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ABSTRACT
Hardware wallets are currently considered the most secure way
to manage cryptocurrency keys and sign transactions. However,
previous publications show that such tokens can be replaced or ma-
nipulated in a number of hard-to-detect ways pre- or post-delivery
to the user and that implemented (remote) attestation and authen-
ticity checks fail their purpose for multiple reasons.

We analyzed the architecture of current products by examining
their initialization procedure and attestation methods. Unlike pre-
vious publications, we found that tightened attestation and commu-
nications encryption will not solve the fundamental architectural
flaws sustainably. We conclude that the architecture of current-
generation cryptocurrency hardware wallets missed the opportu-
nity for a resilient design by copying the PC’s wallet architecture
and thus merely shifting the single point of trust from the PC to
the hardware wallet.

We advocate a mutually verified architecture through changes
to BIP32/BIP44 wallet architectures to incorporate collaborative
signatures and key generation. This way, neither a compromised
wallet nor a compromised PC can meaningfully manipulate keys
or transactions.

CCS CONCEPTS
• Security and privacy→Hardware-based security protocols;
Key management.
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1 INTRODUCTION
Cryptocurrencies typically organize the ownership of funds us-
ing public and private key cryptography (or a derivate thereof). A
cryptocurrency wallet software is managing those private keys and
submitting signed transactions to the appropriate blockchain. Based
on many incidents and the rampant spread of malware and botnets,
general-purpose ("personal") computers (PC) and operating systems
are increasingly suffering from deprivation of trust. Detachable ded-
icated hardware tokens promise a hardened single-purpose solution
to keep private keys (or seeds thereof) in tamper-resistant storage
safe from online or other theft in tamper-resistant storage. While
the specialized token still needs the general-purpose PC to post the
transaction, the assumption is that a compromised computer can
no longer leak private keys nor alter transactions.

However, that unconditional shift of trust might be unjustified.
Many current-generation hardware wallets do not operate under a
fail-safe, mutually verifying architecture. Instead, our research sug-
gests, they merely outsourced trust to the external hardware, which
effectively only leads to a new single point of failure. Consequently,
they switch the PC-related security risk profile for a hardware
token one. Hence, they miss the opportunity to limit risks to an
intersection of all involved mutually verifying components (i.e., the
computer, the wallet software, and the hardware wallet token).

This paper analyzes the architecture and protocols of hardware
wallets and discusses the shortcomings of the current generation
of hardware wallets’ architecture. Since wallets follow BIP32 [31]
or BIP44 [23] standards, manufacturers have only a limited design
space. After a protocol analysis, we created a proof-of-concept
attack for demonstration purposes (see Appendix). Our attack’s
scenario builds upon Trezor’s report [26] on the discovery of unau-
thorized Trezor One clones in the wild and stealthy implants in
Ledger clones [1, 13]. For practical purposes, these clones and im-
plants are indistinguishable from legitimate devices for users. Our
proof-of-concept is a USB-clone (c.f. supply chain attacks [2]) of the
widespread Trezor One hardware wallet, based on collected and
replayed USB traces. It passes the setup, initialization, and genuine-
ness test process of the original Trezor One client software. The
clone will present attacker-controlled predetermined keys, giving a
third party the ability to siphon off all funds transferred into that
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wallet. The attack is surprisingly easy to perform and therefore
showcases—along with previously reported vulnerabilities—the
main points of our architectural critique.

Our contributions are:
• a security analysis of the current hardware wallet archi-
tecture (see Section 6).

• suggestions on how to improve the architecture’s security
and remove a single point of trust (see Section 7) with
algorithmic trust based on mutually verifyable computations.

• comparison of algorithmic trust with other integrity-
insuring techniques (i.e., attestation), see Section 7.2.

2 BACKGROUND
The background section focuses on Bitcoin as the predominant
cryptocurrency, where most other currencies either borrowed basic
concepts from, or are directly built upon them. Notable differences
are pointed out explicitly.

2.1 Addresses and Transactions
On an abstract level, a typical blockchain (e.g., Bitcoin or Ethereum)
is an account-based systemwhere a transaction can withdraw funds
(or post other changes) based on proving the possession of an
eligible private key (via a signature). An account1 consists of a public
key (often transformed into a public address, e.g., via hashing) and
a private key only known to that pair’s creator. In the most simple
form, pairs are generated based on random numbers. There is no
explicit act of creating an address. Using an address as an output
of a transaction, implicitly creates it (UTXO, Unspent Transaction
Output). Opportunistic collision avoidance relies on the vastness
of the address space. An address can be single-use (i.e., hold an
amount for a certain period and then no more) or have changing
amounts associated with it.

In Bitcoin, transactions have multiple inputs and outputs but
have to use all funds available at an address. "Change" is given by
directing one output to capture the remainder of the transaction
and transferring it back to the original address or a new address of
the same owner. Bitcoin never saves the actual amount associated
with an address on the blockchain but keeps a public ledger of
all transactions to recalculate the current amount when needed.
This construct prevents many attacks such as double-spending
by allowing every node to track all transfers made. However, this
potentially leads to an explosion of addresses.

In Bitcoin, a scripting language governs access rights to funds.
However, many clients and miners support only a standard set
of predefined arrangements. In the most common Pay-to-Pubkey-
Hash (P2PKH) transaction, a transaction draws funds by presenting
the public key and a signature of the whole transaction with the
private key for each input to unlock it. Smart contracts and scripting
languages offer more possibilities to unlock funds but are out of
scope for this paper.

2.2 Software Wallets
In order to simplify address and key management, most wallets
are built on the BIP32 [18, 30, 31] hierarchical deterministic (HD)

1Herein used as an analogy to a bank account.

wallet concept using a (nested) child key derivation (CKD) func-
tion with a numerical index to create addresses on demand out
of one secret master seed 𝑠 . Thus, only the master seed 𝑠 or the
derived master key pair 𝑚𝑘𝑝 ,𝑚𝑘𝑠 (public key and private/secret
key) needs to be stored encrypted (and backed up), simplifying key
management. Child keys of child keys lead to a nested tree-like
wallet structure where the leaf nodes are Bitcoin addresses (or their
key pairs) with unique paths describing each key pair, e.g., mk/0/2
in path-like BIP32 notation is CKD

(
CKD(mk, 0), 2

)
. The public key

part of so-called non-hardened keys is verifiable (and producible) if
at least one public key from higher tiers within the path is known.
In contrast, so-called hardened keys lack that verification, but offer
more privacy by not being linkable to any parent keys. In Bitcoin
with BIP32, the CKD function is implemented as HMAC-SHA512
and the signature as Elliptic Curve Digital Signature Algorithm
(ECDSA) respectively. The PubKeyHash is a series of RIPEMD160
and SHA256 hashes. Additionally, a full ASCII-printable Bitcoin ad-
dress is Base58-encoded, includes a network prefix and a checksum.
BIP44 [23] extends the HD wallet system to multiple blockchains
(e.g., Ethereum). Figure 1 illustrates a P2PKH transaction from key
mk/i/j/k to mk/0/2.

2.3 Transactions with Hardware wallets
While a softwarewallet stores the seed ormaster key pair encrypted,
many users do not trust their Internet-connected general-purpose
computer to protect them sufficiently from data theft and malware,
including snooped passwords and falsified transactions or data.

A hardware wallet is typically an external hardware device
promising hardened high-security storage of the key material ("Wal-
let Storage" in Figure 1). Since the key material is never meant to
leave the device, all cryptographic core functionalities ("Wallet
Functions" in Figure 1) are also moved from the client software to
the hardware wallet device, i.e., a part of the wallet client software
is outsourced to a dedicated device, but no architectural change
is made (Figure 2). For certain operations, hardware wallets may
require a passphrase or PIN entered on the PC client or the device
itself or a confirmation on the device (e.g., a push button).

In this architecture, initializing and setting up a new bitcoin
hardware wallet can happen in two ways: The PC client creates
a seed and transfers it to the hardware wallet -or- the hardware
wallet creates the random seed, optionally providing a one-time
copy for backup purposes.

Transactions (or necessary data for it) typically have to pass
between the hardware wallet and the PC client multiple times. For
example, not all public keys might be available to the client software
while assembling the transaction (Figure 1 provides an overview).
The final two steps are signing the transaction using the private
keys of all inputs by the hardware wallet (modulo possible external
signatures) and posting the complete transaction by the PC client
to the Bitcoin peer-to-peer network. This back-and-forth gives the
two partners limited possibilities to verify each other. However, the
PC client might not have the opportunity to verify addresses based
on hardened keys or where the public key chain is unavailable.

2.4 Authenticity Checks and Attestation
Hardware wallets may implement various authenticity checks in or-
der to detect supply-chain tampering of software and hardware [2,
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Figure 2: Hardware wallet architecture. Key and crypto-
graphic management is moved to a dedicated hardware,
while GUI and network remains on the PC software side.

6]. Pfeffer et al. [24] conducted a market review of the currently
implemented authenticity checks of hardware security tokens, in-
cluding hardware wallets from Ledger, Trezor, and Keepkey.

Implemented software authenticity checks include local and
remote firmware attestation, as well as key attestation. In local
firmware attestation, typically, the bootloader checks the firmware
integrity, while in remote attestation, the token’s internal status is
checked by a trusted third party. In key attestation, the token gets
shipped with an attestation key, which can later be verified (i.e.,
that the device was initialized in the factory, not somewhere else).
Trezor also offers the possibility to manually load firmware, which
is implemented in a way that mandatorily deletes all key material.
Others ship without firmware and require the load. This method
tries to mitigate pre-initialized tokens, firmware modifications, and
partly token replicas.

Deployed hardware authenticity checks utilize secure CPUs or
secure elements, which both shield electronic signals on the printed
circuit board (PCB) or within an integrated circuit (IC), in order to
prevent interception and manipulation. Thereby, the key material
resides inside the CPU or secure element and never leaves it.

3 RELATEDWORK
In recent years, several attacks on hardware wallets have been
reported. Volotikin [29] and Rashid [25] exploited software vul-
nerabilities in the Ledger wallets to retrieve or modify secret keys.

Nedospasov et al. [22] showed that hardware implants could be
inserted into a hardware wallet, which can then remotely trigger
the confirmation button, eliminating the need for victim interaction.
Furthermore, they revealed that it is feasible to exploit a bug in the
Ledger wallet’s bootloader to flash custom firmware. Moreover, an
incident has been reported where the attacker pre-initialized a hard-
ware wallet and inserted a fake recovery sheet [1, 27]. Grover [13]
demonstrated that bootloader protections can be bypassed by un-
soldering the locked-down microcontroller and replacing it with a
pristine one. Gkaniatsou et al. [12] performed an analysis of the low-
level protocols of Ledger wallets. They showed that these protocols
can be exploited to carry out attacks, such as gaining unauthorized
access to the wallet and altering transactions. As a countermeasure,
they suggest a scheme for encrypting specific security-relevant
parts of the messages between hardware wallet and client soft-
ware. However, their approach only defeats man-in-the-middle
attacks, but not supply chain attacks or attacks where the client
software or firmware is compromised. In contrast to their work,
we assume a more comprehensive attack model (see Section 4).
Pfeffer et al. [24] showed that currently implemented authenticity
checks of hardware security tokens (including hardware wallets)
are poorly understood (and performed) by users and do not cover
all possible attacks.

Although some of the exploited vulnerabilities have already
been addressed by the manufacturers, these attacks show that it
is essential to re-design the current hardware wallet architecture
to secure against supply-chain and other attacks. Therefore, we
suggest critical fixes to the current architecture.

4 HARDWAREWALLET ATTACK MODEL
In the following section, we discuss a broad range of attacks against
hardware wallets. This attack model is the basis for our evaluation
of the current hardware wallet architecture (see Section 6) and for
our proposed solution (see Section 7). Our proof-of-concept imple-
mentation (see Appendix A) falls into a subset of this attack model.

The attackers’ overall aim is to weaken, pre-load, or exfiltrate
the keys or cryptographic seeds stored on the hardware wallet to
siphon off money, interrupt its availability, or ask for ransom [5]. To
achieve this aim, the attacker can replace or modify the firmware



Table 1: Features and security engineering practices of hardware wallets

Trezor One Trezor T Ledger Nano S Ledger Blue KeepKey

Packaging
and HW

Holographic sticker Two stickers (package) One sticker (USB port) No1 No1 One sticker (package)

Tamper-evident box Sealed with strong glue No No2 No2 No

Device casing Ultrason. welded plastic Ultrason. welded plastic Plastic Plastic and aluminum Anodized aluminum

Openable device No No Yes (reference
pictures of PCB

Yes (no reference
pictures of PCB)

No

SE No No Yes Yes No

Software BL Check By FW (hs) By FW (hs) By SE By SE By FW (hs)

FW Check By BL and SW (sig) By BL and SW (sig) - SW checks SE (sig)
- SE checks MCU
- Remote attestation

- SW checks SE (sig)
- SE checks MCU
- Remote attestation

By BL and SW (sig)

Manual FW Load Yes Yes No No No

User Authentication - Optional PIN
- Optional passphrase

- Optional PIN
- Optional passphrase

- Mandatory PIN
- Optional passphrase

- Mandatory PIN
- Optional passphrase

- Optional PIN
- Optional passphrase

Recovery 24-word phrase 24-word phrase 24-word phrase 24-word phrase 24-word phrase

Open
Source

FW Yes Yes No No Yes

SW Yes Yes Yes Yes Yes

HW Yes Yes No No3 No
Hardware (HW), Client Software (SW), Firmware (FW), Secure Element (SE), Bootloader (BL), Signature check (sig), SHA256 hash (hs)
1 Manufacturer claims to not use holographic stickers since they give users a false sense of security.
2 Manufacturer claims that tamper-evident packaging is not needed due to strong device security.
3 The development version is open-source.

and/or hardware of a hardware wallet anywhere and anytime
between the token leaving the manufacturer and arriving at the end
user. This includes selling fraudulent tokens to end users, inserting
them into the re-seller hierarchy, or intercepting and replacing
shipments in transit. An attacker might also buy a genuine token
and return a tampered one to the vendor, who usually does not
check the returned devices before redistribution [14].

The tempered or counterfeit device can leak secrets (i) in-
protocol via the signature [10] or other parts of the transaction [4],
or (ii) out-of-band using Bluetooth [19], Wi-Fi, GSM [22], or USB
exploits [28]. Moreover, the attacker can infect, tamper, exploit, or
replace the client software. This is the attack model most current
hardware wallet manufacturers adhere to.

Finally, we assume that man-in-the-middle attacks are pos-
sible, where the attacker sniffs and deletes, modifies, or inserts
packets between the hardware wallet and the client software, e.g.,
with a hardware implant. Physical attacks on hardware wallets
that require the attacker to temporarily or permanently remove
the token from the user are out of scope for this work. Thus, in
this paper, we do not discuss secret extraction approaches such as
fault injection, timing side-channels, transient execution attacks,
IC microprobing, or bus snooping [3].

The current architecture requires that token manufactur-
ers and designers are trustworthy, meaning that they are not
purposefully backdooring hardware, software, or firmware.

5 METHODOLOGY
We physically inspected the products from Ledger, Trezor, and
KeepKey and their security features, observed the initialization pro-
cedure, and read available publications, documentation, and stan-
dards. Complementing (and broadening) previous publications and
attacks, we observed USB protocols of some of those devices (see

Section 6).
Out of our observations, we developed a proof-of-concept at-

tack (see Appendix A) for one selected hardware wallet (Trezor
One) by (mostly) replaying recorded USB traffic, with only a lit-
tle additional reverse engineering needed. We chose Trezor One
since Ledger hardware wallets have already been subject to reverse
engineering [12] and KeepKey is a fork of Trezor [11]. Thus, we
demonstrate that Trezor One follows the same architectural design
as the other hardware wallets and thus is subject to the same archi-
tectural vulnerabilities. Since all major manufacturers use a similar
(standardized) wallet design (see Section 2, this demonstrates that
fundamental architectural shortcomings exist across the industry.

Finally, based on our architectural findings, we developed
improvements using recent advances in mutually verified proto-
cols. We discuss the advantages and disadvantages of different
approaches in Section 7. Additionally, we compare the proposed
algorithmic trust method to other integrity methods (attestation)
with and without the usage of a secure element.

6 DEPLOYED SECURITY ENGINEERING
PRACTICES

Based on a literature review and inspection of the currently most
widely used hardware wallets [21] from Trezor, Ledger, and Keep-
Key, we report on currently used defenses against possible attacks
(see Section 4). These approaches combine packaging, hardware,
and software measures (see Table 1).

Packaging. Tamper-evident packaging (e.g., cardboard boxes,
shrink-wrap plastic) or holographic stickers are used to detect
whether a package has been opened before delivery. These mea-
sures make supply-chain attacks slightly more challenging since
an attacker would have to re-package a modified device or token
replica in a genuine-looking way. However, all types of packages



can be reproduced. Many holographic stickers can easily be pur-
chased [15] or removed with a blow dryer [22] or acetone. We found
that all manufacturers use tamper-evident packaging or holographic
stickers even though they are not or only marginally effective.

Hardware. To detect tampered or added hardware, some wallets
are openable so that users can visually inspect the printed circuit
board (PCB) and compare it with reference pictures by the man-
ufacturer. However, not all manufacturers provide such pictures.
Other manufacturers weld the casing to impede hardware-based
attacks. Some wallets use secure elements to shield critical data
and the PCB, provide side-channel resistance, and tamper-detection
circuits within the integrated circuit (IC). However, we found that
although very effective, secure elements are rarely deployed.

Software. The authenticity of the bootloader and firmware is
verified using hashes or signatures. This is either done locally or re-
motely, involving a trusted third party and a challenge-response pro-
tocol. Although more effective, we found that no remote firmware
attestation is implemented in Trezor One. While Ledger performs a
remote attestation, it is not used to create a session key for integrity
protection. Furthermore, some hardware wallets are shipped with-
out firmware; thereby forcing users to manually load the firmware
when initializing their wallet, wiping any pre-loaded keys or seeds.
However, in some scenarios, such as our proof-of-concept attack,
the firmware update could simply be dropped, and success messages
could be faked, including presenting the new version identifier.

7 ARCHITECTURAL CRITIQUE AND
SUGGESTED IMPROVEMENTS

Our analysis has shown that the chain of trust is either never en-
forced or weakly implemented in current implementations. The
hardware wallet generation’s architecture just shifted the single
point of trust from the PC to the hardware token. Thus, its protec-
tion ability is limited to PC client manipulations. This design maxi-
mizes compatibility with software-only wallets but leaves much of
the security improvement potential on the table. Blockchain’s most
remarkable property is to generate trust from untrusted parties with
algorithmic assertions and game theory. In contrast, blockchain
(hardware) wallets do not work like that. Trust originates exclu-
sively from the manufacturer of the software and hardware. In
BIP 32, the token is solely responsible for the key initialization,
key derivation, and signature creation with little oversight by the
PC client at critical steps. Consequently, manipulations on those
functions might undetectably weaken keys, leak a key, or force a
predetermined key onto the user, allowing an attacker to capture
funds. This includes the choice of keys (addresses) and nonces in
signatures. Tokens can be replaced or manipulated in a number
of ways pre- or post-delivery to the user, as discussed and demon-
strated in several publications [22, 25, 26, 29].

Moreover, we found that authenticity checks are insufficiently
implemented . While our proof-of-concept would be defeatable
by a number of attestation methods if implemented correctly (see
below), it nonetheless demonstrates a fundamental architectural
problem, i.e., that trust in the manufacturer is required. Instead of
small incremental patch-ups, we focus on the principal questions.
Thereforewe suggest a solution that does not require blind trust into
an external entity and can be implemented instead of or in addition

to a costly secure element with or without remote attestation. The
latter both may be infeasible in air-gaped or firewalled installations;
or when retrofitting current devices.

7.1 Solution
In spirit with the blockchain’s ability to create trust out of un-
trusted parties, we propose an orthogonal measure: intrinsic trust
originating in mutually-verifiable algorithms for the most critical
wallet functions: (a) the wallet initialization, (b) the key derivation
function, and (c) the signature. This means that even a tampered
hardware wallet or PC client software can not alter the outcome to
an attacker’s advantage, since the other party would immediately
detect this. For all wallet functions, either the output must be veri-
fiable by the other party (hardware wallet or client software), or
the single-point-of-computation must be split into a collaborative
computation so that the client software does not learn the secrets.

7.1.1 Wallet Initialization.
Problem. The seed (and subsequent master key) initialization

is either performed by the client software or the token without
strength and freshness guarantees.

Requirements. Initialization should be performed jointly, offer-
ing freshness guarantees, and the secret should only be revealed
–if wished– for backup purposes.

Solutions. Collaborative (and distributed) pseudo-random num-
ber generation algorithms for the seed exist (e.g., Verifiable Random
Function, VRF [9]), but fail to deliver a verifiable path from the mas-
ter key to the seed, i.e., either the other party would necessarily
learn the secret seed, or a zero-knowledge proof about the random-
ness of the seed would still lack the link to the master key. Thus,
allowing hardware wallets to cheat by providing manipulated mas-
ter keys. We propose a joint generation of the master key pair
as introduced by Dauterman et al. [7] for U2F tokens. Their inter-
active two-party protocol creates ECDSA keys in an auditable way
with randomness from both parties. The PC client only learns the
public key, and the private key never leaves the hardware device.

7.1.2 Signature.
Problem. The nonce of the signature is chosen by the hardware

wallet and offers an in-protocol covert channel to possibly leak in-
formation [10] or allow secret reconstruction (through nonce reuse).

Requirements. The software client should be assured that the
hardware token could not have manipulated the random nonce or
chosen a weak or non-random nonce without ever learning the
secret key.

Solutions. We suggest to adopt a collaborative protocol for fire-
walled signature generation introduced by Dauterman et al. [7],
originally developed for U2F tokens. By jointly working on the
signature, each party can verify the correctness and offer secret
exfiltration resistance. The PC software client does not learn the
private key used. Signatures created that way are compatible with
Bitcoin signatures and indistinguishable for external observers.

7.1.3 Key Child Derivation Function.
Problem. A fraudulent wallet could return weak or predeter-

mined keys for any of the leaves or sub-trees in the hierarchical
key structure.



Requirements. The client needs to have the ability to verify the
lineage of a public key up to the master key. Additionally, keys
must be unique, unforgeable, and unlinkable.

Solutions. Current BIP32 wallets already support two types of
keys. So-called non-hardened keys are verifiable with the knowledge
of the parent public key (and the path, index, or id 𝑖). This implies
that knowledge of the parent (or master) public keys allows third
parties to enumerate the child keys. In contrast, hardened keys are
not linkable but also not verifiable. Dauterman et al. introduced
verifiable identity families (VIF) [7]. With VIFs, only the holder
of the secret key can produce new public child keys 𝑘/𝑖𝑝 with an
index/id 𝑖 . However, they can prove to anyone holding the parent
public key that 𝑘𝑝 is a unique public key for 𝑖 .
7.1.4 Compatibility to BIP32 and BIP44 wallets.In conversations,
hardware wallet manufacturer Ledger pointed out that adopting
Dauterman et al.’s U2F-based techniques for hardware wallets
is not straightforward. Although collaborative key generation of
the master seed would be feasible, the adoption of VIFs and fire-
walled signatures would introduce incompatible changes to the
hierarchical deterministic wallets (see Section 2.3) currently in use.
Dauterman et al. discuss that VIFs (i) do not allow the public key
holder (i.e., the client software) to verify that it corresponds to a
particular master public key, or otherwise (ii) would not satisfy
Σ-pseudorandomness, i.e., linkability protection). However, this is
to be expected and corresponds with the hardened vs. non-hardened
key problem. While upgrading current wallets is arguably challeng-
ing, there seems to be no roadblock to incorporate those techniques
into the next generation of hardware wallets (or their firmware).
Dual-standard wallets could support both wallet structures in par-
allel for a smooth transition.

7.2 Comparison of Algorithmic Trust to
Effective Attestation

Attestation is often employed to achieve similar goals differently:
it ensures the device’s integrity as a proxy for not misbehaving.
However, past attacks have shown, effective attestation requires
a trusted and hardened secure element outside the control of the
application processor. The attestation tests and assurances must be
verifiable by the client software or a third party (e.g., remote attes-
tation). Attestation methods currently used in popular hardware
wallets have been circumvented in many ways with and without a
secure element. Thus, our comparison (Table 2) assumes the best
possible implementation of the secure element, where the secure
element performs all critical tasks, and the client software verifies
the outcome and the existence of the secure element.

Algorithmic trust can provide multiple guarantees that, other-
wise, only the best-case flawlessly implemented secure-element-
supported attestation can provide. Therefore, it can be used where
no secure element is present for retrofitting current devices, or a
secure element is not integrated for other reasons (e.g., financial).
However, since algorithmic trust is mostly an orthogonal technique,
both can (and for some attack mitigations need to) be combined.

7.3 Limitations
Above discussed changes to BIP32 do not prevent out-of-band exfil-
trations, USB interface, and ransom attacks. They are no substitute
for all the other currently employed security measures (Section 6).

Table 2: Comparison of algorithmic trust
to attestation with and without a secure
element (SE)

Attack Goal no
ne

At
te
sta

tio
n

Al
go
rit
hm

ic
Tr
us
t

At
te
sta

tio
n
w/
SE

1

Al
go
rit
hm

ic
w/
SE

1

Hardware
Implants

Snooping and Exfiltration - - - + +
USB Exploit - - - - -
DoS Ransom - - - - -

Token
Replicas

Algorthmic/Fw. Changes - - + + +
Exfiltration see above

IC Modification predictable RPNG - - + + +
Firmware
Modification

Key fixation - - + + +
predictable RPNG - - + + +
In-band exfiltration - - + + +
USB Exploit - - - + +
DoS Ransom see above

Social Engineering Token pre-init - - - - -
1 We assume the best possible implementation where the secure element (SE) performs
all the security critical tasks in a client-provable way, such as fimware attestation, UI
interfacing, and cryptographic primitives.

8 CONCLUSION
The current generation of "high-security" hardware wallets for
cryptocurrencies is built on transferring selected duties from a
software-only architecture into single-purpose hardware. Adhering
to the generic architecture (as defined in BIP32 and BIP44), the
design misses the opportunity to introduce a mutually-checked
hardware-software design. The current arrangement merely shifts
the single point of trust to the hardware wallet without taking
provisions to ensure its integrity.

Amodified, counterfeit, or compromised hardware token or man-
in-the-middle device can siphon off entrusted funds in several ways.
Based on the review of standards, protocols, and attacks, we argue
this is an industry-wide problem: The root cause is the architecture.
Often discussed techniques, such as hardware attestation [20] and
communication encryption [12] fall short of protecting against the
fundamental architectural flaws.

We propose several modifications to the concept based on collab-
orative key generation and signatures. Thus, software clients and
hardware tokens both provide input for the randomness of keys and
signatures, and can mutually verify each other to detect manipula-
tion attempts. Therefore, manufacturer-based trust is strengthened
(or replaced) by an intrinsic algorithmic trust.
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A PROOF OF CONCEPT
To show an example of the inadequacy of current hardware wallets’
design, we built a fake wallet based on replaying captured USB
traffic, complementing previous work on firmware exploits and
man-in-the-middle attacks. We include this proof of concept, not
because it very hard nor complicated, but because it is so surpris-
ingly simple, and thus emphassize the urgency.

Please note, that the herein described attack only fulfills the
purpose of adding another aspect to previous shown attacks [12,
22, 25, 29], emphasizing that the architectural shortcomings of the
BIP32/44 standard are an industry-wide problem by filling a gap in
previous work.

The attack is actually simplier thanmany before (e.g., Gkaniatsou
et al. [12]), as many aspects of the protocol do not need to be
understood since (at large portions) replaying binary data is enough
to fool the client.

A.1 Attack Scenario
The attacker’s goal is to fixate the master seed (and thus, all
therefrom generated private and public keys) before the money
in transferred into the wallet in the first place. Thus, this
scenario starts earlier than those aimed at redirecting outgoing
transactions [12]. Therefore, the attacker builds a token replica (or
replaces the firmware), which behaves like an authentic token, but
generates attacker-chosen keys. Subsequentely, the attacker can
monitor these addresses and siphon off money any time after it
arrives. The attack is easy to perform for an attacker with limited
programming skills in a short time with little financial cost.

A.2 Implementation
We analyzed the USB interface and traffic using UsbTreeView,
usbhid-dump [8], Wireshark, and extcap. Some semantics needed
mild reverse-engineering skills, but many parts can be replayed as
verbatim copies without detailed protocol knowledge.

While this methodology simulates a replacement-style distribu-
tion attack, matching the USB Armory’s form factor to Trezor is left
as an engineering exercise (similar to YubiKey look-alikes [19]). It is
—as we argue— unnecessary for the demonstration of architectural
shortcomings.

Trezor also offers an open-source firmware, but that would trig-
ger a boot loader warning for unsigned firmware. Using a new
hardware setup bypasses any boot loader protection build into
Trezor as well.
A.2.1 Plattform. USB Armory [16] is a "swiss army knife" tool
for USB running Linux in a 66 mm thumb drive form factor. We
dressed up the USB descriptor to roughly resemble a Trezor One
but added in a USB Ethernet endpoint (RNDIS) for SSH connections.
Trezor’s client software (a bridge software accessible via a browser)
did not object as it only uses the USB Human Interface Device (HID)
endpoints [17]. Our proof-of-concept uses firmware version 1.6.3
and Bridge 2.0.19.

Linux USB Gadget driver offers convenient ways to implement
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HID endpoints in userspace. Our whole emulation consists of a
bash script for USB endpoint configuration via configFS and less
than 1000 lines of C code (mostly replay packets in hex form and
debug output).
A.2.2 Protocol. We noted that substantial traffic seems to be in
cleartext even though it is built out of binary structures (for example
the PIN, see Figure 3). After a communication setup or preamble,
periodic keep-alive messages ensure the client is connected to the
correct device. Some parts of the preamble change with different
firmware versions but are fixed for a particular version. Apart from
that, we found no apparent attestation tests (Figure 4).

We observed 16 message types, of which we named eight for
their obvious functionality. Only a subset of these needs special
handling (e.g., copying a sequence number from a request into the
return packet). Apart from that, the proof-of-concept replays previ-
ously captured data bytes. We named the identified messages IDEN-
TIFY_ME, TESTNET, TESTNET_RECV, SEND, NO_ANS, OK_TESTNET,
OK_SEND, OK_SEND_ADDR, COMMAND1, ..., COMMAND8. As the
names suggest, we operated our research on Bitcoin’s official testnet
to not disturb operations (and lose real money).

A.3 Results
While not feature complete, the simple analysis and replay of the
16 message types pass the initialization of a new Trezor One wallet
and generation of (now predetermined) addresses in the original
client software (Figure 7). They were thus giving the attacker direct
access to all funds ever transferred to wallets of the device (Figure
5 and 6).

A.4 Responsible Disclosure
We disclosed the proof-of-concept to Satoshi Labs but they did not
classify it as an attack. In their statement, they emphasized that in
their open-source architecture, anyone can build their own Trezor
clone. They did not acknowledge the architectural implications.
We argue that the current architecture requires unchecked trust in
the token’s manufacturer without ever proving the device’s actual
origin.

When discovering multiple cases of unauthorized Trezor One
clones [26] in 2018, the Satoshi Labs claimed that they pursued a
"number of legal and other steps" to prevent fake tokens from being
distributed. In fact, they issued an explicit warning to customers to
check the holographic stickers on the package when receiving it.
However, such stickers do not provide sufficient protection against
token replica attacks (see Section 6). Hence, we argue that a crucial
change in the hardware wallets architecture is needed in order to
prevent such attacks as well as other currently possible attacks (see
Section 4).

Host:PC Device:Trezor

login()

ans4

PIN()

command1

Figure 3: Cleartext PIN

Host:PC Device:Trezor

3fffffffff...()

3f23230000...()

preamble

loop(2,2)

Figure 4: Preamble traffic

Figure 5: Trezor Bridge is successfully identifying our device
as Trezor One.

Figure 6: Screenshot of original client: fake Trezor One wal-
let after initialization.

Figure 7: The client software presents the predetermined ad-
dress as "fresh".
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