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ABSTRACT

ARM processors used in modern mobile devices, such as
smartphones and tablets, use TrustZone to implement a
trusted execution environment (TEE). In this paper, we ar-
gue that virtualization hardware, already available on many
ARM processors, should be used for this purpose instead.
Virtualization hardware can be used to implement multi-
ple isolated trusted environments, as opposed to a single
such environment provided by TrustZone. This can prevent
the bloat of the Trusted Computing Base (TCB) of the TEE
and support new security services not currently possible,
such as sandboxing of untrusted operating system kernel
components.

We also address the concerns for the use of virtualization
for the aforementioned purpose. Most notably, through ex-
tensive experiments, we show that, unlike widespread belief,
virtualization overhead is small if the hypervisor is carefully
designed to minimize its interpositions into the operating
system activity. In addition, we discuss and address the con-
cerns on supported features, backward-compatibility, and
hypervisor’s TCB size.

Going forward, given that virtualization provides a viable
(if not superior) TEE solution, we suggest that ARM Trust-
Zone hardware components should be mostly removed from
future ARM SoCs. This can simplify the processor and SoC
design and save some die space.
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1 INTRODUCTION

ARM-based mobile devices as such as smartphones and tablets
have two important hardware features that can be used to
build trusted systems: TrustZone and virtualization hard-
ware. In today’s mobile devices, TrustZone is predominantly
used to implement a trusted execution environment (TEE),
which hosts important security services such as secure pay-
ment (e.g. Samsung Pay), Digital Rights Management (DRM),
and a cryptographic key store. Virtualization hardware, on
the other hand, is mainly intended for supporting virtual ma-
chines, and hence is typically left unused in mobile devices.

In this paper, we argue that virtualization hardware should
be used to implement the TEE in mobile devices instead of
TrustZone. Such a design supports multiple isolated TEEs,
in contrast to TrustZone, which only supports one TEE, pro-
viding two important benefits. First, security services can be
divided to run within separate TEEs, which prevents bloating
of the Trusted Computing Base (TCB) of the TEE. Second,
novel security services, such as sandboxing of untrusted
kernel modules, become feasible.

However, there are some concerns about this proposal,
which we address in this paper. The first concern is perfor-
mance. It is widely believed that running the main operating
system on top of a hypervisor incurs significant performance
overhead [17]. At the same time, it is believed that Trust-
Zone’s overhead on the main operating system performance
is negligible. Through extensive experimentation, hypervisor
redesign, and a TrustZone design study, we provide evidence
against both of these arguments. We show that a commodity
hypervisor’s overhead is mainly due to its frequent interpos-
ing on the operating system activities, a design needed only
in a multi-tenant virtualization setup. When used to support
TEEs, the hypervisor can be redesigned to minimize these
interpositions and hence minimize its performance overhead
on the main operating system. We present a “passive hyper-
visor” design, in which the hypervisor is invoked only for
explicit communications between the operating system and
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a TEE. With this design, we show that the performance of
the operating system is very close (within about 0.45% on
average and 1.89% maximum) of native execution!.

Moreover, we show that TrustZone’s overhead is not neg-
ligible either. Indeed, TrustZone incurs unavoidable cost to
memory writes (by either CPU or I/O devices) in order to im-
plement secure memory and I/O. Unfortunately, we cannot
measure this overhead since this feature is not configurable
on different devices that we have investigated. However, our
study of its design shows that this overhead is about 1.5%.

The second concern is supported features. TrustZone sup-
ports several security features, such as secure I/O, secure
memory, and secure boot, all of which are needed for the
security services deployed in the TEE. We show that several
such features can already be supported with virtualization
hardware. Indeed, virtualization hardware can provide bet-
ter flexibility for secure memory and secure I/O. Also, for
those features not supported (i.e., secure boot and crypto-
graphic keys), we discuss that they can be easily supported
by virtualization as well.

The third concern is backward compatibility. There are
already many services developed to run within a TrustZone
TEE. We discuss how these services can be easily supported
in a virtualization TEE by porting existing TEE operating
systems to a virtual machine, similar to vIZ [26]. The last
concern is the hypervisor’s TCB size. While a hypervisor’s
TCB size is currently larger than that of TrustZone’s monitor
TCB, we discuss that this TCB can be significantly reduced.

Going forward, given that virtualization provides a vi-
able (if not superior) TEE solution, we argue that TrustZone
should be removed from future ARM SoC’s. This will simplify
the hardware and save some die space on the SoC chip.

2 TEE DESIGN

In this section, we describe TEE designs using TrustZone
and virtualization hardware.

Modern mobile devices use ARM TrustZone to implement
a TEE. TrustZone is a system-wide hardware isolation fea-
ture for ARM SoCs. It separates the system into a secure and a
normal world and uses a secure monitor to handle switching
between these two worlds. The secure world hosts the TEE,
which is a secure operating system with its own user and
kernel spaces. Some popular OSes used in the secure world
are OP-TEE [7] and Trusty OS [3]. TrustZone partitions the
memory and hardware I/O devices between the normal and
secure worlds. All accesses from the normal world to the re-
sources allocated for the secure world are denied. The secure
world, however, has access to all resources. The TEE is used
to host security services, such as payment services. These

The source code for the hypervisor and the benchmarks can be found at
https://trusslab.github.io/hyp_tee/
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Figure 1: (a) TrustZone-based TEE architecture. (b)
Virtualization-based TEE architecture.

services can be invoked from the normal world through a
regulated call gate, enabled by a world switch instruction
called the “Secure Mode Call" (SMC). Figure 1a illustrates
this design.

In this paper, we make the case for using virtualization
hardware to implement the TEE. Virtualization hardware
was added to ARM processors in 2011 [35]. However, due
to lack of critical use cases, this hardware is typically deac-
tivated in commodity mobile devices. Figure 1b illustrates
how this hardware can be used to implement the TEE. The
main operating system as well as the TEEs run inside virtual
machines on top of a hypervisor. The hypervisor then gives
each virtual machine access to the resources it needs. For
example, it gives a TEE access to its own secure memory and
secure I/O devices, while it gives the main operating system
access to unsecure memory and I/O. The operating system
and TEEs can also communicate through the hypervisor. The
mediation of the hypervisor increases the round trip time for
this communication compared to the direct communication
with TrustZone. However, we do not anticipate this to be an
issue since security services hosted in TEEs are typically not
performance-sensitive.

As the figure shows, this design enables having multiple
TEEs. This provides two important advantages compared to
a single TEE supported by ARM TrustZone. First, it allows
for strong isolation between various security services. Re-
cently, many novel security services have been proposed by
the research community to be deployed within the Trust-
Zone TEE. Examples are secure sensors [30], AdAttester [28],
VButton [29], and TruZ-Droid [45]. However, these services
require deploying extra code (e.g., device drivers) in the TEE,
mainly in the kernel of the TEE operating system. Such a
requirement is an important bottleneck for the adoption of
these solutions in practice. This is because doing so will no-
ticeably increase the TCB of the TEE, which hosts critical
security services. With the virtualization-based TEE design,
these services can be deployed in separate TEEs, without
bloating the TCB.

Second, this design allows for sandboxing of the operating
system kernel’s components. For example, several recent
bugs have been found in the Bluetooth [4] and WiFi [5, 44]



subsystems of mobile devices. These bugs can be exploited by
malicious parties over the network to mount remote attacks.
An effective solution to prevent such exploits is to sandbox
these network devices and their corresponding device dri-
vers. Unfortunately, TrustZone TEE cannot be used for this
purpose. This is because the TEE houses critical security ser-
vices and adding these vulnerable devices to this TEE makes
it vulnerable to attacks, essentially worsening the security of
the system. On the other hand, with a virtualization-based
design, isolated virtual machines can be used to sandbox
these network devices, similar to Cinch [11]. These virtual
machines will be given access only to their own I/O devices,
hence properly isolating the vulnerabilities.

While a virtualization-based TEE provides those advan-
tages, it raises some concerns that prohibits its widespread
use: performance, supported features, backward-compatibility,
and hypervisor’s TCB size. We address the concerns on per-
formance and supported features in §3 and §4, respectively.
The concern on backward-compatibility is easily addressed
by porting existing TrustZone TEE and applications to run
in a virtual machine, similar to vIZ [26].

Here, we study the issue of TCB size. As discussed, a
virtualization-based TEE allows for reduction in the TCB
of the TEE software itself. However, there is concern with
the large size of the hypervisor compared to the monitor
code in the secure world (Figure 1). Our initial code size
measurement shows that Xen hypervisor’s TCB for ARM
architecture is about 95 kLoC while TrustZone’s monitor
TCB (i.e., ARM Trusted Firmware) is about 28 kLoC. Our
breakdown of Xen’s TCB shows that this number can be sig-
nificantly reduced. For example, about 36 kLoC is for drivers,
20 kLoC is for tools, and 2 kLoC is for cryptography, none
of which is needed in our passive hypervisor. This leaves us
about 36 kLoC for TCB. Indeed, others have also found that a
hypervisor’s TCB size can be reduced. For example, in [1], it
is mentioned that the ARM code size in Xen can be reduced
down to about 11 kLoC. Moreover, [43] and [42] also have
shown that the hypervisor code size can be reduced to about
9 and 20 kLoC, respectively. Also, note that ARM Trusted
Firmware (in the HiKey development board used in our pro-
totype) can also be reduced to about 17 kLoC by removing
its services and tools. This analysis shows that both Xen and
ARM Trusted Firmware have comparable TCBs.

Note that while we focus on a commodity hypervisor (Xen)
in this paper, we could also use microkernels or microhyper-
visors such as [2, 24, 27, 43].

3 PERFORMANCE

3.1 Virtualization’s Performance

Using a virtualization-based TEE requires the hypervisor in
the system all the time (Figure 1b). This, in turn, can affect the

performance of the main operating system. In this section, we
investigate this issue experimentally. We introduce several
design decisions that altogether turn an existing hypervisor
into a “passive” hypervisor, which interposes the operating
system execution only to handle explicit security calls from
it. We show that such a design can achieve performance close
to that of native.

We start our investigation with an unmodified Xen hyper-
visor. We perform performance experiments in the operating
system using the popular LMBench suite [34]. Our measure-
ments show that Xen indeed incurs noticeable overhead to
several microbenchmarks (up to 123.69%). We then perform
detailed instrumentation to find out the sources of the per-
formance overhead and remove them with several design
decisions. In this section, we first introduce these design
decisions. We then present the results of our measurements.

Design Decision I: No vCPU Scheduling. The hyper-
visor implements virtual CPUs (vCPU) on top of the physical
CPUs (pCPU) in the system. It then assigns a configurable
number of vCPUs to each virtual machine and schedules
them. This scheduling incurs overhead. This is because the
scheduler context-switches the vCPUs over pCPUs. On a
context switch between two vCPUs, the scheduler stores
the current vCPU’s execution state (i.e., pCPU registers) in
memory and restores the target vCPU’s state. Moreover, to
perform the context switch, the virtual machine execution
traps into the hypervisor.

We observe that vCPU scheduling is only needed for
multi-tenant virtualization environments, where the CPU
resources need to be fairly shared between untrusting virtual
machines. In a TEE design, transitions between the operating
system and TEEs are mainly through explicit calls from the
operating system. Therefore, no vCPU scheduling is needed.
All the CPUs can be assigned to the main operating system.
Each CPU can then switch to execute in a TEE if called by
the operating system or to handle an interrupt from a secure
I/O device (similar to transitions from the normal world to
secure world with TrustZone).

We use two techniques to eliminate the vCPU scheduling.
Our first technique is CPU pinning. That is, we pin the vCPUs
to pCPUs. To do this, we allocate the same number of vCPUs
for the operating system as the number of existing pCPUs in
the system and we pin each vCPU to one pCPU. This prevents
the hypervisor from performing any context switches.

Note that we will still be able to support explicit domain
transitions. That is, if the operating system requires to invoke
the TEE, it can issue a hypercall. The passive hypervisor can
handle the hypercall by resuming the execution of the calling
vCPU in the TEE. Once the request is handled, the vCPU will
be programmed to continue its execution in the operating
system. No vCPU scheduling will be performed.



Our second technique is to eliminate the use of the idle
domain in Xen. When there is no running task, the operating
system scheduler switches to the idle task. The idle task runs
an idle loop, in which it calls the Wait-for-Interrupt (WFI)
instruction. This instruction forces the processor to sleep
and wait for an interrupt to wake up. With a commodity
hypervisor, this instruction is configured to trap into the
hypervisor, which then performs the idling by executing an
“idle domain”. This allows the hypervisor to make scheduling
decisions, if needed. This trap, followed up by the execution
of an idle domain, causes performance overhead. Therefore,
we remove it in the passive hypervisor. That is, we deprivi-
lege the WFI instruction, which prevents it from trapping.
In this case, the operating system performs the idling itself,
similar to an operating system running natively.

Design Decision II: Use Super Pages. One source of
potential performance overhead is memory virtualization.
In an ARM processor with virtualization hardware, there
are two stages of address translations (guest virtual to guest
physical and guest physical to system physical). A different
set of page tables is used in each stage. The operating system
controls the first set of page tables (i.e., stage-1 page tables)
and the hypervisor controls the second one (i.e., stage-2
page tables). Therefore, the hypervisor can use different page
sizes in stage-2 page tables. As we will show in §3.2, using
the small page sizes of 4 KB causes noticeable performance
overhead, for two reasons. First, for this page size, the page
table walk consists of up to four lookups (hence four memory
accesses). Second, such a page size results in more translation
entries, which increases the Translation Lookaside Buffer
(TLB) contention.

Therefore, our experiments show that it is critical to use
super pages to implement the physical address space of the
operating system. The question becomes: what super page
size should the passive hypervisor use? ARMv8 processors
support various super page sizes, e.g., 2MB, and 1GB. Requir-
ing the use of 1 GB pages will minimize the performance
overhead. However, it will prohibit us from launching more
than a few domains, since the granularity of memory par-
titions is low. Therefore, we use 2 MB pages in the passive
hypervisor (fortunately, this is Xen’s choice as well). Our
experiments show that this super page size results in close-
to-native performance.

Design Decision III: No IPI Traps. A commodity hyper-
visor, such as Xen, interposes on Inter-Processor Interrupts
(IPI), causing performance overhead. This interposition is
needed in the hypervisor due to CPU virtualization. That is,
when the operating system issues an IPI to another vCPU,
it traps into the hypervisor, which then injects the IPI to
the pCPU corresponding to the target vCPU. However, in
a passive hypervisor, the vCPUs are statically mapped to
pCPUs and hence this interposition can be eliminated.

We do not yet have this feature in our prototype, but
here is how we plan to support it. ARM architecture has a
hypervisor configuration register (HCR_EL2) that controls
the traps to the hypervisor. HCR_EL2.IMO is the bit for
routing physical interrupts to the guest or to the hypervisor.
If this bit is unset, all the interrupts are routed to the guest
removing the hypervisor from the interrupt path. While this
is in principle possible and is our eventual prototype goal,
it requires further rehauling of the hypervisor and possibly
the guest, which is part of our ongoing efforts. However, in
order to demonstrate the benefits of eliminating IPI traps in
our benchmarks, we also measure the performance of our
benchmarks on a single CPU (since such a configuration
eliminates IPIs).

3.2 Virtualization Evaluation

We evaluate the effect of virtualization (both with commod-
ity and passive hypervisors) on the main operating system.
We use a HiKey development board, which has a Kirin 620
SoC with an octa-core ARM Cortex-A53 64-bit CPU operat-
ing at a maximum frequency of 1.2 GHz [6]. Moreover, the
board comes with 2 GB of memory. We build the passive hy-
pervisor on top of Xen 4.9 hypervisor. We use CentOS with
Linux kernel version 4.1 for the operating system. We did our
measurements using the LMbench micro-benchmarks [34].
We evaluate three configurations: (i) native, in which there is
no hypervisor and the operating system runs natively on top
of hardware, (ii) Xen, in which we run the operating system
on top of unmodified Xen, and (iii) pXen, in which we run
the operating system on top of our passive hypervisor.
Tables 1 and 2 show the results. Table 1 shows the results
for benchmarks that use a single process. Our results show
that for these benchmarks, Xen does not incur noticeable
overhead (an average of 0.50%). The passive hypervisor fur-
ther reduces this overhead to an average of 0.37%. Table 2
shows the results for the benchmarks that use multiple pro-
cesses. It shows that Xen does incur significant overhead for
these benchmarks (due to vCPU scheduling and IPI traps).
Moreover, it shows that in a multi-core environment (Table 2,
left), the passive hypervisor (pXen) achieves noticeably bet-
ter performance compared to Xen due to its elimination of
vCPU scheduling. For example, in the context switch bench-
mark, Xen has an overhead of 123% while the passive hy-
pervisor has an overhead of 55%. The remaining overhead
is because of IPIs, which happen in a multi-core environ-
ment. As mentioned in §3.1, we currently do not support
the elimination of IPI traps. Therefore, to demonstrate the
effect of this elimination, we also run our benchmarks in a
single-core environment (Table 2, right) in order to avoid IPI
traps. In these tests, we pinned the benchmarks’ processes
to a single CPU in the system. Our results show that without



Type Name Native Stdev(%) Xen Stdev(%) Xen Ovr (%) pXen Stdev (%) pXen Ovr (%)
File Sys. BW. (ops/s) mk 34657.58 0.91 34225.83 0.39 1.24 34298.08 0.07 1.03
rm 51910.00 0.22 51755.25 0.18 0.29 51777.25 0.57 0.25
Simple 0.19 0 0.19 0 0 0.19 0 0
rd. 0.60 0 0.60 0 0 0.60 0 0
Syscall Lat. (us) WI. 0.87 0 0.87 0 0 0.87 0 0
stat 4.00 0 4.00 0 0 4.00 0 0
fstat 0.85 0 0.85 0 0 0.85 0 0
open/close 9.31 0 9.31 0 0 9.31 0 0
Select Lat. (us) fd=250 14.68 0.13 14.76 0 0.54 14.71 0 0.22
Installation 0.56 0 0.56 0 0 0.56 0 0
Signal Lat. (us) Overhead 3.86 0 3.88 0 0.47 3.88 0 0.47
Prot. fault 0.37 0 0.37 0 0 0.37 0 0
Int64 bit 0.84 0 0.84 0 0 0.84 0 0
Int64 add 0.08 0 0.08 0 0 0.08 0 0
CPU Lat. (us) Int64 mul 3.34 0 3.35 0.17 0.29 3.35 0.17 0.29
Int64 div 7.94 0 7.96 0.07 0.25 7.95 0 0.12
Int64 mod 5.85 0 5.86 0 0 5.86 0 0.17
File read BW. (MB/s) io_only 883.48 1.28 877.87 1.21 0.63 881.01 0.92 0.27
Open2close 737.61 0.56 736.00 0.67 0.21 736.00 0.62 0.21
Mmap read BW. (MB/s) io_only 2581.00 0.03 2539.66 0.58 1.60 2554.66 0.05 1.02
Open2close 913.66 0.12 886.00 1.41 3.02 896.33 0.90 1.89
Memory Lat. (us) load 107.73 0.03 109.83 0.63 1.95 109.70 0.72 1.82
Memory BW. (MB/s) Rea.d 2081.00 0.26 2056.00 0.12 1.20 2060.66 0.97 1.00
Write 4665.66 0.01 4647.66 0.02 0.38 4654.33 0.02 0.24

Table 1: LMBench benchmarks

that use one process. “Native”, “Xen”, and “pXen” columns show averages and the

columns on their right show standard deviations. “Ovr” refers to overhead compared to native. Note that the results
for memory benchmarks do include the effects of cache and TLB.

Multi-core Experiments Single-core Experiments
. Stdev Stdev Xen Stdev | P Xen . Stdev Stdev Xen Stdev | P Xen
Type Name Native Xen Ovr pXen Ovr Native Xen Ovr pXen Ovr
(%) (%) (%) (%) (%) (%)
(%) (%) (%) (%)
Pipe Lat. (us) 15.22 4.79 | 31.85 1.63 109.16| 15.34 1.16 0.76 23.11 0.46 23.20 0.46 0.37 23.14 0.42 0.12
Pipe BW. (MB/s) 807.52 | 0.04 | 673.72 | 0.59 16.56 | 748.12 | 0.39 7.35 804.18 | 1.04 801.49 | 0.42 0.33 803.66 | 0.63 0.06
PC F“;x stream Lat- | 5,90 | 462 | 4152 | 098 | 87.04 | 4107 | 014 | 8497 | 3167 | 056 | 3176 | 0.19 | 028 | 3155 | 085 | -0.34
us
Unix stream BW.
(MB/s) 1988.14| 1.74 1924.82| 0.66 3.18 1962.99| 0.32 1.26 915.03 | 0.39 909.32 | 1.53 0.62 918.00 | 1.19 -0.32
s
Exit Lat. (us) 552.96 | 3.24 599.80 | 1.09 8.47 571.56 | 1.27 3.36 494 0.20 501.33 | 2.37 1.48 501.15 | 2.34 1.44
Fork Execv Lat. (us) 1538.33| 1.76 1639.00| 1.62 6.54 1634.16| 0.24 6.22 1464.00| 0.24 1492.00( 0.52 1.91 1490.00| 1.27 1.77
/bin/sh Lat. (us) 3303.33| 2.50 | 3438.33| 0.23 4.08 3341.16] 0.35 1.14 3325.33| 0.45 3434 0.48 3.26 3387.83| 2.18 1.87
Context switch Lat.,
s=4k, p=2-96 (us) 7.47 0.13 16.71 0.03 123.69| 11.58 0.04 55.02 11.43 0.10 11.64 1.72 1.80 11.56 1.40 1.16
Netw. | TCP 76.13 0.10 115.00 | 0.18 51.05 | 84.34 0.08 10.78 | 87.61 0.24 87.92 0.13 0.35 87.88 0.16 0.31
Lat. (us) [ UDP 59.27 0.32 | 76.77 1.51 29.51 | 67.71 0.25 14.22 | 61.52 0.14 61.87 0.27 0.57 61.67 0.13 0.25

Table 2: LMBench benchmarks that use multiple processes. “Native”, “Xen”, and “pXen” columns show averages and
the columns on their right show standard deviations. “Ovr” refers to overhead compared to native.

the IPI traps, the passive hypervisor overhead can be reduced
significantly (to an average of 0.63% across benchmarks).

Memory latency: We also measured the effect of the page
size used in the stage-2 page tables on the memory latency.
Our experiments show that the average memory load latency
is 109.83 us and 158.13 us with the 2 MB and 4 kB page sizes,
respectively. This shows that it is critical to use super pages
in the stage-2 page tables, as mentioned in §3.1.

3.3 TrustZone’s Performance

One of the components in SoCs with TrustZone support is
TrustZone Address Space Controller (TZASC). TZASC per-
forms security checks on every read or write accesses to

memory or I/O devices. These checks are performed using
filters. Each filter controls memory accesses by a single or
multiple sources (i.e., CPU and DMA engines) and it can be
set up to control up to 8 separate regions. Each region is a
contiguous range of memory addresses. For every transac-
tion, the controller looks at all the regions in the filter. If the
transaction address matches the address range of the region,
the controller checks whether the access is allowed based on
the access type (secure/non-secure read/write access) and
the access permissions set on the region.

We study TZC-400, a popular TZASC. Our study shows
that the controller has a minimum 2 cycles overhead for
each memory write access. This additional overhead impacts



both memory accesses and I/O devices (register accesses
as well as Direct Memory Access (DMA)). For example, for
memory writes, assuming a 107 ns memory access latency
(Table 1) and a max frequency of 1.2 GHz (as in our prototype
described in §3.2), the TrustZone overhead is about 1.5%.
However, note that with memory virtualization, the overhead
is due to address translation, which can be reduced with a
good TLB algorithm. However, with TrustZone, the overhead
is unavoidable since the security checks are performed on
the physical addresses.

Note that memory reads are not mostly affected since the
controller supports speculation access [12] (i.e., the transac-
tion is dispatched to memory in parallel to the security check-
ing). However, TZC-400 supports only 32 in-flight specula-
tive transactions; thus, a memory-heavy benchmark might
experience overhead for memory reads as well.

4 TEE FEATURES

In this section, we discuss TrustZone TEE features and men-
tion that they are either already supported by virtualization
hardware or can be easily supported.

4.1 Secure Memory

TrustZone supports secure memory for the TEE. It does so,
as mentioned in §3.3, by performing checks on the physical
address requests sent to TZASC. Virtualization hardware can
also support isolated secure memory for its TEE domains. It
does so using a two-stage address translation, which allows
it to isolate the memory pages assigned to different virtual
machines.

Indeed, we argue that virtualization’s method of imple-
menting secure memory is superior. First, it allows the hy-
pervisor to assign memory to different domains at a 2 MB
super page granularity (a smaller page size is possible but it
degrades performance as shown in §3.2). On the other hand,
TrustZone can only create 8 regions [12] and each region
must be allocated contiguously on the physical memory.

Second, with an effective TLB algorithm, virtualization’s
overhead on memory access can be made to be very small.
However, TrustZone always incurs a constant overhead of 2
cycles on memory writes as mentioned in 3.3. Since Trust-
Zone performs the security checks on the physical address,
TLB cannot reduce the overhead.

4.2 Securel/O

TrustZone supports secure I/O for the TEE. That is, it can
assign an I/O device to the TEE domain, in which case the
I/0O device will not be accessible to the normal world oper-
ating system. This is the technique behind several research
efforts using ARM TrustZone including secure sensors [30],
AdAttester [28], VButton [29], and TruZ-Droid [45].

Virtualization can also support secure I/O by assigning an
I/0O device to a virtual machine (a technique also known as
direct device assignment [8, 14, 22, 31, 32]). In this technique,
the registers of the device is mapped to the virtual machine’s
physical address space, the interrupts are redirected to the
virtual machine, and the Direct Memory Access (DMA) op-
erations of the I/O devices are limited to the virtual machine
memory using I/O Memory Management Units IOMMUs).

Indeed, we argue that virtualization’s method of imple-
menting secure I/O is superior. First, virtualization allows
to secure I/O device interface partially. For example, Viola
only monitors the operating system accesses to some regis-
ters of an I/O device [36, 37]. And SchrodinText only con-
trols the GPU and display’s access to the framebuffer using
IOMMUs [9]. Implementing such systems with TrustZone’s
secure I/O requires giving full control of these I/O devices
to the TEE, which unnecessarily bloats its TCB.

Second, the performance of I/O devices are also affected by
the security checks performed by the TZASC. More specif-
ically, CPU write access to I/O device registers as well as
DMA writes are subject to the 2 cycle overhead of TZASC
(and reads can suffer from overhead too if the limited num-
ber of speculative accesses are not adequate as mentioned
in §3.3). Similar to memory access, virtualization also adds
overhead to these operations due to address translations.
However, virtualization’s overhead can be mitigated by a
good translation caching algorithm.

4.3 Secure Boot & Cryptographic Keys

TrustZone’s secure boot allows it to check the integrity of
the operating system image before loading it. Moreover, the
cryptographic keys accessible only in the secure world al-
lows for implementation of various cryptographic protocols
(including the integrity check used in secure boot) as well
as a key store used by applications. These features are not
currently supported in virtualization hardware. However, we
argue that they can simply be added. First, the cryptographic
keys are burned on some form of a read-only memory (e.g.,
“One Time Programmable (OTP) or eFuse memory” [13]) only
available to the secure world (the EL3 privilege level). To
make them available to the hypervisor, they should be simply
be made accessible to the EL2 privilege level. We believe that
hardware modification needed to achieve this is trivial.

Second, secure boot is implemented in multiple stages in
software (e.g., in the BIOS, bootloader, and the secure world
code) [40]. Therefore, adding this feature to the hypervisor
only requires modifications to these software layers.



5 GOING FORWARD
5.1 Our Future Work

Motivated by our preliminary results presented in this paper,
we plan to build a complete prototype of a virtualization-
based TEE. More specifically, we plan to do the following.

First, we plan to add IPI trap routing to the guest in our
current prototype, as discussed in §3.1. Second, we plan to
support several TEEs, one running existing TrustZone TEE
software (to support existing security services), a few to
sandbox network devices (e.g., bluetooth and USB), and a
few to isolate some of the TEE’s security services for TCB
reduction. Third, while we have currently managed to reduce
the overhead of the passive hypervisor noticeably for our
benchmarks, we plan to further investigate the reason behind
the remaining (even though small) overheads and eliminate
them, if possible.

5.2 Hardware Proposal

Based on the analysis provided in this paper, we posit that
future ARM SoCs should remove most of ARM TrustZone
components (except for secure boot and cryptographic keys,
which we propose to be managed by the hypervisor). This
has the benefit of hardware simplification. TrustZone is an
SoC-wide solution. It relies on several hardware components
including previously discussed TZASC for protecting DRAM,
TrustZone Memory Adapter (TZMA) for protecting SRAM,
TrustZone Protection Controller (TZPC) for configuring pe-
ripherals as secure or non-secure, read-only memory used
for cryptographic keys, and (secure) Random Number Gener-
ator (RNG) for cryptographic use cases. It also relies on CPU
extensions for supporting another privilege level, Generic
Interrupt Controller (GIC) for protecting the interrupts of
secure I/O devices, and an extra signal on Advanced Micro-
controller Bus Architecture (AMBA) for indicating whether
a memory access is from the secure or normal world. Re-
moving TrustZone allows for the removal of all but two (the
read-only memory used for keys and the secure random
number generator) of these components and also for the
simplification of the CPU, GIC, and the AMBA bus, which
simplifies the SoC design, providing die space for other fea-
tures to be implemented.

6 RELATED WORK

There have been several research attempts on using a hy-
pervisor for security purposes. vIZ [26] uses the hypervi-
sor to virtualize the functionality of TrustZone for multiple
guest virtual machines. In contrast, we focus on having a
low-overhead passive hypervisor to replace TrustZone alto-
gether. Cho et al. [17] implement a TEE using a hypervisor.
Yet, to mitigate the performance overhead, they deactive it
when the TEE is not needed. They also use TrustZone to

protect the memory of this TEE and the hypervisor when
they are deactivated. In contrast, we only use the hypervisor
to implement a TEE and do not depend on TrustZone and
we mitigate the performance concerns through hypervisor
optimizations. BitVisor [42] uses a small hypervisor (in terms
of code size) to provide I/O device security for a single vir-
tual machine. Viola [36, 37] provides sensor notifications by
monitoring the I/O devices using the hypervisor. Ditio [38]
provides auditing of sensor activities. SchrodinText [9] se-
curely displays sensitive textual contexts. SecVisor [41] and
XNPro [39] protect the kernel memory from code injection
attacks using the hypervisor for x86 and ARM systems. Over-
shadow [15] and InkTag [25] protect applications from an
untrusted operating system. In contrast, we use the hypervi-
sor to provide a TEE for mobile devices. Cox et al. in [18] and
Heiser in [23] argue for the use of hypervisors for security
services in mobile and embedded devices. This is aligned
with our vision as we believe that virtualization hardware
and hypervisors are well-suited for this task.

Some existing work evaluates the performance of virtual-
ization and provides novel designs. Dall et al. [19] evaluates
the performance of ARM virtualization with a focus on ARM
servers. Cherkasova et al. [16] measure the performance of
I/O activities in Xen. Gehrmann et al. [20, 21] similarly com-
pare the use of virtualization and ARM TrustZone on mobile
phones, but do not provide performance measurement on a
real hardware. OKL4 microvisor [24] is a hypervisor that has
the flexibility of a microkernel. It is built based on multiple
isolated components and supports multiple virtual machines.
NOVA [43] also has a similar idea but for x86 systems and
minimizes the code base by moving the virtualization support
code to the user level. Cells [10] virtualizes Android at the
operating system level to provide multiple Android phones
with seperate phone numbers without using ARM virtual-
ization hardware. LightVM [33] modifies Xen and its tools
to have performance comparable to containers for certain
operations such as virtual machine boot time and migration.
However, we focus on improving the performance of the
system when virtualization is used to provide a TEE.

7 CONCLUSIONS

We presented our investigation on the benefits of using vir-
tualization hardware to implement a TEE in ARM-based
devices compared to using TrustZone. We also addressed
the concerns for such a design. Given the viability (if not
superiority) of the virtualization-based TEE, we suggested
TrustZone to be removed from future ARM SoCs.
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