Viola: Trustworthy Sensor Notifications for Enhanced
Privacy on Mobile Systems

Saeed Mirzamohammadi, Ardalan Amiri Sani

University of California, Irvine
saeed@uci.edu, ardalan@uci.edu

Abstract

Modern mobile systems such as smartphones, tablets, and
wearables contain a plethora of sensors such as camera, mi-
crophone, GPS, and accelerometer. Moreover, being mobile,
these systems are with the user all the time, e.g., in user’s
purse or pocket. Therefore, mobile sensors can capture ex-
tremely sensitive and private information about the user in-
cluding daily conversations, photos, videos, and visited lo-
cations. Such a powerful sensing capability raises important
privacy concerns.

To address these concerns, we believe that mobile sys-
tems must be equipped with trustworthy sensor notifica-
tions, which use indicators such as LED to inform the user
unconditionally when the sensors are on. We present Viola,
our design and implementation of trustworthy sensor noti-
fications, in which we leverage two novel solutions. First,
we deploy a runtime monitor in low-level system software,
e.g., in the operating system kernel or in the hypervisor. The
monitor intercepts writes to the registers of sensors and indi-
cators, evaluates them against checks on sensor notification
invariants, and rejects those that fail the checks. Second,
we use formal verification methods to prove the functional
correctness of the compilation of our invariant checks from
a high-level language.

We demonstrate the effectiveness of Viola on different mo-
bile systems, such as Nexus 5, Galaxy Nexus, and ODROID
XU4, and for various sensors and indicators, such as cam-
era, microphone, LED, and vibrator. We demonstrate that
Viola incurs almost no overhead to the sensor’s performance
and incurs only small power consumption overhead.

Keywords

Mobile systems; Sensors; Notifications; Indicators; Invari-
ants; Virtualization; Verification

1. INTRODUCTION

Modern mobile systems such as smartphones, tablets, and
wearables have one important property in common: they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MobiSys’16, June 25 - 30, 2016, Singapore.

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4269-8/16/06. .. $15.00

DOIL: http://dx.doi.org/10.1145/2906388.2906391

contain a plethora of sensors. A smartphone today, for
example, contains tens of sensors including camera, micro-
phone, GPS, accelerometer, and fingerprint scanner. More-
over, being mobile, these systems are with the user at all
times. Such a usage model exposes mobile sensors to ex-
tremely private information about the user, including daily
conversations, photos, videos, and visited locations, all of
which is considered to be sensitive by some or most users
according to a study by Muslukhov et al. [46].

Such a powerful sensing capability raises important pri-
vacy concerns for users. These concerns are reinforced given
the recent incidents where women were spied on through
their webcams [7,8] and where users were spied on through
their smartphone microphones and cameras [6]. In fact,
in Android, the camera and microphone were shown to be
hacked and controlled remotely using a commercialized tro-
jan [4].

We believe that an important and practical remedy to
this problem is to provide trustworthy sensor notifications
on mobile systems in order to provide unconditional and
immediate feedback to the user when the sensors are being
used. That is, we believe that mobile systems must use an
indicator, such as LED or vibrator, to unexceptionally notify
the user when a sensor is on. This way, even if the sensor is
accessed maliciously, the user becomes aware and can take
action, e.g., by turning the system off. The usefulness of
trustworthy sensor notifications is due to the fundamental
observation that the user is able to reason about the cor-
rect status of a sensor at a given time. For example, the
user correctly expects the camera to be on only when she
explicitly launches a camera application. Similarly, she ex-
pects the microphone to be recording only if she launches a
voice recorder application or if she makes a voice call. With
such knowledge, the user can leverage trustworthy sensor
notifications to detect malicious access to sensors.

Unfortunately, sensor notifications are not systematically
enforced in mobile systems today and existing notifications
are ad hoc. First, some applications implement their own no-
tifications. For example, the built-in microphone application
on Samsung Galaxy Note 3 blinks a blue LED while record-
ing if the display is turned off. It also adds an unremovable
glyph to Android notification bar when the application is in
the background. Or the built-in camera application in the
same smartphone only records video if it is in the foreground
with the display on (which can be considered as some form
of notification). However, these notifications do not apply
to other applications. For example, the Detective Video
Recorder application [1] can record video and audio when

Figure 1: LED notification for microphone using Vi-
ola. The LED blinks even if the application is in the
background or if the display is off. Malicious at-
tempts to break this notification will be blocked.

in the background and with the display off. Second, laptop
webcams often notify the user with a built-in LED. These
notifications are implemented by the webcams themselves
and do not apply to other sensors. Moreover, as Brocker
et al. [18] showed, these notifications can be circumvented
in some MacBook laptops and iMac desktops by rewriting
the webcam firmware, demonstrating the difficulty of imple-
menting trustworthy sensor notifications.

We present Viola, a system solution for providing trust-
worthy sensor notifications in mobile systems. Our funda-
mental observation is that it is possible to formulate a sensor
notification as a logical invariant on the hardware states of
the sensor and indicator. For example, for an LED notifica-
tion for microphone, the invariant is microphone recording
— LED blinks, where — depicts logical implication. Viola
employs runtime invariant checks in the system to guaran-
tee that this invariant is never violated even if the system
is compromised by an attacker. That is, the check does not
allow the microphone to start recording unless the LED is
blinking and does not allow the LED to be turned off while
the microphone is recording. Figure 1 shows Viola in action.
See a video demo of Viola in [12].

We answer two important questions about the design of
the invariant checks.

Q1. Where should the runtime invariant checks be in-
serted? In Viola, we insert the checks in the low-level system
software, e.g., in the operating system kernel or in the hyper-
visor. Since sensor notifications are mostly about constraints
on the hardware states of the sensors and the indicators, it
is possible to check the notification’ invariant in the low-
level system software irrespective of the state of higher level
software. At these low-level layers, we intercept the writes
to the registers of sensors and indicators and pass them to
the invariant checks. We allow the successful execution of a
register write only if it successfully passes all the checks.

Inserting the checks in the low-level system software en-
hances the trustworthiness of Viola as it reduces the size of
the Trusted Computing Base (TCB). In this design, bugs
in the device drivers and I/O services, which are very com-
mon [5,17,23,31,48], will not undermine the sensor notifica-
tion invariants. Moreover, this design protects the integrity
of the notification invariant against powerful malware in-
cluding those with root or kernel privileges. The two layers
mentioned above, i.e., kernel or hypervisor, provide a trade-
off between trustworthiness, support for different operating
systems, support for legacy systems, and performance, as
will be explained in §4.

Q2. How can system designers develop provably correct
invariant checks? Writing error-free invariant checks that

operate on the parameters of writes to registers is fairly com-
plicated given the complex hardware interface of many I/0O
devices, their peripheral buses, and the components they
rely on, such as power supplies and clock sources in the
System-on-a-Chip (SoC).

We tackle this challenge using an invariant language and
its verified compiler. Viola’s invariant language enables the
developer to mainly focus on the invariant logic using a high-
level and intuitive syntax. A verified compiler, which we
build and verify using the Coq language and its proof as-
sistant [11], guarantees that the generated invariant checks
preserve the semantics of Viola’s invariant language. The
compiler uses device specifications for inferring device state
transitions as a result of register writes.

We present an implementation of Viola that supports dif-
ferent sensors and indicators, such as camera, microphone,
LED, and vibrator, on two smartphones, Nexus 5 and Galaxy
Nexus. While hardware support for virtualization is increas-
ingly available on mobile systems [13], commercial mobile
systems either do not leverage this hardware support or, if
they do, they do not provide open access support for pro-
gramming the hypervisor. Therefore, to demonstrate the
feasibility of using the hypervisor layer, we implement Viola
on the ODROID XU4 development board as well.

In the evaluation, we demonstrate that implementing sen-
sor notifications using Viola does not require significant en-
gineering effort. We also demonstrate that Viola adds signif-
icant latency to every monitored registered write (especially
if Viola’s monitor runs in the hypervisor) but that this la-
tency incurs almost no overhead to the sensor’s performance
due to the infrequency of monitored register writes. More-
over, we show the added power consumption is small.

Note that trustworthy sensor notifications do not address
all the privacy concerns that a user may have with respect to
the sensitive information captured by mobile sensors, includ-
ing unauthorized access to already-captured information.
Moreover, Viola’s notification do not tell the user which ap-
plication is using a sensor. It just informs the user that the
sensor is being used relying on the user to decide whether
the access is malicious or not and, if yes, to detect the ma-
licious application. Addressing these concerns is orthogonal
to our work.

Also note that Viola requires modifications to various parts
of the system software and hence is not easily deployable
by ordinary users on their mobile systems, e.g., by simply
installing an application. We mainly envision Viola to be
adopted by mobile system vendors, such as Samsung and
LG. However, we believe that expert users can also benefit
from Viola especially since Viola’s verified compiler makes
it easy for them to develop the required invariant checks.

In summary, we make the following contributions.

e We present Viola, a system solution for enabling trust-
worthy sensor notifications on mobile systems that in-
serts invariant checks in the low-level system software,
such as the kernel or the hypervisor.

e We use formal verification and provide machine-checked
proofs to guarantee the functional correctness of the
compilation of invariant checks used in Viola from a
high-level language. To the best of our knowledge, this
is the first work to provide formal guarantees on the
behavior of I/O devices (e.g., the relationship between
the states of sensors and indicators).

2. SENSOR NOTIFICATIONS

In this section, we provide background information for
sensor notifications including different types of indicators
that can be used and different notification guarantees.

2.1 Indicators

Various indicators including LED, vibrator, speaker, and
display can be used on mobile systems today. Here, we dis-
cuss the pros and cons of these indicators.

LED. Today’s mobile systems incorporate several LEDs
on various locations on the system’s exterior, e.g., on top
or bottom of the display. LEDs come in different colors
and can be used in different modes, e.g., constant illumi-
nation and blinking. LEDs provide the most lightweight
indicators possible and we anticipate them to be the most
dominant indicators for many sensors. However, LEDs have
two important shortcomings. First, they are ineffective if
the system is out of user’s sight, e.g., in the user’s purse or
pocket. Second, they are often overloaded with informing
the user of other events in the system as well (e.g., a missed
call or text message), which might reduce their effectiveness
in attracting the user’s attention.

Vibrator and speaker. These two indicators are effec-
tive in capturing the user’s attention even when the system
is out of the user’s sight. However, they can be intrusive and
distracting especially if used for extended periods of time.
Moreover, they pollute the data captured by some sensors,
e.g., microphone and accelerometer.

Display. Display is an effective channel to convey no-
tifications to the user. Indeed, in [49], authors demonstrate
that showing a glyph on the display is more effective than an
LED in capturing the user’s attention. However, not only
these notifications require the display to be in user’s sight,
they also require the display to be on, which is power hungry.

Note that the best notification might be achieved by lever-
aging several indicators. For example, for microphone, it
might be best to play a short beeping sound on the speaker
and illuminate an LED afterwards.

Also, note that our goal in this paper is to build a trust-
worthy framework for notifications. Determining the best
indicator for each sensor requires a user study, similar to
the study in [49], which is orthogonal to this work and is
part of our future work.

2.2 Notification Guarantees

Causal guarantees. We envision two types of notifi-
cations in terms of causal guarantees provided to the user.
One-way notifications guarantee that the indicator is on,
e.g., the LED is illuminated, when the sensor is on. How-
ever, they do not provide any guarantees on the state of the
indicator when the sensor is off. The logical invariant for
one-way notifications can be expressed as sensor in tar-
get state — indicator in target state. For a simple
uni-color LED, the target state can be as simple as LED be-
ing illuminated. Or for an RGB LED with built-in blinking
capabilities and varying illumination levels [10], the target
state may be that the LED blinks in a red color with a given
frequency and illumination level. In the rest of the paper,
we use the terms “in target state” and “on” interchangeably.

Two-way notifications provide both guarantees. That is,
they guarantee that the indicator is on if and only if the
sensor is on, or sensor on <> indicator on. With one-
way notifications, the indicator can be turned on while the

Invariant

N ’\
] | Verified compiler
]
u Device specification /

4

Operating System

[Microphone Notif. || Camera Notif. |

Device || Device || Device || Device
driver || driver || driver || driver
I I I

Invariant | .f"| Kernel or

Runtime monitor
check Hypervisor

\'4 \'A \'A \'A

Micro- 1 | ep || camera || Vibrator
phone

Figure 2: Viola’s design. The darker components
belong to Viola.

sensor is off, which will result in false positives for the user.
By triggering a large number of false positives, an attacker
can reduce the effectiveness of the notification as the user
will likely ignore the notifications thinking that they are
broken. Two-way notifications eliminate the false positives
and hence solve this problem.

Temporal guarantees. We envision two types of no-
tifications in terms of the duration in which the indicator
is active. Continuous notifications guarantee the indicator
to be on for as long as the sensor is recording and are best
suited for LED and display indicators. Temporary notifica-
tions guarantee the indicator is turned on only for a short
period of time when the sensor starts capturing and are best
suited for speaker and vibrator indicators.

In this paper, we demonstrate the use of LED and vibra-
tor as indicators while supporting one-way and continuous
notifications. §8 discusses the challenges of providing formal
guarantees for the use of speaker and display as indicators,
and for two-way and temporary notifications. It further dis-
cusses our plans to overcome these challenges in the future.

3. OVERVIEW

Figure 2 illustrates the design of Viola. There are three
main components. The first component is the implementa-
tion of sensor notification, which leverages the device driver
(either directly or indirectly through user space I/O service
API) to turn on the indicator before the sensor starts record-
ing and to turn the indicator off after the sensor stops. This
implementation is not trusted and hence errors in it will
not break the notification invariant. Malfunction in this
implementation, e.g., failure to turn on the indicator, will
be detected and blocked by the invariant checks (the third
component, explained below).

The second component is a trusted runtime monitor, which
runs in the kernel or in the hypervisor. It intercepts the de-
vice drivers’ attempts to write to the registers of sensors and
indicators by removing the write permissions from the corre-
sponding page table entries. It then consults with a set of de-

ployed invariant checks, which inspect the parameters of the
write and decide whether, if allowed, the write would break
the invariants corresponding to the sensor notifications or
not. The monitor allows for the successful execution of the
write only if it passes all the checks, and rejects it otherwise.
In case of a reject, it blocks the write and force-reboots the
system. §4 elaborates on the monitor.

The third component of our design is a set of invariant
checks deployed in the monitor. To enable developing prov-
ably correct invariant checks, we present a high-level lan-
guage for writing the sensor notification invariants. We also
develop a verified compiler for the language using Coq that
guarantees that the generated invariant checks maintain the
semantic of sensor notification invariant. The compiler uses
device specifications for inferring the device state transitions
as a result of register writes. In addition, for off-chip devices
whose registers are only accessible through a peripheral bus,
we design a verified bus interpreter module that can infer the
device register writes from the bus adapter register writes.
§5 discusses the details of the invariant language, its com-
piler, and the bus interpreter module.

3.1 Threat Model

We have designed Viola to enforce sensor notifications’ in-
variants in the system and prevent buggy or malicious code
from breaking them. We will assume attackers with varying
capabilities. The first attacker can only use the applica-
tion API in the operating system, e.g., Android API. This
attacker can run native code as well but without root privi-
leges. The second attacker runs native code with root privi-
leges in the user space, however cannot run code with kernel
privileges or secretly modify the system image (for future
boots). More specifically, in this case, we assume that the
attacker cannot leverage the kernel vulnerabilities to inject
code and assume that the kernel is configured to prevent a
root user from easily modifying the running kernel memory.
The latter is achieved by configuring the kernel to disallow
loading of kernel modules and to avoid exposing the /dev/k-
mem file, which would allow user space code to have access
to the kernel memory. Moreover, we assume that the mo-
bile system implements the verified boot feature [3], which
checks and verifies the integrity of the loaded system images.
As a result, the attacker’s attempt to modify the system im-
ages (i.e., the kernel and hypervisor images), which will take
effect in future boots, will be detected and then blocked or
at least communicated to the user with a notification at boot
time. The third attacker leverages the vulnerabilities of the
kernel to compromise it and hence can run code with kernel
privileges. The fourth attacker is a more advanced version
of the third attacker that, after compromising the kernel,
leverages the vulnerabilities of the hypervisor to compro-
mise it and hence can run code with hypervisor privileges.
The fifth attacker is a root user in a system without the
verified boot feature, which would allow him to rewrite the
kernel and hypervisor images (to be used after a reboot).
Finally, the sixth attacker has physical access to the device
and can manipulate the hardware.

As mentioned earlier, we run Viola’s monitor either in the
kernel or the hypervisor. In both cases, Viola enforces the
integrity of the sensor notifications despite bugs in the 1/0
stack (including device drivers and user space I/O services),
which would otherwise violate the notifications’ invariants.
Moreover, both types of monitor protect against the first

two attackers. However, only the hypervisor-based moni-
tor protects against the third attacker. This attacker can
circumvent the kernel-based monitor in three ways: (i) it
can manipulate the fault handler in the kernel in order to
prevent the deployed invariant checks from evaluating a reg-
ister write, (#7) it can access the registers through a different
set of virtual addresses mapped to the same register pages,
or (i) it can manipulate the page tables to re-enable the
write permissions on the page table entries removed by Vi-
ola’s monitor. None of the solutions can protect against the
fourth attacker either. This attacker is a super set of the
third attacker and hence can circumvent the kernel-based
monitor as explained above. Moreover, it can use very simi-
lar techniques to circumvent the checks implemented in the
hypervisor after it manages to compromise the hypervisor.
Similarly, none of the solutions can protect against the fifth
attacker since it can simply remove Viola’s monitor from the
system image used for future system boots. Finally, none of
the solutions can protect against the sixth attacker as it can
modify the hardware, e.g., disconnect the LEDs.

4. RUNTIME MONITOR

Viola’s runtime monitor runs in the low-level system soft-
ware, e.g., in the operating system kernel or the hypervisor,
in order to monitor the device drivers’ interactions with sen-
sors and indicators. The monitor intercepts any attempts to
write to device registers and feeds the write parameters to
the invariant checks (§5). It allows the successful execution
of a write only if it passes all the checks. Note that we focus
on register writes, and not register reads, since the former
is typically used to alter the state of a device. However, all
the discussions are easily extended to register reads if they
need to be monitored as well.

Using the kernel or hypervisor to insert the invariant checks
provides a trade-off between trustworthiness, support for dif-
ferent operating systems, support for legacy systems, and
performance. On the one hand, a hypervisor-based solution
isolates the monitor from the operating system, which en-
hances its trustworthiness even against malware with com-
plete control over the kernel execution (i.e., the third at-
tacker in §3.1). It also makes the monitor implementation
agnostic to the operating system, e.g., Android or iOS, or
to the operating system version. The use of the hypervisor
is further motivated by the fact that ARM processors have
recently added virtualization hardware support [13] allowing
an efficient implementation of the monitor in the hypervisor.

On the other hand, a kernel-based solution can be used
in many existing mobile systems. This is because commer-
cial mobile systems either currently do not have hardware
support for virtualization or do not provide open access for
programming the hypervisor. Also, inserting the checks in
the kernel incurs less overhead to a register write compared
to a hypervisor-based solutions (§7.2).

Note that an alternative layer for adding the invariant
checks is the hardware. Such a solution is the most trust-
worthy as it minimizes the Trusted Computing Base to only
the hardware. However, a hardware-based solution is costly
as it requires additional circuitry per invariant. Moreover,
such a solution is often practically impossible since the in-
variants span multiple I/O devices, e.g., camera and LED,
which are typically integrated on and off the System-on-a-
Chip (SoC) from various vendors in the form of closed source
IP modules. Furthermore, while we want the notifications

to be unbreakable, it might be desirable to make them cus-
tomizable by the user or the system designer, for example,
if the user wants to intentionally turn off all notifications for
a short period of time. Such customizations are not feasible
with a hardware solution. In §8.1, we discuss how we can
add support for secure customizations to Viola. Finally, note
that, while we have not done so, if we employ our invariant
checks in a verified kernel or hypervisor [20,34,36,38,44], we
can reduce the TCB to only the hardware as well.

Viola’s monitor intercepts device drivers’ attempts to write
to registers by removing the write permissions from the cor-
responding page table entries. This is feasible since in the
ARM architecture all the registers are memory-mapped (i.e.,
Memory-Mapped 1/O or MMIO). Depending on where the
monitor is hosted, we use different page tables. First, for the
hypervisor-based monitor, we leverage ARM’s Stage-2 page
tables [13,25]. In this case, a memory address is translated
by two sets of page tables, one maintained by the operat-
ing system and one (i.e., Stage-2 page tables) maintained
by the hypervisor. Removing the write permission from a
Stage-2 page table entry forces writes to every register in
the corresponding page to trap in the hypervisor, allowing
the monitor to inspect them. Second, for the kernel-based
monitor, we simply use the page tables used by the kernel.
In this case, a write to protected register pages raises a page
fault exception in the kernel.

When the monitor detects an unauthorized register write,
it blocks the write and force-reboots the system. It does so
by returning a permission violation error to the page fault
handler in the kernel or hypervisor, which leads to a reboot.

Initially, we planned to identify and kill the responsible
application upon detecting such page faults. However, do-
ing so is challenging, as the violation might be triggered not
by an application but by powerful malware with kernel or hy-
pervisor privileges. Therefore, we believe that force-reboot
is a safe approach to handle these attacks. Note that the
force-reboot approach does not create an easily-exploitable
and additional denial-of-service attack vector. This is be-
cause attackers with root, kernel, or hypervisor privileges
can reboot the system using other methods anyway and the
attacker without these privileges (i.e., the first attacker in
§3.1) cannot trigger such page faults easily unless it circum-
vents the implementation of the sensor notification.

S. VERIFIED INVARIANT CHECKS

Viola’s verified invariant checks receive the parameters
of a register write as input from the monitor and decide
whether the write, if executed, breaks any of the sensor noti-
fications’ invariants in the system. Unfortunately, manually
developing checks that operate on the parameters of register
writes is cumbersome and error-prone. An I/O device, i.e.,
a sensor or an indicator, might have several registers, each
affecting the behavior of the device in some way. Moreover,
a single register might contain a few device variables (i.e.,
the variable formed by a subset of bits in a register [45]),
requiring bitwise operations in the invariant checks. Fur-
thermore, the correct behavior of an I/O device might de-
pend on other components as well, such as its power supply
and clock source in the SoC, requiring Viola to monitor these
components as well. Finally, Viola’s monitor cannot directly
monitor the writes to device registers for off-chip devices. It
can only monitor the writes to registers of the peripheral
bus adapters and must infer the device register writes.

Definition mic_rec :=
State mic_spec [mic_bias_on; ...].
Definition led_blink :=
State led_spec [led_blink_mode;
led_color_red; ...].
Definition mic_led_notif :=
Binder mic_rec led_blink.

Figure 3: The implementation of a microphone LED
notification in Viola. For brevity, we have not shown
the complete array of device variable states and the
device specifications used in the code.

In this section, we present our solution that enables the
system designer to easily develop provably correct invari-
ant checks. Our solution is an invariant language with a
high-level and intuitive syntax, which enables developers to
mainly focus on the invariant logic (which is quite simple),
rather than the low-level implementation. We then present a
verified compiler for this invariant language that generates
provably correct assembly code that maintains the logical
semantics of the invariant. Moreover, we present a verified
bus interpreter module for off-chip devices.

5.1 Viola’s Invariant Language Syntax

Viola’s invariant language leverages two main program-
ming constructs. (i) State is used to specify the target states
of the sensor or indicator, e.g., microphone recording or LED
blinking. A device target state is a list of device variable
states, where each device variable state is a 2-tuple contain-
ing a device variable and a value. As mentioned earlier, a
device variable is the variable formed by a subset of the bits
in a register [45]. As a hypothetical example, the three least
significant bits of a register could form the device variable for
camera resolution. These device variables must be defined
in the device specifications (§5.2.1). (i) Binder is finally
used to bind the target states of the sensor and indicator.

Figure 3 shows an example invariant written in Viola for
the microphone LED notification (LED blinking). In this
example, we have first defined the target states of the sensor
and indicator, mic_rec and led_blink, respectively. Each of
these target states is defined as an array of device variable
states, e.g., led_blink_mode. Moreover, in defining these
target states, we have used the device specifications, i.e.,
mic_spec and led_spec, which provide the definition of each
of the device variable states. Finally, the sensor notification
invariant is defined by binding the target states of the sensor
and indicator together.

5.2 Verified Compiler

We build a verified compiler for Viola’s invariant language.
Given an invariant written in this language, the compiler
generates provably correct invariant checks to be inserted in
Viola’s monitor.

Building and verifying a compiler is a cumbersome task.
Our key idea to reduce this effort is to implement our com-
piler as a frontend for the formally verified CompCert C
compiler [39], similar to the approach used by Wang et al.
for Jitk [55]. The frontend compiles Viola’s code to Cminor,
an intermediate language in CompCert, which is then com-
piled to assembly by the CompCert backend. The assembly
code is then translated to machine code using a commodity

Invariant Verified Verified
(V|o|a) Invariant ompCe Invariant
- Viola’ s
Dewce omp|| checks checks
specs (Cminor) Assemb'ef (binary)
(Viola) 7

Figure 4: Compilation of Viola invariant code. Vi-
ola’s compiler translates Viola code to Cminor code,
which is then compiled to machine code using the
verified CompCert compiler and an assembler. The
darker components belong to Viola.

assembler since CompCert does not currently provide a ver-
ified assembler. Cminor is a simplified and typeless variant
of a subset of C with support for integers, floats, pointers
(but not the & operator), control constructs such as if/else
(but not the goto statement), and functions (see [39] for
more details).

Given that CompCert is a verified compiler, it preserves
the semantics of the code in Cminor while generating the
assembly code. Therefore, we only need to prove that our
frontend maintains the semantics of Viola’s code while gen-
erating the Cminor code. To achieve this, we implement the
frontend in Coq and use Coq’s interactive proof assistant [11]
to prove the semantic preservation property. As will be ex-
plained, our compiler relies on device specifications to infer
the device state transitions as a result of register writes.
Figure 4 illustrates our approach.

We prove the semantic preservation property as follows.
We formalize the I/O devices (i.e., sensors and indicators)
as blocks of memory (MMIO) corresponding to their register
spaces. We then prove, through forward simulation [41,42],
that both programs (i.e., the one written in Viola and its
compiled Cminor program) return the same decision (i.e.,
allowing or rejecting a register write) given the state of these
MMIO blocks, the invariant logic, and the device specifica-
tions. Put formally, we prove the following theorem.

Theorem Viola_compile_correct: forward_simulation (Vi-
ola.semantics Vprog) (Cminor.semantics Cprog) .

The heart and the majority of the proof for the afore-
mentioned theorem is proving the following lemma (slightly
simplified for clarify).

Lemma compile_step: ¥V 81 S2, Viola.step S1 S2 — V
R1, match_states S1 R1 — 3 R2,
plus Cminor.step R1 R2 A match_states S2 R2.

Both languages, Viola and Cminor, are modeled as a se-
ries of steps from some initial state to some final state. This
lemma mentions that, for every two states in Viola code,
for which there is a transition (i.e., a step) according to the
semantics of the language, and for all Cminor states equiva-
lent to the source state in Viola code, there exists a state in
Cminor code that can be reached from this equivalent source
state, possibly in multiple steps (as signified by plus), and
that the reached target state in Cminor code is also equiva-
lent to the target state in Viola code. The states and steps
in Viola are part of the specification of the language seman-
tics. Moreover, the definition of equivalence between the
states of the two programs is part of the specification that
we develop for the proof.

In Viola, each step is equivalent to the evaluation of one
invariant check on the register write parameters. There are
two main types of steps: reject and pass. In the former, the
invariant check fails and Viola returns reject. In the latter,
the invariant check passes and Viola continues to evaluate
the next check. If all checks pass, Viola returns pass.

Reject or pass steps are determined based on reject and
pass conditions that we have also defined as part of the lan-
guage semantics. The reject condition is satisfied when ei-
ther of its two sub-conditions are satisfied. The first sub-
condition is when the register write causes the sensor to
transition to its target state and the indicator is not in its
target state. The second sub-condition is when the register
write causes the indicator to go out of its target state and
the sensor is in its target state. We specify transitioning
to the target state as when all the device variables acquire
the values defined in the device target state. We specify
transitioning out of the target state as when at least one
device variable acquires a value other than the one defined
in the device target state. The pass condition is simply the
negation of the reject condition.

In addition to this lemma, we also prove that for all ini-
tial states in Viola program, there is an equivalent initial
state in the compiled Cminor program and that if the two
programs reach equivalent final states, they both return the
same value.

In proving the aforementioned theorem, we prove the sound-
ness and completeness of the generated checks: that is, we
prove that the generated checks always reject the register
writes that violate the invariants (soundness) and that the
checks never reject benign register writes (completeness).

5.2.1 Device Specifications

The compiler uses the device specifications to generate the
invariant checks. The compiler needs these specifications for
device state transition inference upon a register write. The
specification must contain the following definitions: the list
of registers (in the form of the register address offset from
a base address), the list of device variables built on top of
each registers, the list of device variable states, the list of
register write events for the device variables, where an event
is a write with a given value to a device variable, and the
list of device variable transitions, where a transition is a 3-
tuple consisting of a source state, an event, and a target
state. Note that checking the source state of a transition
in the invariant check is important in order to enforce the
order of register writes. As a simple example, consider a
device with a single 8 bit register, which consists of only one
single-bit device variable. The list of register write events
can be writes with values of 0 and 1. The list of device
variable transitions are transitions from 0 to 1 (with a write
with a value of 1) and from 1 to 0 (with a write with a
value of 0). For brevity of writing the events, Viola supports
two types of events representing a write to a device variable
with a value equal to or different from a specified value.
This significantly reduces the size of the specification as it
alleviates the need to enumerate all the events one by one.
Note that while Viola enforces the order of register writes,
it currently does not support specifying and enforcing the
maximum time interval between consecutive register writes.
Adding this feature is part of our future work.

Currently, we manually develop these specifications for
the devices that we support. Fortunately, as observed by

Q(Oxc, 0x4b)
cPU mes, 0x81)
mic_write_regs Pc
(0x1, 0x1f) m‘, Adapter|

(0x2, 0x5a)

a Q (0x8, Oxb5a)

Mic.
(ID = Ox4b)

(0x2, 0x5a)

Figure 5: Simplified steps for writing to registers of
a device over an I?C bus. The numbers in parenthe-
sis show register writes parameters (offset, value).
The dark numbered circles represent the approxi-
mate progression of events.

Ryzhyk et al. [52], device specifications are increasingly avail-
able from hardware vendors as the same specifications are
also used in the device design process. However, to leverage
these specifications, a translator is needed to transform the
existing specifications into the format supported by Viola.

Partial device specifications. Writing the complete
device specifications can be a daunting task, especially for
complex devices such as camera. However, in Viola, partial
specifications suffice for two reasons. First, one does not
need to develop the complete specification of the sensor; the
specification of a few device variables used for turning on
the sensor is adequate. As long as the invariant check guar-
antees that these device variables will take on their target
value only when the indicator is on, the sensor notification
invariant will not be violated. Second, while a more elabo-
rate specification is often needed for the indicator (e.g., for
its dependencies as explained next), still a complete spec-
ification might not be needed. For example, if an LED is
required to illuminate constantly, and not blink, one does
not need to write the specifications for the blinking func-
tionality of the LED.

5.3 Checks on Dependencies

Viola’s goal is to guarantee that the indicator is on when
the sensor is on. However, the indicator’s state often has
dependencies on other hardware components including the
power supply and the clock source on the SoC that provide
power and clock for the indicator. Therefore, the invariant
logic to enforce in the system should be refined to sensor on
— indicator on — (indicator) power supply on —
(indicator) clock source on. Note that Viola does not
monitor the sensor’s dependencies since the failure to turn
on the sensor does not violate the notification invariant.

We enforce this logical relationship using a chain of in-
variant checks all developed by Viola’s invariant language
and its compiler. In the example above, we develop three
checks, one for power supply on — clock source on, one
for indicator on — power supply on, and one for sensor
on — indicator on. Moreover, in the monitor, we evalu-
ate these checks in the aforementioned order to properly
capture the dependencies.

5.4 Bus Interpreter Module

Registers of off-chip devices on a mobile SoC are not di-
rectly mapped into the CPU address space and are accessed
through a peripheral bus, e.g., I?C. Viola’s monitor can only
intercept and monitor the writes to the bus adapter regis-
ters. It must then “infer” the writes to the device registers.

Figure 5 illustrates a simplified, yet realistic, example. In
order to write to two microphone registers (step 1), the CPU

Bus Adapter e Inferred device Allow/
. A
register writes interpreter register wrltes' Invariant | reject?
(Oxc, 0x4b) | o 0 rte (0x1, 0x1f) check
(0x8, 0x81) (0x2, 0x5a)
(0x8, 0x1f)
(Ox8, 0x5a)

Figure 6: Bus interpreter module role. The bus
register writes are intercepted in the monitor and
passed to the bus interpreter module, which infers
the register writes of the device and passes them to
the sensor notification invariant checks.

writes four values to the registers of the I2C bus adapter, in-
cluding the microphone device ID, a command byte, and two
data bytes (steps 2 to 5). The I?C adapter sends out these
values on the bus to the connected devices (step 6). The mi-
crophone interprets the command byte as the register offset
and the data bytes as the values to be written to consecutive
registers (step 7).

Each device’s interpretation of the same signal can be dif-
ferent, although most adhere to the same interpretation. For
example, many devices support a continuous write mode (as
in Figure 5): if the second most significant bit of the com-
mand value is set (i.e., the auto increment bit), the device
then writes the following data bytes to consecutive registers
starting at the register offset specified in the command.

Manually writing code to infer the device register writes
can be challenging and error-prone. Hence, we present a
verified bus interpreter module that achieves this goal. Fig-
ure 6 illustrates this module’s role. The bus interpreter
module receives the parameters of the register writes to the
bus adapter and returns the inferred parameters of register
writes to the device. The bus interpreter module is built
from one or more state machines (in a daisy-chain). Differ-
ent state machines can be created by providing “rules”. Each
rule operates on the input parameters and make modifica-
tions to the output parameters or to an accumulator. The
output parameters are fed back to the machine allowing the
rules to gradually (i.e., across multiple bus adapter register
writes) infer the device register write. Similar to the invari-
ant checks, we provide a high-level language for writing the
state machine rules and implement a verified compiler for
it. In the paper, we mainly use the word compiler to refer
to invariant check’s compiler, and not the bus interpreter
module compiler, unless otherwise stated.

6. IMPLEMENTATION

The implementation of Viola consists of four components:
the sensor notifications, the monitor, the invariant checks,
and the bus interpreter module. Table 1 breaks down Viola’s
code base. Below, we elaborate on these components (except
for sensor notifications, which are simple).

6.1 Runtime Monitor

Viola’s monitor intercepts writes to registers of sensors
and indicators by removing the write permissions from their
page table entries. Upon a page fault, it consults with the
deployed invariant checks; if the checks pass, the monitor
emulates the faulting instructions, and if they fail, the mon-
itor reports an error to the fault handler.

Viola’s monitor emulates the instructions as follows. It
maps the register pages into a second set of virtual addresses,

Lang. Total Component LoC
LoC
Invariant compiler 211
Invariant language spec 251
Invariant compiler proof 4812
Device specs 282
Coq 6812 Bus intefpr. compiler 126
Bus interpr. language spec 203
Bus interpr. compiler proof | 879
Bus specs (rules) 48
Monitor (Linux) 265
Monitor (Xen) 223
C 552 Cam. vib. notif. 10
Mic. LED notif. 54

Table 1: Viola code breakdown.

which are used by the monitor only. Upon each page fault, it
inspects the CPU registers to determine the value that was
going to be written to the faulting address. It then issues
an instruction to write this value to the same register using
the second virtual address. Finally, it increases the program
counter to point to the next instruction and returns.

It is important to note why the monitor must emulate
the instruction rather than allowing it to execute natively.
This is because the latter requires the monitor to — at least
temporarily — enable the write permissions on the page table
entry corresponding to the faulting address. However, doing
this will create an attack vector given that modern mobile
system hardware leverages multiple CPU cores, allowing the
malware running on other cores to take advantage of this pe-
riod of time to silently write to device registers. Emulation
of the faulting instruction protects against such an attack as
page table entries corresponding to the monitored register
pages always remain read-only.

6.2 Verified components

We verify the functional correctness of the compilers for
the invariant and bus interpreter languages. We implement
and verify the compilers in Coq, which provides functional
programming constructs in addition to logic constructs. The
implementation of the invariant compiler translates the in-
variant logic to Cminor code and the implementation of the
bus interpreter compiler translates the developer-provided
rules to Cminor code. Figure 7 shows an example procedure
from Viola’s invariant compiler implementation. This pro-
cedure checks the input register offset against all the reg-
ister offsets specified in the device specifications to find a
match. It is implemented as a recursive procedure, which
computes the inclusive disjunction (Ebinop 0Oor) of compari-

son (Ebinop (Ocmp Ceq)) of the input register offset (reg_off)

with the list of registers in the specification (regs).

Once we develop and prove the functional correctness of
the compilers, we generate their executable machine code.
For this, we first use the code extraction facilities in Coq
to generate equivalent OCaml code from the source code
in Coq and then use the OCaml compiler to generate the
machine code. Figure 8 illustrates these steps for our verified
invariant language compiler. The same figure also shows
that the implementation, the specification, and the proof are
passed to the Coq proof checker for checking the correctness
of the proof.

Fixpoint is_there_reg_match (regs : list register)
(reg_off : ident) : Cminor.expr :=
match regs with
| nil => Econst (Ointconst Int.zero)
| hd :: tl => let _reg_off := hd.(reg_off) in
Ebinop Oor (Ebinop (Ocmp Ceq)
(Evar reg_off)
(Econst (Ointconst (Int.repr _reg_off))))
(is_there_reg_match tl)
end.

Figure 7: A sample procedure from the implemen-
tation of Viola’s invariant compiler.

VIOIa.) Coq proof o

compiler checker Verified
spec (Coq)

Viola’s /

compiler

proof (Coq)
V|olq s Coq code Vlolq s oCaml Vlolq s
compiler extractor compiler compiler compiler

impl. (Coq) (OCaml) P (binary)

Figure 8: The compiler code is generated by first ex-
tracting the OCaml code from the Coq implementa-
tion and then compiling the OCaml code to machine
code. The compiler’s specification, implementation,
and proof are also passed to Coq proof checker to
verify the correctness of the proof. The darker com-
ponents belong to Viola.

6.3 Supported Systems and Devices

We test Viola on two smartphones: LG Nexus 5 running
Android 5.1.1 (CyanogenMod 12.1) and Samsung Galaxy
Nexus running Android 4.2.2 (CyanogenMod 10.1). Since
these smartphones do not support a hypervisor mode, we
insert Viola’s monitor in the Linux kernel. Moreover, to
demonstrate the feasibility of a hypervisor-based monitor,
we implement Viola on the ODROID XU4 development board
as well, which incorporates an Exynos 5422 SoC with vir-
tualization support in its ARM Cortex-A15 and Cortex-A7
processors. On this board, we use the Xen hypervisor (ver-
sion 4.6.0) and Ubuntu operating system (version 14.04) run-
ning on Linux kernel (version 3.10.82). We currently run
the operating system in Xen’s control domain, i.e., domO.
In this case, we need to deprivilege the dom0 by disallowing
the domO-specific hypercalls in the hypervisor. We have not
currently implemented this but we expect it to be trivial.
Alternatively, we can run the operating system in a Xen’s
domU, which is deprivileged by default.

We test Viola with the microphone and LED on Galaxy
Nexus, with the camera and vibrator on Nexus 5, and (as a
proof of concept) with GPIO LEDs on ODROID XU4. The
audio chip (TWL6040) and the LED [10] in Galaxy Nexus
are accessed through the OMAP4 I?C bus, for which, we
leverage our bus interpreter module. The rest of the de-
vices are memory-mapped. Moreover, as discussed earlier,
we currently only support continuous notifications (§2.2),
which are not ideal for the vibrator. Yet, we use the vibra-
tor in our implementation to demonstrate the applicability
of Viola to a diverse set of indicators. We also implement
the checks on the clock source dependency (§5.3) for the vi-

brator in Nexus 5. We do not, however, currently support
the power supply for the vibrator due to its use of a message
passing interface (see §8.2 for more details).

The sensor notification implementation varies in each case.
In Galaxy Nexus, we implemented the notification for the
microphone in tinyalsa, a library used by the audio service
in Android. In Nexus 5, we implement the notification for
the camera in the camera device driver in the kernel.

6.4 Trusted Computing Base

Here, we explain the trusted components in Viola.

Trusted components for the monitor. The trusted
components for the monitor differ for the kernel-based and
hypervisor-based implementations. The hardware and the
monitor itself are trusted in both implementations. How-

ever, in the hypervisor-based monitor, the hypervisor is trusted,

but not the kernel (including all its device drivers), which
is trusted in the kernel-based implementation. Given that a
hypervisor is typically smaller than an operating system ker-
nel, our hypervisor-based implementation provides a smaller
TCB. Moreover, while we currently use a commodity hyper-
visor (i.e., Xen), it is possible to use a smaller hypervisor to
reduce the TCB. This is because we do not use the features
of the hypervisor needed to run multiple virtual machines
in the system, such as scheduling the virtual CPUs between
virtual machines. Furthermore, as discussed in §4, it is pos-
sible to use a verified kernel or hypervisor [20, 34, 36, 38, 44]
in the implementation, which will then reduce the TCB to
only the hardware. Finally, note that in the kernel-based
monitor, only the kernel is trusted, but not the user space
including all of Android services and applications.

Trusted components for the verified compilers. In
our compilers’ implementation, the specifications that we
develop for the languages’ semantics, for the proof, for the
devices, and for the buses (i.e., rules), are assumed to be cor-
rect. Moreover, the Coq’s simple proof checker that verifies
the correctness of the proof is trusted but not the tactics
used in the construction of the proof. Also, the Coq ex-
traction facilities and the OCaml compiler are trusted. In
addition, we leverage an existing assembler in the backend
of our compiler and hence the assembler needs to be trusted.
However, if a verified assembler is added to CompCert [39],
we can simply leverage it in our solution without requiring
any further engineering effort. We can also leverage other
solutions for verifying assembly programs [28,29, 54,58].

While bugs in any of these trusted components can under-
mine the functional correctness of the compilers, we believe
that Viola provides more reliable guarantees compared to
the alternative of (i) not using invariant checks or (ii) de-
veloping the checks manually. In (i), the whole operating
system and the applications will be trusted. In (i), not
only the implementation of the checks can have bugs and
need to be trusted, the compiler for the language used, e.g.,
gce, must be trusted as well.

7. EVALUATION

Next, we evaluate the engineering effort needed to use Vi-
ola and its performance and power consumption overheads.

7.1 Engineering Effort

For one to use Viola, one must develop the sensor notifica-
tion, Viola code corresponding to the notification invariant
(e.g., Figure 3), the specifications for the devices and, if

20 — 20 — 250 —
—~ Native 1 Native] Native
= Viola I Viola Il 200l Viola Il |
&5t 115}]
=
2
5 150+
2107 110+
—
= 100+
5 s S |
Eﬁ 50t
&

Nexus5-Camera ODROID-GPIO GalaxyNexus-Mic.

Figure 9: Register write latency. Note that the
rightmost figure uses a different y-axis range. Also,
the figure in the middle is based on a hypervisor-
based monitor, whereas the other two figures are
based on a kernel-based monitor.

needed, the rules for the peripheral buses. The first two are
quite straightforward. However, the last two can be cumber-
some depending on the devices and the buses. However, as
mentioned in §5.2.1, often partial specifications are enough
in Viola, which significantly reduces the required effort for
device specifications. Moreover, device specifications are in-
creasingly available from hardware vendors [52]. We plan
to support these specifications in the future with a transla-
tor, which then reduces the effort needed by the developer.
Finally, writing the specification for a device or the rules
for a bus is a one-time engineering effort. The same device
specification and especially the same bus rules can then be
reused for various sensor notifications.

7.2 Performance

Microbenchmarks. We measure the added latency of
Viola to a single register write. We measure it for accessing
camera registers in Nexus 5, the GPIO registers in ODROID
XU4 (with a hypervisor-based monitor), and the microphone
registers in Galaxy Nexus.

Figure 9 summarizes the results. It shows the average
and standard deviation of monitored register write latency
in these systems. It demonstrates that the added latency
is significant. Part of this latency is due to the page fault
exception and part is due to the code running in the fault
handler including a large part of the runtime monitor’s code
(such as the code that inspects the CPU registers) and the
invariant checks.

Moreover, the figure shows that the hypervisor-based mon-
itor incurs higher overhead. This is mainly because a trap in
the hypervisor incurs a virtualization mode switch (from the
kernel mode to the hypervisor mode), whereas a page fault
in the kernel does not incur a mode switch since both the
faulting code and the fault handler are in the kernel mode.

Another observation is that the register write latency for
microphone on Galaxy Nexus is much higher than the rest.
This is because the microphone registers are accessed through
the I?C peripheral bus, which is not only slower than a
memory-mapped access, it also requires multiple writes to
the bus adapter registers.

Macrobenchmarks. We measure the overhead of Viola
on the performance of sensors.

First, we measure the performance of the camera on the
Nexus 5 in terms of the framerate. We measure the framer-
ate for varying resolutions with and without Viola. For each

‘ Nativé |
40¢ Viola(kernel) BN |
Viola(hypervisor-emulated) Il 1

w2 W
S W
T T

15¢
10+

Framerate (FPS)
1o

176x144 640x480 800x600 1024x768 1280x960 1920x1080
Resolution

Figure 10: Camera’s performance in Nexus 5
for both kernel-based and hypervisor-based moni-
tors. Note that we emulate the overhead of the
hypervisor-based monitor in Nexus 5 (§7.2).

resolution, we measure the average framerate achieved over
a 1000 frames. We discard the first 50 frames to avoid the
camera initialization overhead and repeat each experiment
three times. Figure 10 shows the results. It demonstrates
that Viola’s overhead on the camera performance is negligi-
ble irrespective of the resolution.

The reason for this negligible performance overhead is the
infrequency of register writes. To demonstrate this, we mea-
sure the number of register writes that are intercepted by
Viola when the camera is on. We find that there is one reg-
ister write interception every 19.3 ms, which is significantly
larger than the latency of a single register write (i.e., 2 and 8
us for native and Viola). The number of register writes are
relatively small since they are used mainly for sending con-
trol commands to the camera and not for exchanging data.
Moreover, in the case of camera, Viola does not intercept
writes to all the registers (see discussion on partial specifi-
cations (§5.2.1)). Only writes to the registers in the same
register page as those monitored by Viola are intercepted.
Our experiment shows that this constitute 4% of all register
writes.

Moreover, we demonstrate that even the more significant
register write latency incurred by a hypervisor-based moni-
tor will not impact the performance of the camera. For this,
we emulate the overhead of the hypervisor-based monitor in
Nexus 5 by artificially adding a delay of about 6.7 us to our
fault handler since this is the additional latency incurred by
the hypervisor as derived from the ODROID XU4 results in
Figure 9. We then measure the camera framerate and show
the results in Figure 10, which demonstrate almost no per-
formance overhead. This is, similarly, due to the infrequency
of register write interceptions.

Second, we measure the performance of the microphone
on Galaxy Nexus in terms of the audio rate. We measure the
audio rate for a one-minute recording experiment and with
varying audio buffering sizes, which determines the audio
latency. We repeat each experiment three times. Figure 11
shows the results. Similar to camera, we notice that Viola’s
overhead on the microphone performance is negligible. We
also measure the number of intercepted register writes for
the microphone and find them to be very small, i.e., only
about 20 when starting the capture.

Native T {
Viola

P W [*X)
(=] S S
T T T

NS}
(=]
T

Achieved Audio Rate (kHz)
= S

(=]
|

3 5 10 50 100 300
Audio Buffering Size (ms)

Figure 11: Microphone’s performance in Galaxy
Nexus based on a kernel-based monitor.

oL ‘ ‘ Native]
— Viola Il
= — =
= 1.5}
5]
2
o
) 17
2
o}
Z 05
0 720x480 1280x720 1920x1080
Resolution

Figure 12: Power consumption of Nexus 5 when run-
ning a video recording application [1] in the back-
ground and with the display off. The results are
based on a kernel-based monitor.

7.3 Power Consumption

Battery lifetime on mobile systems is one of the most im-
portant usability metrics. Therefore, it is important that
Viola does not enhance user’s privacy at the cost of re-
duced battery lifetime. We therefore measure the power
consumption of the system with and without monitoring by
Viola. We measure the power consumption using the Mon-
soon Power Monitor [9].

First, we measure the power consumption of Nexus 5 when
recording a video. To magnify the relative overhead by Vi-
ola, we put the camera application [1] in the background and
turn the display off. Figure 12 shows the results. It demon-
strates that Viola incurs additional power consumption but
that the overhead is small (less than 45 mW). Note that
the high baseline power consumption of the smartphone is
mainly due to the CPU and camera being on.

Second, we measure the power consumption of Galaxy
Nexus when using an application [2] to record audio. Simi-
larly, to magnify the relative overhead of Viola, we turn the
display off. Our measurements show that, for audio buffer-
ing size of 300 ms, the power consumption of the smartphone
is about 1.025 and 1.038 W for native and Viola, respec-
tively. The additional overhead is about 13 mW, smaller
than the video recording overhead, which might be partly
due to different hardware in the two smartphones, and party
due to fewer intercepted register writes. Moreover, note that
the baseline power consumption is high because of the CPU.

8. LIMITATIONS AND FUTURE WORK

8.1 Sensor Notification Customizations

It is critical that the sensor notifications cannot be deac-
tivated by attackers. This has motivated us to design a so-
lution that enforces the notifications unconditionally. How-
ever, we envision scenarios that the user might need to dis-
able the notifications temporarily, e.g., if light, vibration, or
sound interferes with user’s activities. Allowing customiza-
tions while protecting against malware raises new challenges
that we plan to address in future work. One key idea is to
provide an orthogonal channel (to the operating system) in
order to deploy and update the invariant checks. One can-
didate channel is a minimal virtual machine, which can be
interacted with only if the user presses a certain key combi-
nation, enforced by a few permanent invariants.

8.2 Message-Passing Hardware Interfaces

The control commands to most I/O devices and hardware
components are programmed using a set of registers. How-
ever, some devices and components adopt a message-passing
interface for control commands, where they exchange mes-
sages with the CPU using shared memory buffers. We have
encountered two such devices: the image subsystem in Galaxy
Nexus (which includes the camera) and the voltage regula-
tors in Nexus 5 (one of the vibrator’ dependencies (§5.3)).
Viola does not currently support these devices. To over-
come this limitation, we plan to extend our bus interpreter
module to support message-passing interfaces.

8.3 Speaker and Display as Indicators

In this paper, we demonstrated the use of LED and vibra-
tor as indicators. Other possible indicators are the speaker
and display. However, the use of these indicators in Viola
present important challenges that we plan to address in our
future work. First, for both indicators, the data passed to
the device must be inspected and verified, e.g., audio samples
and display pixels. Doing so requires support in the monitor
to intercept and inspect the Direct Memory Access (DMA)
operations. It also requires support in Viola’s language to
allow the developer to concisely specify the intended data.
Second, in the case of the speaker, the time that each audio
sample is played must also be monitored and verified to be
correct. This is because tampering with the timing of the
samples can affect the effective sounds heard by the user.

8.4 Context-Sensitive Notifications

The best indicator to use might depend on the mobile
system’s context. For example, if the ambient noise level is
high, vibration may be more effective than a beep. Viola
can be extended to support context-sensitive notifications
as well. For this, Viola needs to monitor various sensor
readings and enforce the indicators accordingly.

8.5 Two-Way Notifications

Two-way notifications require the sensor and indicator to
be in their target states only simultaneously (§2.2). This is
challenging as the states of the sensor and indicator have to
change atomically. We plan to solve this challenge by imple-
menting verified I/0 transactions, in which Viola’s monitor
buffers several register write parameters, and execute all of
them atomically.

8.6 Temporary Notifications

While some types of indicators, such as LED, should stay
on as long as the sensor is on, other indicators are best if
temporary, e.g., a short vibration or a brief beeping sound
(§2.2). Implementing temporary notifications requires the
invariant checks to store timing information. Moreover, in
case the indicator is not turned off after the specified period
of time, the monitor must turn it off on its own. Imple-
menting such behavior in the monitor requires code synthe-
sis from the device specifications and is part of our future
work.

9. RELATED WORK
9.1 Untrusted Operating Systems and Drivers

Applications rely heavily on the correctness of the operat-
ing systems. However, contemporary operating systems are
large, complex, and full of bugs, allowing malicious applica-
tions to compromise them. This observation has fueled re-
search into protecting the applications from a compromised
operating system. Most solutions, such as Overshadow [22]
and InkTag [35], do so with a trusted hypervisor, which me-
diates applications’ interactions with the operating system.
However, due to the wide and complex interface between an
application and the underlying operating system, these so-
lutions cannot protect the applications against all possible
attacks, such as Iago attacks [19]. Similar to this line of
work, we leverage the hypervisor in Viola in order to make
the operating system untrusted. However, while the focus
of this line of work is on protecting the application from
the operating system, Viola’s focus is on the correctness of
sensor notifications.

Nexus [56] makes the device drivers untrusted by run-
ning them in user space and by vetting their interactions
with the I/O devices. Similar to Viola, Nexus adopts a
domain-specific language to write specifications for the de-
vices, which are then compiled into reference monitors used
in the kernel. Unlike Nexus, Viola’s compiler is formally
verified. Moreover, Viola’s invariant checks monitor more
than one I/O device (i.e., a sensor and an indicator) and
enforce a relationship between their states. Unlike Nexus,
which implements the monitor in the kernel, we have demon-
strated an implementation of our monitor in the hypervisor
as well. Finally, while Nexus is implemented for the x86
architecture and PCI devices, Viola is implemented for the
ARM architecture and devices that are directly accessed by
the CPU or through an I?C bus. Despite these differences,
Viola can benefit from the design of Nexus by moving the
device drivers to user space. Such a design will enhance
the security guarantees of Viola’s kernel-based monitor as it
removes the device drivers out of the TCB.

9.2 Virtual Machine Introspection

Virtual machine introspection (VMI) uses the hypervi-
sor to monitor the operating system for intrusion detec-
tion [26, 30, 32]. It provides good visibility of the operat-
ing system internals while protecting the monitoring sys-
tem from the attacks on the operating system. Similar to
VMI, we leverage the hypervisor to enforce the I/O invari-
ants eliminating the need to trust the operating system. Our
work is, however, fundamentally different as, unlike VMI, we
provide guarantees on the correct behavior of I/O devices.

9.3 Software Verification

An alternative approach to Viola for implementing trust-
worthy sensor notifications is to guarantee that there are no
bugs in the whole mobile operating system. A large amount
of work has tried to face such a challenge head-on by finding
and eliminating bugs in existing software using static anal-
ysis [15] and model checking [24,47]. These solutions have
an important limitation: they do not scale to large software
systems, e.g., the whole Android code base. Moreover, some
of these solutions might not be practical as important parts
of the I/0O stack in mobile operating systems, including An-
droid, are closed source.

Our key insight in Viola is that we can enforce sensor no-
tification invariants in low level system software eliminating
the need to verify the correctness of the whole operating
system. However, it is important to note that existing so-
lutions discussed above are more generic than ours. They
can find various types of bugs in software systems or can be
used to find violations of arbitrary invariants. Our solution
is specific to sensor notifications.

More specifically, several existing solutions improve the
quality of device drivers by finding or avoiding driver bugs
either through static analysis [14,23,48], better interface lan-
guage [45], synthesis [51,52], or symbolic execution [37,50].
We note that this line of work reduces the probability of the
violation of sensor notification invariants, but on their own,
these solutions are not adequate to guarantee the invariants
for two reasons. First, the device driver is only part of the
I/0 stack, and the invariant can be violated as a result of
bugs in other components of the stack, e.g., the I/O system
services in Android. Second, existing solutions are often best
efforts to eliminate bugs but cannot eliminate all the bugs
nor provide formal guarantees about an invariant.

Finally, our verified compiler for Viola (§5.2) is related to
existing work on verified compilers [39], verified kernels and
hypervisors [20, 34, 36, 38, 44], and verified file systems [21].
Indeed, our compiler is built on top of a verified compiler
(i.e., CompCert [39]). However, unlike Viola, none of these
solutions provide formal guarantees about the behavior of
I/0 devices.

9.4 Information Flow Control

Systems such as TaintDroid [27] and Panorama [57] can
track the flow of information from sources that produce sen-
sitive information, e.g., camera and microphone, to sinks
that can leak the information, e.g., network interface card.
Such systems can therefore be used to notify the user when
sensor data propagate to sensitive sinks. However, there are
four important differences between such notifications and
Viola. First, Viola is designed to reliably detect when sen-
sors are turned on and off. To do this, Viola uses device
specifications of sensors and monitors writes to registers of
these devices. In contrast, information flow control systems
cannot reliably detect the states of the sensors. Instead,
given some sensor data stored in memory, even if the data
were captured legitimately with the user’s approval, infor-
mation flow control systems can reliably track the propa-
gation of data and potentially inform the user if the data
leave the mobile system. In this sense, Viola and informa-
tion flow control systems can provide complementary forms
of notifications, i.e., notification about when the sensor is
on vs. notification about when the sensor data are about to
leave the mobile system. Second, information flow tracking

systems incur noticeable performance overhead in the sys-
tem as they need to instrument and track several processor
or high-level language instructions. On the other hand, Vi-
ola’s overhead is negligible since it only monitors infrequent
writes to registers of I/O devices. Third, Viola supports a
hypervisor-based implementation, which will make the oper-
ating system fully untrusted. While some information flow
control systems are implemented in the hypervisor as well,
e.g., Panorama [57], others are implemented at higher lay-
ers of the stack, e.g., Java Virtual Machine (JVM) in case
of TaintDroid [27], resulting in a larger TCB. Finally, un-
like some information flow control systems that have depen-
dency on the JVM implementation (e.g., TaintDroid), Viola
has dependency on the kernel or hypervisor.

9.5 Other Related Work

Operating systems have employed kernel interpreters for
syscall monitoring, e.g., Linux Seccomp, or packet filter-
ing [43]. Jitk [55] provides a trustworthy kernel interpreter
using Coq. Our solution can also be considered as filtering
the states and behavior of sensors and indicators in mobile
systems. Indeed, our approach in how we use Coq to verify
the functional correctness of our compilers has been influ-
enced by Jitk. However, unlike Jitk that performs syscall
and network filtering and socket monitoring, Viola monitors
the operating system’s interactions with I/O devices.

Bianchi et al. implement a notification on the Android
system navigation bar to notify the user of the origin of the
application she is interacting with [16]. Our work on Viola
is in line with this work in terms of motivation. However,
unlike our solution, their solution does not provide any guar-
antees on the correctness of the notification.

Trusted sensors provide mechanisms for maintaining the
integrity of sensor readings in mobile systems for the user
of the data [33,40,53]. This line of work is orthogonal to
Viola, which is concerned with immediate and unconditional
feedback to the user about the usage of sensors, and not with
the integrity of the sensor data after capture.

10. CONCLUSIONS

We presented Viola, a system aimed at enhancing mobile
systems users’ privacy by providing trustworthy sensor no-
tifications, which unconditionally inform the user when the
sensors are on. Viola uses verified invariant checks to inspect
the writes to sensors’ and indicators’ registers in the kernel
or in the hypervisor, and rejects those that violate the sen-
sor notifications’ invariants. We reported an implementation
of Viola on various mobile systems, including LG Nexus 5,
Samsung Galaxy Nexus, and ODROID XU4, and for various
sensors and indicators, such as camera, microphone, LED,
and vibrator. We demonstrated that Viola’s overheads to
the sensor’s performance and system’s power consumption
are negligible and small, respectively. We believe that trust-
worthy sensor notifications are critical for mobile systems,
which are increasingly capable of recording private informa-
tion about their users.

Acknowledgments

The authors thank their shepherd, Dr. Eduardo Cuervo, and
the anonymous reviewers for their insightful comments. The
authors also thank Justin A. Chen for his help in revising
the paper.

11.

1]

[18]

REFERENCES

Android Detective Video Recorder.
https://play.google.com/store/apps/details?id=com.
rivalogic.android.video&hl=en.

Android Easy Voice Recorder.
https://play.google.com/store/apps/details?id=com.
coffeebeanventures.easyvoicerecorder&hl=en.

Android Verified Boot. https://source.android.com/
security /verifiedboot /verified-boot.html.

Dendroid: Android Trojan Being Commercialized.
http://blog.trustlook.com/2014/03/20/dendroid-
android-trojan-commercialized/.

Fuzzing Android System Services by Binder Call to
Escalate Privilege.
https://www.blackhat.com/docs/us-15/materials/us-
15-Gong-Fuzzing- Android-System-Services- By-
Binder-Call-To- Escalate- Privilege.pdf.

How the NSA can ’turn on’ your phone remotely.
http://money.cnn.com/2014/06/06/technology/
security /nsa-turn-on-phone/.

Man spies on Miss Teen USA.
http://www.reuters.com/article/2013/10/31/us-usa-
missteen-extortion-idUSBRE99U1G520131031.

Men spy on women through their webcams.
http://arstechnica.com/tech-policy/2013/03 /rat-
breeders-meet-the-men-who-spy-on-women-through-
their-webcams/.

Monsoon Power Monitor. http:

/ /www.msoon.com/LabEquipment /PowerMonitor//.
Panasonic AN30259A LED (used in Galaxy Nexus).
http://www.semicon.panasonic.co.jp/ds4/AN30259A _
AEB.pdf.

The Coq Proof Assistant. https://coq.inria.fr/.
Viola’s video demo.

http://www.ics.uci.edu/ ardalan/viola.html.

ARM. ARM Cortex-A15 MPCore Processor Technical
Reference Manual, Revision: r4p0. ARM DDI, 04381
(ID062913), 2013.

T. Ball, E. Bounimova, B. Cook, V. Levin,

J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough Static Analysis
of Device Drivers. In Proc. ACM EuroSys, 2006.

T. Ball and S. K. Rajamani. The SLAM Project:
Debugging System Software via Static Analysis. In
Proc. ACM Symposium on Principles of Programming
Languages (POPL), 2002.

A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the App is That?
Deception and Countermeasures in the Android User
Interface. In Proc. IEEE Symposium on Security and
Privacy (S&P), 2015.

K. Boos, A. Amiri Sani, and L. Zhong. Eliminating
State Entanglement with Checkpoint-based
Virtualization of Mobile OS Services. In Proc. ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys),
2015.

M. Brocker and S. Checkoway. iSeeYou: Disabling the
MacBook Webcam Indicator LED. In Proc. USENIX
Security Symposium, 2014.

(19]

20]

(21]

22]

23]

24]

(25]

[26]

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

S. Checkoway and H. Shacham. Iago Attacks: Why
the System Call API is a Bad Untrusted RPC
Interface. In Proc. ACM ASPLOS, 2013.

H. Chen, X. Wu, Z. Shao, J. Lockerman, and R. Gu.
Toward Compositional Verification of Interruptible OS
Kernels and Device Drivers. In Proc. ACM PLDI,
2016.

H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using Crash Hoare Logic
for Certifying the FSCQ File System. In Proc. ACM
SOSP, 2015.

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and

D. R. K. Ports. Overshadow: a Virtualization-Based
Approach to Retrofitting Protection in Commodity
Operating Systems. In Proc. ACM ASPLOS, 2008.
A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An Empirical Study of Operating Systems Errors. In
Proc. ACM SOSP, 2001.

J. Croft, R. Mahajan, M. Caesar, and M. Musuvathi.
Systematically Exploring the Behavior of Control
Programs. In Proc. USENIX ATC, 2015.

C. Dall and J. Niech. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In
Proc. ACM ASPLOS, 2014.

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the Semantic Gap in
Virtual Machine Introspection. In Proc. IEEE Security
and Privacy (S€P), 2011.

W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proc.
USENIX OSDI, 2010.

X. Feng and Z. Shao. Modular Verification of
Concurrent Assembly Code with Dynamic Thread
Creation and Termination. In Proc. ACM
International Conference on Functional Programming
(ICFP), 2005.

X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni.
Modular Verification of Assembly Code with
Stack-Based Control Abstractions. In Proc. ACM
PLDI; 2006.

Y. Fu and Z. Lin. Space Traveling across VM:
Automatically Bridging the Semantic Gap in Virtual
Machine Introspection via Online Kernel Data
Redirection. In Proc. IEEE Security and Privacy
(S€P), 2012.

A. Ganapathi, V. Ganapathi, and D. Patterson.
Windows XP Kernel Crash Analysis. In Proc.
USENIX LISA, 2006.

T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proc. Network and Distributed Systems
Security Symposium (NDSS), 2003.

P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall.
Toward Trustworthy Mobile Sensing. In Proc. ACM
Workshop on Mobile Computing Systems €
Applications (HotMobile), 2010.

R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu,
S. Weng, H. Zhang, and Y. Guo. Deep Specifications

[37]

[38]

[39]

[40]

[45]

[46]

and Certified Abstraction Layers. In Proc. ACM
POPL, 2015.

O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure Applications on an
Untrusted Operating System. In Proc. ACM ASPLOS,
2013.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick,

D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

S. Winwood. sell4: Formal Verification of an OS
Kernel. In Proc. ACM SOSP, 2009.

V. Kuznetsov, V. Chipounov, and G. Candea. Testing
Closed-Source Binary Device Drivers with DDT. In
Proc. USENIX Annual Technical Conference, 2010.
D. Leinenbach and T. Santen. Verifying the Microsoft
Hyper-V hypervisor with VCC. In Proc. International
Symposium on Formal Methods (FM). Springer, 2009.
X. Leroy. Formal Verification of a Realistic Compiler.
Communications of the ACM, 2009.

H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
Abstractions for Trusted Sensors. In Proc. ACM
MobiSys, 2012.

N. Lynch and F. Vaandrager. Forward and Backward
Simulations Part I: Untimed Systems. Information
and Computation, 1995.

N. Lynch and F. Vaandrager. Forward and Backward
Simulations Part II: Timing-Based Systems.
Information and Computation, 1996.

S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-Level Packet Capture. In
Proc. Winter 1993 USENIX Technical Conference,
1993.

M. McCoyd, R. B. Krug, D. Goel, M. Dahlin, and

W. Young. Building a Hypervisor on a Formally
Verifiable Protection Layer. In Proc. IEEE Hawaii
International Conference on System Sciences
(HICSS), 2013.

F. Mérillon, L. Réveillere, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for Hardware Programming.
In Proc. USENIX OSDI, 2000.

I. Muslukhov, Y. Boshmaf, C. Kuo, J. Lester, and

K. Beznosov. Understanding Users’ Requirements for
Data Protection in Smartphones. In Proc. IEEFE Int.
Conf. on Data Engineering Workshops (ICDEW),
2012.

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

58]

M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler,
and D. L. Dill. CMC: A Pragmatic Approach to Model
Checking Real Code. In Proc. USENIX OSDI, 2002.
N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall,
and G. Muller. Faults in Linux: Ten Years Later. In
Proc. ACM ASPLOS, 2011.

R. S. Portnoff, L. N. Lee, S. Egelman, P. Mishra,

D. Leung, and D. Wagner. Somebody’s Watching Me?
Assessing the Effectiveness of Webcam Indicator
Lights. In Proc. ACM Conference on Human Factors
in Computing Systems (CHI), 2015.

M. J. Renzelmann, A. Kadav, and M. M. Swift.
SymDrive: Testing Drivers without Devices. In Proc.
USENIX OSDI, 2012.

L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and

G. Heiser. Automatic Device Driver Synthesis with
Termite. In Proc. ACM SOSP, 2009.

L. Ryzhyk, A. Walker, J. Keys, A. Legg,

A. Raghunath, M. Stumm, and M. Vij. User-Guided
Device Driver Synthesis. In Proc. USENIX OSDI,
2014.

S. Saroiu and A. Wolman. I Am a Sensor, and I
Approve This Message. In Proc. ACM Workshop on
Mobile Computing Systems & Applications
(HotMobile), 2010.

W. Wang, Z. Shao, X. Jiang, and Y. Guo. A Simple
Model for Certifying Assembly Programs with
First-Class Function Pointers. In Proc. IEEE
International Symposium on Theoretical Aspects of
Software Engineering (TASE), 2011.

X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and
Z. Tatlock. Jitk: a Trustworthy In-Kernel Interpreter
Infrastructure. In Proc. USENIX OSDI, 2014.

D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and
F. B. Schneider. Device Driver Safety Through a
Reference Validation Mechanism. In Proc. USENIX
OSDI, 2008.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-wide Information Flow
for Malware Detection and Analysis. In Proc. ACM
CCs, 2007.

D. Yu and Z. Shao. Verification of Safety Properties
for Concurrent Assembly Code. In Proc. ACM
International Conference on Functional Programming
(ICFP), 2004.

