Stochastic greedy local search

Chapter 7

-~

Example: 8-queen problem

\

Choose a full assignment and iteratively
improve it towards a solution

Requires a cost function: number of unsatisfied
constraints or clasuses. Neural networks uses
energy minimization

Drawback: local minimas
Remedy: introduce a random element
Cannot decide inconsistency

Procedure SLS

Input: A constraint network R = (X, D, C), number of tries MAX_ TRIES. A
cost function.

Output: A solution iff the problem is consistent, ”false” otherwise.

1. for i=1 to MAX_TRIES
e initialization: let @ = (a4, ..., a,) be a random initial assignment to
all variables.
e repeat

(a) if @ is consistent, return @ as a solution.

(b) else let Y = {< x;,a; >} be the set of variable-value pairs that
when z; is assigned a}, give a maximum improvement in the cost
of the assighment; pick a pair < z;,a} >€Y,
a+ (ay,...,aq;_1,a; a4y, ...,a,) (just flip a; to al).

e until the current assignment cannot be improved.
2. endfor

3. return false

~

_

Example 7.1 Consider the formula ¢ = {(=C)(=AV-BVC)(-AVDVE)(-BV-C)}.

Assume that in the initial assignment all variables are assigned the value 717. This
assignment violates two clauses, the first and the last, so the cost is 2. Next we see that
flipping A, E or D will not remove any inconsistency. Flipping C to 70" will satisfy the two
violated clauses but will violate the clause (-4 V =BV (), yielding a cost of 1. Flipping
B to =B will remove one inconsistency and has a cost of 1 as well. If we flip C' to —C,
and subsequently flipping Bto —B yields a cost of 0 — and a solution. O

Example:
z divides y,x,t
z ={2,3,5}, x,y ={2,3,4}, t={2,5,6}

/

_

Plateau search: atlocal minima continue search sideways.

Constraint weighting: use weighted cost function
The cost C_i is 1 if no violation. At local minima increase the weights of

violating constraints. P (c_z) _ Z w.C (c_z)
Tabu search:

prevent backwords moves by keeping list of asigned variable-values. Tie-
breaking rule may be conditioned on historic information: select the value

that was fliped least recently

Automating Max-flips:
Based on experimenting with a class of problems
Given a progress in the cost function, allow the same number of flips used
up to current progress.

/

Combine random walk with greediness

At each step:
® choose randomly an unsatisfied clause.
® with probability p flip a random variable in the
clause, with (1-p) do a greedy step minimizing the
breakout value: the number of new constraints that
are unsatisfied

Procedure WalkSAT

Input: A network R = (X, D,), number of flips MAX FLIPS, MAX TRIES,
probability p.

Output: True iff the problem is consistent, false otherwise.

1. For i=1 to MAX TRIES do
2. Compare best assignment with @ and retain the best.

(a) start with a random initial assignment a.
(b) for i=1 to MAX_FLIPS

e if a is a solution, return true and a.
e else,
i. pick a violated constraint ', randomly
ii. choose with probability p a variable-value pair < z,ad" > for
x € scope(C'), or, with probability 1—p, choose a variable-value
pair < r,a’ > that minimizes the number of new constraints
that break when the value of x is changed to ¢/, (minus 1 if the
current constraint is satisfied).

iii. Change z’s value to a’.
3. endfor

4. return false and the best current assignient.

4 A

Example of walkSAT:

start with assignment of true to all vars

Example 7.2 Following our earlier example 7.1.1. we will first select an unsatisfied

clause, such as (—BV —C'), and then select a variable. If we try to minimize the num-
ber of additional constraints that would be broken, we will select B and flip its value.
Subsequently, the only unsatisfied clause is =C' which is selected and flipped. 0

_ /

~

Pick a variable and a value and compute delta: the
change in the cost function when the variable is flipped
to the value.

If change improves execute it,

Otherwise it is executed with probablity e*(-delta/T), T
IS a temperature parameter.

The algorithm will converge if T is reduced gradualy.

/

Guarantee to terminate at local minima

Random walk on 2-sat is guaranteed to
converge with robablity 1 after N2 steps,
when N is the number of variables.

Proof:
there is %2 chance that a flip will reduce the distance to a satisfying
assignment N/2 distance, by 1.
Random walk will cover this distance in N*2 steps

Analysis breaks for 3-SAT

Empirical evaluation shows good performance
compared with complete algorithms

/

_

We can use exact hybrids of search+inference
and replace search by SLS (Kask and Dechter
1996)

Good when cutset is small

The effect of preprocessing by constraint
propagation on SLS (Kask and Dechter 1995)
Great improvement on structured problems
Not so much on uniform problems

-

~

_

Structured (hierarchical 3SAT cluster structures)
vs. (uniform) random.

Basic scheme :
Apply preprocessing (resolution, path consistency)

Run SLS
Compare against SLS alone

/

4 h

Summary:

For structured problems, enforcing local consistency will
improve SLS

For uniform CSPs, enforcing local consistency is not cost
effective: performance of SLS is improved, but not enough to
compensate for the preprocessing cost.

_ /

-

Background.:

Cycle cutset technique improves backiracking
by conditioning only on cutset variables.

4 h

Background:
Tree algorithm is tractable for trees.

Networks with bounded width are tractable®.

Basic Scheme:
Identify a cutset such that width is reduced to desired value.

Use search with cutset conditioning.

_ /

Cutset 'Y

x, =10, 1} xj={0,1}

Tree variables X =——
S

Cmin = minC(y) = minmin{C(X | Y = y)}

k Y=y Y=y X=r

-

Local search on Cycle-cutset

~

_

@ e

Tree Algorithm : minimizing the cost of a tree-like subnetwork:

where Rziyzj(a.g_,_ a;) is the constraint between z and z; and is either 0 if (a;,a;) €
R., ., or 1, otherwise.

Input: An arc consistent network R = (X, D,). Variables X partitioned into
cycle cutset Y and tree variables Z, X = ZUY. An assignment Y = .

Output: An assignment Z = z that minimizes the number of violated constraints
of the entire network when Y = .

Initialization: For any value y[i| of any cutset variable y;. the cost) (y[i], y) is

1. Going from leaves to root on the tree,

(a) for every variable, z; and any value a; € D, . compute,

C'Yzi(a-f.w @) — Z 'Tnina.jeDzj (C:ij(aj‘!g) + Rzi,zj‘ (aiw_ aj))

{zjlz; child of z;}

(b) endfor

-~

~

2. Compute, going from root to leaves, new assignment for every tree variable z;:

(a) for a tree variable z;, let D., be its consistent values with v,, the value
assigned to its parent p;, compute
s arg mina e o, (Co(05,5) + Ry (i,)

(b) endfor

3. return (< zy,a; >, ..., < 2, ap >).

_

_

Input: a CSP, a partition of the variables into
and
Output: an assignment to all the variables

Within each try:
Generate a random initial asignment,
and then alternate between the two steps:

1. Run (arc-consistency+assignment)
on the problem with fixed values of cutset variables.
2. Run GSAT on the problem with fixed values of tree variables.

/

-~

~

Theorem 7.1

Theorem 7.1 The Tree Algorithm in Figure 7./ is quaranteed to find an assignment
that mimimazes the number of wolated constraints in every tree-like subnetwork, condi-
tioned on the cutset values.

/ Results: GSAT with Cycle-Cutset \

(Kask and Dechter, 1996)

Binary CSP, 100 instances per line

, 100 variables, 8 values, tightness 44/64

number of average Time | GSAT | GSAT time | GSAT4CC | GSATH+CC time
constraints | cutset size | Bound | solved | per solvable solved per solvable
125 11 % 29 sec 46 10 sec 90 2 sec
130 12 % 46 sec 29 16 sec TT 6 sec
135 14 % 65 sec 13 23 sec 52 10 sec
Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 40 /64

number of average Time | GSAT | GSAT time | GSAT4CC | GSAT4+CC time
constraints | cutset size | Bound | solved | per solvable solved per solvable
160 20 % 92 sec BB 20 sec 90 7 sec
165 21 % 60 sec 13 30 sec 80 17 sec
170 22 % 70 sec 4 4) sec a4 22 sec

Binary CSP, 100 instances per line,

100 variables,

8 values, tightness 32,/64

number of average Time | GSAT | GSAT time | GSATHCC | GSAT4+CC time
constraints | cutset size | Bound | solved | per solvable solved per solvable
235 34 % 52 sec 69 14 sec 66 18 sec
240) 35 % 76 sec a7 22 sec a7 29 sec
245 36 % 113 sec 40 43 sec 40 43 sec
Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 28 /64

number of average Time | GSAT | GSAT time | GSATH+CC | GSAT4+CC time
constraints | cutset size | Bound | solved | per solvable solved per solvable
290 41 % 59 sec 74 13 sec 30 25 sec
204 42 % 85 sec 80 25 sec 23 41 sec
300 43 % 162 sec 63 45 sec 19 82 sec

Table 1: GSAT vs. GSAT + CC

-

Results GSAT with Cycle-Cutset

(Kask and Dechter, 1996)

~

GSAT versus GSAT+CC

70

60

50

40 —e—GSAT
—m— GSAT+CC

of problems solved
w
o

—
o

o

14 22 36 43
cycle cutset size

Summary:

A new combined algorithm of SLS and inference based on
cutset conditioning
Empirical evaluation on random CSPs

SLS combined with the tree algorithm is superior to pure SLS
when the cutset is small

_

/

