
Revocation Methods

Explicit:
• CRL - Certificate Revocation List

• Sources: CRL-DP, indirect CRL, dynamic CRL-DP
• Delta-CRL, windowed CRL, etc.
• Certificate Revocation Tree (CRT) and other Authenticated Data

Structures
• OCSP – On-line Certificate Status Protocol

Implicit:
• CRS - Certificate Revocation System

1

Open Questions

• Consistency between CRL and OCSP
responses
• It is possible to have a certificate with two

different statuses.
• If OCSP is more timely and provides the
same information as CRLs, do we still need
CRLs?

• Which method should come first - OCSP or
to CRL?

2

Revocation Methods

Explicit:
• CRL - Certificate Revocation List

• Sources: CRL-DP, indirect CRL, dynamic CRL-DP
• Delta-CRL, windowed CRL, etc.
• Certificate Revocation Tree (CRT) and other Authenticated Data

Structures
• OCSP – On-line Certificate Status Protocol

Implicit:
• CRS - Certificate Revocation System

3

Implicit Revocation:
Certificate Revocation System (CRS)

• Proposed by Micali (1996)
• Aims to improve CRL communication costs
• Basic idea: CA periodically refreshes valid certificates
• Uses off-line/on-line signature scheme to reduce update

cost

4

One-Way Hash Chains
• Versatile cryptographic primitive
• Construction:

1. Pick random number YN and a public hash function H()
2. Compute N values YN-1,…,Y0 such that Yi-1 = H(Yi)
3. Secret ROOT=YN , public ANCHOR=Y0

• Properties:
• Use in reverse order of construction: Y0 , Y1 , …, YN
• Hard to compute Yi from Yj (if j<i), easy to compute Yj from Yi

• For example: easy to compute Y1 from Y2 since Y1=H(Y2)
• But, Infeasible to compute Y2 from Y1

• Verifier can efficiently authenticate Yj knowing Yi (j<i) by verifying
whether: Yj = Hi-j(Yi) = H(H(…H(Yi)...))

• This method is robust to missing values

YN-1 YNY1Y0
HY2

HHH H …

CRS: Creation of a Certificate

• Two new parameters included in each PKC: Y0 and N0

Y0 = HMAX(YMAX)

N0 = H(N1)

• [YMAX,N1] -- per-PKC secrets stored by CA

• H() -- public one-way function, e.g., SHA-2

6

CHAIN
ANCHOR

CHAIN
ROOT

CRS Example:
Certificate issued for a year, refreshed daily

7

CA Public
Directory

daily update UPDi
for each certificate

- If Alice’s certificate is valid:
•UPDi =Yi and
•Yo = Hi(Yi)  verifier can easily check this
•Also, note that: Yi = HMAX-i(YMAX)

- If her certificate is revoked, UPDi = N1

- Y0 and N0 are distinct for each certificate

Verifier (Bob)
NOTE: i=0 at issuance date

8

[lecture slides are adapted from previous slides by Prof. Gene
Tsudik]

Lecture 13

Access Control

Recall: Security Services

• Confidentiality: to assure information privacy and secrecy

• Authentication: to assert who created or sent data

• Integrity: to show that data has not been altered

• Access Control: prevent misuse of resources = control access to them

e.g., files, directories, accounts, printers, computers, IoT devices, etc.

• Availability: to offer access to resources, permanence, non-erasure

2

Access Control (AC)

• A “language” for expressing access control policies:
who can access what, how and when …

• Enforcement of access control
• Identify all resources (objects) and their granularity
• Identify all potential users (subjects)
• Specify rules for subject/object interaction
• Guard them in real time

10

Model and Terminology

• Subjects: users or processes

• Objects: resources (files, memory, printers,
routers, plotters, disks, processes, etc., etc.,...)

11

Focus of Access Control

• What a subject is allowed to do

• What may be done with an object

12

Access Modes

13

• “Look” at an object, e.g.:
• Read file
• Check printer queue
• Read screen
• Query database
• Turn on/use microphone, etc., etc.

• “Change” an object, e.g.:
• Write/append/erase file
• Print on a printer
• Display on screen
• Use speakers (audio out)
• Send packets via WiFi/Bluetooth, etc., etc.

Access Modes: Bell-Lapadula model

execute, read, append, and write

14

Observe

Alter

Execute AppendRead Write

X

X X

X

UNIX/Linux/*x Operating Systems

• execute: execute (program) file, search directory

• read: read from file, list directory

• write: write (re-write or append) file, create or
rename file in directory

15

Example: Windows NT/2000 (NTFS)

• execute

• read

• write

• delete

• change permission

• change ownership

16

AC Types

Who is in charge of setting AC policy?

• Discretionary: resource owner

• Mandatory: system-wide policy

17

Access Control Structures

i. Access Control Matrix

ii. Capabilities

iii. Access Control Lists

18

Access Control Matrix

19

Alice

Bob

Bill.doc

{read,write}

{execute}

{execute}

{execute,read}

{execute,read,write}

Edit.exe Fun.com

Su
bj

ec
t

Object

{0}

Access Control Lists 1/2

Keep access rights to an object with that object:

 ACL for bill.doc:
 Bob: read, write
 ACL for edit.exe:
 Alice: execute;
 Bob: execute
 ACL for fun.com:
 Alice: execute, read;
 Bill: execute, read, write

20

• As many ACLs as there are objects
• Each ACL either signed or stored in protected place

Access Control Lists 2/2

• Managing access rights can be difficult

• Groups can be helpful …

• Groups simplify definition of access control
policies

21

Access Control Lists

22

S1 S2 S3

O4O3O2O1

G1

O5X

Capabilities 1/2

• Capabilities are associated with discretionary access
control

• Reason: difficult to get full view of who has
permission to access an object

• Very difficult to revoke a capability – owners and
objects have to keep track of all issued capabilities

23

• As many capabilities as there are (subject/object) pairs
• Each capability either signed or otherwise protected
• Hard to revoke in a distributed setting

Capabilities 2/2

Keep access rights with the subject:

• Alice's capabilities:
• [edit.exe:execute];
• [fun.com:execute,read]

• Bob's capabilities:
• [bill.doc:read,write]
• [edit.exe:execute]
• [fun.com:execute,read,write]

24

In Summary

• Centralized Systems:

• ACLs are better

• Distributed Systems:

• Capabilities are better

25

26

Example: Android Security/Permissions

Android Security Model

• Application-level permissions model
• Controls access to app components
• Controls access to system resources
• Specified by the app writers and seen by the users

• Kernel-level sandboxing and isolation
• Isolate apps from each other and the system
• Prevent bypass of application-level controls
• Relies on Linux Discretionary Access Control (DAC)
• Normally invisible to the users and app writers

27

Discretionary Access Control (DAC)

• Typical form of access control in Linux and
many other Unix-derived OS-s

• Access to data is entirely at the discretion of
the owner/creator of the data

• Some processes (e.g., uid 0) can override
and some objects (e.g., sockets) are
unchecked

• Based on user & group identity

28

33

ROLE BASED ACCESS CONTROL
(RBAC)

34

RBAC Basics

• Users are associated with roles

• Roles are associated with permissions

• A user has permission only if s/he has a
role associated with that permission

35

Example: Cops (aka Police Officers)
(User/Permission Association)

station

weapons

uniform

Bob

Charlie

Dean

36

Example: RBAC

Cop

station

weapons

uniform

Bob
Charlie
Dean

station

weapons

uniform

Bob

Charlie

Dean

37

Cop

station

weapons

uniform

Bob
Charlie
Dean

station

weapons

uniform

Bob

Charlie

Dean

Example: RBAC

38

Cop

station

weapons

uniform

Bob
Charlie
Dean

station

weapons

uniform

Bob

Charlie

Dean

Here RBAC doesn’t work …

Example: RBAC

39

Example: Alice becomes a Cop

Cop

station

weapons

uniformAlice

station

weapons

uniformAlice

	Revocation Methods
	Open Questions
	Revocation Methods
	Implicit Revocation:�Certificate Revocation System (CRS)
	One-Way Hash Chains
	CRS: Creation of a Certificate
	CRS Example:�Certificate issued for a year, refreshed daily
	Lecture 13�
	Slide Number 9
	Access Control (AC)
	Model and Terminology
	Focus of Access Control
	Access Modes
	Access Modes: Bell-Lapadula model
	UNIX/Linux/*x Operating Systems
	Example: Windows NT/2000 (NTFS)
	AC Types
	Access Control Structures
	Access Control Matrix
	Access Control Lists 1/2
	Access Control Lists 2/2
	Access Control Lists
	Capabilities 1/2
	Capabilities 2/2
	In Summary
	Example: Android Security/Permissions
	Android Security Model
	Discretionary Access Control (DAC)
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

