Towards a Hardware Trojan Detection Cycle

Adrian Dabrowski, Heidelinde Hobel, Johanna Ullrich, Katharina Krombholz, Edgar Weippl
SBA Research, Vienna, Austria
E-Mail: (firstletterfirstname)(lastname) @sba-research.org

Abstract—Intentionally inserted malfunctions in integrated
circuits, referred to as Hardware Trojans, have become an
emerging threat. Recently, the scientific community started to
propose technical approaches to mitigate the threat of unspecified
and potentially malicious functionality. However, these detec-
tion and prevention mechanisms are still hardly integrated in
the industry’s Hardware development life cycles. We therefore
propose in this work a secure hardware development life cycle
that assembles methods from trustworthy software engineering.In
addition to full traceability from specification to implementation,
and down to each gate, we introduce a feedback detection cycle
that systematically escorts every single step of the development
process. To do so, we integrate different detection methods
for each development phase that are derived from a common
knowledge base.

I. INTRODUCTION

Software malware has become a daily threat to computer
systems and a lot of effort is put into adequate countermea-
sures. Yet computer systems not only consist of software,
but also of hardware. Benign functionality can be realized in
hardware or software, likewise, malware can appear as a part
of software or hardware.

Wang et al. [1] defined hardware Trojans as hardware mod-
ifications which result in malicious functional changes of the
respective device. Considering the propagation of integrated
circuits in today’s world — including domestic appliances
like washing machines, means of transportation (e. g. cars or
airplanes), clinical devices (e.g. enabling precise diagnosis)
and military appliances (e.g. enhancing the effectiveness of
weapons) — hardware Trojans impact our everyday life and
may even cause life threatening situations. Unlike other errors
and malfunctions, Trojans are inserted deliberately. Apart
from insider attacks, the economically driven outsourcing of
production steps to third party contractors enlarges the attack
surface dramatically. Contractors, their employees, and intrud-
ers potentially modify the design without the designer’s or
customer’s knowledge. Hitherto existing mitigation approaches
(such as [2]) introduce additional manual reviews in different
stages of the process, but do not develop specific measures for
hardware Trojan detection.

Based on the experience of trustworthy software engineer-
ing, the adoption of respective techniques for the hardware
development process seems appropriate to encounter the chal-
lenges of silicon malware. Due to inherent differences between
these domains, the adoption is a non-trivial task. Hardware
offers only scarce possibilities of updating after deployment.
Furthermore, hardware attacks are typically targeted attacks,

This work was supported by the FIT-IT program (project number 835922)
and the COMET K1 program by FFG (Austrian Research Funding Agency).

i.e. tailored to a specific victim or product, while software
malware targets a broad mass of anonymous victims.

Additionally, a drastic change of the familiar and well un-
derstood hardware development process requires high financial
and organizational effort and therefore unlikely to be applied.
Hence, we strove to moderately extend the current process
by adapting selected methods known from secure software
development.

As a first step, we analyzed typical malware structures
to infer the demands for successful detection of hardware
Trojans. Then we identified shortcomings in state of the art
hardware development processes and evaluated trustworthy
software engineering processes in terms of their applicability
to the hardware process. Successfully evaluated methods are
adopted and then included in the hardware development cycle.

By understanding potential attacks and their point of
insertion, we identified feasible methods and requirements
for their proper appliance within the hardware development.
Finally, the findings were assembled to develop the hardware
Trojan detection cycle. Thereby it is taken into account that
some properties of malware are easier to detect in artifacts
of particular development phases. This is considered by a
detection cycle containing adaptive phase-dependent rule sets.

This paper contributes

e a definition of a threat model to identify the demands
for a secure hardware development process,

e the introduction of full traceability in hardware devel-
opment, and

e a detection life cycle for malware in silicon to be
included in today’s state of the art development pro-
cesses.

This paper is organized as follows: Section II presents state
of the art hardware development processes, types of attackers,
differences between hardware and software development as
well as an introduction to trustworthy software engineering.
Section III introduces the methodology and present the de-
veloped detection life cycle. Finally, Section IV provides
an evaluation followed by a discussion of results, especially
in terms of limitations. Section V provides an overview on
related work with respect to hardware Trojans and trustworthy
hardware development, followed by the conclusion in Section
VL

II. BACKGROUND

In this section, we briefly describe the standard industrial
hardware development lifecycle. Furthermore, we summarize
the recently considered attack vectors, highlight the important
differences between software and hardware development, and
give an introduction to trustworthy software development.

Development Phases

| Requirements

!

Attacker Types

Specification / Design |—>| Test Generator

]

Design Attacker

Implementation

|<—| 3rd Party-IP |

Equivalence Check i

Synthesis

Netlist i

Synthesis Attacker

| Layout, Timing

|(—| Test Insertion B'

GDslI i

Mask Shop

h 4

Fabrication

h 4

A 4

Packaging

A 4

Device Test

h 4

| Waferlevel Test
‘ Shipment

Fig. 1. Industrial Hardware Development Lifecycle

A. Industrial Hardware Development Lifecycle

Figure 1 illustrates the phases of a typical industrial IC de-
velopment process. In the requirements phase, the core features
of the future product are defined. In the following specification
and design phase detailed descriptions and block diagrams are
gained from the results of the first phase. Based upon that,
disjunctive teams work on test cases and the implementation.
During the implementation phase HDL (Hardware Description
Language) code is written, but also external modules — 3rd
party intellectual property (IP) — can be included. Depending
on the license, the 3rd party IP can be anything from full HDL
source code to a piece of netlist! or a development model,
whereas the real IP is inserted directly into the mask later
on. A verification mechanism tests the implementation against
the specification in regular intervals (e. g. in nightly regression
runs). This is also the phase, in which code reviews, testing
and simulation take place.

After synthesis, the generated netlist is tested against the
implementation using an equivalence check. The flat netlist
is then laid out for a specific production technology and
saved as GDS II (Graphic Database System) file. At this point,
testing circuits are introduced which support the detection
of production errors in later phases, not necessarily Trojans
(Test Insertion). For a fab-less designer, i.e. an IC designer
without fabrication facilities, this is the last step that is done

Netlists are a low-level representation of hardware by means of nested
graphs of the electronic circuit. They consist of gates and its connectivity
wires.

Fabrication Attacker

Distribution A.

in-house. The fape out marks the transfer of the IC design to
external contractors. The mask shop creates the lithographic
masks for the fabrication. Wafers are first tested as a whole,
then individual ICs are tested. However, even designers with
access to a fab source out some of the steps either for economic
reasons or because some steps are better performed by very
specialized and experienced contractors.

B. Attack types

Attackers are divided into four general groups based on
the development phase they are active in, i.e. design attack-
ers, synthesis attackers, fabrication attackers and distribution
attackers [3]. In Figure 1, these attacker types are visualized
in relation to the hardware development phases they are active
in and Figure 2 provides an overview.

A design attacker is active up to the implementation phase.
Thereby, the attacker has full access to design files as well as
source code. This access is gained by traditional hacking or
by the attacker being an insider with legitimate access. He/She
is able to add and remove components or to gain insights into
the design for future attacks.

Synthesis attackers compromise CAD (Computer Aided
Design) tools or scripts running them, which output a modified
representation without modifying the source code. Due to
being included into a synthesis tool, these attacks are difficult
to discover. Thereby the attacker is able to add Trojan logic,
mangle critical logic, metering IPs or theft of respective
information.

Who is the Attacker

* Insider or Design company

Design Attacker * Hacker gains access

* CAD tool designer

* Design company

* Hacker gains access to
CAD tools

Synthesis Attacker

* Insider in foundry
* Hacker gains access to
layout geometry

Fabrication Attacker

*|C distributor

Distribution Attacker * End user

Fig. 2. Attacker Types, based on [3]

A fabrication attacker unfolds his/her activities after tape-
out and is typically external to the IC designer. Attackers are
able to remove/add components via layout geometry modifi-
cation, reverse engineering or IC metering.

The fourth group, the distribution attackers, sell counterfeit
products with modified circuitry.

C. Differences between Software and Hardware Development

In general, software engineering is more flexible than
most engineering professions due to being independent of
physical artifacts. This also leads to differences in the de-
velopment process and does not allow the simple adoption
of trustworthy software engineering to hardware development.
Physically producing an ICs is a time-consuming and costly
task. Furthermore, testing the final good requires significantly
more resources than in software engineering. Thus, engineers
try to mitigate all kind of errors before production by means
of planing and simulation. This leads to a production process
where the actual production remains a comparably small step
at the end.

After roll-out of the respective product, updates and fixes
such as performed regularly in operating systems and browsers
are impossible because they would require physical changes or
replacement which cannot be performed remotely.

Coherently with these aspects, iterative development pro-
cesses are not fully applicable for hardware. As an extreme,
agile software development methods start with a rough de-
sign, which expands modular and subsequently. The imple-
mented modules are refined based on the use case just before
implementation. In contrast, IC engineering prefers a more
classic top-down engineering approach based on the waterfall
model, where each phase is strictly performed after each other.
Changes in previous phases are possible, but have to trickle
down the waterfall and hold the risk of a long tail of other
adoptions, such as retrofitting tests.

In a nutshell, IC development phases gain similarity to
software development the further away the are from the final

product. As a conclusion, methods from trustworthy software
development are more likely to be adaptable for the first stages
of hardware development.

D. Trustworthy Software Development Lifecycle

In software a secure development process is often referred
to as trustworthy, since secure is also associated with a quality
control so that the end product does not contain design- or
implementation-specific security vulnerabilities, such as buffer
overflows or command injections. In this paper we focus on
the first interpretation, even though they often correlate.

The method of Requirement Traceability has been re-
searched and popularized by Gotel and Finkelstein [4]. In
brief, it describes the ability to track all people, decisions
and artifacts that lead to a certain requirement, as well as
all artifacts (e.g. code and tests) involved in fulfilling the
requirement in the final product. The latter part is called post
requirements specification and can be as detailed as for each
single code block or code line.

A vast number of implementations exists for all popular
development platforms. They typically bridge or unite other
requirements, specifications, testing and source code version-
ing tools. The integration into the development environment
(IDE) forces developers to stick to a certain work-flow. With
an enforced work-flow, developers might not be able to commit
changes into a source code management tool without logging
into a specification, test case or change request. Together
with debug symbols for the binary, this method creates an
uninterrupted traceability from the requirement, through the
specification, the test cases and the implementation down
to the binary code and vice versa. Each compiler-generated
CPU instruction can be traced to a specific source code
line or module and then to all the authors, specifications,
requirements, change requests and test cases associated with
it.

The term Continuous Integration describes a software
development infrastructure where code is automatically built
and tested in short intervals - usually several times per day
or at least every night (i.e. nightly build). This leads to a
usable product very fast, but without the full feature set that
grows additively, which allows for early testing. This method is
often combined with test-driven development. Here, unit tests
are written before the actual implementation and automatically
tested.

III. SECURING THE HARDWARE DEVELOPMENT

The goal is the enhancement of the state-of-the-art hard-
ware development process to increase hardware security by
adapting methods from trustworthy software engineering.
However, due to the differences between hardware and soft-
ware development (see Section II-C), the respective methods
have to be chosen carefully. This way, an adequate hardware
development process is constructed to decrease the possibility
of Hardware Trojans.In detail, four steps are taken:

Threat modeling: Based on the attack types (see Section
II-B) and Hardware Trojan descriptions, summarized by [5],
we analyze their point of insertion. The entity of these points
are referred to as attack surface. The analysis reveals the ad-
vantages and disadvantages of introducing malware at a certain

phase of the development process. Thereby, the perspectives of
both stakeholders, i.e. developers and attackers, are included
to get a comprehensive picture.

Adoption of methods: Methods which are identified as
applicable, will have to be modified. In this step, we will prove
the feasibility of the method’s introduction and define further
the requirements which have to be fulfilled.

Definition of detection cycle: After all pre-requirements
have been presented, the detection cycle is assembled and
described in detail. Further, the combination of automation and
human intervention is explained.

Evaluation: The final evaluation demonstrates that the de-
tection cycle fulfills the target to successfully detect hardware
Trojans. Thereby we rely on test implementations of malware
from a Hardware Trojan Kit [6]. We exemplify the evaluation
of one Hardware Trojan implementation. The evaluation also
reveals the limitations of our approach.

A. Threat Model

As described in Section II-B, malware can be introduced
in different stages of the production process. Each stage has
its own representation and bears its own risks and advantages
for an attacker. Malfunctionality planted into the (machine
readable) specification or design needs to be hidden in a very
elaborate way, since specifications are seen and checked from
designers, testers and developers, and are heavily reviewed.

An attack in the implementation phase (i.e. design attack)
allows an attacker to access high level functions as well as
low level signals. The main advantage for the attacker is the
low effort of integrating the malfunction, but bears the risks
of being detected by unit tests. In reaction, an attacker can
insert its modifications into the glue logic between modules or
spread parts of the Trojan across different modules.

Netlist modifications are hard to comprehend for humans
and require the attacker to implement its Trojan in very low
level terms. This can however lead to a lean and sophisticated
modification with a minimum number of changed gates and
interconnects. Besides that, the synthesis tool itself can be
Trojanized and simply include and hide the hardware Trojan
everytime the chip synthesis is performed (synthesis attacker).
Mask modifications and attacks during fabrication introduce
even more subtle changes [7] to the circuit, but require a very
deep understanding of the circuitry and the production process
(fabrication attacker).

We assume that the earlier in the production stage a Trojan
is inserted, the more hints for its existence will be scattered
through the project artifacts.

B. Traceability in Hardware

We propose to use traceability in hardware development
like in software development (Section II-D). The detailed spec-
ification is developed based on the requirements and recorded
in a first table (Figure 3, left table). Every specification
document has its own history. Single authors are linked to
single specifications or paragraphs. These specifications are
the basis for creating tests. Test cases are related to the
specification points they cover (middle table), the involved test

engineers and later on also to the covered source code lines.
Implementation is again based on the specifications. A source
code management system is able to track each version and to
relate source code parts to single authors and the specification
or change request, effectively ensuring traceability of every
revision of each source code line.

Even the frequent use of 3rd party IPs does not require
special treatment, as third-party libraries are also known in
software development. However, the circuit- and netlist gen-
eration work in a completely different way than in software
development. The generated logic and circuitry tend to be
heavily optimized. Nested netlists (often generated for visu-
alization) contain some meta-information (e.g. the module or
process name). In this stage it is trivial to attach source code
references to the elements - in fact many of today’s develop-
ment environments do this to some degree. However, flattened
or technology-mapped netlists are optimized regardless of the
module’s boundaries. Depending on the target platform, the
output of the synthesis might be individual gates or lookup-
tables (in FPGAs). An optimizer has to merge these source
code reference labels accordingly, e.g. labels for merged
elements accumulate in the resulting element. However, the
output signal of an entirely removed individual element is
typically substituted with a static connection to either logic
0 or 1 as the input for the next element. If the latter, this input
inherits the labels, not the global logic 0 or 1 source. In other
cases, such as entirely removed address bus lines accompanied
by resized or removed address decoders, collecting all labels
doesn’t seem so helpful and needs some balance.

Preserving meta-data in external facilities provides some
additional challenges. For example, a standardized extension to
the GDS II (Graphic Database System) file format is required.
GDSII is the de facto industry standard for IC layout-related
data.

We believe that the novel approach of uninterrupted trace-
ability from requirements to source code to each individual
transistor is very helpful in a number of (debug) tasks, not
only in the particular one we describe in the next section.

C. Detection Cycle

As attacks occur on many different levels and in different
development phases providing various possibilities of detec-
tion, we propose a multi-phase detection feedback cycle -
similar to those used for machine learning (Figure 4).

In a first step, a knowledge base for properties and working
principals of Hardware Trojans is implemented. It includes
expert knowledge, theoretical and practical descriptions from
literature, real world examples, implementations and lessons
learned example implementations (see Section I'V-A for further
explanations and examples).

From this knowledge base, a set of rules and patterns
is extracted for the different design phases and verification
steps. These include but are not limited to: design rule checks,
negative source code patterns, negative netlist sub-graphs,
structural rules, and formal verification rules. These rules are
then applied to the design and implementation artifacts in
regular time intervals (e.g. in automated nightly test runs). It
automatically selects the appropriate examination methods for
the right development phase.

Requirements

Requirements > Specification Tests > Specification Implementations > Specification
R1 R2 Ry T T2 Tz c1 c2 Cn
5 x D 5| x D15 x X
S 5
3| x w8 ® [@
x 5 (7] > x 5 @
= =
‘C (5]
X g X \ 8 /x
o Q.
%) \ X ()] X /
> ——>

Component,

Module,

l Process,
\ (@) \ g / Line n-m \‘a\
&= 5 Test || e .

u g

L3 N =]

Case |[—=

—

Revisi Component,
evision Module, | —

-

R;wtslon Specification A Revision
Istory Document System Designers History
and Engineers

Fig. 3. Proposed traceability in hardware development

Suspicious structures flagged by the testing procedures are
then presented to a senior tester or senior quality assurance
engineer. Thanks to the previously introduced full traceability,
they can trace back these structures to the source code, the
author(s) of the appropriate lines, every change that was made
(history), the design requirement supposedly covered by the
code, and the respective test cases. After the assessment the
tester either flags the structure as malicious or as a genuinely
wanted artefact. The latter is followed by an error analysis. As
the precision of detection rules is not perfect and false-positives
are going to occur, this information is fed back into the loop.
In case the incident is specific to the project, an exception
into the rule set is added or a specific construct (e.g. netlist
area or lines of source codes) is white-listed. If the findings
(true- or false-positive) lead to a new insight or knowledge,
the knowledge base is extended.

IV. EVALUATION AND DISCUSSION

For evaluation, we used the Hardware Trojan Kit [6] which
allows the modular construction of hardware Trojans based on
the attributes activation, covert communication, payload and
detection. Based on the implemented modules, various rules
and properties that are used to construct a first knowledge
base for Trojan detection are inferred. While Trojans will rarely
come in neatly capsuled modules, they are helpful in analyzing
structures and generating new variants.

A. Setup

The modules were developed and tested on several Xilinx
FPGAs. The sources as well as the synthesized artifacts were

VaraY History —
Test Engineers Ef:i?; Ad
¥

| Block
v

| Netist
v

‘ Gate

then analyzed for typical properties and characteristics and
revealed typical malware structures, which may serve as a
strong indicator to reveal malicious hardware and are provided
in the following list:

e Asynchronous latch: A latch not clocked by one of
the typically low number of global clocks.

e Gated wire or output: A signal filtered by another
gate to falsify its output.

e Ring oscillator: A combinatorial loop without a con-
stant frequency.

e Unused pin or bond wire: Can be used for dissem-
ination, e. g. for electromagnetic radiation.

e Hidden finite state machine (FSM) state(s): De-
pending on the encoding (e. g. one-hot- v.s. sequential
encoding) can be hard to detect.

e Latch or Flipflop independent from global reset

e Local or gated clock: Typically most gates are con-
trolled by one of the global clocks.

B. Use-case

We exemplify our findings based on a ring oscillator (RO).
In its simplest case, a RO is a cycle of an odd number of
inverters feeding the output back to the input. It will then
start to oscillate with a frequency depending on the gate
and transmission delays. This specific structure can be found
in some Trojan examples (e.g. side channels, independent

Expert Knowlege

Extract Rules
and Patterns

xample from Papers

Real World Ex.

Knowledge Base

Design Rules,

Structure Rules,
Formal Verification,

Negative Patterns (RTL,Netlist),

N

I e ety
Exceptions

Gained Knowledge

/

Flag suspicious

Error Analysis

~—1 Structures

Senior Tester

Fig. 4. Proposed detection cycle

clock, ambient temperature measuring) as well as legitimate
uses (e.g. random number generators, physical unclonable
functions). However, since this is a structure used in multiple
Trojan examples, it is included into the knowledge base.
Multiple rules can be inferred to detect such structures. We
derived the following rules that are aimed at mitigating the
risk of using a ring oscillator:

e In formal verification, a specific rule forbids sub-
structures with outputs, but without digital inputs.

e On source code level, a rule reports the use of
optimizing-inhibiting compiler- or source code flags?.
In this special case, most synthesis tools will try
to optimize NOT (NOT (&)) back into A, effectively
removing the RO.

e A structural graph pattern searches the netlist for ring
sub-graphs of this type.

Equivalent rules have also been found for the other ma-
licious structures described in Section IV-A, enabling their
successful detection.

C. Discussion

As described in Section III-C, the detection life cycle
accompanies the development process through different phases
with a phase-dependent rule set derived from a common
knowledge base. This way, our approach is effective against
design-, synthesis- and partly against fabrication attackers
because the life cycle is applied in the respective phases of the

2e.g. keep- and noprune-attributes in VHDL

7

hardware development process. It will not work on distribution
attacks.

We assume, that every included Trojan leaves some evi-
dence or hint of its existence in the project’s artifacts. However,
each detection rule has only a certain probability of detecting
a particular Trojan based on a hint. The more hints there are,
or the earlier in the development the Trojan is inserted, the
more scans they are going to be subject to. Therefore the rare
case of multiple Trojans injected into one IC is going to leave
more hints, thus making the detection even easier.

Another problem are dual-use structures. However, since
we already established that a RO as well as all of the patterns
listed above might have legitimate uses, the flagged structures
are presented to the senior engineer for approval.

The above example also demonstrates why it might be
favorable to have stricter rules: it is better to produce false-
positives (which are then reviewed) than to produce false-
negatives that might slip through the detection process.

D. Limitations

One limitation of our detection cycle approach is that it de-
pends on the quality of the verification, property and rule sets
to detect Trojans. Therefore it is designed as feedback loop:
as it is used, it accumulates new knowledge, refines its rules
and matures over time. Many of the examinations and checks
can be automated. It therefore complements approaches like
[2] and partly incorporates [8]. Rule sets and knowledge base
can be shared among industry, similar to personal computer
anti-virus companies sharing their knowledge and fingerprints
with each other.

V. RELATED WORK

A number of publications has been presented to provide
methods for Hardware Trojan detection. Applying formal
verification, i.e. verifying the equivalence of two design rep-
resentations, leads to the method of Structural Checking [9],
[10]. Other methods target Trojan activation by finding the
rare events which serve as trigger. Additional methods reduce
the overall test effort, e.g. via statistical analysis or state
space obfuscation [11], [12]. It is also possible to compare
physical parameters of a chip to a Trojan-free reference chip
— the golden model — allowing the detection of side channels
[13]-[15]. Invasion refers to the insertion of additional circuits
into a design without changing its original functionality in
order to test it after production [13], [16]. In combination
with Trojan detection, their localization is also of interest.
Thereby, activation means maximizing the Trojan activity
while reducing the remaining parts’ activity [17]-[19], whereas
mensuration means gaining the regional information from side
channel measurements [14], [15]. All these papers focus on
the technical aspects of detection and mitigation strategies.
However, currently this knowledge has not been systematically
integrated into development processes, which is required to
encounter Trojans in an organized way. Our life cycle allows
to systematically integrate them now.

In [2] Khattri et al. present a Hardware Security De-
velopment Lifecycle. Identifying the lack of adequate tools
for static analysis of hardware description languages and a
comprehensive collection of hardware threats, a life cycle con-
sisting of five phases was developed based on the experience
of secure software engineering. An initial security assessment
is followed by an architecture review and a design review.
Finally, pre-silicon and post-silicon testing is performed in an
implementation review and in a penetration test. It remains
unclear how this penetration testing works without a com-
prehensive thread collection. Our approach overcomes this by
adopting a reinforcement learning technique into the detection
cycle, similar to the one used in machine learning. Thereby,
the lack of a threat collection is handled by creating it during
the iterations of the presented process.

VI. CONCLUSION

Hardware Trojans are a type of malware which are realized
in silicon and are a severe thread to our daily life. While
sophisticated experience and knowledge regarding secure soft-
ware development are available, respective counterparts for
hardware developing is still lacking.

In this paper, we proposed a Hardware Trojan Detec-
tion cycle which is applicable in the traditional hardware
development process. Within the iterative cycle, rules and
patterns leading to a rule set are extracted from a knowledge
base. Automatic tests flag suspicious structures, which are
forwarded to a senior tester. He/She is able to trace back these
structures and decide whether they are malware. If identified
as malware, an error analysis is performed and the gained
knowledge is fed back to the knowledge base. The detection
cycle accompanies the development phases while constantly
extending its knowledge and adapting. Thereby it is taken into
account, that some properties of malware are easier to detect in
artifacts of particular development phases which is considered

by a detection cycle containing adaptive phase dependent rule
sets. It is effective against design and synthesis attackers and
partly against fabrication attackers.

Being a precondition for the appliance of the Detection
cycle, we introduced the novel technique of gap less trace-
ability from every requirement of the specification down to
each single transistor. Its implementation demands extensions
to today’s synthesis tools. Further, it will require a gentle trade-
off between label explosion due to optimization and the level of
insight. Once implemented it is able to provide valuable insight
and debug features even beyond the purpose of Hardware
Trojan detection, e. g. re-usability of modules.

ACKNOWLEDGMENTS

This work was supported by the FIT-IT program (project
number 835922) and the COMET K1 program by FFG (Aus-
trian Research Funding Agency).

REFERENCES

[1] X. Wang, S. Narasimhan, A. R. Krishna, T. Mal-Sarkar, and S. Bhunia,
“Sequential hardware trojan: Side-channel aware design and place-
ment,” in 2011 IEEE 29th International Conference on Computer
Design (ICCD), 2011, pp. 297-300.

[2] H. Khattri, N. K. V. Mangipudi, and S. Mandujano, “Hsdl: A secu-
rity development lifecycle for hardware technologies,” in Hardware-
Oriented Security and Trust (HOST), 2012 IEEE International Sympo-
sium on. 1EEE, 2012, pp. 116-121.

[3] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno, “A case
study in hardware Trojan design and implementation,” in International
Journal of Information Security, 2010, vol. 10, pp. 1-14.

[4] O. C. Gotel and C. Finkelstein, “An analysis of the requirements
traceability problem,” in Requirements Engineering, 1994., Proceedings
of the First International Conference on. 1EEE, 1994, pp. 94-101.

[S] C. Krieg, A. Dabrowski, H. Hobel, K. Krombholz, and E. Weippl,
“Hardware malware,” Synthesis Lectures on Information Security, Pri-
vacy, and Trust, vol. 4, no. 2, pp. 1-115, 2013.

[6] A. Dabrowski, P. Fejes, J. Ullrich, K. Krombholz, H. Hobel, and
E. Weippl, “Poster: Hardware trojans - detect and react?” in Network
and Distributed System Security (NDSS) Symposium, 2014, Extended
Abstract and Poster Session. Internet Society, 2014.

[71 G. Becker, F. Regazzoni, C. Paar, and W. Burleson, “Stealthy dopant-
level hardware trojans,” in Cryptographic Hardware and Embedded Sys-
tems - CHES 2013, ser. Lecture Notes in Computer Science, G. Bertoni
and J.-S. Coron, Eds. Springer Berlin Heidelberg, 2013, vol. 8086,
pp. 197-214.

[8] M. Rathmair and F. Schupfer, “Hardware trojan detection by speci-
fying malicious circuit properties,” in Proceedings of 2013 IEEE 4th
International Conference on Electronics Information and Emergency
Communication, 2013, pp. 394 — 397.

[9] S. Smith and J. Di, “Detecting Malicious Logic Through Structural
Checking,” in IEEE Region 5 2007: Proceedings of the Region 5
Technical Conference, 2007, pp. 217-222.

[10] X.Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in HOST 2011: Proceedings of the IEEE
Hardware-Oriented Security and Trust Symposium, 2011, pp. 67-70.

[11] R. S. Chakraborty and S. Bhunia, “Security against hardware Trojan
through a novel application of design obfuscation,” in /ICCAD 2009:
Proceedings of the International Conference on Computer-Aided De-
sign, 2009, pp. 113-116.

[12] M. Banga and M. Hsiao, “A region based approach for the identification
of hardware Trojans,” in HOST 2008: Proceedings of the IEEE Interna-

tional Workshop on Hardware-Oriented Security and Trust, 2008, pp.
40-47.

[13]

[14]

[15]

[16]

(171

[18]

[19]

C. Lamech, R. Rad, M. Tehrani, and J. Plusquellic, “An Experimental
Analysis of Power and Delay Signal-to-Noise Requirements for De-
tecting Trojans and Methods for Achieving the Required Detection
Sensitivities,” in IEEE Transactions on Information Forensics and
Security, 2011, vol. 6, pp. 1170-1179.

X. Zhang, N. Tuzzio, and M. Tehranipoor, “Red team: Design of
intelligent hardware trojans with known defense schemes,” in 201/
IEEE 29th International Conference on Computer Design (ICCD),
2011, pp. 309-312.

F. Koushanfar and A. Mirhoseini, “A Unified Framework for Mul-
timodal Submodular Integrated Circuits Trojan Detection,” in /EEE
Transactions on Information Forensics and Security, 2011, vol. 6, pp.
162-174.

H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel Technique for
Improving Hardware Trojan Detection and Reducing Trojan Activation
Time,” in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2011.

M. Banga and M. Hsiao, “A Novel Sustained Vector Technique for
the Detection of Hardware Trojans,” in VLSI Design 2009: 22nd
International Conference on VLSI Design, 2009, pp. 327-332.

H. Salmani, M. Tehranipoor, and J. Plusquellic, “A layout-aware
approach for improving localized switching to detect hardware Trojans
in integrated circuits,” in WIFS 2010: Proceedings of the International
Workshop on Information Forensics and Security, 2010, pp. 1-6.

S. Wei, S. Meguerdichian, and M. Potkonjak, “Gate-level characteriza-
tion: Foundations and hardware security applications,” in DAC 2010:
Proceedings of the 47th Conference on Design Automation, 2010, pp.
222-2217.

