
QR Inception: Barcode-in-Barcode Attacks

Adrian Dabrowski
SBA Research
Vienna, Austria

adabrowski@sba-research.org

Katharina Krombholz
SBA Research
Vienna, Austria

kkrombholz@sba-research.org
Johanna Ullrich

SBA Research
Vienna, Austria

jullrich@sba-research.org

Edgar R. Weippl
SBA Research
Vienna, Austria

eweippl@sba-research.org

ABSTRACT
2D barcodes offer many benefits compared to 1D barcodes,
such as high information density and robustness. Before
their introduction to the mobile phone ecosystem, they have
been widely used in specific applications, such as logistics or
ticketing. However, there are multiple competing standards
with different benefits and drawbacks. Therefore, reader
applications as well as dedicated devices have to support
multiple standards.

In this paper, we present novel attacks based on deliber-
ately caused ambiguities when especially crafted barcodes
conform to multiple standards. Implementation details de-
cide which standard the decoder locks on. This way, two
users scanning the same barcode with different phones or
apps will receive different content. This potentially opens
way for multiple problems related to security. We describe
how embedding one barcode symbology into another can be
used to perform phishing attacks as well as targeted exploits.
In addition, we evaluate the extent to which popular 2D
barcode reader applications on smartphones are susceptible
to these barcode-in-barcode attacks. We furthermore discuss
mitigation techniques against this type of attack.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security ; K.6.m [Management of Computing and In-
formation Systems]: Miscellaneous—Security

General Terms
security

Keywords
security; protocol decoding ambiguity; barcode; QR;
steganography; Packet-in-Packet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPSM’14, November 7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3155-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666620.2666624.

1. INTRODUCTION
Linear barcodes or 1D codes are used to provide a

machine-readable form of printed information. In cases
where higher data density is required, matrix or 2D
barcodes are preferentially deployed. Such codes are
used in industrial applications, e.g. logistics or tracking
of individual components during the production process. In
everyday life, electronic tickets are issued with 2D barcodes,
and web links are transmitted via 2D barcodes on billboards
and in printed ads. Additionally, they are used in security-
sensitive applications such as monetary transactions: Paypal
and Bitcoin allow shoppers to pay for goods and services
using apps that generate QR codes readable by merchants’
existing scanning devices [29].

With barcode-in-barcode attacks, two different barcodes
are encoded in the same rectangular area, optically appear-
ing as one barcode. This can be accomplished by generating
one complex barcode that confirms to multiple standards,
or by hiding a smaller one within a bigger one. The latter
is similar to Packet-in-Packet attacks known from radio sys-
tems [12]. However, this attack relies less on probabilistic
errors, and more upon implementation differences of the
decoders. It bears resemblance to protocol decoding mis-
matches, where e.g. a firewall or anti-virus scanner decodes
and interprets data differently than the server behind it -
allowing an exploit to pass. Any ambiguity is therefore a
potential security risk [8, 15,24].

2. MOTIVATION
Different ways of using QR codes as an attack vector have

been proposed [10, 17, 18]. In 2012, hackers showed that
Unstructured Supplementary Service Data (USSD) codes en-
coded in 2D barcodes can be used to wipe a phone or ex-
ecute other system functions [20]. On some phones, they
can be used to generate premium rate SMS messages. QR
codes can also be used to trigger vulnerabilities in the reader
software, the operating system, or a remote site, such as
SQL injections [18]. Peng et al. [23] found code injection
vulnerabilities in several QR libraries. QR Codes are also
used to spread malware [10] and for phishing attacks.

In a variety of attacks differentiation between various
phones and bar code readers provides a subtle way of
separating one user group from another. The following
examples describe respective scenarios for barcode-in-
barcode attacks:

(1) It is possible to specifically tailor exploits for a certain

platform or reader application, e.g. the code injection vul-
nerabilities mentioned above. An alternative would be that
one type of phone is wiped, while the others are directed
somewhere else to decrease suspicion. Imagine two friends,
one trying to decode a bar code with an exploitable phone.
As he does not get the expected response from his phone, his
friend might try to decode. Due to having another phone, he
is directed to a benign homepage. This will avert suspicion
for wiping the first’s phone from the code.

(2) A malicious graphics designer produces a barcode-
in-barcode for a donation campaign which diverts a small
percentage of donors to a second account. The siphoned-off
money is likely to go unnoticed and the attack is hard to
reproduce.

(3) In a less hostile scenario, the ability mentioned above
is used to violate users’ privacy. Different URLs may expose
a user’s software or operating system choice to third party
web sites. For example, users of top-of-the-market phones
(e.g. iPhone) get shown more pricey products than low-end
phones. Additionally, this technique can also be used as
steganography tool to hide messages in benign 2D codes.

(4) In logistics, a barcode that decodes to different values
at different handling points can be used to cheat on fees or
cause re-routing and circular routing of parcels.

3. BACKGROUND
There are various 2D or matrix barcode symbologies. Each

of them tends to be dominant in one or more particular fields
of application. This makes it necessary for many devices to
support more than one standard.

Quick Response (QR).
Denso Wave [11] developed the QR code

in 1994 and later published the design as
ISO/IEC 18004 [2]. Its main features are high
data density, robustness, and the ability to encode num-
bers, text, 8-bit data, and Kanji. The three prominent
rectangular finder markers easily distinguish this code and
facilitate the correction perspective distortions. The QR
code standard features extensive forward error correction
(FEC) based on Reed-Solomon codes, allowing large por-
tions of the code to be destroyed without any effects on its
decodability. It fits up to 4296 characters or 2953 bytes.
Today, this symbology is the first choice when conveying
URLs from billboards to mobile phones. Further, it is
used in e-ticketing, payment (e.g. Paypal and Bitcon), and
(encrypted) visa applications.

Aztec Code.
The Aztec barcode was invented in 1995 and

later published as ISO/IEC 24778 [14]. The finder
pattern and characteristic visual feature is a quadratic
bullseye-style center mark. In contrast to most other codes,
by design, it does not require any quiet zone around the
code (i.e. a surrounding blank region). Data is put in spiral
form around the center mark and fits up to 3832 digits,
3067 letters, or 1914 bytes. It also employs Read-Solomon
codes for error correction. Aztec barcodes are popular on the
transport tickets of several major European rail companies.

Data Matrix.
This code was developed by ID Matrix which was

later acquired by Siemens [1]. It lacks a primary
visual feature as it is surrounded by a thin border on two
sides and a dotted line (timing pattern) on the other two
sides. This code exists in multiple versions with different
error correction algorithms. In 2003, the Semacode project
started to promote Datamatrix-encoded URLs as standard
for the Web. Up until today, Semacode is often used as a
synonym. It fits up to 1556 bytes but is very compact on
short messages. Therefore, it is used in industrial production
to mark (small) electronic components, and in the food
industry. It is also used in some countries as digital stamp.

Codes with non-square pixels.
Codes with other forms of picture elements (pixels) are

not considered in this paper, since they do not integrate well
into square pixel codes. PDF417 and micro-PDF417 have
been developed for stacked line scanning and use tall and
narrow pixels. MaxiCode by UPS uses round and octagon
elements, and Microsoft Tag uses triangles.

Figure 1: PDF417, MaxiCode, Microsoft Tag

4. INCEPTION PRINCIPLES
”The nice thing about standards is that you have so many

to choose from.” – Andrew S. Tanenbaum

4.1 Type 1: Multiple Standards Ambiguity
Many barcode readers implement more than one symbol-

ogy. This can lead to ambiguous situations when a de-
vice is confronted with multiple barcodes in one image. A
crafted 2D barcode that conforms to multiple standards
(or an embedded barcode inside another) would be unde-
tectable to an untrained human viewer. However, decoding
software usually employs multiple computationally cheap
finders for specific symbologies, e.g. a detector for a specific
visual marker of a symbology (Figure 2). When one is found,

Figure 2: Type 1 Attack: The inner barcode type is
always detected before the outer one

Figure 3: Sliding over the barcode will make the
smaller inner barcode fully visible before the entire
(outer) barcode

an appropriate decoder retrieves the data and presents it to
the user or the calling application.

In this case, we are exploiting the different detection order
of reader implementations.

4.2 Type 2: Camera Frame
When the reader application (or mode) starts on the

phone, users are unlikely to have the phone pointed exactly
at the barcode. While the user is trying to aim for the
barcode, they slide and rotate the camera frame (Figure 3).
Programs that work on the live imagery and do not require
to push a button try to decode every one of these frames.
The situation regarding dedicated handheld readers is very
similar.

This makes it highly probable, that an (inner) embedded
code is inside the imaging frame before the full outer (or
host) barcode. However, different implementations might
have additional requirements (e.g. size of quiet zones) that
also allow for a further discrimination of users.

4.3 Embedding Criteria
Embedding one code into another requires distinct char-

acteristics of the standards for the outer as well as the inner
code.

The outer code has to (a) provide a continuous area of a
certain size to shelter the other, and (b) a sufficiently robust
data correction1.

The latter is necessary so that the outer code can still
be correctly decoded while the scanner interprets the inner
one as error caused by the environment or the camera. The
robustness of data correction in combination with the ac-
tual data size has an impact on the host’s maximum. For
example, data correction of 30% allows the use of almost
one third of the data area for the inner code. The larger the
outer data, the larger the area for the parasite within.

Additionally, the outer and the inner code have to consist
of the same pixel type. Thus, various codes using squares
can be mixed, but cannot be combined with others using
rectangles. Finally, to be successful the combined codes
must not appear suspicious to the users.

4.4 Types of Hiding a Barcode
Many barcodes require free space (quiet zones) or special

markers to be decoded correctly, although the implementa-
tions vary. All encountered implementations require sub-

1or another way to include alien data

Figure 4: Four types of embedding a code

stantially less free space around the symbology than spec-
ified by the standard. Some require a thin white border,
some of them only around the marker elements. Others do
not require any separation at all.

There are essentially four ways to embed a foreign code
into a host barcode (Figure 4). They can share two borders
and thus provide partial white space for the inner code.
Alternatively, it can be submerged somewhere in the middle
of the host barcode.

In both versions, the embedded code might provide its
own quiet zone or relinquish it. The former makes the
embedded inner code easily visible to the human, but can
also help the reader algorithms. Aztec is the only compared
symbology in this paper that does not require a quiet zone
by design.

4.5 QR Barcode as Host
In this paper, we focus on the three codes with quadratic

pixels. They provide a uniform look to the untrained eye,
minimizing suspicions a potential victim might have. QR
and DataMatrix provide a relative large continuous area to
hide other codes. Additionally, QR can define segments of
different encodings – with the side effect that decoders ignore
segments with unknown encodings. This allows to fill these
segments with arbitrary pixels, as sometimes used to embed
icons within QR barcodes. The enhanced FEC allows to
simply paste the embedded code over a part of the host
code which remains decodable.

In our tests, QR’s error correction worked much better
than Data Matrix’s, which is probably the consequence of
employing multiple FEC standards over the time and not
having all readers support each of them.

Therefore, currently, the QR symbology provides the best
host platform to embed other codes. As versatile as QR’s
error correction code is, not all parts are protected equally.
Some elements are vital and needed before the FEC bits can
even be read or applied. Therefore, the embedded code must
not interfere with these elements (Figure 5):

Finder or Location Markers These visually prominent
markers (including the quiet zone around them) are

Figure 5: Critical areas of an QR Code: location
markers (1), quiet zone (2), timing pattern (3), and
alignment markers (4)

Table 1: Barcode standard support and features matrix
OS/Type Name QR Data Matrix Aztec Auto-load URLs Show decoded barcode

iPhone NeoReader [21] 3 3 3 3 7

Qrafter [16] 3 3 3 7 7

i-nigma [4] 3 3 7 7 7

QR Code Reader and Scanner [27] 3 3 3 3 7

ScanLife [25] 3 3 7 7 7

Android ZXing Barcode Reader [31] 3 3 7 (7)1 3

UberScanner [30] 3 3 3 7 (3)2

ScanLife [26] 3 3 7 3 7

i-nigma [5] 3 3 7 7 7

AT&T Code Scanner [9] 3 3 7 3 7

NeoReader [22] 3 3 3 7 7

ShopSavvy [28] 3 3 7 3 7

Handheld Symbol DS6708 [13] 3 3 3 – –

1 Retrieves URL in background to extract page title 2 Picture excerpt without bounding box

used by the detector to locate a barcode in an image
and correct possible distortions.

Quiet Zone The QR standard defines a large white space
around each barcode. Most readers still require at
least 1 pixel white border around the location pattern,
whereas some also manage without a quiet zone.

Timing Patterns These dotted patterns run horizontally
and vertically between the inner corners of the three
location markers. They are used to synchronize rows
and column pixels and are essential for most readers.

Alignment Markers They are only built into bigger codes
to help handling distortions. They are less important
for most decoders and a limited number of them can
be destroyed without reducing readability.

Additional meta data, such as encoding, type of barcode,
and level of forward error correction is redundantly encoded
around the markers and therefore much more robust.

5. EVALUATION
For the evaluation of our attack we selected the most pop-

ular barcode reader applications in the Google Play Store as
well as iTunes App Store. The apps were chosen based on
popularity and whether they support multiple 2D barcode
standards (Table 1). We tested combined barcodes with 5
applications for iPhone and 7 for Android which were all
available for free. The goal was to test the applicability,
not to provide a market analysis. Furthermore, we tested a
professional handheld device as used in retail and logistics.

The chosen handheld decoder was a Motorola/Symbol
DS6708 scanner. Symbol Technologies (acquired by Mo-
torola in 2007) is the long term leader in handheld scan-
ner devices and predates the mobile phone ecosystem by
decades. The device has been reconfigured to enable all
supported symbologies.

Measurements have been conducted with an iPhone 4, an
iPhone 5, a Galaxy Nexus and an LG Nexus 4 Android
phone, and the handheld scanner under normal office illu-
mination. For each barcode we made at least 10 scanning
attempts – more if the results weren’t conclusive. We varied
the distance and rotation between the printed barcode and
the sensor.

We refrain from giving percentage numbers of decodes, as
exact reproduction depends on multiple parameters, such as
illumination, angle, movement, distance and so on. Instead
we documented if and how each barcode decoded, and if
there was a major preference for one or another.

While iPhone readers display a large variation of behav-
iors, a large portion of Android apps use the free Zebra
Crossing (ZXing) [3] barcode library. Therefore, Android
apps show a much more uniform behavior. Differences are
minimal and are caused by different versions of the used
library included. In this case, the ZXing Barcode Reader
(the demo app for the open source ZXing library) does not
support Aztec codes. However, UberScanner uses a (newer)
beta version of the same library and does supports them.

5.1 Aztec in QR
Aztec is a very good choice for being embedded into an-

other code. By standard it does not require a quiet zone.
However, our tests have shown that corner placement (and
therefore offering a partial quiet zone) provides a higher
decodability rate with the Symbol device.

Qrafter was neither able to decode the inner nor the outer
barcode, while NeoReader strongly prefers the inner Aztec
code. This is probably a case where the Aztec finder is called
before the QR finder. Although tempting, it is not possible

App/Device Outer Inner

NeoReader 3 3pref.
Qrafter 7 7

i-nigma 3 –
QR Code R.S. 3 7

ScanLife 3 –

ZXing B.S. 3 –
UberScanner 3 3

ScanLife 3 –
i-nigma 3 –
AT&T Code S. 3 –
NeoReader 3 3

ShopSavvy 3 –

DS6708 3 3

Figure 6: Aztec in QR: NeoReader on iOS strongly
prefers Aztec over QR

to use both finder patterns to overlay each other. The Aztec
finder pattern is always centric and a bit taller than QR’s.
In our tests, QR readers could not be made to accept an
Aztec finder pattern as one of the three QR finder patterns
or vice versa.

Orientation and placement of the pattern did not play a
significant role in decodability.

5.2 Data Matrix in QR
The weakness of Data Matrix is the lack of a distinct

visual marker. On the one hand, this makes the code very
compact, on the other hand the decoder gets fewer visual
clues.

In the first two experiments, we hid the Data Matrix in the
bottom right corner of the host QR code without any white
space around them (Figure 7). Most readers did not detect
the embedded inner code. For NeoReader, the orientation of
the Data Matrix code proved to be of importance: a version
of the Data Matrix code with the solid line facing the QR’s
outer border was detected (Figure 8). Interestingly, i-nigma
had problems reading the outer QR code: the iOS version
did not decode at all and the Android version decoded only
after numerous attempts.

App/Device Outer Inner

NeoReader 3 7

Qrafter 3 7

i-nigma 3 7

QR Code R.S. 3 7

ScanLife 3 7

ZXing B.S. 3 7

UberScanner 3 7

ScanLife 3 7

i-nigma 3 7

AT&T Code S. 3 7

NeoReader 3 7

ShopSavvy 3 7

DS6708 3 7

Figure 7: Data Matrix (bottom right) in QR

App/Device Outer Inner

NeoReader 3 3

Qrafter 3 7

i-nigma 3 7

QR Code R.S. 3 7

ScanLife 3 7

ZXing B.S. 3 7

UberScanner 3 7

ScanLife 3 7

i-nigma (3) 7

AT&T Code S. 3 7

NeoReader 3 3

ShopSavvy 3 7

DS6708 3 7

Figure 8: Data Matrix (bottom right, rotated) in
QR

In a second test, the embedded Data Matrix code was
positioned in the center of the QR code: first without a white
border (Figure 9), and then with a white border (Figure
10). The former was not detected by any reader. The latter
was decoded by almost all scanners, whereas NeoReader on
iOS completely ignores the outer QR code. On Android,

ScanLife and the AT&T Scanner only decoded the inner
Data Matrix when panning over the image.

App/Device Outer Inner

NeoReader 3 7

Qrafter 3 7

i-nigma 3 7

QR Code R.S. 3 7

ScanLife 3 7

ZXing B.S. 3 7

UberScanner 3 7

ScanLife 3 7

i-nigma 3 7

AT&T Code S. 3 7

NeoReader 3 7

ShopSavvy 3 7

DS6708 3 7

Figure 9: Data Matrix (center) in QR

App/Device Outer Inner

NeoReader 7 3

Qrafter 3 3

i-nigma 3 3

QR Code R.S. 3 7

ScanLife 3pref. 3

ZXing B.S. 3 3

UberScanner 3 3

ScanLife 3 (3swipe)
i-nigma 3 3

AT&T Code S. 3 (3swipe)
NeoReader 3 3

ShopSavvy 3 3

DS6708 3 3

Figure 10: Data Matrix (center, white space added)
in QR

5.3 QR in QR
QR in QR is a special case. The finder markers compete

against each other and may strongly confuse the detector.
Additionally, it is easier to be noticed by a human. In
this case, the camera frame and angle of rotation can be
significant for the software’s decoding decision. The results
also indicate that some finder pattern algorithms require a
white space around the marker, and some do not. However,

App/Device Outer Inner

NeoReader 3 7

Qrafter 7 7

i-nigma 3 3

QR Code R.S. 7 7

ScanLife (3rot.) 3

ZXing B.S. 7 (3swipe)
UberScanner 7 (3swipe)
ScanLife 7 7

i-nigma 3 7

AT&T Code S. 7 7

NeoReader 3 7

ShopSavvy (3) 7

DS6708 3 3pref.

Figure 11: QR in QR, corner, w/o white space

the white space around the whole barcode as defined in [2]
is not a necessity for any of the tested readers.

For this series of tests, we increased the level of FEC for
the outer barcode, as the inner barcode consumes consider-
ably more area than Aztec or Data Matrix with the same
content.

In the first case, as depicted in Figure 11 (QR put in a
corner, without additional white space) a significant number
of readers had problems decoding any of the QR codes.
ShopSavvy decoded very rarely. For the inner code, most
of the ZXing based software picked it up panning slowly
over the barcode in the moment when the top left corner of
the camera frame is aligned with the barcode corner. The
DS6708 strongly preferred the embedded code, while i-nigma
on iOS was indifferent. ScanLife on iOS picked up the outer
barcode only after a significant rotation.

In the case where the embedded code is not exactly in
the corner, the recognition matrix changes slightly (Figure
12). i-nigma decodes the inner code slightly better when
rotated 45◦ and slide into the image, while the alignment
trick does not work for ZXing-based readers. On Android,
i-nigma only decodes the inner QR when it is embedded in
the center.

App/Device Outer Inner

NeoReader 3 7

Qrafter 3 7

i-nigma 3 3

QR Code R.S. 3 7

ScanLife 3 7

ZXing B.S. 3 7

UberScanner 3 7

ScanLife 3 7

i-nigma 3 3cent.
AT&T Code S. 3 7

NeoReader 3 7

ShopSavvy 3 7

DS6708 3 3

Figure 12: QR in QR, semi corner and center, w/o
white space

Adding white space around the finder markers of the em-
bedded code (Figure 13) increases the readability dramati-
cally, practically disabling the outer code for many applica-

App/Device Outer Inner

NeoReader 7 3

Qrafter 7 3

i-nigma 3 3

QR Code R.S. 7 (3)
ScanLife 7 3

ZXing B.S. 7 3

UberScanner 7 3

ScanLife 7 3

i-nigma 3 3

AT&T Code S. 7 3

NeoReader 7 3

ShopSavvy 7 (3)

DS6708 3pref. 3

Figure 13: QR in QR, center with white space

tions. Presumably, implementations prefer markers in close
vicinity to each other.

Qrafter and ShopSavvy need noticeably longer for de-
coding, but do so only for the embedded code. i-nigma
on Android prefers the outer code when the phone is held
further away, and the inner code when held closer to the
barcode. QR Code Reader and Scanner on iOS has major
troubles with decoding. In our tests it eventually returned
the inner code and in one case returned a garbage string.

6. DISCUSSION
The same scanner applications on different platforms can

have major differences (e.g. ShopSavvy on iOS exclusively
supports QR as 2D symbology) as well as subtle differences
(e.g. i-nigma and NeoReader). In general, the results show
that it is feasible to select different audiences to decode dif-
ferent content. For example, should another code injection
vulnerability be found in a specific library [23], it can be
specifically targeted without raising other users’ suspicion.
Many applications automatically retrieve URLs and display
them to the user, exposing the user to phishing (users cannot
verify the URL) and to attacks against the html renderer or
the operating system such as local buffer overflows (Table
1). The XZing Barcode Scanner loads an external website,
but does only display the title to the user. This is sufficient
to trigger remote attacks, such as a SQL injection.

None of our tested applications (Section 5) present the
user with more than one result at once, if there were multiple
codes in one image. Only two applications presented the user
with a thumbnail of the barcode and only XZing Barcode
Scanner gives the user the exact bounding box of the de-
coded symbology. Only the latter is sufficient to enable the
user to detect these barcode-in-barcode attacks.

6.1 Countermeasures
Countermeasures are distinguished into technical and

user-centered approaches. Technical mitigation strategies
aim at tackling the issue through methods, like implemen-
tation or code standards.

Less robust data correction
Hiding one code in another usually requires robust data

correction. Using QR codes as an example, four levels of
data correction between 7 % and 30 % are defined. The
higher robustness levels were primarily intended for indus-
trial use including a dirty environment or fast movement on
a conveyor, but are not necessary for the web-based daily-
life use. Thus, the restriction to low levels of robustness
in combination with an appropriate maximum size of data
would prevent hidden codes while not negatively impacting
the code’s practicability.

Stringent priority
While the code formats themselves have been standard-

ized, the order of detection is not, but chosen by the software
designers. As this is the root cause for code ambiguity, a
stringent prioritization should be defined in order to deter-
mine which formats should be decoded in favor of others.
While this does not prevent hiding one code in another, it
guarantees that every reader provides the same content. In
the same way, a prioritization of the outer or inner code can
be achieved.

As an alternative, a number of measures to raise user

awareness are feasible. They do not mitigate the attack
vector itself, but lay a foundation for an informed user de-
cision.

Scanned photo excerpt
Barcode readers can easily present the decoded image

and highlight the area of interest containing the decoded
barcode. Although a simple-to-implement method, only a
minority of readers use such a technique: ZXing Barcode
Scanner shows a thumbnail image including green markers
visualizing the bounding box. UberScanner also provides
the image but no further detail on the decoded area.

Notification on all codes found
Barcode readers detecting the presence of code ambiguity

should present all of them to the user and let her choose the
desired one. This requires that software does not stop after
the detection of the first code. As our evaluation has shown,
scanners lock onto one symbology and never provide the user
with multiple contents or formats.

Alien data
Some symbologies (e.g. QR) allow the definition of mul-

tiple segments of data in different encoding. As standard,
readers will ignore unsupported encodings and skip to the
next segment. These segments can be used to hide pic-
tograms and small icons but also other barcodes. A reader
application should inform the user of such alien data and
warn them about the potential for abuse.

Good QR practice
Ordinary URLs encoded in barcodes hold risks, e.g. con-

taining code to reset the phones, and cannot be identified
by the user at first sight. Thus, barcode reader best practice
proposes presenting the scanned code or URL to the user and
requesting their acknowledgement to access it. Additional
URL checks, as proposed in [19] should be conducted.

Nevertheless, this also includes imperatives to the
barcode-issuing entity to provide a readable URL that
a user can associate an organization, e.g. the official domain
name of the organization. URL shortening services or
tracking URLs remove the user’s ability to visually check
the URL.

7. CONCLUSION
In this paper, we presented barcode-in-barcode attacks.

We demonstrated that for users with different apps or de-
vices different data is returned when the same barcode was
scanned. This is due to deliberately constructed ambigu-
ous barcodes that conform to multiple standards or contain
multiple versions of the same symbology within the area
of another barcode. We have shown that implementation
details cause barcode reader applications to react substan-
tially differently. This remotely resembles Packet-in-Packet
attacks on radio devices and protocol decoding mismatch in
network protocols [12]. In a similar way, Jana et al. [15] and
Alvarez et al. [8] shown how to abuse file-type fingerprinting
and parsing differences of anti-virus tools to evade detection.
Albertini [6] created perfect binary polyglots that are for
example valid PDF, JPEG, and ZIP files at once [7]. In
general ambiguity is not desired, however in special cases it
can be particularly harmful.

The barcode-in-barcode attack allows to discriminate
users by their handset (e.g. redirecting iPhone users to more
expensive products than Android users) or to precisely

target specific platforms with appropriate exploits. In
the past, multiple attacks have been presented that used
2D barcodes to inject SQL statements or code into the
decoding library, trigger premium rate messages, or call
system functions such as a factory reset. Additionally, they
can be used for phishing attacks or to spread malware.

As 2D barcodes are gaining importance in security sen-
sitive applications (e.g. financial transactions) they provide
an increasingly valuable attack vector for targeted attacks
on selected user groups. In Section 2 we presented several
attack scenarios based on the applications the barcodes are
used in, such as diverting money, exploiting phones, and
cheating on fees.

Subsequently, we evaluated the possibilities of this attack
with 12 popular barcode applications on iOS and Android
as well as a professional barcode scanner as used in logis-
tics. Finally, we proposed countermeasures and mitigation
strategies.

Acknowledgments
Part of this work arose during an internship at the National
Institute of Informatics, Tokyo. This research was par-
tially funded by the COMET K1 program by FFG (Austrian
Research Funding Agency) and the Austrian Science Fund
(FWF): P 26289-N23. Moreover this work has been carried
out within the scope of u’smile, the Josef Ressel Center for
user-friendly secure mobile environments.

8. REFERENCES
[1] ISO/IEC 16022: Information technology – Automatic

identification and data capture techniques – Data
Matrix bar code symbology specification.

[2] ISO/IEC 18004: Information technology – Automatic
identification and data capture techniques – QR Code
2005 bar code symbology specification.

[3] Official ZXing (”Zebra Crossing”) project home.
https://github.com/zxing/zxing, accessed July
18th 2014.

[4] 3GVision. i-nigma. Apple App Store.
https://itunes.apple.com/en/app/id388923203.

[5] 3GVision. i-nigma Barcode Scanner. Google Play
Store.
https://play.google.com/store/apps/details?id=

com.threegvision.products.inigma.Android.

[6] A. Albertini. corkami: Reverse engineering and visual
documentations.
http://code.google.com/p/corkami/#Binary_files,
accessed September 6th 2014.

[7] A. Albertini. This PDF is a JPEG; or, This Proof of
Concept is a Picture of Cats. In PoC || GTFO 0x03.
March 2014. http://corkami.googlecode.com/svn/
trunk/doc/pocorgtfo/pocorgtfo03.pdf.

[8] S. Alvarez and T. Zoller. The death of AV defense in
depth? - revisiting anti-virus software, 2008.
http://cansecwest.com/csw08/csw08-alvarez.pdf.

[9] AT&T Services Inc. AT&T Code Scanner: QR,UPC &
DM. Google Play Store. https://play.google.com/
store/apps/details?id=com.mtag.att.codescanner.

[10] M. DeCarlo. AVG: QR code-based malware attacks to
rise in 2012, 2012. http:
//www.techspot.com/news/47189-avg-qr-code.html,
accessed July 18th 2014.

https://github.com/zxing/zxing
https://itunes.apple.com/en/app/id388923203
https://play.google.com/store/apps/details?id=com.threegvision.products.inigma.Android
https://play.google.com/store/apps/details?id=com.threegvision.products.inigma.Android
http://code.google.com/p/corkami/#Binary_files
http://corkami.googlecode.com/svn/trunk/doc/pocorgtfo/pocorgtfo03.pdf
http://corkami.googlecode.com/svn/trunk/doc/pocorgtfo/pocorgtfo03.pdf
http://cansecwest.com/csw08/csw08-alvarez.pdf
https://play.google.com/store/apps/details?id=com.mtag.att.codescanner
https://play.google.com/store/apps/details?id=com.mtag.att.codescanner
http://www.techspot.com/news/47189-avg-qr-code.html
http://www.techspot.com/news/47189-avg-qr-code.html

[11] DENSO WAVE. History of QR Code.
http://www.qrcode.com/en/history/, accessed July
13th 2014.

[12] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and
R. Speers. Packets in packets: Orson welles’ in-band
signaling attacks for modern radios. In Proceedings to
WOOT 2011, pages 54–61, August 2011.

[13] M. Inc. Symbol DS6708 Digital Scanner Product
Reference Guide, 2009.
http://www.motorolasolutions.com/web/Business/

Products/Bar%20Code%20Scanning/Bar%20Code%

20Scanners/General%20Purpose%20Scanners/

_Documents/static_file/ds6708.pdf.

[14] ISO/IEC 24778: Information technology – Automatic
identification and data capture techniques – Aztec
Code bar code symbology specification.

[15] S. Jana and V. Shmatikov. Abusing File Processing in
Malware Detectors for Fun and Profit. In Proceedings
of the 33rd IEEE Symposium on Security & Privacy,
San Francisco, CA, May 2012.

[16] Kerem Erkan. Qrafter. Apple App Store.
https://itunes.apple.com/us/app/id416098700.

[17] A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti,
and A. Francillon. Optical Delusions: A Study of
Malicious QR Codes in the Wild. In Proceedings of the
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 06 2014.

[18] P. Kieseberg, S. Schrittwieser, M. Leithner,
M. Mulazzani, E. Weippl, L. Munroe, and M. Sinha.
Malicious Pixels Using QR Codes as Attack Vector. In
I. Khalil and T. Mantoro, editors, Trustworthy
Ubiquitous Computing, volume 6 of Atlantis Ambient
and Pervasive Intelligence, pages 21–38. Atlantis
Press, 2012.

[19] K. Krombholz, P. Frühwirt, P. Kieseberg, I. Kapsalis,
M. Huber, and E. Weippl. QR Code Security: A
Survey of Attacks and Challenges for Usable Security.
In T. Tryfonas and I. Askoxylakis, editors, Human
Aspects of Information Security, Privacy, and Trust,
volume 8533 of Lecture Notes in Computer Science,
pages 79–90. Springer International Publishing, 2014.

[20] B. Naik. QR Code: USSD attack, 2012.

http://resources.infosecinstitute.com/

qr-code-ussd-attack/, accessed July 18th 2014.

[21] NeoMedia Technologies, Inc. NeoReader. Apple App
Store.
https://itunes.apple.com/us/app/id284973754.

[22] NeoMedia Technologies Inc. NeoReader QR & Barcode
Scanner. Google Play Store. https://play.google.
com/store/apps/details?id=de.gavitec.android.

[23] K. Peng, H. Sanabria, D. Wu, and C. Zhu. Security
Overview of QR Codes. 2014. MIT Student Paper,
available online
https://courses.csail.mit.edu/6.857/2014/

files/12-peng-sanabria-wu-zhu-qr-codes.pdf.

[24] L. Sassaman, M. L. Patterson, S. Bratus, M. E.
Locasto, and A. Shubina. Security Applications of
Formal Language Theory. In IEEE Systems Journal,
Volume 7, Issue 3, Sept. 2013.

[25] Scanbuy Inc. ScanLife Barcode & QR Code Reader
with Prices, Deals, & Reviews. Apple App Store.
https://itunes.apple.com/us/app/
scanlife-barcode-reader-qr/id285324287.

[26] Scanbuy Inc. ScanLife QR & Barcode Reader. Google
Play Store. https://play.google.com/store/apps/
details?id=com.ScanLife.

[27] ShopSavvy Inc. QR Code Reader and Scanner. Apple
App Store. https://itunes.apple.com/en/app/
qr-code-reader-and-scanner/id388175979.

[28] ShopSavvy Inc. ShopSavvy Barcode Scanner. Google
Play Store. https://play.google.com/store/apps/
details?id=com.biggu.shopsavvy.

[29] D. Tam. PayPal offers QR codes for retail-store
purchases, October 2013.
http://www.cnet.com/news/

paypal-offers-qr-codes-for-retail-store-purchases/,
accessed July 24th 2014.

[30] Ubercoders. UberScanner. Google Play Store.
https://play.google.com/store/apps/details?id=

org.ubercoders.uberscanner.

[31] ZXing Team. Barcode Scanner. Google Play Store.
https://play.google.com/store/apps/details?id=

com.google.zxing.client.android.

http://www.qrcode.com/en/history/
http://www.motorolasolutions.com/web/Business/Products/Bar%20Code%20Scanning/Bar%20Code%20Scanners/General%20Purpose%20Scanners/_Documents/static_file/ds6708.pdf
http://www.motorolasolutions.com/web/Business/Products/Bar%20Code%20Scanning/Bar%20Code%20Scanners/General%20Purpose%20Scanners/_Documents/static_file/ds6708.pdf
http://www.motorolasolutions.com/web/Business/Products/Bar%20Code%20Scanning/Bar%20Code%20Scanners/General%20Purpose%20Scanners/_Documents/static_file/ds6708.pdf
http://www.motorolasolutions.com/web/Business/Products/Bar%20Code%20Scanning/Bar%20Code%20Scanners/General%20Purpose%20Scanners/_Documents/static_file/ds6708.pdf
https://itunes.apple.com/us/app/id416098700
http://resources.infosecinstitute.com/qr-code-ussd-attack/
http://resources.infosecinstitute.com/qr-code-ussd-attack/
https://itunes.apple.com/us/app/id284973754
https://play.google.com/store/apps/details?id=de.gavitec.android
https://play.google.com/store/apps/details?id=de.gavitec.android
https://courses.csail.mit.edu/6.857/2014/files/12-peng-sanabria-wu-zhu-qr-codes.pdf
https://courses.csail.mit.edu/6.857/2014/files/12-peng-sanabria-wu-zhu-qr-codes.pdf
https://itunes.apple.com/us/app/scanlife-barcode-reader-qr/id285324287
https://itunes.apple.com/us/app/scanlife-barcode-reader-qr/id285324287
https://play.google.com/store/apps/details?id=com.ScanLife
https://play.google.com/store/apps/details?id=com.ScanLife
https://itunes.apple.com/en/app/qr-code-reader-and-scanner/id388175979
https://itunes.apple.com/en/app/qr-code-reader-and-scanner/id388175979
https://play.google.com/store/apps/details?id=com.biggu.shopsavvy
https://play.google.com/store/apps/details?id=com.biggu.shopsavvy
http://www.cnet.com/news/paypal-offers-qr-codes-for-retail-store-purchases/
http://www.cnet.com/news/paypal-offers-qr-codes-for-retail-store-purchases/
https://play.google.com/store/apps/details?id=org.ubercoders.uberscanner
https://play.google.com/store/apps/details?id=org.ubercoders.uberscanner
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://play.google.com/store/apps/details?id=com.google.zxing.client.android

