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Abstract
Selective symbolic execution (SSE) is a powerful program

analysis technique for exploring multiple execution paths

of a program. However, it faces a challenge in analyzing

programs with environments that cannot be modeled nor

virtualized. Examples include OS services managing I/O de-

vices, software frameworks for accelerators, and specialized

applications. We introduce Mousse, a system for analyzing

such programs using SSE. Mousse uses novel solutions to

overcome the above challenge. These include a novel process-

level SSE design, environment-aware concurrent execution,

and distributed execution of program paths. We use Mousse

to comprehensively analyze five OS services in three smart-

phones. We perform bug and vulnerability detection, taint

analysis, and performance profiling. Our evaluation shows

that Mousse outperforms alternative solutions in terms of

performance and coverage.

CCS Concepts: • Software and its engineering → Soft-
ware verification and validation; Distributed systems
organizing principles; •Theory of computation→ Pro-
gram analysis.

Keywords: selective symbolic execution, program environ-

ment, program analysis
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1 Introduction
Selective symbolic execution (SSE) is a powerful program

analysis technique that can analyze multiple execution paths

of a program. As in symbolic execution, when the analyst

marks a variable as symbolic (i.e., capable of taking any arbi-

trary concrete value), the SSE engine executes and analyzes

all program paths possible for different values of the variable.

In order to avoid the path explosion that comes with sym-

bolic execution, the analyst can configure the SSE engine to

execute parts of the program in concrete mode, i.e., normal

execution with concrete variables.

In the past, SSE has been used to implement various types

of analysis, such as bug and vulnerability detection [17, 26,

35], performance profiling [17] and reverse-engineering of

binaries [15, 17]. In addition, it can be used for taint analy-

sis, hybrid fuzzing [38, 41], and for exploit generation and

analysis [6, 7].

In this paper, we address a critical challenge that hinders

the applicability of SSE to a large and important set of pro-

grams: programs with untamed environments. In order to

analyze multiple paths within a program, SSE runs multiple

forks, or instances, of the program, one per path, in order

to execute conditional statements with symbolic predicates.

To eliminate interference between the execution of these

program instances, each uses a separate instance of the pro-

gram’s environment. Two common approaches are modeling

the program’s environment in software [6, 7, 14, 37] and vir-

tualizing it [17]. Unfortunately, neither approach is feasible

for untamed environments, i.e., those that include diverse

hardware components and their device drivers. Examples

include OS services managing I/O devices (i.e., I/O services),

libraries (such as GPU-specific OpenGL/ES, OpenCL, and

CUDA libraries), and applications (such as vendor camera

and telephony applications in smartphones). Modeling is in-

feasible, due to the complexity of the hardware components

and their drivers; and virtualization is infeasible too, because

such hardware components do not support it.

The research community has explored two approaches.

The first uses a symbolic environment [15, 26, 35], i.e., all

the return values from the environment are marked as sym-

bolic (since the correct environment of the program is not

available). This approach results in path explosion and false

code coverage, as it executes program paths that would not

execute when actual return values from the real program

environment are used. The second approach, decoupled SSE,
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is to allow the symbolic execution engine to communicate

with a concrete execution engine running on the actual en-

vironment of the program [2, 31, 42]. This approach has

noticeable overhead, due to the overhead of memory state

transfers between the two engines.

In Mousse, we tackle this challenge with three solutions.

First, we present a novel SSE design, called process-level SSE
(here, a process refers to an OS process), which integrates

the symbolic and concrete execution engines in the same OS

process containing the program. This allows both engines to

easily interact with the underlying environment. Moreover,

both engines use a unified memory, which eliminates the

need to transfer the memory state between them, resulting

in better performance. To support concurrent execution of

program paths, process-level SSE executes each program

path in a separate OS process. Whenever the SSE engine

explores a new path, it forks the current process and executes

the new path in the child process. Forking a process is fast

and efficient due to copy-on-write support in the kernel.

Second, we introduce environment-aware concurrency to

allow multiple program paths to execute concurrently on

top of the same environment, without observing inconsis-

tent environment state. To do this, Mousse keeps track of

the interactions of the different execution paths with the

environment, and restricts the execution of environmentally

inconsistent paths.

Third, while Mousse enables concurrent execution of mul-

tiple program paths in one device, the untamed environment

fundamentally limits concurrency. This, and the fact that

SSE is compute-heavy, means that analyzing complex pro-

grams, such as OS services, takes a long amount of time.

For example, testing a single API of an audio service with

symbolic input in Pixel 3 takes our SSE engine 9 hours when

using a single device. To address this problem, we introduce

a distributed execution approach that supports concurrent

execution of the analysis on multiple identical devices, while

avoiding duplicate paths.

To demonstrate the benefits ofMousse, we use it to analyze

five OS services: two camera services, two audio services,

and one graphics stack, in three smartphones, Pixel 3, Nexus

5X, and Nexus 5.We perform bug and vulnerability detection,

searching for incorrect memory access and incorrect use of

memory management APIs. We found two new crash bugs,

and two new double-free vulnerabilities in these services.

We also perform taint analysis, to study the propagation of

the inputs to the outputs of service APIs. We find that none

of the APIs of this service, except for one, propagates its

inputs to its outputs. This finding can be used to enhance

the accuracy of taint analysis for programs that use these

APIs. Moreover, we perform performance profiling of the

Pixel 3 audio service, and find that it experiences 19% more

L1 data cache misses for some playback configurations.

1 int prog_main(int arg_s, int arg_c) {
2 if (arg_s >= 13)
3 return func1(arg_s, arg_c);
4 else
5 return func2(arg_s, arg_c);
6 }

Figure 1. Simple hypothetical program used to describe the
inner workings of SSE.

We perform extensive evaluation of Mousse. We show

that Mousse’s process-level SSE design reduces the execu-

tion time by at least 63% with respect to the state-of-the-art

decoupled SSE. We also show that using a symbolic envi-

ronment results in path explosion, which in turn prevents

successful initialization of OS services even after running the

analysis for a few days. Our evaluation shows that Mousse’s

environment-aware concurrency and distributed execution

help reduce the SSE execution time by up to 84% compared

to running a single path at a time in one device.

We designed and built Mousse to analyze programs with

untamed environments. However, we note that Mousse is

capable of analyzing arbitrary programs, with high perfor-

mance and ease. We have open sourced Mousse, so that

others can leverage it in their analysis efforts [3].

2 Background & Motivation
2.1 Selective Symbolic Execution
Selective symbolic execution (SSE) is a powerful program

analysis technique that can analyze multiple execution paths

of a program [2, 14, 16–18, 29, 31, 42]. A path here refers to

one in the control-flow graph of the program. Different in-

puts to the program may result in the execution of different

paths, due to conditional statements. In SSE, similar to sym-

bolic execution, the analyst can mark a variable, including

an input argument, as symbolic (i.e., with unknown concrete

value); then the SSE engine executes the program paths cor-

responding to all possible values of the variable. In contrast

to plain symbolic execution, the analyst can configure the

SSE engine to execute some parts of the program in concrete

mode, i.e., normal execution with concrete variables, in order

to avoid path explosion.

We next use a simple example (Figure 1) to explain how

SSE works. Assume that the analyst wishes to explore all the

program paths that depend on the value of arg_s, but not
those that depend on arg_c. She marks arg_s as symbolic,

and assigns a concrete value to arg_c.
The SEE engine executes the program until it faces a con-

ditional predicate with a symbolic variable (line 2). At this

point, the execution forks, resulting in two instances of the

program, each executing one of two resulting paths. The

mechanism to fork the program depends on the SSE design,

e.g., OS process fork, and is discussed in §4. Both paths now
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continue to use the symbolic variable, but they add con-

straints, derived from the conditional predicate. More specif-

ically, one path executes the then-branch of the conditional

(i.e., line 3) with the constraint arg_s >= 13. The other exe-
cutes the else-branch (i.e., line 5) with the constraint arg_s
< 13.

SSE supports selective symbolic execution. That is, parts

of the program can be executed in concrete mode, which can

help alleviate path explosion. Execution in concrete mode

is similar to how a program normally executes. That is, the

code in concrete mode does not use symbolic variables; it

can only use variables with concrete values. Therefore, no

new paths are forked.

Assume the analyst has decided to execute func1() and
func2() in concrete mode in the example. Once an execu-

tion path reaches either of these functions, the SSE engine

switches from symbolic to concrete mode. Here, it needs to

concretize any symbolic variables that are accessed by the

code in concrete mode. In our example, arg_s needs to be

concretized, as it is passed to these functions. To concretize

a variable, the engine uses a solver to choose some concrete

value that satisfies the path constraints. For instance, the

solver might choose arg_s = 14 when executing func1()
in concrete mode.

Thus, the SSE engine is composed of two execution en-

gines, the symbolic execution engine and the concrete execution
engine. Both engines typically execute the program by emu-
lating the instructions in the program binary. These engines
need to communicate, e.g., to share the memory state when

switching execution mode. Different SSE designs achieve

this communication differently (see §4 for more detail).

An SSE engine can support concolic variables as well. A
concolic variable is a symbolic variable that also has a con-

crete value attached to it, called concolic value. The concolic
value is used to determine which side of a conditional the

path should take, when facing a symbolic predicate, in case

forking is not needed. In the example, let us assume that the

analyst marks arg_s as concolic with a concolic value of 20.
Moreover, the analyst configures the SSE engine to not fork

at line 2. When it reaches this line, it branches by applying

the concolic value to the predicate. If it evaluates to true, it
executes the then-branch, otherwise the else-branch. In this

example, since 20 >= 13 evaluates to true, the then-branch

is executed.

2.2 Program Environment
The environment of a program is the set of all hardware and

software components that it interacts with. This includes

the OS kernel (including device drivers) and hardware com-

ponents. In SSE, the environment of the program is either

modeled or virtualized, so that each forked program instance

(executing a program path) can interact with a separate in-

stance of the environment. For instance in the code sample

in Figure 1, assume that func1() and func2() are syscalls.

This means that both program paths interact with the under-

lying kernel. To make sure that these paths do not interfere

with each other, their impact on kernel state must be isolated.

One approach is to model the syscall [6, 7, 14, 37], i.e., to

implement an approximation of its behavior in software, and

to use that instead of the real syscall. Another approach is to

virtualize the kernel and use a separate Virtual Machine (VM)

for each path, forking the VM when forking the program

path [17].

Unfortunately, there exists an important set of programs,

whose environments cannot be easily modeled or virtualized.

These are programs that interact with different hardware

components and their drivers, such as I/O devices and accel-

erators. Modernmobile devices, such as smartphones, tablets,

voice assistants, and VR/AR headsets, employ a large number

of I/O devices, to stand out in a highly competitive market.

For example, a smartphone might employ a powerful camera

array [1] or an in-display fingerprint scanner [11]; a voice as-

sistant may employ arrays of speakers and microphones for

audio beamforming [32]; and a VR/AR headset may employ

high-resolution displays, requiring powerful GPUs [40]. Data

center servers, on the other hand, use various accelerators

such as GPUs, TPUs, and FPGAs. This trend is fueled by the

slowing down of Moore’s law and is predicted to grow [13].

The programs that interact with these devices include OS

services (such as various I/O services in Android), libraries

(such as GPU-specific OpenGL/ES, OpenCL, and CUDA li-

braries), and applications (such as customized vendor camera

and telephony applications in smartphones).

Modeling the hardware and/or its device driver is a non-

trivial task. Virtualizing the hardware is also non-trivial.

Most hardware components, including I/O devices in mobile

devices, do not support virtualization. The device assignment

approach, which is often used to give a VM direct access to

an I/O device [4, 10, 24, 27, 28], is not enough, as it does

create multiple virtual instances of the device.

3 Challenges & Design
Our goal is to apply SSE to complex programs that interact

with untamed environments. In this section, we introduce

three challenges that we have faced in doing so, and our

solutions to them.

Challenge I: direct access to the environment is criti-
cal. Since the untamed environment of a program cannot

be modeled nor virtualized, the real environment must be

used. To solve this, we introduce process-level SSE, an SSE de-

sign that enables both the symbolic and concrete execution

engines to interact with the environment and to share the

memory state. Thanks to this design, our SSE engine is the

first to comprehensively analyze I/O services in Android.

Challenge II: path concurrency is feasible but requires
environment-awareness. SSE execution is slow due to in-

struction emulation. To achieve acceptable performance, it is
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important to execute the program paths concurrently. How-

ever, the program’s interaction with the environment cre-

ates a concurrency issue. This is because the environment

is stateful (e.g., the state in a device driver or the underly-

ing hardware component). If one program path mutates the

environment state, other paths might receive unexpected

responses from the environment. Therefore, we introduce

environment-aware concurrency, a principled approach to ex-

ecuting program paths concurrently while preventing incon-

sistent environment state from corrupting their execution.

Environment-aware concurrency, in the worst case, can

result in sequential execution of all program paths. However,

we show that an opportunity for concurrency exists when

analyzing I/O services in Android: in the common case, mul-

tiple paths can execute concurrently. This is due to the fact

that interactions with the environment are not frequent.

Challenge III: path concurrency might be limited but
distributed execution helps. While Mousse enables con-

current execution of program paths, the degree of concur-

rency may be limited by the environment state. We show

that distributed execution can address this performance bot-

tleneck. To do so, when a device cannot execute a path, due

either to the environment state or to resource constraint, it

offloads the path to another device. Offloading a path refers to

requesting a centralized server to assign the path to another

device for execution.

Figure 2 illustrates the design of Mousse. It shows a cen-

tralized server distributing program paths to several devices,

each of which uses process-level SSE and environment-aware

concurrency to execute the paths. The server does not per-

form any analysis on the program itself. It acts as a simple

work queue of paths waiting to be analyzed.

We next discuss the components of Mousse.

4 Process-Level SSE
In this section, we describe the process-level SSE design used

in Mousse. Our key contribution is to run both symbolic and

concrete execution engines in the OS process that contains

the program itself. We describe existing SSE designs and

their shortcomings, before presenting more details on our

design.

Existing SSE designs. To tackle the issue of applying SSE

to a program with untamed environment, the first design

that one might consider is VM-level SSE, as implemented

in S
2
E [17, 18]. Figure 3 (a) shows the design of VM-level

SSE. To use it, the analyst runs the program in a VM. The

symbolic and concrete execution engines are implemented

within the hypervisor and share a unified memory and ex-

ecution state. When a program path needs to be explored,

the SSE engine forks the whole VM, giving each program a

completely separate environment.

Unfortunately, using VM-level SSE for analyzing programs

with untamed environments is generally not feasible, since

virtualization of the hardware component in the program’s

environment (needed to run the program in a VM) is gen-

erally not possible (§2.2). For example, we are not aware of

a solution that can virtualize the various I/O devices of a

smartphone.

The second design one might consider is decoupled SSE, as
implemented in Avatar [42], Avatar

2
[31], and Symbion [2].

In these systems, the concrete execution engine is configured

to directly run on top of the program’s environment. The

symbolic execution engine runs elsewhere, e.g., in a server

or workstation, and communicates with the concrete execu-

tion engine remotely. Unlike VM-level SSE, the decoupled

SSE design is capable of analyzing programs with untamed

environments.

Figure 3 (b) shows the design of a decoupled SSE. We

illustrate two devices, C and S. Device C has the program’s

environment and a concrete execution engine. Device S does

not have the environment but has a symbolic execution

engine. The system starts the symbolic execution in Device

S, and transfers execution to C when the environment is

needed. In this case, as the symbolic and concrete execution

engines are in separate devices, they have to transfer the

memory state when switching the execution mode.
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Unfortunately, as our experience shows, decoupled SSE

has two drawbacks. The first is the performance overhead

of transferring memory state between the symbolic and con-

crete execution engines. In §9.1, we evaluate this overhead

using Avatar
2
, and show that process-level SSE reduces ex-

ecution time by at least 63%. The second is that it is hard

to configure and use. This is because one needs to set up

the symbolic and concrete execution engines separately and

configure the memory state transfer channel between them.

A final option that one might consider is to use a symbolic

environment, where all return variables from the environ-

ment are marked as symbolic, and hence the real environ-

ment is not needed. This is the approach used in DDT [26],

RevNIC [15], and SymDrive [35]. Unfortunately, as we will

report, this approach significantly increases the number of

symbolic variables and hence results in path explosion as

well as false coverage. We tested this approach on three An-

droid I/O services. None of the services initialized correctly

even after a few days of execution. We do, however, note

that a better path scheduling algorithm, similar to the ones

used by SymDrive [35], could potentially alleviate the effect

of path explosion, but we did not explore that.

Process-level SSE. These challenges prompted us to design

and build a new SSE approach, which we call process-level
SSE. In this design, both the symbolic and concrete execution

engines run within the same OS process that hosts the pro-

gram. To analyze a program, one loads the SSE engine into a

process and have the engine load and execute the program.

Thus, both the symbolic and concrete execution engines can

easily interact with the environment. In the rest of the pa-

per, we refer to the interactions of the program with the

environment as environment calls (ecalls). Whenever the pro-

gram issues an ecall (either in concrete or symbolic modes),

the SSE engine passes it to the underlying environment for

execution.

Figure 3 (c) shows the design of process-level SSE. Both

engines are in the same process as the program, which is

located in the device with the environment of interest. The

two engines, similar to VM-level SSE, use a unified memory

and execution state and enable the program to interact with

its environment.

Process-level SSE supports concurrent execution of pro-

gram paths. To achieve this, it executes each program path

in a separate OS process. Whenever the SSE engine explores

a new path, it forks the current process and executes the

new path in the child process. Forking a process is fast and

efficient thanks to copy-on-write support in the kernel.

One key benefit of this design (compared to decoupled

SSE) is improved performance. As both engines share mem-

ory, this eliminates the need to transfer memory state. The

other benefit is that process-level SSE is easier to use than

counterparts. Analyzing a program with VM-level SSE re-

quires launching a VM and running the program in the VM.

Analyzing a program with decoupled SSE requires config-

uring the symbolic and concrete execution engines in two

separate devices and configuring a channel for memory state

transfer. In contrast, in Mousse, the analyst only needs to

load the SSE engine and the program in an OS process, which

can be done with a single command in the OS shell.

Process-level SSE has its own limitations. First, since the

engines execute in the same process as the program under

analysis, the device must have adequate computing power.

Process-level SSE is best suited to high-end mobile devices

(such as smartphones, tablets, and laptops) as well as desk-

tops and servers. Decoupled SSE is the right design for weak

devices, e.g., embedded devices. Moreover, process-level SSE

cannot analyze the OS kernel code, nor programs with mul-

tiple processes. VM-level SSE is the right design in these

cases.

4.1 Memory Virtualization
As mentioned, an SSE engine emulates the instructions in

a program. In doing so, it virtualizes the process address

space for the program. Therefore, the address space seen

by the program (i.e., guest address space) could be different

from that of the OS process that it runs inside (i.e., host

address space). This way, the memory used by the program

is isolated from the memory used by the SSE engine itself.

This virtualization requires the SSE engine to maintain the

mapping between the guest and host address spaces and to

translate when emulating memory-access instructions.

However, the native execution of syscalls creates a chal-

lenge for address space virtualization. That is, addresses

passed to the kernel through the syscall arguments are in

the guest address space, whereas the kernel uses the host ad-

dress space to dereference the memory pointers passed to it.

Unfortunately, simply translating the addresses in the syscall

arguments is not enough. This is because the data buffers

passed to the kernel must be contiguous in the host address

space. This is not necessarily the case, since the program

allocates these buffers in the guest address space.

To address this problem, we configure the guest addresses

to be identical to their underlying host addresses. This way,

if a buffer is contiguous in the guest address space, it is

contiguous in the host address space too. The limitation of

this approach is that those addresses used by the SSE engine

in the host address space cannot be used in the guest address

space. However, given the large set of addresses available

in an address space in modern ISAs, this limitation is not

serious in practice.

4.2 Concretization Strategies
Since the environment cannot be modeled nor virtualized,

any symbolic arguments passed to ecalls must be concretized.

In this section, we present two different concretization strate-

gies supported by Mousse.
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Strategy I: constrained concretization. In this strategy,

the symbolic arguments passed to ecalls are concretized and

the execution path is constrained. That is, Mousse chooses a

concrete value for the symbolic argument that satisfies all

the path constraints, and adds a new constraint to the path

enforcing the value of the variable to be equal to the concrete

value. With this strategy, the ecall returns a concrete value.

This strategy results in no false positives since all executed

paths are correct program paths. However, this strategy can

potentially limit the coverage and the number of paths ex-

plored due to the additional constraints and the concrete

values of the outputs of ecalls. This limitation happens only

when an argument to an ecall is symbolic, forcing Mousse

to concretize it. Fortunately, as our experiments show, ecalls

with symbolic arguments are rare in OS services that we an-

alyze. In other words, the service inputs marked as symbolic

in the analysis rarely propagate to ecall arguments. The only

such case that we have noticed are when OS services log the

program inputs to the terminal by using a writev syscall.

To avoid these, the analyst can disable the logging in the

service.

Strategy II: concretization with unconstrained input
and symbolic output. In case a program does have ecalls

with symbolic arguments, constrained concretization lim-

its the coverage. To address this issue, Mousse provides a

second strategy, in which it takes two actions. First, when a

concrete value for the symbolic argument is chosen, it does

not add the corresponding constraint to the path. Second, it

marks the outputs of these ecalls as unconstrained symbolic

variables, hence allowing the forking and execution of paths

that depend on the values of the outputs of these ecalls.

Note that while this approach may result in false cover-

age, it forks fewer paths and produces less false coverage

compared to the symbolic environment approach discussed

earlier, as we will show empirically in §9.2. This is because

the latter marks the outputs of all ecalls as symbolic, whereas

the former marks only the outputs of ecalls with symbolic

arguments as symbolic.

5 Environment-Aware Path Concurrency
SSE is slow as both symbolic and concrete execution en-

gines emulate the instructions. Therefore, it is important

to execute different program paths concurrently to speed

up the execution. For example, in S
2
E, whenever a path is

forked, the whole VM is forked and the resulting VM can

run concurrently.

Key challenge. Unfortunately, for programs with untamed

environments, blind concurrent execution can result in unex-

pected program behavior that would not happen in normal

execution of the program. Given that the environment for a

program cannot be modeled nor virtualized, the ecalls must

be passed to the actual environment. Therefore, the con-

currently executing program paths can impact each other’s

/* Audio service out_write API */
1 static ssize_t out_write(struct audio_stream_out *stream, const

void *buffer, size_t bytes) {
2 struct stream_out *out = (struct stream_out *)stream;

...
3 lock_output_stream(out); //This function calls

pthread_mutex_lock(&out->lock);
...

4 long ns = (frames * (int64_t) NANOS_PER_SECOND) /
out->config.rate;

5 request_out_focus(out, ns);
...

6 ret = pcm_write(out->pcm, (void *)buffer, bytes_to_write);
...

7 pthread_mutex_unlock(&out->lock);
...

8 }

/* Code in the audio driver where the error happens */
1 void *q6asm_is_cpu_buf_avail(int dir, struct audio_client *ac,

uint32_t *size, uint32_t *index)
2 {
3 void *data;
4 unsigned char idx;
5 struct audio_port_data *port;

...
6 // dir 0: used = 0 means buf in use
7 // dir 1: used = 1 means buf in use
8 if (port->buf[idx].used == dir) {
9 // To make it more robust, we could loop and get the
10 // next avail buf, its risky though
11 pr_err("%s: Next buf idx[0x%x] not available, dir[%d]\n",
12 __func__, idx, dir);
13 mutex_unlock(&port->lock);
14 return NULL;
15 }

...
16 }

Figure 4. A real code example demonstrating the importance
of environment-aware concurrency. We have modified and
eliminated parts of the code for clarity.

execution by mutating the state of the environment in un-

expected ways. This state mutation is not problematic (and

indeed desired) when only a single program path is executed,

as in native execution of the program. However, when multi-

ple paths are executed concurrently, some paths may see an

inconsistent environment state since all paths interact with

the same environment.

Figure 4 illustrates why blind concurrency does not work

using the example of a Pixel 3 audio service API. The API,

called out_write, writes audio frames through the audio

driver to the audio device. We perform SSE on this API by

marking its inputs as symbolic. The execution forks multiple

paths in function request_out_focus at line 5. Several of

these paths then continue to call the pcm_write function at

line 6, which issues an ioctl syscall to the audio driver to

pass the audio frames.We observe that multiple paths receive

an “out of memory” error from the driver, an unexpected

behavior for these paths. On further investigation, the driver

does not expect multiple concurrent writes. Indeed, this error

would not normally happen due to the critical section in the

out_write function in the audio service, which guarantees

that the writes to the driver are sequential. Yet, the forking
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Figure 5. Environment consistency for concurrent path execution. (Left) All paths to be executed in a device. (Middle) Environmen-
tally consistent and inconsistent paths after a state-mutating ecall. (Right) Paths after the second state-mutating ecall.

due to symbolic execution in themiddle of this critical section

results in an unexpected behavior.

In the figure, we also show the audio driver code (in the

kernel) that returns the error. It checks if the DMA audio

buffer is available for writing the data. In line 8, if the DMA

buffer (port->buf[idx]) is being used, the function returns

NULL (i.e., an error).

To address this challenge, Mousse keeps track of the in-

teractions of different program paths with the environment.

It prevents program paths from seeing inconsistent environ-

ment state.

We next define some terms and elaborate on our solution.

A state-mutating ecall is one that, when executed, mutates

the state of the environment in a way that could affect the

execution of another path. Note that not all ecalls are state-

mutating. For example, the execution of a memory allocation

syscall in one path does not affect other paths since mem-

ory is virtualized. A state-revealing ecall is one that reveals

the mutated state. Such an ecall returns a different result if

a state-mutating syscall has been previously issued by an-

other program path. In the previous example, the syscall to

the audio driver is both state-mutating and state-revealing.

We assume that the analyst specifies which ecalls are state-

mutating or state-revealing. In §8, we explain which ecalls

we specify as such in our prototype.

Mousse splits the set of paths into environmentally consis-
tent and environmentally inconsistent paths. Environmentally

consistent paths are those whose execution is consistent with

the state of the environment. In the beginning of the anal-

ysis and before the execution of any state-mutating ecalls,

all paths are environmentally consistent. Environmentally

consistent paths can execute with no restriction. Environ-

mentally inconsistent paths are those whose execution is not

consistent with the state of the environment, as a result of

a state-mutating ecall issued by another path. Environmen-

tally inconsistent paths can also execute but their execution is
restricted.

The restriction enforced on environmentally inconsistent

paths are two-fold. First, Mousse needs to prevent a path

from seeing unexpected responses from the environment.

Therefore, Mousse does not allow an environmentally in-

consistent path to issue a state-revealing ecall, which may

return unexpected responses due to the state-mutating ecall

issued by some other path. Second, Mousse tries to prevent

all paths from turning inconsistent. This is a heuristic de-

signed to ensure some paths can fully finish their execution

in the device. Therefore, Mousse does not allow an environ-

mentally inconsistent path to issue a state-mutating ecall. If

allowed, the state of the environment would be inconsistent

with all executing paths.

Whenever a path issues a state-mutating ecall, it turns

all other environmentally consistent paths into inconsistent

ones. However, the paths that are later forked from this

current path (i.e., children paths) remain environmentally

consistent since they share the state-mutating ecall. Figure 5

illustrates this issue. Figure 5 (Left) shows the set of all paths,

which are all environmentally consistent in the beginning.

Figure 5 (Middle) shows what happens when one of the paths

executes a state-mutating ecall. That path and its children

remain consistent because the state-mutating ecall is part of

their correct execution. However, the rest of the paths are

turned inconsistent. Figure 5 (Right) shows what happens

after a second state-mutating ecall. Similarly, the path ex-

ecuting this ecall and its children remain environmentally

consistent, but the rest of the paths are turned inconsistent.

As mentioned, environmentally inconsistent paths can re-

sume execution as long as they do not issue a state-mutating

or state-revealing ecall. But if they attempt to execute one,

Mousse suspends their execution and offloads them. §6 pro-

vides more details on the offloading process.

Mousse continues executing the paths until there are no

other paths left that can be executed. At this point, it reboots

the system to refresh the state of the environment. After

the reboot, it contacts the server and ask for new paths to

execute (§6).

Opportunity? Does concurrency provide any benefits in

the presence of state-mutating and state-revealing ecalls? In

other words, doesn’t environment-aware concurrency sim-

ply result in sequential execution of all program paths? In

§9.1, we show that even in the presence of such ecalls, concur-

rent execution can provide performance benefits. Moreover,
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when such calls are not present, Mousse’s solution automat-

ically increases the degree of concurrency.

6 Path Offloading & Distributed Execution
Mousse cannot execute all paths concurrently due to the

environment state limitation (§5). Moreover, SSE is a time-

consuming analysis due to instruction emulation and multi-

path execution. For example, analyzing a single API call

of an audio service with symbolic input in Pixel 3 takes 9

hours in our prototype when using a single smartphone with

environment-aware path concurrency. To address this issue,

Mousse adopts a distributed execution framework. That is,

it distributes the program paths to multiple devices in order

to reduce the execution time. In this section, we discuss

our distributed execution strategy and our solution to an

environment-related challenge.

Mousse’s distributed execution strategy is dynamic and

on-demand. That is, instead of assigning different program

paths to different devices statically, it assigns one device

to start the analysis. Then, if for some reason, some paths

cannot be executed in that device, the paths are offloaded to a

centralized server. The server does not perform any analysis

on the program itself. It acts as a simple work queue for the

devices to analyze different program paths. That is, devices,

when idle, contact the server to download the program paths

for execution.

Paths are offloaded from a device for two reasons: (i) in-
consistent environment state, where the execution of one

path makes the execution of another path infeasible (§5), and

(ii) resource constraint, which limits the number of program

paths that can be executed concurrently in a device. Cur-

rently, we set a fixed upper limit (determined empirically)

for the total number of concurrent paths in one device. Al-

ternatively, Mousse can dynamically monitor the resource

consumption in the device to determine how many paths it

can execute concurrently.

6.1 Path Offloading
The key component of distributed execution in Mousse is

path offloading. Mousse performs path offloading using con-

colic program inputs. In SSE, one analyzes a program by

marking its select inputs (e.g., API inputs or configuration

options) as symbolic. During execution, whenever a path

needs to be offloaded, Mousse solves the constraints on the

path and generates a set of concrete values for program’s

symbolic inputs. It then offloads these values to the server.

When the path is later downloaded by a device for execution,

these concrete values can be used to mark the API inputs

as concolic variables (§2.1), i.e., concolic inputs. The role of

these concolic inputs is to guide the symbolic execution to

re-execute the offloaded path from scratch.

One might wonder why Mousse does not offload the state

of the execution of the path so that it does not need to be

1 int prog_main(int arg) {
2 if (arg >= 13) {
3 return syscall(SYSCALL_NR_1, ...); /* state-mutating */
4 } else {
5 int ret = syscall(SYSCALL_NR_2, ...); /* state-revealing */
6 if (arg <= 4)
7 return ret;
8 else
9 return func(ret);
10 }
11 }

Figure 6. Simple hypothetical program used to demonstrate
the offloading strategy in Mousse.

re-executed from scratch. The reason behind this is that

the untamed environment state cannot be captured. This is

because a hardware component and its driver might not pro-

vide an interface for taking snapshots of their state. Mousse’s

approach allows the path to re-execute from the beginning,

which correctly reconstructs the environment state.

When a device downloads a path to execute, it performs

the execution in two steps. In the first step, it uses the con-

colic inputs to execute the path from the beginning all the

way to the point where the offload happened (i.e., the re-

executed part of the path). In this part of the execution, no

new paths will be forked. Instead, the concolic inputs are

used to guide the execution through the conditional state-

ments with symbolic predicates. In the second step, execu-

tion continues in the parts of the program that were not

executed before (i.e., the new part of the path). When exe-

cuting this part, forking is enabled and the concolic inputs

are not needed anymore.

Disabling the forks in the re-executed part of the path is

needed to avoid forking duplicate paths. This re-execution

itself is not problematic and it is in fact needed to recreate the

state of the environment. However, if this re-executed part

contains a conditional statement with a symbolic predicate

and hence forks a new path, the forkwould be a duplicate and

hence the child path will be identical to one forked before.

To identify the separation between the re-executed and

the new parts of the path, Mousse uses a forking skip depth
variable, which is offloaded alongside the concolic inputs

when a path is offloaded. This variable specifies the number

of symbolic forks to skip when re-executing the path from

scratch. In other words, this variables splits the path into the

re-executed and new parts using the number of symbolic

predicates visited on the path.

Example. Figure 6 shows a simple hypothetical program.

Assume that the analyst has marked the arg variable as

symbolic. This means that three paths need to be executed

as a result of two conditional statements on arg (lines 2

and 6). For simplicity of discussion, assume that Mousse is

configured to execute one path at a time per device (i.e., no

concurrency).

Mousse starts the execution and faces the first symbolic

branch predicate at line 2. It forks the execution resulting in
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two different paths, and arbitrarily chooses to first execute

the then-branch. This path issues a state-mutating ecall (line

3), which makes the other path (i.e., the else branch at line

5) inconsistent with the environment state. Mousse finishes

executing the then-branch path and then tries to resume the

execution of the else-branch path. This path however needs

to issue a state-revealing ecall (line 5) and hence cannot

be executed in the device anymore. To offload this path,

Mousse solves the path constraints (i.e., arg < 13) and finds
a concolic input, e.g., arg = 3. It offloads this concolic input

as well as the forking skip depth, which is 1 since the path

has seen one symbolic fork so far.

Now imagine another device (or the same device after

reboot) downloads this path to execute. To do so, it starts the

execution from the beginning, marks arg as concolic, and

assigns the concrete value of 3 to it. When it faces the first

conditional with a symbolic predicate, it avoids forking due

to the forking skip depth being 1. Mousse then inserts the

concrete value of arg into the branch predicate and executes

the True side of the branch (which is the else-branch). The

importance of the forking skip depth is clear in this example:

had the execution performed a fork here, the same path that

was executed previously (i.e., line 3) would be executed again.

The execution now resumes, forks another path at line 6, and

manages to finish executing both paths. As can be seen, all

three paths are eventually executed, one on the first device

and the other two on the second device (or the second boot

of the same device).

Global fork limiters. Loops create a problem for SSE and

can result in a large number of program paths. Existing SSE

solutions, such as S
2
E, use fork limiters to limit the number of

forks at a given program counter value. Mousse also uses fork

limiters, but it needs to use a global one since the execution

is distributed. To achieve this, Mousse’s server implements

global fork limiters. When performing a symbolic fork, each

device contacts the server to inquire the value of the fork

limiter, hence providing a global one. Moreover, Mousse uses

both the program counter and the hash of the stack trace to

identify a forking location. Compared to using the program

counter only, this allows for a more accurate identification of

loop forks. That is, this approach can differentiate between

a function containing a loop being called from different call

sites.

6.2 Environment-Forced Symbolic Variables
Outputs of ecalls marked as symbolic create a difficulty for

offloading a path. Such variables are present when Mousse

leverages its concretization with symbolic output (Strategy II

in §4.2) or when we use a symbolic environment in our base-

line experiments. We refer to these variables as environment-

forced symbolic variables. In the presence of these variables,

the solution to the path constraints might depend on specific

values of these variables. However, these values cannot be

simply fed to the program upon path re-execution.

To solve this problem, Mousse records and offloads some

metadata information for each such symbolic variable. More

specifically, it records the location of the ecall in the code

(i.e., program counter value as well as the hash of the stack

trace). When a device downloads this path to execute, it uses

this metadata information to set the concolic value of the

symbolic output accordingly. Along with the forking skip

depth variable discussed earlier, this concolic value helps

direct the path execution and avoid duplicate paths.

Note that we do not use the concrete value returned from

the ecall itself for the concolic value of this variable on re-

execution. This is because some paths cannot be triggered

with the actual return value from the environment. If such a

path is offloaded, a concrete value that can lead the execution

correctly in this path needs to be offloaded as well.

7 Analysis
Wehave usedMousse to analyze Android I/O services. Specif-

ically, we have performed three analyses: bug and vulnera-

bility detection, taint analysis, and performance profiling.

7.1 Android I/O Services
We next provide some background information on Android

I/O services. Android employs a large number of customized

services tailored for each mobile device (more specifically,

tailored for the hardware available in a specific mobile de-

vice). These services are often used to provide I/O API for

applications. For example, the audio service is used to pro-

vide audio API while the camera service is used for camera

API. Other such services include the WiFi service, bluetooth

service, input service, sensor service, and telephony service.

An I/O service in Android may comprise of two compo-

nents: a server component, which provides the application-

facing API, and the Hardware Abstraction Layer (HAL),

which provides the hardware-specific implementation needed

to support the I/O functionality. The HAL service is imple-

mented by the vendor of the hardware component and is

typically closed source. In the rest of the paper, we treat the

server and HAL components as separate services and ana-

lyze them independently. This is because these two compo-

nents are developed independently and even run in separate

processes (especially in newer Android devices [30]). Smart-

phones incorporate a large number of closed source vendor

services. For example, Pixel 3 incorporates 50 binary executa-

bles and 844 binary libraries for services from corresponding

vendors, all adding up to 343 MBs of binary code.

7.2 Target Analyses
We next describe some of the analyses we perform using

Mousse. Taking examples from S
2
E [17, 18], we perform

bug and vulnerability analysis and performance profiling. In

addition, we perform taint analysis.
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Bug and vulnerability detection.We develop checkers to

analyze the execution of the program, both in symbolic and

concrete modes, in order to find bugs and vulnerabilities.

First, we try to find out-of-bounds access, null-pointer derefer-
ence, control-flow hijacking, and stack smashing bugs and vul-
nerabilities. To do so, our checkers looks for symbolic mem-

ory accesses, i.e., when the memory address used is symbolic.

Since in the analysis, we mark the inputs of the service API

as symbolic, a symbolic address identifies a memory access

that can be controlled by an attacker. We then check (using

some manual effort) the constraints to see whether the ac-

cess is adequately constrained. Second, we try to find double-
free and use-after-free vulnerabilities. To do so, our checkers

investigate the use of memory management APIs in libc in-
cluding all heap allocation, reallocation, and deallocation

calls, namely free, malloc, calloc, realloc, memalign,
posix_memalign, pvalloc, valloc, and aligned_alloc to
detect incorrect uses. Note that our checkers do have false

positive reports requiring some manual effort in analyzing

the reports. This is, however, a limitation of our checkers,

not of Mousse.

Taint analysis.While Mousse can be used for different taint

analysis goals, we deploy a specific analysis in this work:

the flow of program inputs to its outputs. The results of

this analysis can be used to enhance the accuracy of taint

analysis for programs that use these APIs. For example, data

flow analysis engines for Android apps (e.g., FlowDroid [5],

Amandroid [39], and DroidSafe [25]) are unable to accurately

model the data flow in Android APIs. Mapping the flow of the

input to output of such API can complement these engines.

Performance profiling. Mousse can be used to profile the

performance of different execution paths in a program. For

example, given the cache properties (e.g., cache size, eviction

algorithm, etc.), it can determine the number of cache misses

in each program path. This can then be used to determine

how some program inputs impact its performance and to

find performance bottlenecks.

Testing methodology.Mousse can support arbitrary test-

ing methods using SSE. However, in our evaluation, we focus

on the following testingmethods. The first method, whichwe

mainly use to measure Mousse’s performance, is single-API
testing. By an API, we refer to one of the procedures in the ex-
ternal interface provided by the program. Each I/O service in

Android provides several procedures that can be called using

IPC. For single-API testing, we initialize a service and then

call a specific service API with symbolic inputs. Sometimes,

when an API has a critical dependency on another API (e.g.,

all AudioProvider APIs require a call to adev_open first), we
satisfy it in our test. The second method is multi-API test-
ing. In one variant of this test, which we use mainly in our

performance profiling, we first call one API with symbolic

input and then call and execute another API concretely. In

another variant, which we use mainly in bug and vulnerabil-

ity detection, we may call multiple APIs, all (or some) with

symbolic inputs. In the third method, which we also use for

bug and vulnerability detection, we mark the variables read

from the service configuration file as symbolic. We use this

method to analyze the initialization code in the service.

8 Implementation
To implement the Mousse prototype, we developed 14,000

SLoC. In addition, we leveraged and integrated with Mousse

parts of some existing systems, namely S
2
E [17, 18], QEMU

(user-mode execution) [8], and KLEE [12]. We use user-mode

QEMU as the concrete execution engine in Mousse and KLEE

as its symbolic execution engine. We use S
2
E to integrate

these two engines and to provide an extension framework

to develop plugins (such as the checkers explained in §7.2).

Mousse fully supports ARMv7 (which we use in our eval-

uations). We also plan to support x86 and ARMv8 in the

future. The code that we developed is mainly for implement-

ing process-level SSE (e.g., address space support, integration

with user-mode QEMU, KLEE, etc.), support for ARM (both

as the ISA of the program binary and as the ISA of the device

to perform the analysis in), multi-threaded program support,

environment-aware concurrency, distributed execution (in-

cluding the server code), and the checkers described earlier.

Note that using Mousse does not require any changes to

the OS. However, in order to apply Mousse to Android I/O

services, one needs root access on the smartphone.

Workflow. When Mousse is assigned to execute a program,

the dynamic translator in QEMU first translates the program

binary into Tiny Code Generator (TCG) [9] intermediate

instructions. It then translates the TCG intermediate instruc-

tions into host instructions per basic block and starts the

execution in concrete mode. In concrete mode, if it detects a

symbolic variable, it switches to symbolic mode, translates

the TCG instructions to LLVM instructions, and uses KLEE

to execute the LLVM instructions. When no symbolic vari-

able is present in a basic block, it resumes the execution back

in concrete mode.

We adopted this workflow from S
2
E, albeit with some dif-

ferences. First, S
2
E switches from symbolic mode to concrete

mode when there are no symbolic values in CPU registers

used in the next block. However, this approach is not feasible

in Mousse because it cannot translate syscall handlers to in-

structions (since they are in the kernel). Therefore, it does not

know if a syscall would access symbolic registers just based

on the translated instructions. To solve this, Mousse adopts

a more conservative approach. That is, it switches from sym-

bolic mode to concrete mode only if all registers become

concrete. Second, when facing a syscall, Mousse switches to

native execution, whereas S
2
E handles the syscall similar to

the program’s code.

State-mutating and state-revealing syscalls. In our ex-

periments, we mark several syscalls as state-mutating in-

cluding a driver ioctl syscalls and writes to a file, a socket,
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and a pipe. We also mark several syscalls as state-revealing

including a driver ioctl syscalls and reads from a file, a

socket, and a pipe. We note that we are conservative and

assume all syscalls to a device driver can affect each other.

It would be feasible to encode more fine-grained policies in

Mousse, but that requires understanding the semantics of

driver syscalls. Since ease of use is one of our goals, we opted

for the easier, yet more conservative, approach.

Most ecalls are syscalls, e.g., an ioctl syscall to a device

driver. However, another form of ecall requires special atten-

tion: shared memory. For example, a program can use the

mmap syscall to map, in its address space, the MMIO registers

of a device or a memory buffer that is also accessed by a

device driver. As another example, a program may use the

shared memory support in the OS to share a buffer with an-

other process. Mousse treats writes and reads to/from such

a shared memory segment similarly to explicit ecalls. We

add support for various implementations of shared memory

available in Android such as mmap, ashmem, and ION.
We do not currently support signals, as none of the pro-

grams we have analyzed use signals from the environment,

e.g., from the driver. Instead, these programs use syscalls

(such as poll and select) to receive notifications. We do,

however, support per-process signals, such as SIGTERM.
Syscall inputs and outputs. Mousse needs to correctly

identify all inputs and outputs of syscalls. It needs to know

the inputs for concretization. It needs to know the outputs

to mark them as symbolic in concretization strategy II (§4.2).

Implementing this is challenging since syscall inputs and out-

puts may contain untyped pointers. One important syscall

that exhibits this behavior is the ioctl syscall, which re-

ceives three arguments (struct file *file, long cmd,
void *arg). The type of the third argument depends on

the value of the second one. This syscall is used heavily by

device drivers, and hence is called frequently in Android I/O

services.

To address this issue, Mousse needs to know the type of

these pointers. We manually extract the type information

from the header files in a driver source code and include it

inside Mousse’s source code.

9 Evaluation
We evaluate three aspects of Mousse: performance, code

coverage, and analysis results. In our evaluation, we use

five OS services in three smartphones: two audio services

in Pixel 3 (AudioServer and AudioProvider), two camera

services in Nexus 5X (CameraServer and CameraDaemon),

and the OpenGLES graphics libraries in Nexus 5. Unless

otherwise stated, for distributed execution, we use five Pixel

3 smartphones, four Nexus 5X smartphones, and one Nexus

5 smartphone. We set the fork limiter threshold to 10 (similar

to S
2
E).
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Figure 7. Impact of environment-aware concurrency on exe-
cution time.

9.1 Performance
In this section, we provide empirical evidence that Mousse’s

solutions for environment-aware concurrency and distributed

execution provide performance benefits. We also provide

results quantifying the execution time of analysis using

Mousse. We report the overall execution time of an exper-

iment, from when it started until when the last path was

executed. Finally, we compare the performance of Mousse’s

process-level SSE design with an existing decoupled SSE so-

lution. Note that we do not enable our checkers (§7.2) for

these experiments so that we (i) we can measure the perfor-

mance of SSE execution itself and (ii) we can compare the

results with an existing SSE design, which does not have

similar checkers. However, our measurements show that the

checkers, if enabled, increase the execution time by 19.9%.

Environment-aware concurrency. Figure 7 shows the ex-
ecution time of two APIs of the AudioProvider in Pixel 3

when varying the maximum number of concurrent paths

allowed on the device. The figure shows significant bene-

fit from concurrency for one API and modest benefit for

the other. This is due to state-mutating syscalls. The first

API (adev_set_parameters) does not issue state-mutating

syscalls, allowing paths to execute concurrently with no

restriction, resulting in 59% reduction in execution time.

The second API (out_write) issues state-mutating syscalls,

which limit concurrency (§5). However, even in this case,

concurrent execution reduces the execution time by 24%.

Moreover, for the second API, the figure shows an increase

in execution time for 9 and 12 concurrent paths compared to

6. This is because when we increase the number of concur-

rent paths, there are more path execution conflicts (due to

interactions with the environment) and hence more offloads.

As mentioned earlier, an offloaded path is executed from

scratch hence resulting in wasted execution time, which can

negate the benefits of concurrency.

As discussed in §6, we empirically determine the maxi-

mum number of concurrent program paths. Accordingly to

the results of this experiment, we set this threshold to 9 in

the rest of the experiments.
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Figure 8. Impact of distributed execution on execution time.

Distributed execution. Figure 8 shows the execution time

with distributed execution enabled. We show the results for

using a different number of Pixel 3 smartphones (1 to 5).

The results show that distributed execution significantly im-

proves performance. Figure 8a shows the results for when

there are no state-mutating syscalls. In this case, the per-

formance improvement almost saturates with three devices,

as all three devices can execute several paths concurrently.

Figure 8b shows an API with state-mutating syscalls. In this

case, adding the 4th and 5th devices further helps improve

performance. Overall, distributed execution reduces the exe-

cution time by 63% and 64% for these two cases. Moreover,

distributed execution and environment-aware concurrency

together reduce the execution time by 84% and 73% for these

cases.

Testing all APIs. To quantify the execution time of testing

the APIs of a system service, we tested all the APIs of OS

services using the max number of devices available to us as

reported earlier. Table 1 shows the results for three services.

The table also shows the overall number of paths as well

as the offloads due to environment consistency and due to

resource constraint. The number of paths varies significantly

depending on the API resulting in short (a few minutes)

to long (a couple of hours) experiments. Also, the results

show that both the environment and resource constraint

may result in path offloads.

Comparison with decoupled SSE. We compare the per-

formance of Mousse’s process-level SSE design with the

state-of-the-art decoupled SSE solution, Avatar
2
[31]. We

note that Avatar
2
does not support concurrent execution

of program paths interacting with the environment. It does

not support distributed execution either. Therefore, we only

compare the performance of a single path execution using a

single smartphone.

We use Avatar
2
to test one API of the AudioProvider ser-

vice, adev_open in Pixel 3. We run the symbolic execution

engine of Avatar
2
in an x86 server, run the concrete execution

engine in a Pixel 3 smartphone, and have them communicate

using Android Debug Bridge (ADB). Avatar
2
uses GDB for

Ser-

vice

name

API name

Exe-

cution

time

(minutes)

# of

path

# of

off-

loads

due

to

Res.

# of

off-

loads

due

to

Env.

GS

eglCreateWindowSurface 115.9 11 1 9

eglQuerySurface 118.8 88 40 21

eglGetDisplay 8.7 1 0 0

glCreateShader 34.2 5 0 3

glShaderSource 1605.8 371 148 95

glViewport 14.6 6 5 0

AP

adev_open_output_stream 390.1 612 264 0

adev_open_input_stream 170.1 566 234 0

adev_open 2.2 12 0 0

adev_set_parameters 107.7 237 122 0

adev_set_mode 2.8 3 0 0

adev_set_voice_volume 2.7 1 0 0

adev_set_mic_mute 3.4 1 0 0

out_write 89.6 50 24 10

out_set_parameters 25.9 136 34 0

out_drain 5.8 2 0 0

CS

getNumberOfCameras 47.6 46 28 3

connectDevice 29.0 19 2 5

getCameraCharacteristics 28.9 45 18 0

supportsCameraApi 4.1 2 0 0

submitRequestList 20.7 18 2 7

cancelRequest 4.1 1 0 0

endConfigure 4.2 1 0 0

createStream 93.6 87 33 7

createDefaultRequest 4.9 1 0 0

Table 1. Single-API testing of OS services with Mousse. Abbre-
viations used in the table: GS = GPU Stack, AP = AudioProvider,
CS = CameraServer, Res. = Resource constraint, Env. = Envi-
ronment consistency.

its concrete execution engine. We start with concrete exe-

cution on the smartphone. We use GDB to set a breakpoint

right before the call to adev_open. Then, we switch the exe-

cution from concrete mode on the smartphone to symbolic

mode on the server. We also set two breakpoints after the

switch to measure the execution time from the switch to the

time the execution reaches the breakpoints. After the switch,

Avatar
2
reads the memory of the concrete execution engine

over ADB to synchronize the state of the symbolic execution

engine.

Avatar
2
took 24.86 seconds to initialize the AudioProvider

all in concrete mode. However, it then took 257.47 seconds

to switch the execution mode, read the remote memory, and

reach the first breakpoint in symbolic mode. Unfortunately,

Avatar
2
could not reach the second breakpoint. More specifi-

cally, Avatar
2
was aborted due to a “read-miss” error after

running for another 1 hour and 44 minutes.

As a comparison, using Mousse with one phone executing

one path at a time (i.e., no concurrency), we were able to

finish testing a path of adev_open completely in 104 seconds.

Mousse took 40 seconds to initialize the AudioProvider ser-

vice, which is slower than Avatar
2
. This is because Mousse’s

concrete execution engine, based on QEMU, fully emulates

all instructions. However, Mousse’s unified memory avoids
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costly memory transfers, allowing it to significantly out-

perform Avatar
2
. Compared to Avatar

2
, which took 282.33

seconds to reach the first breakpoint after the switch, Mousse

improves performance by at least 63% as it finishes the whole

path in 104 seconds.

9.2 Coverage
Wemeasure the coverage of Mousse and compare it with that

of concrete execution. We measure coverage in two steps: (i)
the initialization coverage, i.e., the coverage resulting from

the initialization of the service and calling some other APIs

that our API of interest has dependency on, and (ii) the API
coverage, i.e., the added coverage when testing the API. Both

Mousse and concrete execution result in the same coverage

for the initialization phase. Hence, we mainly report the API

coverage.

For concrete execution, we try two approaches and report

the best one. One is using a known good input to the API

that results in deep code coverage. The other is black-box

fuzzing, where we try a large number of random inputs to

the API and measure the combined coverage.

Figure 9 shows the API coverage for concrete execution

and Mousse with its two concretization strategies (§4.2).

The figure shows two important points. First, it shows that

Mousse achieves better coverage than concrete execution.

Second, it shows that, in the absence of syscalls with sym-

bolic arguments, both concretization strategies in Mousse

achieve the same coverage (Figure 9a). Syscalls with sym-

bolic arguments are rare in Android I/O services that we

have analyzed. The only such syscalls are those for logging,

as discussed in §4.2, which one can disable before analysis.

However, in the presence of such syscalls, the second con-

cretization strategy achieves higher coverage (Figures 9b and

9c). But we note that it is not known how much of this is

false coverage, i.e., execution that would not occur in normal

execution. Determining how much requires further analysis.

We also run these tests with a symbolic environment, for

which we mark the output of a syscall as symbolic when

the syscall is handled by the device driver used by a service,

e.g., the audio device driver used by the audio service. In

this case, as a result of path explosion, the three services

that we test (i.e., CameraServer, CameraDaemon, and Audio-

Provider) all fail to correctly initialize (i.e., no paths within

them successfully finish the initialization phase) even after 1

to 2 days of execution using Mousse’s distributed execution

with multiple smartphones.

9.3 Analysis Results
Bugs and vulnerabilities. We analyze all our services to

find bugs and vulnerabilities. We find two new crash bugs

(both null-pointer dereferences) and two double-free vulner-

abilities. We then use Mousse to analyze these in the binary

(demonstrating another benefit of Mousse, which can help
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Figure 9. Code coverage for different APIs of Android I/O
services. Conc., M-I, and M-II refer to concrete execution and
Mousse with concretization strategies I and II (§4.2), respec-
tively.

analyze the execution). One null-pointer bug is due to ac-

cessing a gyroscope-related handle in the CameraDaemon

without checking if it is null or not. The other is due to access

to a parameter buffer, which can be null. Moreover, one of

the double-free vulnerabilities calls free on the same pointer

three times.

Taint analysis. We analyze the propagation of inputs to

the outputs of the AudioProvider service, which is a binary

provided by the vendor. Our results show that no APIs prop-

agate their inputs to their outputs with the exception of

out_write, which returns its size input parameter as its

output.

Performance profiling. We analyze the performance im-

pact of audio quality configurations on the execution of audio

playback code in the AudioProvider service. To do so, we

configure the audio quality with symbolic inputs, call the

playback API with concrete inputs, and then measure the

cache misses. We model a two-level cache system using spec-

ifications from ARM Cortex-A53 (write-through LRU with

64 byte line size; 2-way associative/32 kB for L1D, 4-way

associative/32kB for L1I, and 16-way associative/512 kB for

L2).

Marking the audio quality configurations as symbolic re-

sults in 112 execution paths. We observe that different paths

can experience 19% difference in the L1 data cache misses

(i.e., the path with the maximum cache misses vs. the path

with the minimum) whereas the cache misses for the L1 in-

struction cache and the L2 cache do not change noticeably.

This shows that different paths execute almost the same code,

but with different data access patterns.

10 Other Related Work
Charm [36] ports some of the device drivers of mobile devices

to run inside VMs. It does so by forwarding the drivers’

I/O interactions with the hardware to the mobile device for

execution. One may attempt to use Charm along with S
2
E to

analyze I/O services of mobile devices (indeed, this is the first

approach we considered). However, Charm requires some

engineering effort to support each device driver (in the order

of days). Moreover, it may not port the drivers fully, e.g., it
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does not support DMA for a GPU driver. Finally, Charm does

not virtualize the device, hence S
2
E cannot use multiple VMs

to interact with it. Since S
2
E does not orchestrate interactions

with an I/O device hardware (an untamed environment),

concurrent execution of VMs would result in unexpected

behavior.

Under-constrained symbolic execution, as mainly real-

ized by Under-Constrained KLEE (UC-KLEE) [20, 33, 34],

uses symbolic execution to analyze functions with systems

code. It does not execute full program paths and simply

considers the function arguments to be symbolic. This re-

sults in false positives. UC-KLEE therefore provides both

automated heuristics and manual methods to add precon-

ditions to the function’s input in order to prevent some of

the false positives. Mousse, on the other hand, can execute

fully-constrained program paths.

DART and SAGE [21–23] automatically generate input for

testing of programs by executing them, collecting path con-

straints, and solving the constraints, an approach otherwise

known as concolic testing. Mousse also uses concolic inputs

to drive the execution in a desired path (§6.1).

Mayhem [14] and Centaur [29] implement a decoupled

SSE design. However, their designs are not conducive to

analyzing programs with untamed environments. Mayhem

runs the concrete execution engine in a VM so that its state

can be checkpointed. Hence, similar to S
2
E, it requires to

virtualize the hardware to analyze programs with untamed

environments. Centaur uses a decoupled SSE design to ana-

lyze Android frameworks. However, it can analyze Java code

only, whereas the programs of interest to us are typically

written in native code. Moreover, it executes the initialization

phase of the framework in concrete mode, and then moves

to symbolic mode, after which it is not capable of switching

back to the concrete mode.

AEG [6, 7] uses symbolic execution to automatically gener-

ate exploits. Driller [38] uses concolic execution to enhance

the performance of fuzzing, an approach referred to as hy-

brid fuzzing. Both systems model the environment and hence

cannot analyze programs with untamed environments.

Qsym [41] is a fast concolic execution engine used for

hybrid fuzzing. Qsym avoids taking any path state snapshots

and hence re-executes all the paths from scratch using con-

colic execution. As a result, it can allow the paths to interact

with the actual underlying environment. However, Qsym

does not provide support for environment-aware concur-

rency and needs the interactions with the environment to

be side-effect free.

Cloud9 [19] distributes symbolic execution over multiple

nodes. It, however, does not address the issue of the environ-

ment and targets pure symbolic execution (and not selective

symbolic execution). Moreover, Cloud9’s approach for dis-

tributing the execution is different from Mousse’s. Cloud9

either uses state copying or state reconstruction to transfer a

path from one node to another. State copying is not feasible

for programs with untamed environments. State reconstruc-

tion is feasible and is indeed what Mousse does. However,

Cloud9 uses a bitvector to encode the then/else decisions

whereas Mousse uses concolic inputs. Moreover, Cloud9 does

not deal with environmentally-forced symbolic variables.

Chipounov et al. define different execution consistency

models for SSE, each resulting from different transition points

between symbolic and concrete executions and hence result-

ing in a different set of program paths being analyzed [18].

We note that concretization strategy I in Mousse results in

the Strictly Consistent Unit-Level Execution (SC-UE) consis-

tency model whereas concretization strategy II results in the

Relaxed Local Consistency (RC-LC) model.

11 Conclusions
We presented Mousse, a system designed to perform selec-

tive symbolic execution (SSE) on programs with untamed

environments. Mousse provided three novel solutions to

deal with such program environments: process-level SSE,

environment-aware concurrency, and distributed execution.

Through extensive evaluations, we showed that Mousse out-

performs alternative solutions in terms of performance and

coverage. We also used Mousse to perform various analy-

ses on Android I/O services including bug and vulnerability

detection, taint analysis, and performance profiling.
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