those areas of less preferred scheduling. 

3.4. Weighting Scheme 

The three cost components of: faculty preference 
(CA), room upgrade (CU), and room overflow (CO) 
can be viewed as competing objectives. This is in 
addition to their use to express preferences among 
individuals, for specific assignments, and so on. It is 
clear that we can significantly alter the assignments 
by weighting these objectives differently. For example, 
if we weight the faculty preferences at a zero level, we 
can improve room utilization but at the expense of 

moving a lot of assignments to different times and 
locations. 

In order to deal with these objectives, we impose 
relative weights on the various objective function com- 
ponents. Let Mk, k = 1, 2,... , 6 be the relative weight 
assigned to the objective function components. This 
results in an objective function of the form 

Ml CD(i)XD(i) + M2 E E CS(i, j)XS(i, j) 

+ M3 E E CA(i, j, s, t)XA(i, j, s, t) 
i j s t 

+ M4 E E CU(s, t)XU(s, t) 
s t 

+ M5 E E CR(s, t)XR(s, t) 
s t 

+ M6 E E CO(s, t)XO(s, t) (9) 
s I 

where the Mk are chosen to reflect the preferences of 
the decision maker for the various objectives. 

Our completed model is a capacitated network 
where the objective function coefficients reflect var- 
ious preferences. In addition, the various portions of 
the objective function are weighted to give additional 
consideration to the various objectives. 

4. DECISION SUPPORT SYSTEM 

The network-based DSS developed for the course 
scheduling process is made up of three primary soft- 
ware components, as illustrated in Figure 4. The first 
component is the Problem Generator which constructs 
an MPS-formatted problem file (IBM 1979) based on 
information extracted from three primary data sets: a 
room availability file, a faculty/subject to room/time 
preference file, and a faculty/subject request file. The 
room availability file contains the classroom inventory 
by size and time. 

The faculty/subject to room/time preference file 
contains the cost coefficient structure detailed in the 
previous section. It is treated as a data file rather than 
as specific programming statements in order to facili- 
tate the analysis of alternative structures. 

The faculty/subject file contains the requests from 
the departments for specific faculty and subject assign- 
ments. This file contains a faculty identifier, the de- 
partment, the course, the class size, and the preferred 
time. The time preferences will be incorporated into 
the previous file. 

The generated MPS-formatted problem file is passed 
to the second component of the support system- The 
Network Optimizer. The model that we solve as part 
of this DSS has an objective function (9) and is subject 
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Figure 4. Course scheduling decision support system. 

to constraints 2-7. Since we do not include the non- 
network side constraints of the form (8), the network 
optimizer can be any of the standard network opti- 
mization algorithms (Ali et al., Glover and Klingman, 
Mulvey 1978). 

Since there is no guarantee that constraints of the 
form (8) must be imposed to generate a feasible solu- 
tion, we initially solve the model without such con- 
straints. If the resulting solution does not contain any 
conflicts, then we are done. If there are conflicts that 
require constraints of the form (8), we use the gener- 
ated solution as an advanced starting point for the 
constrained problem. 

Such a solution methodology does not penalize the 
user. The incorporation of the nonnetwork side con- 
straints dictates the use of a constrained network 
algorithm or a general linear and integer programming 
package such as MPSX/MIP (IBM 1979). Such algo- 
rithms are computationally expensive for problems of 
this size. A widely used implementation strategy is to 
solve the unconstrained version and use the solution 
as an advanced start to a constrained algorithm, if 
required. 

One of the main advantages of using a standard 
network optimization algorithm is the ease of gener- 
ating solutions. Thus, the decision maker has the 

opportunity to make changes in the preference struc- 
ture, the penalty structure, and so on, and can easily 
generate solutions that reflect these changes. 

The third component is the Report Writer which 
takes the output from the optimizer and presents it in 
usable form. A report is generated for each department 
giving the teaching schedules for the faculty; a series 
of summary reports are generated detailing room uti- 
lization, time slot utilization, and an overall summary 
of the schedule. 

Prior to the implementation of a final schedule, the 
summary and room utilization reports are reviewed 
in order to assess the quality of the solution. The 
summary report indicates the total number of assigned 
sections for each department, the total number of 
section time shifts, the total number of room upgrades, 
and the total number of room overflows. Based on 
these composite figures, the decision maker may elect 
to modify the relative weights assigned to the individ- 
ual objective functions, or alter the data in the instruc- 
tor/section request file, or lock-in certain class assign- 
ments and then generate a new solution. When the 
decision maker is comfortable with the generated as- 
signment schedule, the Report Writer can be used to 
construct the individual faculty assignment reports for 
each department. 
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5. COMPUTATIONAL RESULTS 

In order to evaluate this model, we use data from the 
College of Business Administration at Texas A&M 
University. Over the past several semesters, the sched- 
uling involved about 120 full-time faculty, 40-60 
teaching assistants and part-time faculty, and over 300 
course sections. There are a total of 16 time slots such 
as MWF8, MWF9, TTH8, TTH9:30, and so on. The 
room inventory file is 

Size Number 
20 1 
36 3 
48 6 
64 4 
78 2 

120 3 
280 1 

It is important to note that our model has a reduced 
arc set. For example, only room upgrades to the next 
largest size are allowed, there is no crossing of depart- 
ment lines in faculty and subject assignments, and the 
room and time arcs are included only for feasible 
faculty and subject combinations. 

The initial form of the model employed a weighting 
scheme in (9) of 

M3 1 (Time Shift) 

M4= 100 (Room Upgrade) (10) 

M6= 10000 (Room Overflow) 

M = M2 = MI = 0. 

This form of the objective function puts the emphasis 
on avoiding room overflows by allowing room up- 
grades and time shifts; time shifts are preferred to 
room upgrades. Recall that the V-shaped function 
within the individual coefficients will control unrea- 
sonable changes in a faculty member's schedule. 

Table II contains the computational results for the 
network model, (1)-(7) with objective function, (9)- 
(10). The table also presents a comparison of the 
solution times for a primal simplex network algorithm 
(Glover and Klingman) and the general purpose linear 
programming algorithm MPSX (IBM). These results 
are not unexpected, as the efficiency of network algo- 
rithms is well documented (Ali et al., Glover and 
Klingman, and Mulvey 1978). The results are pre- 
sented for the purpose of comparison. While one could 
use a general purpose algorithm to solve these models, 
it is clear that as the size of the model increases and 
repeated solutions are required, only the use of a 
special purpose network algorithm is realistic. The 
cost of the run is presented because it combines all 

Table II 
Solution Results for Penalized Model, (1)-(7) 

Semester 

Spring Fall Spring 
Item 1985 1985 1986 

Problem Description 
Number of rows 330 338 311 
Number of columns 2231 2658 2009 
A matrix nonzeros 6383 6643 5742 
Density 0.75 0.74 0.80 
Number of instructors 161 180 154 
Number of sections 312 319 287 

MPSX Resultsa 
Input seconds 0.6 0.6 0.6 
Output seconds 1.2 1.2 1.2 
Optimization seconds 60.6 105.6 49.8 
Number crash iterations 1703 1700 1510 
Number phase I iterations 1953 2058 1763 
Total iterations 3168 3249 2845 
Cost ($)b 109.82 141.53 91.01 

Network Resultsa 
Input seconds 1.2 1.33 1.14 
Output seconds 1.13 1.23 1.08 
Optimization seconds 0.494 0.585 0.411 
Number of pivots 3045 3381 2603 
Cost ($)b 4.02 4.15 3.62 

a The computer was an Amdahl 5860 with 32MB of memory, 
with an MVS operating system. 

'The cost represents total processing using the Texas A&M 
University charging algorithm, which includes I/O, memory, 
and CPU utilization. These costs do not include printing. 

aspects of running a job: memory, I/O, disk, and 
execution time and converts these to a single number. 
In that sense, the cost is a measure of all resources 
required to run a job. 

Table II shows that the approach presented here, 
when combined with an efficient network optimizer, 
can be used to solve large, complex assignment 
models. Once the data sets are created, repeated so- 
lution of a model can be accomplished effectively. 

It is important to note that while we initially antic- 
ipated that the optimal solution would have multiple 
assignments of faculty to the same time slot, this did 
not occur in any of the solutions. This is due to the 
structure of the V-shaped function that prevents such 
multiple assignments. 

While the computational results are impressive, we 
are more interested in the quality of the solution in 
terms of the teaching assignments. In order to com- 
pare the quality of the solutions, we must clearly 
define the processes used. 

5.1. Manual Process 

1. The faculty submits course and time preferences 
to the department head. 
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2. The department head prepares a preliminary 
schedule using rooms assigned to the department. 
The department head also may exchange rooms 
with other departments. Some time and location 
tradeoffs and room upgrades may take place. 

3. All departments meet with unassigned rooms and 
courses and attempt to assign the maximum pos- 
sible. This will result in time and location tradeoffs 
as well as room upgrades. The outcome of this step 
is referred to as the best manual solution. 

4. A list of unassigned rooms and courses is sent to 
the university for scheduling. 

This process typically takes place over a 7-10 day 
period and involves about 6 hours of time on the part 
of each department head or their designee. 

5.2. Automated Process 

1. The departments submit the course and time pref- 
erences to the Dean's Office. This may include 
preferences for back-to-back assignments, avoiding 
certain times, specific teaching schedules, and so 
on. 

2. The model is solved and checked for any infeasi- 
bilities, for example, two sections in the same room 
at the same time, and so on. It is this schedule with 
infeasibilities corrected that is referred to as the 
best network solution. This may require making 
certain assignments and resolving the model. 

3. The results are returned to the department for 
review and any further alteration in assignments. 

The input process typically takes about an hour once 
the data base has been built. A comparison of the 
solutions is given in Table III. 

Based on the cost structure in (10), the network 
model significantly reduces the number of unassigned 
courses and rooms. The number of unassigned rooms 
is reduced by at least 30 per semester. This results in 
a similar reduction in unassigned courses. The algo- 
rithm achieves this by moving course and time assign- 
ments, indicated by Total Time Shifts in Table III. 
This requires anywhere from 43 to 54 changes in a 
semester schedule. The new assignments are presented 
to the departments for their evaluation. The number 
of upgrades appears to increase significantly; however, 
the actual change is smaller because the manual so- 
lution process includes such changes as the depart- 
ment heads bargaining for rooms among themselves. 

Note the increase in the number of unassigned 
rooms in the Spring 1986 semester. This is due to 
increased enrollment which has pushed many courses 
beyond the smaller room capacities. The majority of 
the unassigned rooms are in the smallest room sizes. 

The network model can be used to evaluate trade- 
offs among various objectives; for example, room 
utilization versus room upgrade, time shift versus 
faculty preferences, and so on. Because of the efficient 
solution procedure, we can allow the decision maker 
to evaluate such tradeoffs by changing the penalty 
structure, (9)-(10) and resolving the model. Table IV 
presents a series of such analyses for various penalty 
structures. It is clear from these results that as the 
penalty on faculty preferences increases, the number 
of time shifts decreases. 

The problems that were solved for this paper did 
not require the solution of models with the additional 
nonnetwork constraints (8). That is, there were no 
multiple assignments of professors to courses, or 
courses to rooms; thus, there was no need to adjoin 
the additional constraints. 

Had there been multiple assignments, we adjoin the 
appropriate constraints (8), use the generated solution 
as an advanced starting point, and solve the model 
using MPSX/MIP or a similar general purpose 
algorithm. 

Table III 
Comparison of Manual Solution 

to Network Model 
Spring Fall Spring 

Best Solution 1985 1985 1986 

Manual Process 
Unassigned room/periods 94 85 108 
Unassigned courses 46 42 35 
Room upgrades 15 14 11 

Network Model 
Unassigned room/periods 53 54 78 
Unassigned courses 5 1 1 5 
Room upgrades 25 36 3 
Total time shifts 54 47 43 

1 period 38 35 32 
2 periods 14 9 11 
3 periods 2 3 0 

Table IV 
Tradeoff Analysis for Spring 1985 Assignments 

M3= 1 M3= 10 M3 = 10000o 
M4= 10 M4=- M4=10 
M6 = 10000 M6 = loooob M6 = 1 

Unassigned courses 5c 5 52 
Unassigned rooms 53 53 100 
Room upgrades 25 43 0 
Time shifts 54 43 0 

1 period 38 36 0 
2 periods 14 7 0 
3 periods 2 0 0 

a Emphasis on meeting faculty timing preferences. 
b Emphasis on assigning all courses. 
c From Table III. 
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The solution of large-scale network models with 
nonnetwork side constraints has been the subject of 
recent research. Most approaches based on partition- 
ing the problem constraints into network and nonnet- 
work bases that use a single surrogate constraint or a 
general purpose algorithm can be accelerated by an 
advanced starting solution (Venkataramanan 1987). 

The network model presented here provides a reli- 
able approach for the assignment of courses to instruc- 
tors, to rooms, and to time slots. The model and the 
solution method are much more robust than previous 
models in both the detail and size of the problem that 
can be solved effectively. Based on the example data, 
the quality of the solution generated by the model is 
as good as that generated by the manual process. The 
ease with which the model can be changed and re- 
solved makes it possible to use the model to evaluate 
alternative scenarios. 

Once the data base for a particular setting is created, 
it is likely that it can be modified easily for future 
applications. For example, it is likely that the Fall, 
Spring, and Summer schedules will remain somewhat 
the same from year to year. Thus, rather than re-create 
the data base, it can be modified to reflect current 
needs and preferences. 

5.3. Some Comments on Implementation 

Since each instructor may state his or her preferred 
time for each course section and time, there was no 
incentive to try to trick the system. There is no advan- 
tage, and in fact it is a disadvantage, to state anything 
but the most preferred time for each course section. 
The tactic most observed was the overstatement of 
enrollment to attempt to capture a larger or more 
preferred room. The strict enforcement of the 75% 
occupancy rule by the university quickly discouraged 
this behavior. 

In the face of less predictable enrollments than those 
presented here, the decision maker may want to ex- 
amine the impact of different penalty structures on 
room upgrades and overflows. Since we are solving a 
capacitated network model, we can easily and quickly 
resolve the model under different assumptions. 

For example, if there are wide variations in enroll- 
ment, the penalty structure on the room overflow can 
be relaxed. This allows assignment to larger rooms at 
the expense of other preferences. Given the ease with 
which this model can be set up and solved, such 
repeated analysis is feasible. 
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