Directional consistency

Chapter 4

-~

Backtrack-free search: or

What level of consistency will guarantee global-
consistency

~

_

, T;) can be consistently extended to include z;,;.

Definition 4.1.1 (backtrack-free search) A constraint network is backtrack-free rel-
ative to a given ordering d = (z1,...,za) if for every ¢+ < n, every partial solution of
I{Ih

/

-~

Directional arc-consistency

another restriction on propagation

{white,blue,black}
{red,white,blue}
={green,white,black}
D1={red,white,black}
X1=x2, x1=x3,x3=x4

D4
D3
D2

4 h

Directional arc-consistency:

another restriction on propagation

Definition 4.3.1 (directional arc-consistency) A network is directional-arc-consistent

relative to order d = (T4, ...,Tn) iff every variable z; is arc-consistent relative to every
variable £; such that ¢ < j.
Ay
D4={white,blue,black} X3
D3={red,white,blue}
D2={green,white,black} .

D1={red,white,black}
X1=x2, x1=x3,x3=x4

-

Directional arc-consistency

another restriction on propagation

D4={white,blue,black}
D3={red,white,blue}
D2={green,white,black}
D1={red,white,black]}
X1=x2, x1=x3, x3=x4

After DAC:

D1= {white},
D2={green,white,black]},
D3={white,blue},
D4={white,blue,black}

-~

Algorithm for directional arc-
consistency (DAC)

~

DAC(R)

Output: A directional arc-consistent network.

1. fori=ntol by —1do

2. for each 5 <i1st. Rue R,

3. D; — Dy Ny Ry W D), (this is revise((z;), z;)).
4. end-for

Figure 4.6: Directional arc-consistency (DAC)

Complexity: O(ek”)

_

Input:A network R = (X, D,C), its constraint graph &, and an ordering d = (z1,, Tn).

4 h

Directional arc-consistencymay not be enough -
Directional path-consistency

D = {red, blue}

(a) (b)

Definition 4.3.5 (directional path-consistency) A network R is directional path-
consistent relative to order d = (z3,...,2y,) iff for every k > 1,3, the par {z;,z;} 15
path-consistent relative to zp.

8

mgorithm directional path consistency (DPC)

DPC(R)
Input:A binary network R = (X, D, C) and its constraint graph G = (V, E), d = (21,, Tp).
Output:A strong directional path-consistent network and its graph G' = (V, E').
Initialize: £ — E.
1. fork=mnto 1 by-1do
(a) ¥ ¢ < k such that x; is connected to zx in the graph, do
D — Dy Nay(Ry, W Dy) (Revise((x;), zr))
(b) Vi,j < kst (zqz),(z;,z) € E' do
R;; — Ry Ny (Ry W Dy W Ry;) (Revise-3((zy, 5), zx))
E — E'U (z;,z4)
endfor
return The revised constraint network R and G' = (V, E').

e S

Theorem 4.3.7 Given a binary network R and an ordering d, algorithm DPC generates
a largest equivalent, strong, directional-path-consistent network relatwve to d. The tune and
space complexity of DPC' is O(n*k?), where n is the number of variables and k bounds

&he doimain Sizes.

4 h

Directional i-consistency

Definition 4.3.8 (directional i-consistency) A network is directional i-consistent rel-

ative to order d = (T1,...,Tn) iff every i — 1 wvariables are i-consistent relative to every
variable that succeeds them in the ordering. A network is strong directional t-consistent
if it 15 directional j-consistent for every j < +.

_ /

10

Algorithm directional iI-consistency \

Directional i-consistency (DIC;(R))

Input: a network R = (X, D, C), its constraint graph G = (VI E), d =(z1,... ,z,).
output: A strong directional ¢-consistent network along d and its graph G' = (V, E') .
Initialize: ' — E, C' — C.

1. for j =ntolby-1do

2. let P = parents(z;).

3. if |P|<i—1 then

4. Revise(P, ;)

5. else, for each subset of ¢ — 1 variables S, § C P, do

6. Revise(S, =)

7. endfor

8. C" «— C"J all generated constraints.

8. E — E'U{(zg,xm)|Tt, Tm € P} (connect all parents of x;)

0. endfor.
10. return C' and E’.

Figure 4.9: Algorithm directional ¢-consistency (DIC;)

-~

Graph aspects of DPC

~

DPC recursively connects parents in the

ordered graph, yielding:
Induced graph
Induced-width
Min-width ordering
Max-cardinality ordering
Min-fill ordering
Chordal graphs

12

4 h

The induced-width

W (D) =3 W (D) =2

W (@) =3 W (d)=2

width: is the max number of parents in the ordered graph

Induced-width: width of induced graph: recursivlely connecting parents going from
last node to first.

Induced-width w*(d) = the max induced-width over all nodes
Induced-width of a graph: max w*(d) over all d

13

\

Example 4.1: Figure 4.1 presents a constraint graph G over
six nodes, along with three orderings of the graph: d, =
(F,E,D,C,B,A), its reversed ordering d, = (A,B,C,D,E, F), and
d; = (F,D,C,B,A,E). Note that we depict the orderings from
bottom to top, so that the first node is at the bottom of the
figure and the last node is at the top. The arcs of the graph
are depicted by the solid lines. The parents of A along d, are
{B,C,E}. The width of A along d, is 3, the width of C along d,
Is 1, and the width of A along d, is 2. The width of these
three orderings are: w(d,) = 3, w(d,) = 2, and w(d;) = 2. The
width of graph G is 2.

/

14

-~

Induced-width

o= o ! > s

(c)

-~

Induced-width and DPC

~

The induced graph of (G,d) is denoted (G*,d)

The induced graph (G*,d) contains the graph

generated by DPC along d, and the graph

generated by directional consistency along d

/

16

4 h

Refined Complexity using induced-width

Theorem 4.3.11 Given a binary network 'R and an ordering d, the complexity of DPC
along d is O((w*(d))? -n - &), where w*(d) is the induced width of the ordered constraint
graph along d.

Theorem 4.3.13 Giwven a general constraint network R whose constraints’ arity is bounded

by i, and an ordering d, the complexity of DIC; along d is O(n(w*(d))* - (2k)*). O

Consequently we wish to have ordering with minimal
induced-width

Induced-width = tree-width

k Finding min induced-width ordering is NP-complete /

17

Min-width ordering

_

MIN-WIDTH (MW)
input: a graph G = (V,E), V ={v,...,v,}

output: A min-width ordering of the nodes d = (vy, ..., v,).

1. for j=nto1lby-1do
2. r « a node in GG with smallest degree.
3. put 7 in position j and G «— G — 7.

(Delete from V' node r and from F all its adjacent edges)

4. endfor

Figure 4.2: The min-width (MW) ordering procedure

/

18

4 h

Min-induced-width

MIN-INDUCED-WIDTH (MIW)

input: a graph G = (V. F), V ={v,...,v,}

output: An ordering of the nodes d = (vy, ..., v,).

1. for j=nto1lby-1do

2. r « a node in V' with smallest degree.

put r in position j.

connect 1’s neighbors: E «— E U {(v;,v;)|(vi,7) € E, (vj,r) € E},
remove 7 from the resulting graph: V «— V — {r}.

O = Q2

Figure 4.3: The min-induced-width (MIW) procedure

_ /

19

-~

Min-fill algorithm

Prefers a node who add the least
number of fill-in arcs.

Empirically, fill-in is the best among the
greedy algorithms (MW ,MIW,MF,MC)

20

/Cordal graphs and Max- \
cardinality ordering

A graph is cordal if every cycle of length at
least 4 has a chord

Finding w* over chordal graph is easy using
the max-cardinality ordering

f G* is an induced graph it is chordal
K-tfrees are special chordal graphs.

~inding the max-clique inchordal graphs is
easy (just enumerate all cliques in a max-

K cardinality ordering /

21

Example 4.3: We see again that G in Figure
4.1(a) is not chordal since the parents of A are
not connected in the max-cardinality ordering in
Figure 4.1(d). If we connect B and C, the
resulting induced graph is chordal.

22

4 h

Max-caedinality ordering

MAX-CARDINALITY (MC)

input: a graph G= (V. E), V ={v,...,v,}
output: An ordering of the nodes d = (vq, ..., v,).
1. Place an arbitrary node in position 0.

2. for j=1tondo

3. r « a node in G that is connected to a largest subset of nodes
in positions 1 to 7 — 1, breaking ties arbitrarily.
4. endfor

\ Figure 4.5 The max-cardinality (MC) ordering procedure. /

23

-~

Width vs local consistency:
solving trees

~

_

Figure 4.10: A tree network

Theorem 4.4.1 If a binary constraint network has a width of 1 and if it is arc-consistent,
then it s backtrack-free along any width-1 ordering.

/

24

Tree-solving

Tree-solving
Input: A tree network T' = (X, D, C).
Output: A backtrack-free network along an ordering d.

1.

2
3.
4.
5
6

generate a width-1 ordering, d = z4,...,ZTy.
let x,; denote the parent of z; in the rooted ordered tree.
for: =nto1ldo

Revise ((Zp(3)), 71);

if the domain of z,; is empty, exit. (no solution exists).
endfor

Figure 4.11: Tree-solving algorithm

complexity : O (nk?)

25

/Width-z and DPC \

Increasing
order

(@) (b)

Theorem 4.4.3 (Width-2 and directional path-consistency) IfR is directional arc
Q@d path-consistent along d, and if it also has width-2 along d, then it is backtrack-free /

along d. O

/

26

-~

Width vs directional consistency
(Freuder 82)

~

_

directional t-consistent, then R s backirack-free along d.

Theorem 4.4.5 (Width (i-1) and directional i-consistency) Given a general net-
work T, its ordered constraint graph along d has a width of ¢+ — 1 and if it s also strong

/

27

/

Width vs i-consistency

DAC and width-1

DPC and width-2

DIC_i and with-(i-1)

-> backtrack-free representation

If a problem has width i-1, will DIC_i make it
backtrack-free?

Adaptive-consistency: applies i-consistency
K when i is adapted to the number of parents

28

4 h

Adaptive-consistency

ADAPTIVE-CONSISTENCY (ACl)

Input: a constraint network R = (X, D, C), its constraint graph G = (V, E), d = (z1,... ,%5).
output: A backtrack-free network along d

Initialize: &' — C. E' «— E

1. for j=nto 1do

2. Let § «— parents(z;).

3 Hg «— Revise(S, ;) (generate all partial solutions over S that can extend to zy).
4 ¢’ «— C"U Rg

5. B — BE'U{(zy, z,)|y, xr € parents(z;)} (connect all parents of z;)

2. endfor.

Figure 4.13: Algorithm adaptive-consistency— version 1

_ /

29

The Idea of Elimination

E =2
'
eliminating E

Oc

p O Rppe
i D=1,B=1,C=3
O ' value assignment

B
RDBC RED REB REC

DBC

\Eliminate variable E < join and project

30

Adaptive-consistency, bucket-elimination \
ADAPTIVE-CONSISTENCY (AC)

Input: a constraint network R, an ordering d = (z1,... ,Zn)
output: A backtrack-free network, denoted E4(R), along d, if the empty constraint
was not generated. Else, the problem is inconsistent
1. Partition constraints into bucket+, ... , bucket, as follows:
for ¢« «— n downto 1, put in bucket; all unplaced constraints
mentioning ;.

2. for p — n downto 1 do

3. for all the constraints Rg,,... , Rg, In bucket, do

4. A— Ui:l Si — {Zp}

5. Ra « TI4(_; Rs,)

6. if K4 is not the empty relation then add R4 to the bucket of the
latest variable in scope A,

7. else exit and return the empty network

8. return Eg(R) = (X, D, bucket: U buckety U - - - U buckety)

Figure 4.14: Adaptive-Consistency as a bucket-elimination algorithm

-

{12}

Bucket Elimination

Z)

/

Bucket(E): E#D, E#C, E#B
Bucket(D): D# A

Bucket(C): C#B

Bucket(B): B# A

Bucket(A):

Bucket(A): A#=D, A#B
Bucket(D): D+#E
Bucket(C): C#B, C#E
Bucket(B): B#E
Bucket(E):

Q60 6D 600 0P

_

32

4 h

Properties of bucket-elimination
(adaptive consistency)

Adaptive consistency generates a constraint network
that is (can be solved without dead-
ends).

The time and space complexity of adaptive consistency
along ordering d is respectively,
or O(r kA(w*+1)) when r is the number of constraints.

Therefore, problems having are
tractable (solved in polynomial time)

Special cases: (w*=1),
(w*=2), and in general (w*=k).

33

-

Back to Induced width

Finding minimum-w* ordering is NP-
complete (Arnborg, 1985)

Greedy ordering heuristics: min-width, min-degree,
max-cardinality (Bertele and Briochi, 1972; Freuder
1982), Min-fill.

34

4 h

Solving Trees

(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and
equivalent to enforcing
(recording only unary constraints)

bucketG) K-
bucketi F) R cF

BuckenE) R

EB

bucket(D)
bucket{iC)

bucket{B)

bucikei{A)

35

-~

Summary: directional i-consistency

E Fo | E
> .
@
C ‘ C@ ‘B C B‘
Adaptive d-path d-arc
E:ED,E+C,E=B : :
D:D+C,D+A
C:C=B

\i:A;tB

36

-~

Variable Elimination

o T722 DBC .
Eliminate 1221220 g
variables
one by one: clt23!
. D E =1
{L.2.3} ﬁ.
B {12}
A{ L2 eliminating &
Solution generation €=3
after elimination is - 7
) D DB gt DB
backtrack-free 0=C 1 N 113
112} A — B (L2 -~
1L.2}
A=l B=2 s D=2

37

