The Case for I/0O-Device-as-a-Service

Ardalan Amiri Sani
University of California, Irvine
ardalan@uci.edu

Abstract

Many computer systems, especially mobile and IoT systems,
use a large number of I/O devices. A contemporary OS acts as
a security guard for these devices, which trust the OS to cor-
rectly implement the “perimeter defense.” Moreover, the OS
also trusts these devices and their drivers to be well-behaved
and bug-free. This interwoven trust model complicates the
security of the system as a single vulnerable component can
undermine all security guarantees. Not surprising, this ar-
chitecture has failed to achieve strong security as evident
by attacks that have targeted I/O devices or their drivers.
In this paper, we call for a radically new approach, called
I/O-Device-as-a-Service (IDaaS), where each I/O device acts
a separate service and is responsible for its own security.
Inspired by Service-Oriented Architecture (SOA), IDaaS re-
quires every device to be equipped with its own software
stack and provide an externalizable API that can be safely
exposed to untrusted software. We discuss the design deci-
sions in IDaa$, highlight its security benefits and research
challenges, and present a case study.

CCS Concepts -« Security and privacy — Systems secu-
rity; Operating systems security; Mobile platform se-
curity.

Keywords 1/0O devices; Service-Oriented Architecture

ACM Reference Format:

Ardalan Amiri Sani and Thomas Anderson. 2019. The Case for
I/O-Device-as-a-Service. In Workshop on Hot Topics in Operating
Systems (HotOS ’19), May 13—15, 2019, Bertinoro, Italy. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3317550.3321446

1 Introduction

A security design used quite often in practice is “perimeter
defense” An intermediary interposes and vets all communi-
cations between untrusted parties and insecure components

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’19, May 13-15, 2019, Bertinoro, Italy

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6727-1/19/05...$15.00
https://doi.org/10.1145/3317550.3321446

Thomas Anderson
University of Washington
tom@cs.washington.edu

inside the perimeter. Often this is to allow for legacy com-
ponents to be used securely, as with a firewall protecting
against an external attacker exploiting a weak or out-of-date
component. In this design, the security of the system de-
pends on the thoroughness of the perimeter defense plus the
operational security of every component inside the perime-
ter. In practice, this can be quite weak, as has been shown by
the numerous security leaks of confidential enterprise infor-
mation [7] or even a compromise of an automobile through
a vulnerable telematics system [13].

OSes have long been built on this perimeter defense de-
sign: I/O devices attached to the computer depend on the OS,
mainly the kernel, for their security. Any analysis of possible
threats must include the device! itself, the driver software,
the OS, and in most cases, other devices and their drivers.
This is especially concerning for mobile and IoT systems due
to their hardware diversity. For example, more than 24,000
distinct Android systems from more than 1000 manufactur-
ers were available in the market in 2015 [29]. Such extreme
diversity results in a large number of distinct I/O devices,
such as cameras, audio devices, GPUs, various sensors such
as accelerometer and compass, and several network devices
such as WiFi, bluetooth, and NFC, each of which from sev-
eral different manufacturers. The current OS security design
means vulnerabilities in any of these devices or their drivers
can result in devastating results.

Not surprisingly, this architecture has failed to provide
strong security guarantees. First, the OS’s trust on devices
and their drivers is a continuous source of problems. De-
veloped by third-party manufacturers, device drivers are a
major source of crash bugs and security vulnerabilities in
today’s systems [15, 20, 41, 45]. For example, in 2016, 85%
of kernel bugs in Android were in device drivers [41]. Even
malicious device drivers have been spotted in the past, e.g., a
driver used to implement a rootkit [35]. The device hardware
is not necessarily trustworthy either and malicious devices
can be used to attack the system, e.g., a malicious network
device that leaks sensitive memory content. Second, I/O de-
vices’ trust in the OS is problematic too. Today, a compromise
in the OS exposes all I/O devices, e.g., GPUs and disks, to
untrusted applications. For example, a malicious application
that compromises the OS can access all the buffers stored in
the GPU even if those buffers belong to other applications.

Over the last several decades, OS and security researchers
have proposed various solutions to alleviate the problems

!In the paper, we use the word “device” exclusively to refer to an 1/0 device.

https://doi.org/10.1145/3317550.3321446
https://doi.org/10.1145/3317550.3321446

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

caused by this design. Microkernels, exokernels, and user-
space I/O frameworks execute device drivers outside the ker-
nel 3,9, 10, 17, 21, 25, 27, 31, 32, 34, 43]. Many solutions have
also been proposed to deal with vulnerable device drivers
in monolithic kernels, including in-kernel hardware-based
and software-based sandboxing [12, 39], type-safety [16, 46],
reference validation [42], automatic synthesis [36, 37], bug
finding with static analysis [8, 18, 24, 30] and dynamic anal-
ysis [33, 38]. Other solutions have also been proposed to
protect the system against malicious hardware devices [5].

However, these solutions address only part of the problem.
For example, they only address the bugs in drivers or try to
protect against a specific set of malicious devices. The sad
result of lack of a comprehensive solution is simply today’s
whack-a-mole approach, where bugs and vulnerabilities are
patched when found (or worse when exploited).

In this paper, we call for a radically new approach: all
I/O devices must be designed and integrated with the system
as mutually distrusting services. Our proposal is inspired by
Service-Oriented Architecture (SOA), in which every service
in a datacenter is responsible for its own operation with
an external interface open to untrusted use. In other words,
such a service can be made visible as an API to the outside
world without depending on a perimeter defense system. We
refer to this proposed architecture as I/O-Device-as-a-Service
(IDaaS). IDaaS addresses the core of the security problems
regarding I/O devices: the mutual trust between the OS and
these devices. In IDaaS, all services are mutually distrusting
— neither the OS nor the device are trusted by the other.

The IDaaS architecture advocates a key principle: all /O
devices should be responsible for their own security. This prin-
ciples has several design implications. First, it means the
API provided by an I/O device must be externalizable. That
is, the OS should be able to securely expose this API to un-
trusted applications. Obviously, this API must be narrow
and well-defined. In §4, we provide an example of externaliz-
able API for camera. Second, to implement such an API, I/O
devices must include their own software stack (including de-
vice drivers). I/O devices today provide a low-level hardware
interface, such as registers and interrupts, to the OS. The
OS then uses a device driver as well as some libraries and
user space daemons to implement higher-level logical APIs
for applications. In IDaaS, the device itself must run all the
required software stack (e.g., device drivers, libraries, and
daemons) on an internal microcontroller in order to directly
implement the logical API. Finally, I/O devices must imple-
ment their own security mechanisms and not rely on the OS.
This includes secure boot, data isolation, and authentication
(§3.3).

Indeed, some I/O devices already adhere to some of these
principles. First, some devices implement their own secu-
rity mechanisms. For example, SR-IOV devices support vir-
tual modes, which untrusted users or virtual machines can
directly access [26]. Second, some devices run part of the

Ardalan Amiri Sani and Thomas Anderson

software stack on microcontrollers (rather than in the OS).
For example, the Imaging SubSystem (ISS) in OMAP4 mo-
bile SoC leverages Cortex M3 microcontrollers to execute its
firmware, which directly interfaces with the camera, com-
municates with the main processor using a message-passing
interface, and delivers the frames to the OS by copying them
into main memory [40]. However, none of these devices ad-
here to all the principles needed to fully decouple I/O devices
and the OS.

Eliminating the trust between the OS and devices has an
important design implication. That is, an application cannot
rely on the OS for secure communication with a device;
it must use a secure enclave instead to establish a secure
channel. Without enclaves, IDaaS$ still provides half of its
benefits by isolating the device and its software from the
OS. It cannot however eliminate trust on the OS. Note that
IDaaS can use various realizations of secure enclaves, e.g.,
Intel SGX enclaves, trusted applications running in ARM
TrustZone secure world, or applications protected from the
OS by a more privileged layer, e.g., hypervisor [14, 23].

Pushing the security burden to I/O devices might seem
counter-intuitive and one might wonder how such a design
can improve the overall security of the system. We see four
fundamental reasons. First, as device drivers and devices are
isolated from the kernel, their vulnerabilities (and even mal-
ice) do not lead to kernel exploits. In IDaaS, vulnerabilities
in the device software stack can only lead to attacks directed
at that specific I/O device, e.g., phishing attacks through the
compromise of the display. Such attacks are more limited in
scope. Note that microkernels also isolate device drivers from
the kernel, but they do not provide the rest of the security
benefits of IDaaS.

Second, the externalizable interface of I/O devices is nar-
row, hence the attack surface on these devices is much smaller.
This means that the same vulnerabilities that can be exploited
through the wide attack surface of a kernel device driver
might not be exploitable under the narrow interface of IDaaS.

Third, as devices do not rely on the OS for their security,
a compromise in the OS does not automatically lead to the
compromise of these devices.

Finally, quite counter-intuitively, we believe that IDaaS
architecture can improve the quality of the software stack of
I/0O devices developed by their manufacturers. We see two
reasons for this. First, IDaa$S has software engineering ben-
efits — it allows the manufacturer to develop and test only
a single version of the software stack (rather than multiple
versions for different OSes or different OS versions), which
helps it focus its resources. Second, IDaa$S helps with blame
allocation — if an I/O device gets compromised, the manu-
facturer will be exclusively blamed. This will motivate the
device manufacturer to improve the quality of its software.

One might think that IDaaS will require manufacturers
to write more code (which may result in more bugs and vul-
nerabilities). We expect the extra code to be small including

The Case for I/O-Device-as-a-Service

some code to boot the device and to implement an interface
to receive device requests. Moreover, we expect this extra
code to be reused across various devices allowing it to be
properly tested.

In addition to enhancing the system’s security, IDaaS will
have three other benefits. First, IDaaS may facilitate inno-
vation in OS design since porting device drivers is a barrier
for adoption of new OSes. Second, IDaa$ allows the OS and
device software to be upgraded separately. Third, IDaaS may
reduce the energy consumption of the system by shifting
work from power-hungry processors to more efficient mi-
crocontrollers.

The IDaaS architecture requires a microcontroller and a
small amount of memory for every I/O device. We believe this
isnot a difficult requirement to satisfy as (i) many modern /O
devices already have microcontrollers [19], (ii) the required
amount of hardware resources to meet this goal is small, and
(iii) hardware is increasingly cheap.

2 Background

Our proposed architecture is inspired by the success of Service-
Oriented Architecture (SOA) in revolutionizing cloud com-
puting. As an example, around 2002, Amazon decided to
redesign itself using SOA [44]. That is, it decided that every
functionality and data in Amazon must be provided through
services with externalizable APIs. This design forbade cross-
talk and direct links between various components. All ex-
changes had to be implemented through the service APIs.
Amazon’s decision to adopt SOA meant that each service had
to provide a well-defined API for other services and clients
to interact with it. This also meant that each service had to
be designed with security in mind as each service was now
exposed, through its API, to the outside world.

An SOA-based design can improve the overall security
of a system for one key reason: it reduces the complexity
of the system, making it easier to reason about and imple-
ment security mechanisms. In contrast, in a highly integrated
system, different components interact through complex, not-
well-documented, and hard-to-analyze interfaces. This is
problematic as the reliability and security of every compo-
nent now relies on other components. It also requires teams
in charge of various components to remain in constant com-
munication, e.g., for vulnerability patching, which further
complicates development.

3 Overview

Inspired by SOA, we propose a radical architecture, I/O-
Device-as-a-Service (IDaaS), for the support of I/O devices
in a computer system. We propose that every I/O device
must act as an independent service. It must not trust the
OS; instead, it must be fully responsible for its own security
and provide its own externalizable API. We expect each I/O
device to be equipped with a microcontroller and a small

HotOS 19, May 13-15, 2019, Bertinoro, Italy

Operating System Operating System
L Application | enclave I
Application PP
Logical API I - Logical API Kernel
Device message queue manager,
: access control
Daemond/library | Message interface }
User space !
Driver API Kernel |

- - Security measures (§3.3) |
| Access control, data isolation | ¥
Y

Device driver /O Device’s full software stack

Hardware interface Hardware interfacel

| Device hardware
| 1/0 device | /0 device

(@) (b)

Figure 1. (a) Current architecture. (b) Proposed SOA-based
IDaasS architecture.

amount of memory to run the device driver and the rest of
the software stack for the device. Moreover, in this design,
the kernel does not trust the device and its software either.
Figure 1 illustrates the existing and proposed architectures.

One key aspect of IDaaS is the decoupling of the device and
its software from the OS. This makes our proposal different
from existing work that refactors an I/O device software stack
for performance reasons. For example, Helios runs a satellite
kernel on every programmable device, such as a network
device [28]. The goal of Helios is to improve the performance
by running the application closer to the hardware it uses.
However, it still requires the OS to provide device drivers for
the device. Moreover, Helios assumes that the device fully
trusts the OS. For example, Helios requires the OS to load
the software running on the programmable device. In IDaa$,
devices do not trust the OS. They do implement their own
security mechanisms, e.g., secure boot to guarantee the right
software is loaded on the device.

IDaaS may be applied to any peripheral device in the
system. However, we mainly target IDaaS for I/O devices
used by applications, such as camera, GPU, audio devices,
display, touchscreen, sensors, network devices, and storage
devices. For simpler peripheral devices that are not directly
used by applications, such as a clock or a voltage regulator,
one can use a simpler model — either the current fully-trusted
model or a model where the device trusts the kernel but the
kernel does not trust the device and limits its behavior.

3.1 Externalizable API

In IDaaS, the API of an I/O device must be externalizable.
That is, the API must be safely exposed to untrusted ap-
plications. This has two important implications. First, the
APIs provided by I/O devices must be high-level logical APIs.
Today’s I/O devices expose to the kernel a low-level hard-
ware interface (i.e., registers and interrupts), which cannot

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

be safely exposed to untrusted applications. Even the dri-
vers do not typically provide such logical APIs. Instead, they
expose a large number of custom ioctl syscalls that are
either only exposed to OS daemons in user space (since they
cannot be safely exposed to untrusted applications) or are
exposed to untrusted applications resulting in a wide attack
surface. However, high-level logical APIs for I/O devices of-
ten exist. They are typically provided by user space libraries
and daemons. As an example, the camera service process in
Android provides a camera API for applications (available
through Binder IPC calls). In our proposed architecture, we
argue that I/O devices should directly provide the high-level
logical API used by applications. This means that the device
must include and run the whole software stack (including the
device driver, libraries, and daemons) on a microcontroller
on the device. In addition, we suggest that the API should
only include a few high-level calls with clear semantics. This
has the important advantage of reducing the attack surface
on the device software.

Second, in IDaa$, an I/O device does not provide a privi-
leged interface for calls from the kernel (unlike an SR-IOV
device that has a privileged interface for the kernel as well
as virtual interfaces for untrusted applications or virtual ma-
chines). It only exposes a single set of APIs, which can be
called by any software.

3.2 Message Queue-based Interface

In IDaaS, the interface to every device is a message queue.
Software can insert API call requests on the queue and the
I/O device services these requests. Queues are a common
primitive in message-passing microkernels. We generalize
this primitive to devices as well.

The default design decision in IDaaS is for each I/O device
to provide a single message queue, which is managed by the
OS. This means that the OS mediates applications’ accesses
to device queues. This might cause performance overhead,
which can be an issue for devices with high performance
requirement. To address this problem, high performance de-
vices can optionally provide multiple queues, each of which
can be directly mapped into an application’s address space to
enable direct access. If needed, performance can be further
improved by using per-application per-core queues. This is
similar to SR-IOV devices. However, IDaaS is different from
SR-IOV as it does not have a privileged interface for the OS
to program and configure the device and hence does not
require a device driver in the OS.

In IDaaS, the role of the OS is to implement access con-
trol. That is, the OS only grants or deny applications access
to devices’ message queues (see the queue manager depicted
in Figure 1). This design has an important implication on
the threat model of the system: in the presence of a ma-
licious kernel, IDaaS will be able to provide integrity and
confidentiality guarantees for the data produced, stored, or
used by I/O devices, but cannot guarantee the availability

Ardalan Amiri Sani and Thomas Anderson

of the device. For example, a display controller can protect
the confidentiality of the data shown to the user (similar to
SchrodinText [4]) and a GPU can protect the data buffers
sent to it by applications for 3D rendering. But these de-
vices cannot guarantee that they will be available to service
applications’ requests when needed. We believe this is an
acceptable threat model as a compromised kernel has many
other ways to mount availability attacks on applications, e.g.,
refusing to execute them.

Note that since the OS enforces access control, it can allow
any app, including malicious ones, to use an I/O device. For
example, it might allow a malicious application to eavesdrop
on the user through the camera. Addressing these other types
of attacks is out of the scope of IDaaS.

3.3 Security Measures

Every I/O device in IDaaS must implement its own security
measures including:

1. Secure boot. Every device should check the integrity
and authenticity of its software image at load time rather
than trusting the kernel. This design can prevent attacks that
attempt to deploy malicious firmware on an I/O device [11].
Moreover, secure boot prevents all device software upgrades
other than those by the manufacturer.

Secure boot requires the device to have the public key of
its manufacturer in secure persistent storage. To achieve this,
the device should use some form of a read-only memory (e.g.,
“One Time Programmable (OTP) or eFuse memory” [6]) only
available to it.

2. Data isolation. Those devices that store sensitive in-
formation of different applications must provide isolation
mechanisms to protect the data, e.g., through paging. Some
devices already support such isolations mechanisms, e.g.,
GPUs. However, today’s devices rely on the OS-based driver
to program the isolation-related resources, e.g., device page
tables (which translate device virtual addresses to physical
addresses). In IDaaS, these resources must be configured
directly by the on-device software.

3. Authentication & secure communication. Given
the externalizable API of I/O devices, applications can di-
rectly communicate with them. This raises important chal-
lenges: authenticating the requests and protecting the confi-
dentiality and integrity of communication. To address these
challenges, applications and I/O devices should use secure
channels for communication. To bootstrap such a channel,
an I/O device should have a persistent device key (i.e., a
private key uniquely available to the device).

We note that cryptographic operations add performance
overhead. Therefore, we suggest using them judiciously. For
example, if the confidentiality of the data is not important,
encryption should be avoided. We suggest leaving this deci-
sion to applications and devices.

The Case for I/O-Device-as-a-Service

3.4 Enclaves for Secure I/O

Since the OS is not trusted in IDaaS, applications should
use secure enclaves to communicate with devices. In today’s
systems, applications trust the OS to be able to impersonate
them, e.g., by programming I/O devices on their behalf. And
in that setting, the device must also trust the user’s delega-
tion to the OS. IDaaS supports a stricter model, where the OS
does not need to be trusted. That is, an application can use a
hardware-backed enclave to establish a secure communica-
tion channel with an I/O device without relying on the OS.
IDaa$ can use various realizations of secure enclaves, e.g.,
Intel SGX enclaves, trusted applications running in ARM
TrustZone secure world, or applications protected from the
OS by a more privileged layer, e.g., hypervisor [14, 23]. Note
that without enclaves, IDaasS still provides half of its bene-
fits by isolating the device and its software from the OS. It
cannot however eliminate trust on the OS.

Existing systems have already advocated for this model.
For example, Graviton, which targets trusted execution on
GPUs, enables an application to create a secure communi-
cation channel with the GPU to exchange sensitive data
without trusting the OS. IDaaS extends this to other I/O
devices as well. It also requires I/O devices to implement
additional security features, such as secure boot. Moreover,
unlike Graviton, IDaaS requires redesigning of the APIs ex-
posed by I/O devices to be externalizable.

4 A Case Study

In this section, we discuss how a camera can adopt IDaaS.
Current device drivers for cameras implement a large set of
ioctl syscalls. For example, the Qualcomm MSM camera
device driver used in many mobile systems, such as Nexus
5X and Nexus 6P, consists of about 65,000 kernel LoC and
implements about 120 ioctls, resulting in a large trusted
computing base (TCB) with a wide attack surface. This driver
implements various low-level functionalities of the camera
including image capture, frame streaming, image processing
(e.g., flipping, rotating, denoising, and cropping), compres-
sion, and flash. It is no surprise that this single driver has so
far been the host of several bugs and vulnerabilities, which
can even be exploited for kernel code injection [38].
Instead, we suggest that the camera should include the
software needed to operate the camera and expose mainly a
single externalizable API call: capture_frame(conf, buf,
sec_ops). With this API design, an application (permitted
to access the camera by the OS) can receive a camera frame
by sending a single capture_frame message to the camera
device. The first parameter of the message is the set of con-
figuration options required for that specific frame including
resolution, pixel format, flash option, and lens focus. The sec-
ond parameter is the buffer in the application’s address space
where the frame needs to be written. Finally, the last param-
eter is an optional one. If provided, it asks the camera to sign

HotOS 19, May 13-15, 2019, Bertinoro, Italy

or encrypt the frame before storing it into the buffer. This sin-
gle API call can support video capture as well, in which case
the application sends consecutive capture_frame messages
to the camera.

In fact, a similar camera API has been recently introduced
in Android. In Android, the Hardware Abstraction Layer
(HAL) in user space implements APIs for various types of
I/O devices. HAL version 3 of camera has adopted a similar
message-based API (although it does not support signed or
encrypted frames) [22]. This demonstrates the feasibility of
using a narrow API for an I/O device. However, note that the
Android HAL runs in a daemon process in user space, still
requiring a large and complex device driver in the kernel.
Moreover, in today’s system, the camera device must trust
the OS. Our proposal is to move the software stack to the
camera itself and eliminate the trust between the camera
and the OS.

While we only elaborate on one case study here, one can
envision similar APIs for other I/O devices. For example, an
audio device can provide a single API to record or play an au-
dio segment of an adjustable length. A sensor can implement
a single API to capture a reading. Even a complex device
such as GPU can be used with a small number of APIs. For
example, a GPU can expose an API that accepts a shader
kernel and all its inputs at once, performs the computation
and rendering, and returns the output results and buffers
to the caller. In contrast, in today’s systems, these devices
expose a complex hardware interface to the OS, and their
device drivers exposes tens of ioctl syscalls to user space.

5 Research Challenges & Discussions
5.1 Peripheral Buses

In today’s systems, I/O devices are typically connected to
the system bus through peripheral buses, e.g., I?C and PCL
These buses facilitate the connection of diverse — often weak
— hardware devices to different system buses operating at
high frequencies. In order to use a device connected to the
bus, the OS needs to program the bus using a bus driver. The
buses are diverse, hence there are many drivers for them. For
example, the latest stable Linux kernel version at the time of
writing (version 4.20.2) contains drivers for more than 100
different I°C buses, collectively more than 50,000 LoC. What
happens to these bus drivers in IDaaS?

We argue that the OS should not contain custom bus dri-
vers as it violates the IDaa$ principle of decoupling of I/O
devices (and their buses) from the OS. Instead, the bus driver
should run on a microcontroller closer to the bus. We see two
cases. First, for an I/O device that is integrated in the system
and is the sole user of the bus, the same microcontroller that
runs the device software stack can run the bus driver. This
microcontroller connects to the peripheral bus (which itself
connects to the device hardware). It also communicates with
the main processor (which executes the OS).

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

Second, for external devices, e.g., USB devices, and for
those sharing a bus, a separate microcontroller dedicated to
the bus can be used. These I/O devices still need to have their
full software stack running on their own microcontrollers.
In contrast to the previous case, however, the peripheral bus
here has its own microcontroller, which runs the bus driver
and interfaces with the main processor. This bus microcon-
troller forwards the messages from the main processor to
the I/O device and vice versa.

For the device and bus microcontrollers’ communication
with the main processor, we recommend a hardware com-
munication medium that provides some memory space and
interrupts for exchanging messages. A good example of such
a medium is the hardware mailbox used in OMAP SoCs for
communication between various microprocessors, microcon-
trollers, and accelerators, e.g., Cortex A9 microprocessors,
Cortex M3 microcontrollers, and a DSP in OMAP4 [40]. This
mailbox provides interrupts and message queues with a lim-
ited number of queues and entries in each queue.

5.2 Secure Memory Access

Some I/O devices may need to use DMA for exchanging data
with applications. However, DMA results in a large attack
surface as it requires trusting the driver (to set up the DMA
correctly) and the device (to obey the DMA instructions).

We discuss two design decisions to address the challenges
with DMA in IDaaS. First, simpler I/O devices should not use
DMA at all. Many simple sensors and actuators do not re-
quire exchanging large amounts of data with applications. In
such cases, the data can be directly exchanged. For example,
OMAP4 hardware mailbox supports 32-bit messages [40],
which can easily carry the data of simple I/O devices.

Second, I/O devices requiring DMA for large amounts of
data (e.g., camera images and GPU buffers) must be protected
by I/O Memory Management Units IOMMUs). That is, the
kernel must program the IOMMUs to limit the DMA tar-
gets to only part of the corresponding application’s memory,
which is used to exchange data with the I/O device. Unre-
stricted DMA access to application’s memory, or even worse,
to the system memory, must be prohibited. If not, the device
will have the ability to overwrite critical memory regions,
e.g., the kernel memory or an app’s code section. When us-
ing enclaves, the memory buffer accessed by DMA will be
a bounce buffer sitting outside the enclave memory, requir-
ing signing or encryption for security. Note that this design
means that a malicious kernel can allow a device to overwrite
an application’s memory (but not the enclave memory). This
is not a new attack vector as the kernel can directly write to
an application memory.

5.3 Economy of IDaaS$

We believe that the device software can run on a weak or -
for some complex devices — a moderately powerful micro-
controller on the device. Yet, one might wonder if requiring

Ardalan Amiri Sani and Thomas Anderson

one microcontroller per I/O device might be too expensive
in practice. We believe that this requirement can be met.
First, many I/O devices already have microcontrollers, e.g.,
GPUs [19] and cameras [40]. Second, today’s mobile SoC’s
incorporate billions of transistors (e.g., 7 billion and 10 bil-
lion for Apple A12 and A12X Bionic, respectively [1, 2]).
A small microcontroller requires anywhere between 10s of
thousands to a few millions of transistors depending on its
features. As a result, using one microcontroller for a few
tens of I/O devices requires a small fraction of the overall
transistor budget on a chip.

Moreover, we see two opportunities for sharing. The first
one is sharing a microcontroller between devices from the
same manufacturer. In an SoC, often a few devices are from
the same manufacturer. For example, it is common to see
Qualcomm’s GPU and camera on a device with a Qualcomm
SoC. In this case, these I/O devices can share a microcon-
troller. Similarly, several sensors might be from the same
manufacturer. While this design breaks the strong IDaaS iso-
lation between the sharing devices, we think it is acceptable
since all of them are from the same manufacturer and trust
each other.

The second opportunity is for sharing a security co-processor.
In IDaa$, I/O devices require cryptographic operations to
implement their security measures (§3.3). While a software
implementation is feasible, using a security co-processor
can help with performance. However, requiring a security
co-processor for all I/O devices, especially for simpler ones,
might not be economic. Therefore, for simpler devices, one
can consider sharing a security co-processor. Such sharing
must be done carefully to provide strong isolation between
sharing devices and to protect the co-processor from the OS.

6 Conclusions

We introduce IDaaS$, a system architecture for secure integra-
tion of I/O devices in a computer system. In this architecture,
each I/O device is a service, which runs its own software
stack, is in charge of its own security, and does not trust
the OS for perimeter defense. The OS does not trust the de-
vice and its software stack either. This results in reduced
complexity and has the potential to improve the overall sys-
tem security, but poses a number of challenges for future
research.

Acknowledgments

This work is supported in part by NSF Awards #1617513
and #1518702 as well as gifts from Google, Facebook, and
Huawei. The authors thank Zhihao Yao, Kevin Zhao, and the
anonymous HotOS reviewers for their valuable feedback on
the ideas proposed in this paper.

The Case for I/O-Device-as-a-Service

References

(1]
(2]
(3]

(10]
(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

[19]
[20]

[21]

[22]

A12 Bionic - Apple. https://en.wikichip.org/wiki/apple/ax/a12, 2019.

A12X Bionic - Apple. https://en.wikichip.org/wiki/apple/ax/a12x, 2019.
M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A New Kernel Foundation For UNIX Development.
In Proc. Summer 1986 USENIX Conference, 1986.

A. Amiri Sani. SchrodinText: Strong Protection of Sensitive Textual
Content of Mobile Applications. In Proc. ACM MobiSys, 2017.

S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo, Z. Sun, A. J.
Blumberg, and M. Walfish. Defending against Malicious Peripherals
with Cinch. In Proc. USENIX Security Symposium, 2016.

ARM. Juno ARM Development Platform SoC, Revision r0p0, Technical
Overview. ARM DTO, 0038A (ID040516), 2014.

T. Armerding. The 17 biggest data breaches of the 21st
century. https://www.csoonline.com/article/2130877/data-breach/
the-biggest-data-breaches-of-the-21st-century.html, 2018.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough Static Analysis
of Device Drivers. In Proc. ACM EuroSys, 2006.

A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proc. USENLX OSDI, 2014.

S. Boyd-Wickizer and N. Zeldovich. Tolerating Malicious Device Dri-
vers in Linux. In Proc. USENIX ATC, 2010.

M. Brocker and S. Checkoway. iSeeYou: Disabling the MacBook Web-
cam Indicator LED. In Proc. USENIX Security Symposium, 2014.

M. Castro, M. Costa, J. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P.Barham, and R. Black. Fast Byte-granularity Software Fault Isolation.
In Proc. ACM SOSP, 2009.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack Surfaces. In Proc. USENLX
Security Symposium, 2011.

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Overshadow: a
Virtualization-Based Approach to Retrofitting Protection in Commod-
ity Operating Systems. In Proc. ACM ASPLOS, 2008.

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical
Study of Operating Systems Errors. In Proc. ACM SOSP, 2001.

J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. CCured
in the Real World. In Proc. ACM PLDI, 2003.

D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokernel: an Operating
System Architecture for Application-Level Resource Management. In
Proc. ACM SOSP, 1995.

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFIL:
Software Guards for System Address Spaces. In Proc. USENIX OSDI,
2006.

Y. Fujii, T. Azumi, N. Nishio, and S. Kato. Exploring Microcontrollers
in GPUs. In Proc. ACM Asia-Pacific Workshop on Systems (APSys), 2013.
A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP Kernel
Crash Analysis. In Proc. USENIX LISA, 2006.

V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and
S. Jha. The Design and Implementation of Microdrivers. In Proc. ACM
ASPLOS, 2008.

Google. Camera HAL3 in Android. https://source.android.com/
devices/camera/camera3, 2018.

[23] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth. Slicing droids:

Program slicing for smali code. In Proc. ACM Symp. Applied Computing
(SAC), 2013.

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

HotOS 19, May 13-15, 2019, Bertinoro, Italy

A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating Hardware
Device Failures in Software. In Proc. ACM SOSP, 2009.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. seL4: Formal Verification of an OS Kernel. In Proc.
ACM SOSP, 2009.

P. Kutch. PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Tech-
nology. Intel Application Note, 321211-002, Revision 2.5, 2011.

J. Liedtke. Improving IPC by Kernel Design. ACM SIGOPS Operating
Systems Review, 1993.

E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt.
Helios: Heterogeneous Multiprocessing with Satellite Kernels. In Proc.
ACM SOSP, 2009.

OpenSignal. ANDROID FRAGMENTATION VISUALIZED (AUGUST
2015). https://www.opensignal.com/sites/opensignal-com/files/data/
reports/global/data-2015-08/2015_08_fragmentation_report.pdf.

Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
Automating Collateral Evolutions in Linux Device Drivers. In Proc.
ACM EuroSys, 2008.

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The Operating System is the
Control Plane. In Proc. USENIX OSDI, 2014.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the Library OS from the Top Down. In Proc. ACM ASPLOS,
2011.

M. J. Renzelmann, A. Kadav, and M. M. Swift. SymDrive: Testing
Drivers without Devices. In Proc. USENIX OSDI, 2012.

M. J. Renzelmann and M. M. Swift. Decaf: Moving Device Drivers to a
Modern Language. In USENIX ATC, 2009.

M. Russinovich. Sony, Rootkits and Digital Rights Management Gone
Too Far. https://blogs.technet.microsoft.com/markrussinovich/2005/
10/31/sony-rootkits-and-digital-rights-management-gone-too-far/,
2005.

L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser. Automatic
Device Driver Synthesis with Termite. In Proc. ACM SOSP, 2009.

L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, and
M. Vij. User-Guided Device Driver Synthesis. In Proc. USENLX OSDI,
2014.

S. M. Seyed Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. Amiri Sani,
and Z. Qian. Charm: Facilitating Dynamic Analysis of Device Drivers
of Mobile Systems. In Proc. USENIX Security Symposium, 2018.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability
of Commodity Operating Systems. In Proc. ACM SOSP, 2003.

Texas Instruments. Architecture Reference Manual, OMAP4430 Multi-
media Device Silicon Revision 2.x. SWPU231N, 2010.

[41] J. Vander Stoep. Android: Protecting the Kernel. In Linux Security

[42]

[43]

[44]
[45]

[46]

Summit (LSS), 2016.

D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider.
Device Driver Safety Through a Reference Validation Mechanism. In
Proc. USENIX OSDI, 2008.

Z.Yao, Z. Ma, Y. Liu, A. Amiri Sani, and A. Chandramowlishwaran.
Sugar: Secure GPU Acceleration in Web Browsers. In Proc. ACM
ASPLOS, 2018.

S. Yegge. Stevey’s Google Platforms Rant. https://gist.github.com/
chitchcock/1281611, 2011.

H. Zhang, D. She, and Z. Qian. Android Root and its Providers: A
double-Edged Sword. In Proc. ACM CCS, 2015.

F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Nec-
ula, and E. Brewer. SafeDrive: Safe and Recoverable Extensions Using
Language-Based Techniques. In Proc. USENIX OSDI, 2006.

https://en.wikichip.org/wiki/apple/ax/a12
https://en.wikichip.org/wiki/apple/ax/a12x
https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
https://source.android.com/devices/camera/camera3
https://source.android.com/devices/camera/camera3
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far/
https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far/
https://gist.github.com/chitchcock/1281611
https://gist.github.com/chitchcock/1281611

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 Externalizable API
	3.2 Message Queue-based Interface
	3.3 Security Measures
	3.4 Enclaves for Secure I/O

	4 A Case Study
	5 Research Challenges & Discussions
	5.1 Peripheral Buses
	5.2 Secure Memory Access
	5.3 Economy of IDaaS

	6 Conclusions
	References

