
Revocation Methods

Explicit: 
• CRL - Certificate Revocation List

• Sources: CRL-DP, indirect CRL, dynamic CRL-DP
• Delta-CRL, windowed CRL, etc.
• Certificate Revocation Tree (CRT) and other Authenticated Data 

Structures 
• OCSP – On-line Certificate Status Protocol

Implicit:
• CRS  - Certificate Revocation System
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Open Questions

• Consistency between CRL and OCSP 
responses
• It is possible to have a certificate with  two 

different statuses. 
• If OCSP is more timely and provides the 
same information as CRLs, do we still need 
CRLs?

• Which method should come first - OCSP or 
to CRL?
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Implicit Revocation:
Certificate Revocation System (CRS)

• Proposed by Micali (1996)
• Aims to improve CRL communication costs
• Basic idea: CA periodically refreshes valid certificates 
• Uses off-line/on-line signature scheme to reduce update 

cost
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One-Way Hash Chains
• Versatile cryptographic primitive
• Construction:

1. Pick random number YN and a public hash function H()
2. Compute N values YN-1,…,Y0 such that Yi-1 = H(Yi)
3. Secret ROOT=YN , public ANCHOR=Y0

• Properties:
• Use in reverse order of construction: Y0 , Y1 , …,  YN
• Hard to compute Yi from Yj (if j<i), easy to compute Yj from Yi

• For example: easy to compute Y1 from Y2 since Y1=H(Y2)
• But, Infeasible to compute Y2 from Y1

• Verifier can efficiently authenticate Yj knowing Yi (j<i) by verifying 
whether:  Yj = Hi-j(Yi) = H(H(…H(Yi)...))

• This method is robust to missing values

YN-1 YNY1Y0
HY2

HHH H …



CRS: Creation of a Certificate 

• Two new parameters included in each PKC:    Y0 and N0

Y0 = HMAX(YMAX)

N0 = H(N1)

• [YMAX,N1] -- per-PKC secrets stored by CA

• H() -- public one-way function, e.g., SHA-2
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CRS Example:
Certificate issued for a year, refreshed daily
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CA Public 
Directory

daily update UPDi
for each certificate

- If Alice’s certificate is valid:
•UPDi =Yi  and
•Yo = Hi(Yi)   verifier can easily check this 
•Also, note that: Yi = HMAX-i(YMAX) 

- If her certificate is revoked, UPDi = N1

- Y0 and N0 are distinct for each certificate

Verifier (Bob)
NOTE: i=0 at issuance date 
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[lecture slides are adapted from previous slides by Prof. Gene 
Tsudik]

Lecture 13

Access Control



Recall: Security Services

• Confidentiality: to assure information privacy and secrecy

• Authentication: to assert who created or sent data

• Integrity: to show that data has not been altered

• Access Control: prevent misuse of resources = control access to them

e.g., files, directories, accounts, printers, computers, IoT devices, etc. 

• Availability: to offer access to resources, permanence, non-erasure
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Access Control (AC)

• A “language” for expressing access control policies: 
who can access what, how and when …

• Enforcement of access control
• Identify all resources (objects) and their granularity
• Identify all potential users (subjects)
• Specify rules for subject/object interaction
• Guard them in real time
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Model and Terminology

• Subjects: users or processes

• Objects: resources (files, memory, printers, 
routers, plotters, disks, processes, etc., etc.,...)
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Focus of Access Control

• What a subject is allowed to do

• What may be done with an object
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Access Modes

13

• “Look” at an object, e.g.:
• Read file
• Check printer queue
• Read screen
• Query database
• Turn on/use microphone, etc., etc.

• “Change” an object, e.g.:
• Write/append/erase file
• Print on a printer
• Display on screen
• Use speakers (audio out)
• Send packets via WiFi/Bluetooth, etc., etc.



Access Modes: Bell-Lapadula model

execute, read, append, and write
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UNIX/Linux/*x Operating Systems

• execute: execute (program) file, search directory 

• read: read from file, list directory 

• write: write (re-write or append) file, create or 
rename file in directory
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Example: Windows NT/2000 (NTFS)

• execute

• read

• write

• delete

• change permission

• change ownership
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AC Types 

Who is in charge of setting AC policy?

• Discretionary: resource owner

• Mandatory: system-wide policy
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Access Control Structures

i. Access Control Matrix 

ii. Capabilities

iii. Access Control Lists
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Access Control Matrix
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Access Control Lists 1/2

Keep access rights to an object with that object:

 ACL for bill.doc: 
 Bob: read, write
 ACL for edit.exe:
 Alice: execute; 
 Bob: execute
 ACL for fun.com: 
 Alice: execute, read; 
 Bill: execute, read, write
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• As many ACLs as there are objects
• Each ACL either signed or stored in protected place



Access Control Lists 2/2

• Managing access rights can be difficult 

• Groups can be helpful …

• Groups simplify definition of access control 
policies
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Access Control Lists 
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Capabilities 1/2

• Capabilities are associated with discretionary access 
control

• Reason: difficult to get full view of who has 
permission to access an object

• Very difficult to revoke a capability – owners and 
objects have to keep track of all issued capabilities
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• As many capabilities as there are (subject/object) pairs
• Each capability either signed or otherwise protected
• Hard to revoke in a distributed setting



Capabilities 2/2

Keep access rights with the subject:

• Alice's capabilities: 
• [edit.exe:execute]; 
• [fun.com:execute,read]

• Bob's capabilities: 
• [bill.doc:read,write]
• [edit.exe:execute]
• [fun.com:execute,read,write]
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In Summary

• Centralized Systems: 

• ACLs are better

• Distributed Systems: 

• Capabilities are better
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Example: Android Security/Permissions



Android Security Model

• Application-level permissions model
• Controls access to app components
• Controls access to system resources
• Specified by the app writers and seen by the users

• Kernel-level sandboxing and isolation
• Isolate apps from each other and the system
• Prevent bypass of application-level controls
• Relies on Linux Discretionary Access Control (DAC)
• Normally invisible to the users and app writers
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Discretionary Access Control (DAC)

• Typical form of access control in Linux and 
many other Unix-derived OS-s

• Access to data is entirely at the discretion of 
the owner/creator of the data

• Some processes (e.g., uid 0) can override 
and some objects (e.g., sockets) are 
unchecked

• Based on user & group identity
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ROLE BASED ACCESS CONTROL
(RBAC)
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RBAC Basics

• Users are associated with roles

• Roles are associated with permissions

• A user has permission only if s/he has a 
role associated with that permission
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Example: Cops (aka Police Officers)
(User/Permission Association)
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Example: RBAC
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Here RBAC doesn’t work …

Example: RBAC
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Example: Alice becomes a Cop

Cop
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weapons

uniformAlice
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