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Existing transportation infrastructure is usually isolated 
regarding connectivity as all vehicles are operated inde-
pendently, and traffic control systems are mostly deployed 
in a private wired network. With the development of wire-
less technology, vehicles and infrastructure will be con-
nected through wireless communications [e.g., Dedicated 
Short Range Communication(DSRC) or cellular network], 
which might open a new door for cyberattackers. 
Cybersecurity of transportation systems has been a grow-
ing research area in the past decade, but most efforts are 
focused on intervehicle communications. As a critical part 
of the transportation infrastructure, existing traffic control 
systems have a profound impact on the safety and effi-
ciency of urban traffic flow, but are very vulnerable to 
cyberattacks because of the “systematic lack of security 
consciousness” (1). For example, an Argentinian security 
expert hacked into New York City’s wireless vehicle 
detection system with a cheap wireless device. The vul-
nerabilities he found allowed anyone to take complete 
control of the devices and send fake data to the traffic 
control systems (2). Although traffic signals were not 
directly controlled, fake vehicle data could cause severe 
traffic congestion and increase crash risks. Another exam-
ple involved hacking into a variable message sign in 
Austin, Texas, and displaying “Zombie Ahead” instead of 

correct traffic information (3). To systematically investi-
gate the cybersecurity of transportation infrastructure, the 
NCHRP started a new project to develop guidance for 
transportation agencies on mitigating the risks from 
cyberattacks toward traffic management systems (4).

However, it is still not clear what types of cyberattacks 
can be performed through infrastructure-to-infrastructure 
(I2I) and vehicle-to-infrastructure (V2I) communications, 
whether such attacks can create critical failure to traffic 
control systems, and what are the impacts of cyberattacks 
on traffic operations. A systematic study of the vulnerabili-
ties of the existing traffic control system and corresponding 
remedies needs to be established. The objective of this 
paper is to investigate potential attack surfaces and the 
adversarial consequences such attacks may bring to the 
traffic network.
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Abstract
Existing traffic control systems are mostly deployed in private wired networks. With the development of wireless technology, 
vehicles and infrastructure devices will be connected through wireless communications, which might open a new door for 
cyberattackers. It is still not clear what types of cyberattacks can be performed through infrastructure-to-infrastructure 
and vehicle-to-infrastructure communications, whether such attacks can introduce critical failure to the system, and what 
the impacts are of cyberattacks on traffic operations. This paper investigates the vulnerability of traffic control systems in a 
connected environment. Four typical elements, including signal controllers, vehicle detectors, roadside units, and onboard 
units, are identified as the attack surfaces. The paper mainly focuses on attacking actuated and adaptive signal control systems 
by sending falsified data, which is considered as an indirect but realistic attack approach. The objective of an attacker is to 
maximize system delay with constraints such as budget and attack intensity. Empirical results show that different attack 
scenarios result in significant differences in delay, and some ineffective attacks may even improve the system performance. 
Simulation results from a real-world corridor show that critical intersections, which have a higher impact on network 
performance, can be identified by analyzing the attack locations. Identification of such intersections can be helpful in designing 
a more resilient transportation network.
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First, four possible attack surfaces of the traffic control 
system in a connected environment are identified, including 
signal controllers, vehicle detectors, onboard units (OBUs), 
and roadside units (RSUs). The focus of analysis is on attack-
ing actuated and adaptive signal control systems by sending 
falsified data from either hacked vehicle detectors or com-
promised OBUs. The attack is modeled as an optimization 
problem with the objective to maximize system delay and 
constraints, such as the number of compromised devices and 
attack intensity. Analysis of a hypothetical intersection 
shows that some attacks are effective in increasing total 
delay, whereas others are not. Finally, a real-world corridor is 
used to evaluate the proposed attack methods.

The rest of this paper is organized as follows. The second 
section provides a brief review of related work. In the third 
section, four attack surfaces with different attack strategies 
are identified. The fourth section presents the traffic model to 
represent the vehicle dynamics and the attack model. The 
fifth section evaluates the effectiveness of different attack 
strategies at a hypothetical intersection and a real-world cor-
ridor. The final section gives the conclusions and outlines the 
directions of future work.

Related Work

In this section, a brief overview of cybersecurity-related trans-
portation infrastructure studies is provided. Ghena et al. ana-
lyzed the security of a currently deployed traffic signal control 
system and found the controller network could be infiltrated 
through its wireless infrastructure (1). Once on the network, 
the controller could be accessed by the operating system’s 
debug port or through National Transportation Communications 
for ITS Protocol (NTCIP) commands. Although the safety of 
the signal operations was protected by the Malfunction 
Management Unit (MMU), the attackers could generate inef-
ficient signal timing plans that might cause traffic congestion 
and even denial of service. This study mainly demonstrated 
how to leverage existing design flaws to gain control of the 
signal system, but didn’t provide detailed attack strategies and 
corresponding consequences.

Laszka et al. (5) and Ghafouri et al. (6) studied the vulner-
ability of fixed-time signal control to cyberattacks. The 
attacks were formulated as mathematical programming prob-
lems with different objectives such as worst-case network 
accumulation, worst-case lane accumulation, and risk-averse 
target accumulation. Heuristic and decomposition algorithms 
were implemented to solve the problem at a network level. A 
precondition of tampering fixed-time signal control is that 
the attacker can access and manipulate signal controller 
directly. This is not a very realistic assumption unless the 
attacker can access the traffic signal cabinet physically. 
However, it is much easier to falsify input data to influence 
the control decisions under actuated or adaptive control. 
Toward this end, Jeske investigated Google and Waze navi-
gation systems and demonstrated how attackers could take 
control of the navigation system and influence the traffic 

flow by sending false location information (7). Tufnell suc-
cessfully hacked into Waze maps and generated fake GPS 
coordinates to create virtual traffic jams (8). However, nei-
ther of the two studies incorporated the fake data into traffic 
control systems and analyzed the consequences.

Other than tampering with traffic signal operations, Reilly 
et al. presented a study on attacking freeway ramp metering 
to generate arbitrarily complex congestion patterns (9). 
Finite-horizon optimal control and multiobjective optimiza-
tion techniques were used to launch attacks on coordinated 
ramp metering controllers. Different attack scenarios were 
designed and conducted. Results showed that arbitrary con-
gestion-on-demand patterns could be created with enough 
controlled ramps.

Although how to detect and protect the system from 
cyberattacks is beyond the scope of this paper, some 
approaches have been proposed to detect anomaly from traf-
fic-flow patterns. For example, Canepa and Claudel tried to 
detect falsified probe-based vehicle data using the Lighthill- 
Whitham-Richards (LWR) traffic-flow model (10). The 
detection was posed as a mixed integer linear feasibility 
problem. Zhang et al. quantified anomaly by proposing an 
anomaly index in both spatial and temporal perspectives, 
founded on dictionary-based compression theory (11). The 
original intention was to identify non-recurrent traffic-flow 
pattern caused by incidents, but this method could be poten-
tially used to detect cyberattacks and design defense 
strategies.

Threat Model

Before presenting the attack model, the threat model of a 
“connected” intersection is introduced and shown in Figure 1. 
Here, “connected” refers to that the intersection and vehicles 
are equipped with wireless communication devices (such as 
RSUs and OBUs) and can communicate with each other. 
Whereas exact deployments are different from location to 
location, we consider four typical elements in the traffic con-
trol system as possible attack surfaces:

•• Traffic signal controller: used to generate signal tim-
ing plans based on different control strategies, includ-
ing fixed-time, actuated and adaptive strategies. If 
traffic signals are under actuated or adaptive control, 
the controller utilizes data from vehicle detectors and 
RSUs to make control decisions.

•• Vehicle detectors: used to detect vehicles and generate 
service calls to signal controller. If vehicle detectors 
are configured as system detectors, they can also be 
used to provide volume and speed information.

•• OBUs in vehicles: used to generate vehicle-related 
information [e.g., basic safety messages (BSMs)] and 
broadcast the information to other vehicles and infra-
structure through over the air messages.

•• RSUs at intersections: used to broadcast infrastruc-
ture-related messages (e.g., Signal Phasing and 
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Timing (SPaT), and MAP) and receive vehicle infor-
mation. It provides input data (e.g., trajectory) to sig-
nal controller.

Based on the attack surfaces, two types of attacks are 
identified: direct attack and indirect attack. Direct attack 
refers to hacking into the signal controller and RSU and 
changing the signal timing plans directly. To launch direct 
attacks, an attacker needs physical access to the devices, 
which requires the attacker to open the signal controller cabi-
net and connect to the signal controller or the RSU using an 
Ethernet cable. Indirect attack refers to tampering with data 
from vehicle detectors and OBUs. Usually, only part of the 
input data can be falsified. Indirect attacks are more realistic 
to conduct. For example, spoofing into wireless vehicle 
detectors (2), or compromising OBUs in private vehicles. 
This paper focuses on indirect attacks under actuated and 
adaptive signal control. For actuated signal control, it is 
assumed that the signal controller utilizes vehicle detector 
data to perform actuation logic. Compromised vehicle detec-
tors may generate fake vehicle calls or cancel real vehicle 
calls. For adaptive signal control, it is assumed that the signal 
controller generates optimal signal plans based on BSM data 
from connected vehicles (CVs). Compromised OBUs may 
insert virtual vehicles on the roadway that don’t exist.

Traffic And Attack Models

To model the transportation network and quantify the conse-
quences of cyberattacks, a traffic-flow model is needed. The 
cell transmission model (CTM) (12, 13) is applied for two 
reasons. The CTM is a macroscopic traffic model that can be 
used to simulate network traffic with thousands of vehicles 
and attack scenarios in an efficient way. However, compared 

with other link-based flow and density models, CTM divides 
roadway into homogeneous segments, so that attacks can be 
launched at different locations (cells). This section first intro-
duces how to model actuated and adaptive signal control 
with CTM, and then presents the attack model.

Cell Transmission Model

CTM is a first-order approximation to LWR partial differen-
tial equation. The model assumes a triangular fundamental 
diagram and discretizes space into homogeneous cells and 
time into intervals. The cell length is equal to one-time inter-
val multiplied by free-flow speed defined in the fundamental 
diagram. CTM was originally developed to model highway 
traffic with a single entrance and exit (12). Later, the model 
was extended to represent network traffic, which allows it to 
model traffic flows at signalized intersections (13). A typical 
intersection in CTM is shown in Figure 2.

There are six types of cells: ordinary cell, merging cell, 
diverging cell, intersection cell, source cell, and sink cell. An 
ordinary cell has one preceding cell and one following cell, 
and has limited jam density and capacity. A merging cell has 
multiple preceding cells and one following cell, whereas a 
diverging cell has one preceding cell and multiple following 
cells. An intersection cell is similar to an ordinary cell, except 
that the flow is controlled by signal timing. Source cells and 
sink cells are responsible for generating and exiting vehicles. 
Due to space limitation, for the detailed formulation of CTM, 
refer to (12, 13).

The parameters of the CTM model in this paper are con-
figured as follows. Free-flow speed v is set to 54 km/h (15 
m/s). Backward shockwave speed w is set to 18 km/h (5 m/s). 
The maximum flow rate Q

m
 is set to 1800 vph and the cor-

responding critical density k
m
 is 33.33 vpkm and jam density 

Figure 1.  Intersection threat model.



4	 Transportation Research Record 2672(1)

k
j
 is 133.33 vpkm. Time step is set to 2 s, which is similar to 

the unit extension time in actuated control. As a result, the 
cell length is 30 m.

Model Actuated Signal Control with CTM.  To model actuated 
signal control with CTM, it is assumed that stop-bar detec-
tors are installed in intersection cells. The density ratio of 
cell i at time t can be calculated as d(i,t) = n(i,t)/N(i), where, 
n(i,t) is the number of vehicles in cell i at time t, and N(i) is 
the maximum number of vehicles in cell i. A critical density 
ratio d

c
 is defined for each intersection cell. The actuation 

logic is modeled based on d
c
. If the density ratio of intersec-

tion cell i at time t is less than the critical density ratio, then 
the current phase is terminated. Otherwise, extend green to 
the next time step.

To determine the best d
c
, a series of simulations with dif-

ferent values of d
c
 were run. Vehicle delay in cell i at time t is 

defined as the difference between n i t,( )  and the number of 
vehicles that can be discharged from the cell y i t( , ), because 
in CTM vehicles are either in free-flow speed (discharged to the 
following cell) or in queuing state (remained in current cell):

D n i t y i t
t T i I

= ( ) −
∈
∑∑



[ , ( , )]. 	 (1)

Results show that both lower and higher critical density 
ratios generate higher vehicle delay. Lower critical density 
ratios correspond to longer unit extension times whereas 
higher critical density ratios correspond to shorter unit exten-
sion times. The lowest delay occurs when d

c
 = 0.25, which is 

the critical density ratio (k
m
/k

j
 = 0.25) that separates free-

flow and congestion regime. For a vehicle actuation logic, it 
is appropriate to terminate green when the traffic state 
changes from congested to free flow. Therefore, d

c
 = 0.25 is 

used in numerical experiments.

Model Adaptive Signal Control with CTM.  The adaptive control 
algorithm is adapted from Sen and Head (14) and Feng et al. 
(15). Signal optimization is formulated as a dynamic pro-
gramming (DP) problem, in which each phase is considered 
as one stage in DP. A forward recursion is used to calculate 
performance measures and record optimal value function. 

Figure 2.  Intersection representation of CTM with attack spaces.
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The objective of the forward recursion is to choose an opti-
mal signal plan with minimal total vehicle delay. A backward 
recursion is used to retrieve the optimal solution.

The major difference of the algorithm applied in this 
study from the original algorithm is the performance func-
tion calculation. In previous DP formulations, the perfor-
mance measures were calculated from an arrival table that 
included estimated time of arrival and requested phase of 
each vehicle. However, CTM is a macroscopic model in 
which individual vehicle information is not available. To 
accurately calculate vehicle delay, a snapshot of the current 
network condition is taken at the beginning of each signal 
optimization. A parallel CTM simulation is executed based 
on the snapshot as an initial network condition to generate 
vehicle delays in each DP iteration.

The signal optimization algorithm plans as many stages 
(phases) as necessary until all vehicles in the snapshot pass 
the intersection cells. A rolling horizon scheme is adopted in 
which the optimization is performed at the beginning of each 
phase to include recent vehicle arrivals.

Attack Model

It is assumed that an attacker has limited resources. For 
example, the number of vehicle detectors that can be tam-
pered with, or the number of OBUs that can be compromised 
are limited. As a result, an attacker needs to choose a subset 
of locations or devices to maximize the profit, which is 
defined as maximization of network congestion. Formally, 
an attack A is defined as

A S n i t i S= ′( ) ∀ ∈{ }( ), , |

where S is the set of cells can potentially be under attack and 
′( )n i t,  is the number of vehicles in the cell under attack. 

Attacks are conducted through increasing or decreasing 
number of vehicles in a cell to mimic the change of stop-bar 
detector data and BSM distribution.

The attack model can be expressed as

max ( )
A
D A 	 (2)

s.t.

|S| ≤ B	 (3)

′( ) ≤ ( ) + ( )( ) ∀ ∈n i t n i t N i i S, min , , ,ε 	 (4)

′( ) ≥ ( ) −( ) ∀ ∈n i t n i t i S, max , , ,ε 0 	 (5)

The objective function means an attacker intends to maxi-
mize total vehicle delay. The first constraint indicates that the 
attacker is limited by budget B. The next two constraints rep-
resent the cautiousness of the attacker. The number of vehi-
cles can be changed, is limited by a threshold ε  and the 

physical limits of the road. If the data deviate a lot from the 
normal range, the attacker can be easily detected by the 
defender.

Numerical Examples

In this section, numerical results based on a hypothetical 
intersection, and insights on the effectiveness of the attacks 
are presented first. Then a real-world six-intersection corri-
dor in Ann Arbor, MI, is built to evaluate the attack models. 
All models are coded in Matlab.

A Hypothetical Intersection

The layout of a hypothetical intersection is shown in Figure 2. 
This is a typical four-leg intersection with all vehicle move-
ments. There are four signal phases: eastbound and west-
bound left turn (Phase 1), eastbound and westbound through 
(Phase 2), northbound and southbound left turn (Phase 3), 
and northbound and southbound through (Phase 4). Right-
turn vehicles are not restricted by traffic signals. The mini-
mum green time is set to five time steps (10 s) and the 
maximum green time is set to 20 steps (40 s) for each phase. 
The length of each approach is 10 cells (including the inter-
section cells), which is similar to the DSRC communication 
range. Traffic demand is set to 1,000 vph eastbound/west-
bound and 800 vph northbound/southbound. Vehicle arrivals 
follow the Poisson distribution. Turning ratios of each 
approach are the same and set to 0.2/0/7/0.1 for left turn, 
through, and right turn respectively. Simulation runs for 
1,000 time steps with 100 steps as a warm-up period.

Figure 3 shows the total delay and congestion pattern of east-
bound approach under actuated and adaptive control without 
attacks. This serves as the baseline for our comparison. Different 
colors represent different congestion levels, with green being no 
congestion and red being the severest congestion.

Attack Under Actuated Control.  Under actuated control, it is 
assumed that stop-bar detector data can be manipulated by 
the attacker so that the number of vehicles at intersection 
cells can be added (generate fake vehicle calls) or subtracted 
(cancel real vehicle calls). This results in two attack modes 
M = 2. To cause maximum damage, the attacker changes the 
detector data as much as possible, but within the threshold 
ε = 0.5. Then ′( )n i t,  is equal to either min , ,n i t N i( ) + ( )( )ε  
or max , ,n i t( ) −( )ε 0 . The budget B is set to 4 so that all 
phases can be attacked. To thoroughly analyze the effective-
ness of all attack scenarios, all the possibilities are enumer-
ated, which results in 80 different cases:

p

P
p pC M

=
∑ =
1 2 3 4

80
, , ,

* 	 (6)

where p is the signal phase index, and
P is the total number of phases.
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Figure 4 shows total vehicle delay and average total delay by 
the number of attacking phases. It can be seen from Figure 
4a that the effectiveness of different attacks varies a lot. 
Figure 4b shows the trend that attacks cause more vehicle 
delay when the number of attacking phases increases.

Figure 5 shows the comparison between the most effec-
tive attack and least effective attack at the eastbound 
approach. The most effective attack occurs when Phases 2, 3 
and 4 are under attack, with subtracting vehicles at intersec-
tion cells corresponding to Phase 2, and adding vehicles at 
intersection cells corresponding to Phases 3 and 4. The resul-
tant total delay can be six times higher than the baseline sce-
nario. The least effective attack occurs when attacking 
intersection cells related to Phases 1 and 3, with subtracting 
vehicles on both phases. The resultant total delay (36,441) is 
even smaller than the baseline scenario (38,396), which indi-
cates that the attack improves the system performance. The 
reason is that actuated control is not the optimal control strat-
egy. In certain cases, when a phase is green with lower 
demand while other phases are red with higher demand, it is 
more efficient to terminate the lower demand phase earlier to 
serve other phases. In this case, Phases 1 and 3 are left-turn 
phases with lower demand. Subtracting vehicles shortens 
both phases, which gives more time to higher demand Phases 
2 and 4.

Attack Under Adaptive Control.  Under adaptive control, the 
control algorithm utilizes data from CVs (e.g., BSMs) to 
generate optimal signal plans, so that every cell within the 
communication range can be potential targets. It is assumed 
that an attacker is only interested in manipulating the number 
of vehicles in ingress cells because vehicles in egress cells 
don’t affect the signal optimization. The attacker can add or 
subtract vehicles at a different number of approaches with 
the maximum number of attacking approaches A = 4. If the 
attacker decides to attack one approach, then all ingress cells 

on that approach are affected. The threshold ε  is also set to 
0.5. In total, 30 attack scenarios are generated.

Figure 6 shows the total vehicle delay of all attack scenarios 
and the average total delay by the number of attack approaches. 
Figure 6a compares the total delay of adding vehicles or sub-
tracting vehicles when attacking the same approach(es). In 
general, adding fake vehicles is more effective than removing 
real vehicles. Under current demand level (medium), green 
time wasted under longer cycle lengths can cause more delay 
than increased percentage of lost time with shorter cycle 
lengths. Figure 6b shows a similar pattern: the average total 
delay increases with the number of attack approaches.

Another finding is that attacks under adaptive control are 
far less effective than under actuated control with the same 
attack intensity ε. The most effective attack under adaptive 
control causes a 41,199s of total vehicle delay, which is only 
33.66% more than the baseline scenario. However, the most 
effective attack under actuated control generates a delay of 
six times more than the baseline scenario. Under adaptive 
control, all ingress cells (including intersection cells) are 
affected, whereas under actuated control, only intersection 
cells are affected. However, results suggest that adaptive 
control is more robust than actuated control. Becuase adap-
tive control tries to minimize total delay under the impact of 
attacks, based on inputs from all ingress cells, whereas actu-
ated control logic can only accommodate instantaneous 
arriving flow at intersection cells, but doesn’t have an overall 
picture of the current traffic condition.

Plymouth Road Corridor

Six consecutive intersections along Plymouth Road at Ann 
Arbor, MI, are modeled in CTM to evaluate the attack model 
under actuated control. To calibrate the model, video data 
were collected on May 16, 2017, from 4:00 to 5:00 p.m. 
Traffic volume of each approach, turning ratio of each 

Figure 3.  Vehicle delay comparison without attack: (a) actuated control (left) and (b) adaptive control (right).
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movement, and signal timing of each intersection were 
extracted from the video and used as input to the CTM 
model.

The corridor contains two T-shape intersections and four 
standard intersections. The standard intersections have four 
phases as defined in the previous section, whereas the T 

Figure 4.  Vehicle delay by attack scenarios and number of attacking phases (actuated control): (a) vehicle delay under all attack 
scenarios (top) and (b) average total vehicle delay by number of attacking phases (bottom).

Figure 5.  Comparison between the most effective attack and the least effective attack: (a) most effective attack (left) and (b) least 
effective attack (right).
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intersections have only two phases. Therefore, there are 20 
signal phases along the corridor. Each is identified as a 
potential attack location. The minimum and maximum green 
time for the through movement along Plymouth Road is set 
to 10 and 30 time steps, whereas the rest of the phases have 
5 and 15 time steps for minimum and maximum green time 
respectively. Each attack scenario lasts 2,100 time steps, 
which contains 300 time steps of warm-up (no attack) period 
and 1,800 time steps for performance evaluation (under 
attack). It is assumed that the attacker has a budget limit so 
that a maximum of four phases can be attacked. This results 
in a total number of 87,440 attack scenarios. Due to this large 
number, the attack scenarios are carried out by Flux, a Linux-
based high-performance computing cluster at the University 
of Michigan. A total of 20 central processing units cores are 
used to run the attack scenarios in parallel, and the total com-
putation time is about 14 h.

When only one phase is under attack, Scenario 7, which 
attacks Phase 2 (the through phase on the main arterial) at 
Intersection 2 by subtracting vehicles, has the highest delay. A 
snapshot of the corridor at the final simulation time step is 
shown in Figure 7. The intersection on the left is numbered as 
1, and the intersection on the right is numbered as 6. When 
under attack, the signal controller always terminates Phase 2 
on the minimum green time, which causes oversaturation for 
westbound through traffic and the vehicle queue starts to 

accumulate. The queue eventually propagates to Intersection 
3 and causes spillover. The spillover prevents westbound 
through traffic at Intersection 3 from entering the down-
stream link during green. The through traffic constantly calls 
for green extensions, which generates more delay for the 
cross-street traffic because of the long waiting time. The 
same situation happens when the queue propagates to 
Intersections 4 and 5. Notice that there is a long queue in the 
northbound approach of Intersection 5 because this approach 
has heavy left-turn traffic. The spillover on the main arterial 
prevents vehicles turning left from the cross street. The result 
indicates that Phase 2 at Intersection 2 is the critical phase 
along the corridor.

Figure 8 shows vehicle delay under all attack scenarios 
with a different number of attacking phases. The average 
total vehicle delay increases with the number of attacking 
phases, which is consistent with previous results. If all four 
phases are under attack, the most effective way is to subtract 
vehicles from Phase 2 (through movement on Plymouth 
Road) at Intersection 2, and Phase 3 (left-turn phase on cross 
street) at Intersection 6, at the same time adding vehicles to 
Phase 3 at Intersection 2, and Phase 2 at Intersection 6.

Although trying all attack scenarios guarantees the optimal 
solution, it is unrealistic for an attacker to enumerate all the 
possibilities and find the best strategy in real time. Thus, a 
simple greedy attack policy is implemented to find an 

Figure 6.  Vehicle delay by attack scenarios and number of attacking approaches (adaptive control): (a) vehicle delay under all attack 
scenarios (top) and (b) average total vehicle delay by number of attacking approaches (bottom).
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effective attack strategy. The attacker starts with attacking 
one phase and enumerates all the scenarios to find the critical 
phase that causes the highest delay. Given the previous attack-
ing phase, the attacker adds another phase and again 

enumerates all possibilities to find the second critical phase. 
This process is repeated until the budget (maximum number 
of phases) limit is reached. Take Plymouth corridor as an 
example: the total number of scenarios needed to be 

Figure 7.  Snapshot of the corridor at the final simulation step.

Figure 8.  Vehicle delay under all attack scenarios.
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simulated by the greedy attack policy is 40 + 38 + 36 + 34 = 
148, assuming the budget is four phases. This number is sig-
nificantly smaller than the total number of scenarios by enu-
meration. The maximum delay generated by the greedy 
attack policy is shown in Figure 9, as well as the delay from 
optimal attack strategy by enumeration. When only one or 
two phases are under attack, the attack strategies found by the 
greedy attack policy are the same as the optimal attack strat-
egy. When more phases are under attack, the greedy attack 
policy can still find an attack strategy that is very close to the 
optimal solution, within much less time.

Conclusion and Further Research

This paper investigated the vulnerabilities of traffic control 
systems under cyberattacks. It focused on attacking actuated 
and adaptive signal control systems by sending falsified data 
to influence signal timing plan generation. The primary goal 
of an attacker was to maximize networkwide vehicle delay, 
with constraints such as budget and attack intensity. Results 
from a hypothetical intersection showed that some attacks 
could be very effective and cause severe congestion, whereas 
others may even reduce the total delay. Results from a real-
world corridor showed that critical intersections, which had 
a higher impact on congestion, can be identified by analyz-
ing the attack locations. Identification of critical intersec-
tions would be helpful in designing a more resilient 
transportation network.

To launch attacks, an attacker needs to collect neces-
sary information about the signal control system, such as 
phase sequence, minimum green time and maximum green 
time, and so forth. However, this paper focuses mainly on 
the consequences of the traffic systems under cyberat-
tacks. The authors will explore other steps in the 

end-to-end exploitation, for example, reconnaissance, in 
future work. Moreover, the authors will extend the current 
results toward two directions. First, besides maximizing 
total delay, attackers may have other objectives, such as 
obtaining personal gain (e.g., minimizing personal delay) 
or creating safety risks (e.g., causing more vehicles in 
dilemma zone). With different objectives, the attack strat-
egies can be different. Second, it is necessary to consider 
the cybersecurity problem from a defender’s point of 
view. Defense models need to be developed to detect 
attacks and protect the transportation infrastructure.
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