Advanced consistency
methods
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Relational consistency
(Chapter 8)

Relational arc-consistency
Relational path-consistency
Relational m-consistency

Relational consistency for

Unit-resolution is relational-arc-consistency
Pair-wise resolution is relational path-

K consistency

Boolean and linear constraints:

/
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Consider a constraint network over five integer domains,
where the constraints take the form of linear equations and
the domains are integers bounded by

D xin[-2,3]

D yin[-5,7]

R {Xyz}:=x+y=2
R {zth=z+1 =1

fromD_x and R_xyz infer z-y in [-2,3] from this
and D_y we can infer z \in [-7,10]

/
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Let R be a constraint network , X={x_1,...,x_n},
D 1,...,D n, R S arelation.

R S in Ris relational-arc-consistent relative to x
in S, iff any consistent instantiation of the
variables in S- {x} has an extension to a value
in D_x that satisfies R_S. Namely,

pS—-x)cxm, R, ® D,

/
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If arc-consistency is not satisfied add:

R, <R, Nz, R, ®D,
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Example

R {xyz} ={(a,a,a),(a,b,c),(b,b,c)}.

This relation is not relational arc-consistent, but
If we add the projection R_{xy}=
{(a,a),(a,b),(b,b)}, then R_{xyz} will become
relational arc-consistent relative to {z}.

To make this network relational-arc-consistent,
we would have to add all the projections of
R_{xyz} with respect to all subsets of its

variables.
\_ /
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Let R_S and R_T be two constraints in a network.

R_S and R_T are relational-path-consistent relative to a
variable x in S U T iff any consistent instantiation of the
variables in S U T - {x} has an extension to a value in the
domain D_x, that satisfies R_S and R_T simultaneously;

pP(A)c, R, ®R,,
A=S5SUT —x

A pair of relations R_S and R_T is relational-path-consistent iff
it is relational-path-consistent relative to every variable in SU T.
A network is relational-path-consistent iff every pair of its
relations is relational-path-consistent. /
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Example

we can assignto x, Yy, | and t values that are
consistent relative to the relational-arc-
consistent network generated in earlier. For
example, the assignment

(<x,2>,<y,-5>,<t,3>,<|,15>) is consistent, since
only domain restrictions are applicable, but
there is no value of z that simultaneously
satisfies x+y = z and z+t = |. To make the two
constraints relational path-consistent relative to
z we should deduce the constraint x+y+t = |
and add it to the network.

\_ /
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Relational m-consistency

\_

let R {S 1}, ..., R _{S_m} be m distinct constraints.

S 1},. {S m} are relational-m-consistent relative to x in

i=1}"m S_i iff any consistent instantiation of the variables in A =

|S= 1}*m S_i-{x} has an extension to x that satisfies R_{S_1}, .
m

R
U_{i
U
R m} simultaneously;

il
A
pA)cz,®,_, R, ®D
A=§ 0.5 —x

X

A set of relations { R_{S_1}, ..., R {S_m} } is relational-m-consistent}
iff it is relational-m-consistent relative to every variable in their scopes.
A network is relational-m-consistent iff every set of m relations is
relational-m-consistent. A network is strongly relational-m-consistent if
it is relational-i-consistent for every i <= m.
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A set of relations R {S 1}, ... ,R {S_m}is
relationally (i,m)- con3|stent} iff for every subset of
variables A of size i, Ain U {j=1}"m S _j, any
consistent aSS|gnment to A can be extended to an
assignment to U_{i=1}"m S_i - A that satisfies all m
constraints simultaneously.

A network is relationally (i,m)-consistent iff every set
of m relations is relationally (i,m)-consistent. A
network is strong relational (i,m)-consistent iff it is
relational (j,m)-consistent for every | <=1.

/
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Extended composition

~
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The extended composition of relation R _{S
relativeto Ain U {i=1}* m S i, EC_ A (R _{S_
is defined by

1}, ..., R {S_m}
1}, ..., R_{S_m}),

EC_ A(R {S 1},...,R {S m})=\pi A (\oin_{i=1}*m R_{S_i})

If the projection operation is restricted to subsets of size i, it is
called extended (i,m)-composition.

Special casses: domain propagation and relational arc-
consistency

D x < pi_x(R_S\Join D _x)
R S-x € pi_S-x (R_S\Join D_x)

/

Fall 2003 ICS 275A - Constraint Networks 11



4 h

Directional relational consistency

Given an ordering d=(x_1, ...x_n), Ris
m-directionally relationally consistent iff
for every subset of constraints R_{S 1},
..., R_{S_m} where the latest variable is
X_|,and forevery Ain{x_1, ..., x_{I-1},
every consistent assignment to A can be
extended to x_| while simultaneously
satisfying all these constraints.

\_ /
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Summary: directional i-consistency

> e E
' //fi
D L n®/ ) i (D®
@
C C@ ‘B C -
Adaptive d-path d-arc
E:ED,E+C,E=B : :
D:D+C,D=A
C:C=B

(o L
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Example: crossword puzzle

12345 = 1(H,0,S,E,S),(L,A,S,E,R),(S,H,E,E,T),
(S,N,A,LL),(S,T,E,E,R)}

36012 = 1(H,LK,E),(A,R,O,N), (K,E,E,T), (E,A,R,N),
(S,A,M,E)}

so1n = 1R, U,N),(S,U,N), (L,E,T), (Y,E,S), (E,A,T), (T,E,N)}

8.9.10,11 — R3,6,9,12

10,13 — {(Na O)a (Ba E)a (Ua S)a (L T)}

12,13 — R10,13

R
R
R
R
R
R

\_
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Example: crossword puzzle,

DRC_2

bucket(x,)
bucket(x,)
bucket(xy)
bucket(x,)
bucket(xs)
bucket(x)
bucket(x+)
bucket(xg)
bucket(xy)
bucket(x,y)
bucket(x,,)
bucket(x,5)

bucket(x,3)

' = ™
R1,2,3,4,5 \
HZ,3,4,5
R3,6,9,12 \H,%,ib-
H4,5l,6 9,12
Rs 711 \H5,6,9,12
H6,7l,9,1 1,12
H—/,Ql,l 1,12
Rgo.10.11 \
Hg,l%),l 1 \Hg,l 1,12
R]O,l3 Hl(}ll,lz\
\Empty relation
R]Z,l?

... exit.

Fall 2003

ICS 275A - Constraint Networks

15




/

Complexity

\_

Even DRC_2 is exponential in the
induced-width.

Crossword puzzles can be made
directional backtrack-free by DRC 2
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Domain and constraint tightness

\

Theorem: a strong relational 2-consistent constraint
network over bi-valued domains is globally consistent.
m-tightness: R_S of arity r is m-tight if, for any variable x_i
\in S and any instantiation of the remaining r-1 variables in S

- X_1I, either there are at most m extensions of to x_i that
satisfy R_S, or there are exactly | D_i | such extensions.

Theorem: A strong relational k-consistent constraint network
with at most k values is globally consistent.

Example: D _i={a,b,c},

K R {x1,x2,x3} = { (aaa),(aac),(abc),(acb)(bac)(bbb)(bca)(cab)(cba)(ccc)} /
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Inference for Boolean theories
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Resolution is identical to Extended 2
decomposition

Boolean theories are 2-tight

Therefore DRC_2 makes a cnf globally
consistent.

DRC_2 expressed on cnfs is directional
resolution

/
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Directional resolution

1.

DIRECTIONAL- RESOLUTION

Input: A CNF theory ¢, an ordering d = )y, ... , (), of its variables.
OutputA decision of whether ¢ is satisfiable. If it is, a theory Fg(y),

equivalent to ¢, else an empty directional extension.
Initialize: generate an ordered partition of clauses into buckets.
buckety, ... , bucket,, where bucket; contains all clauses whose
highest literal is €);.
for ¢ < n downto 1 process bucket;:
if there is a unit clause then (the instantiation step)
apply unit-resolution in bucket; and place the resolvents in their right buckets.
if the empty clause was generated, theory is not satisfiable.
else resolve each pair {(aV Q,), (8 V ~Q;)} C bucket;.
if v = a Vv B is empty, return E4(yp) = {}, theory is not satisfiable
else determine the index of v and add it to the appropriate bucket.
return Fq(yp) « |J, bucket;

Figure 4.20: Directional-resolution
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DR resolution = adaptive-consistency=directional
relational path-consistency

Bucket A

Bucket B

Bucket C

Bucket D

Bucket E V /

Directional  Extension Eg

Width w=23
Induced width w'= 2
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/ Directional Resolution < \
Adaptive Consistency

Knowledge compilation Model generation

.........................
__________________

— S

|ﬁf BVC —AVBVE

bucket B | spvcvD BVCVE B—\
S |

bucket C \‘c C

bucket A

bucket D -‘1._"\._ DVE . f’ D=1 |/

|
S . | /
{ bucket E E =0
Directional Extension
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History

1960 — resolution-based Davis-Putnam algorithm

1962 — resolution step replaced by conditioning

(Davis, Logemann and Loveland, 1962) to avoid

memory explosion, resulting into a backtracking search
algorithm known as Davis-Putnam (DP), or DPLL procedure.

The dependency on induced width was not known in 1960.

1994 — Directional Resolution (DR), a rediscovery of
the original Davis-Putnam, identification of tractable classes

K (Dechter and Rish, 1994). /
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Complexity of DR

Theorem 4.7.6 (complezity of DR)

Given a theory @ and an ordering of its variables o, the time complexity of algorithm DR
along o is O(n-9"), and E,(p) contains at most n-3">"" clauses, where w] is the induced
width of @’s interaction graph along o. O

2-cnfs and Horn theories

Theorem 4.7.7 Given a 2-cnf theory @, its directional extension Ey(@) along any order-

ing o is of size O(n - w:?), and can be generated in O(n - w}?) time.

Theorem 4.7.8 The consistency of Horn theories can be determined by unit propagation.
If the empty clause is not generated, the theory is satisfiable. O
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Row convexity

Functional constraints: A binary relation R_{ij}
expressed as a (0,1)-matrix is functional iff there is at
most a single "1" in each row and in each column.

Monotone constraints: Given ordered domain, a binary
relation R_{ij} is monotone if (a,b) in R_{ij} and if ¢ >= a,

then (c,b) in R_{ij}, and if (a,b) in R_{ij} and ¢ <= Db, then
(a,c) in R_{ij}.

Row convex constraints: A binary relation R_{ij}
represented as a (0,1)-matrix is row convex if in each row

K (column) all of the ones are consecutive} /
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Example of row convexity

~

011
R,=1010

@ [ 10 @
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Lemma: Let F be a finite collection of
(0,1)-row vectors that are row convex
and of equal length. If every pair of rows
have a non-zero intersection, then all of
the rows have a non-zero entry in
common.

\_ /
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Theorem:

Theorem: Let R be a path consistent
binary constraint network. If there exists
an ordering of the domains D 1, ..., D n
of R such that the relations of all
constraints are row convex, the network

IS globally consistent and is therefore
minimal.

\_ /
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Example:

\_

Cube 3-dimensional recognition
Bi-valued binary constraints
2-colorability
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Linear constraints

\_

inequalities of the form

ax_ i-bx j=c,

ax i-bx j<ec,

ax_ i-bx j<=c,

a, b, and ¢ are integer constants.

However, it can be shown that each element in the closure under
composition, intersection, and transposition of the resulting set of
(0,1)-matrices is row convex, provided that when an element is
removed from a domain by arc consistency, the associated (0,1)-
matrices are condensed."

Hence, we can guarantee that the result of path consistency will be
row-convex and therefore minimal, and that the network will be
globally consistent for any binary linear equation over the integers.

/
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Identifying row-convex constraints

Theorem: [Booth and Lueker,1976]: An
m x n (0,1)-matrix specified by its f
nonzero entries can be tested for
whether permutation of the columns
exists such that the matrix is row convex
in O(m + n + f) steps.

\_ /
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Linear inequalities

~

Consider r-ary constraints over a subset of variables
x_1, ... x_rof the form

a1x 1+..+arxr<=c,a_iare rational
constants. The r-ary inequalities define
corresponding r-ary relations that are row convex.

Since r-ary linear inequalities that are closed under
relational path-consistency are row-convex, relative
to any set of integer domains (using the natural
ordering).

Proposition: A set of linear inequalities that is
closed under RC_2 is globally consistent.

/
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Linear inequalities

Gausian elimination with domain
constraint is relational-arc-consistency

Gausian elimination of 2 inequalities
iIsRelational path-consistency

Theorem: directional path-consistency
is complete for CNFs and for linear
inequalities

\_ /
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DIRECTIONAL-LINEAR-ELIMINATION (i, d)

Input: A set of linear inequalities @, an ordering d = x4, ... , Ty.

OQutputA decision of whether  is satisfiable. If it is, a backtrack-

free theory Eg(p).

1. Initialize: Partition inequalities into ordered buckets.

2. fori+— n downto 1 do

3. if ; has one value in its domain then
substitute the value into each inequality in the bucket
and put the resulting inequality in the right bucket.

4, else,for each pair {a, 3} C bucket;, ccrmpute T= eliry (o, )

if v has no solutions, return E4(p) = {}, “inconsistency”
else add « to the appropriate lcmer bucket.

\ 5. return Ey(w) «— | ). bucket;

Figure 4.22: Fourier Elimination; DLE
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Directional linear elimination, DLE :
generates a backtrack-free representation

Theorem 4.8.3 Given a set of linear inequalities p, algorithm DLE (Fourier elimina-
tion) decides the consistency of ¢ over the Rationals and the Reals, and it generates an
equivalent backtrack-free representation. O

\_ /
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Example

bruckets : Bxa+3x2 — 31 < 5, Ta+ o1 = 2. — 14 =< 0,
brckets : s =< 5, 1 + s — 3 =< —10

buckets : x1 + 230 << 0.

brucket, :

Figure 4.23: initial buckets

buckety : Bxy+ 3T — 31 <5, Ty +31 <2, —x34 =10,
buckets : T3 <5, T1+x2— 23 < —10

buckety : 1+ 2z, <0 || 325 — 2y < 5,77, + 25 < =5
bucket; : || r; < 2.

\ Figure 4.24: final buckets /
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