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ABSTRACT
The emerging Connected Vehicle (CV) technology enables vehi-
cles to wirelessly exchange safety and mobility information (e.g.,
location and speed) with traffic infrastructure and other vehicles.
Existing CV applications heavily rely on sensor inputs (e.g., GPS).
However, previous work has shown that the attacker can cause se-
vere congestion or increased safety risks by compromising vehicles
and broadcasting falsified sensor data. Thus, it is highly desirable
to ensure the integrity of sensor data.

In this paper, to prevent compromised vehicles from sending
falsified sensor data, we propose a system CVShield, which utilizes
the recent advances in hardware-assisted security (e.g., ARM Trust-
Zone). CVShield can ensure the integrity of the sensor data from
their reading to their transmission at the vehicle side. In general,
we relocate all codes that are related to sensor data reading, pro-
cessing, encapsulation, and transmission from the rich execution
environment (REE) into the trusted execution environment (TEE).
However, manually extracting code sections is laborious and error-
prone. Also, we should minimize the size of the trusted computing
base (TCB) in TEE to reduce the attack surface. To achieve these
goals, we propose to leverage program slicing to automatically
extract code sections and eliminating irrelevant codes in large code-
bases. Our initial results demonstrate that CVShield can support
GPS data reading, and our optimization can eliminate the time
overhead introduced by context switches of TrustZone.
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1 INTRODUCTION
With the emerging Connected Vehicle (CV) technology [19], Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless com-
munication enables vehicles to exchange important safety and
mobility information with other entities in real time. While CV
technology can greatly benefit transportation mobility and safety,
such dramatically increased connectivity inevitably increases the
attack surface of CV devices (e.g., vehicles, infrastructures). For
example, it is easy for the attacker to send falsified data, interfering
with the CV ecosystem. Chen et al. [7] have demonstrated that, by
sending falsified location and speed data, one single attack vehicle
can create massive traffic congestion.

Since one malicious sender can reach numerous receivers, it
is challenging to ensure that all these receivers have proper and
timely protections on the spoofing attack. In a CV environment,
the diversity of the receivers (e.g., vehicles, infrastructures, and
pedestrians) further increases the challenges. For example, some CV
receivers (e.g., pedestrians) may not have the computation power
to deploy the anomaly detection system. Thus, to fundamentally
solve the problem, it is necessary to prevent data spoofing from the
sources: malicious vehicles, even if the system is compromised.

To prevent data spoofing at the vehicle side, our goal is to en-
sure the integrity of the critical CV data (e.g., location and speed)
from the incoming sensor reading to the outgoing transmission
at the On-Board Unit (OBU). However, the challenge is to provide
such integrity guarantee in the presence of potential software-
layer compromise in in-vehicle systems. In-vehicle systems are
known to have a large attack surface, including a broad range of
Electronic Control Units (ECUS) (e.g., CD players, Bluetooth, and
cellular radio) [6] and more recently malware in the IVI (In-Vehicle
Infotainment) system [18]. More seriously, vehicle owners can com-
promise their own vehicles. Thus, as long as in-vehicle systems are
not vulnerability-free, such compromises are always achievable in
practice.
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To address this challenge, we design and implement CVShield
that leverages the recent advances in hardware-assisted security
to provide strong security guarantee. More specifically, CVShield
uses a hardware feature called Trusted Execution Environment
(TEE) (e.g., ARM TrustZone [3]). With this hardware feature, the
execution environment is split at the processor level to a normal
world and a secure world. The normal world runs a commodity
OS, which provides a Rich Execution Environment (REE), and is
completely isolated from the secure world running the TEE. Thus,
security-critical data and code can be put in the TEE so that their
confidentiality and integrity can be guaranteed even if the com-
modity OS is compromised. Such isolation can effectively reduce
the attack surface from the whole OS to the code and data residing
in TEE, making it much harder to compromise. Also, since the size
of the code and data in TEE is much smaller, it is easier to ensure
its correctness through formal verification or manual review.

CVShield can protect the pipeline of sensor data (1) reading, (2)
processing, (3) encapsulation, and (4) transmission in CV (§4). For
(1) and (4), CVShield first disables the normal world from accessing
peripherals directly, as TEE can control all memory/peripheral ac-
cesses and interrupts received by the normal world. Then, CVShield
relocates drivers of peripherals into TEE, which include sensors
and CV network interface, so that only TEE is capable of interact-
ing with security-critical peripherals. (2) and (3) are often handled
by user-space applications. However, the codebases of these ap-
plications (e.g., gpsd [11]) are usually large, so putting them as a
whole into TEE will significantly increase the TCB size. Therefore,
CVShield analyzes these applications only to extract necessary code
sections. Since manual extraction of security-critical code sections
is laborious and error-prone, we propose to utilize the idea of pro-
gram slicing [20] to extract code sections of sensor data processing
automatically. Apart from protecting the pipeline, CVShield also
exposes trusted APIs to the normal world for sensor information
reading and CV packet transmission, as other applications in the
normal world should be able to retrieve sensor data and exchange
CV packets. For example, a trusted GPS API will provide the latest
location information. For the overall design, we should not violate
the real-time constraints of CV [12], which requires the vehicle to
broadcast Basic Safety Messages (BSMs) every 100 ms. Overall, our
research goals are summarized as follows:

• Design and implement a TEE-based system CVShield to pro-
tect CV sensor data integrity and prevent CV spoofing attack
at the vehicle side.

• Leverage program slicing to reduce TCB size and extract
code sections on sensor data processing automatically.

• Optimize the overall system performance to meet the real-
time requirement of CV.

2 BACKGROUND
In this section, we introduce the necessary technical background
about CV technology [19] and ARM TrustZone [3].

2.1 CV Technology
CV network, based on Dedicated Short Range Communications
(DSRC), provides connectivity in support of mobile and stationary
CV applications, which offers users (e.g., drivers) greater situational

awareness of events, potential threats, and imminent hazards, in-
tending to enhance the safety, mobility, and convenience of every-
day transportation [13]. The Basic Safety Message (BSM) defined in
SAE J2735 [9] is used by a variety of applications, such as Forward
Collision Warning (FCW), Cooperative Adaptive Cruise Control
(CACC), to exchange safety data regarding vehicle state (e.g., loca-
tion and speed). The transmission rate of BSM is typically 10 times
per second [12].

In the CV network, there are two basic types of devices: (1) On-
Board Unit (OBU) in a roaming vehicle and (2) stationary Road-Side
Unit (RSU) along the road. Usually, these devices are ARM embed-
ded devices and install Linux operating systems [8]. As shown in
Figure ??, the OBU is mounted in a roaming vehicle and connected
with in-vehicle sensors like GPS and the in-vehicle network such
as Controller Area Network (CAN). The RSU is a stationary unit
along the road and connected with larger infrastructures or core
networks such as the Internet. Roaming vehicles with OBUs in-
stalled can not only directly communicate with each other (i.e.,
V2V) but also communicate with RSUs (i.e., V2I), collectively called
Vehicle-to-Everything (V2X) communication.

2.2 ARM TrustZone
ARMTrustZone is a hardware-enforced isolation technique enabled
on ARM Cortex processors [3]. As shown in Figure 1, It creates
two isolated execution environments: a trusted execution environ-
ment (TEE) and a rich execution environment (REE). TEE contains
privileged permissions and can access to reserved memory regions.
The TrustZone Address Space Controller (TZASC) [1] provided by
ARM TrustZone can partition portions of memory such that they
are available only to the secure world. Besides, i.MX provides a
TrustZone compatible component, the Central Security Unit (CSU),
that extends the secure/non-secure access permission to peripher-
als. The CSU can be used to enable secure-only access for different
peripherals. Any invalid accesses will result in an asynchronous
external abort exception, similar to a device interrupt. With the
present of TEE, asynchronous hardware interrupts can also be
routed directly into the secure world, which allows sensors and CV
network interface to map all their interrupts to the secure world.

Regardless of privilege, the normal world processes cannot access
the instructions andmemory in the secureworld. In order to execute
secure instructions, the normal world must trigger context switch
to the secure world using a special smc instruction, which generates
a synchronous exception and suspends execution in the normal
world [2]. The secure monitor handles the exception; then, the
secure world is activated for execution.
OP-TEE. OP-TEE [16] is an open source implementation of TEE,
which usually works with a non-secure Linux kernel running on
ARM.OP-TEE implements TEE Internal Core API v1.1.x which is the
API exposed to Trusted Applications, and the TEE Client API v1.0,
which is the API describing how to communicate with a TEE. Those
APIs are defined in the GlobalPlatform API specifications [10].

3 THREAT MODEL
In this paper, we trust the device hardware and exclude the threat
of hardware attacks (e.g., GPS spoofing [21]). Both secure and non-
secure kernels should be able to correctly load the properties of



hardware devices (e.g., physical addresses and buses, interrupts,
etc.); otherwise, neither kernel can exchange data with sensors.

Following existing works [7, 17], to ensure the functionality of
TEE, we assume that the boot ROM and boot loader are trusted so
that the secure kernel can be faithfully loaded. On the other hand,
the non-secure OS, system services, and all user-space applications
in the normal world may be malicious. This is possible, because
previous works [6, 14] have already shown that in-vehicle systems
can be compromised physically or remotely. Note that attacks that
aim at compromising TCB (i.e., all code that runs in TEE) are out
of the scope of this paper.

4 PROPOSED APPROACH
As presented in § 1, we aim at protecting sensor data integrity and
prevent spoofing attacks at the vehicle side, by relocating code
sections of sensor data reading, processing, encapsulation, and
transmission into TEE. The following are design goals of CVShield:

(1) Data correctness: the normal world should not be able to
directly access security-critical peripherals (e.g., GPS, CV
network interface).

(2) Functionality: applications in the normal world should be
able to access sensor information (e.g., GPS location, vehicle
speed) and transmit CV packets.

(3) Low complexity: irrelevant code sections should be removed
from TEE in order to reduce TCB size.

(4) Usability: code extraction and relocation should be auto-
mated and should try to exclude human efforts, which may
be laborious and error-prone.

Besides four design goals, we should consider the real-time con-
straints of the CV network while implementing CVShield.
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Figure 1: CVShield extends the trust boundary to protect
code sections related to sensor data in green boxes.

To achieve Goal (1), we first utilize a TrustZone-specific feature
to configure access permissions of security-critical peripherals. In
§ 2.2, wemention that i.MX products are equipped with a TrustZone
compatible component, CSU. Although CVShield prototype is built
on i.MX6 SoC, if other SoCs provide similar security functionality,
CVShield is general and can be ported to other SoCs. Then, to
allow TEE to exchange data with peripherals, we relocate necessary
device drivers into TEE, such as the serial device driver required
by GPS. After that, by programming the ARM General Interrupt
Controller (GIC),CVShield registers interrupt handlers for protected
peripherals. When new data arrives at the peripherals, only the
secure world can receive the interrupt and retrieve the data.

For Goal (2), we first need to port code sections of sensor data
processing and encapsulation into TEE. Then, we expose trusted
APIs to the normal world, so applications in the normal world
can still retrieve sensor information (e.g., location and speed) and
transmit CV packets. In this case, CVShield can understand the raw
sensor data and extract the sensor information; also, it can validate
outgoing CV packets before the transmission. However, unlike de-
vice drivers, programs of sensor data processing and encapsulation
usually have large codebases and contain irrelevant code sections,
which may violate Goal (3). For example, gpsd [11] is a commonly
used daemon that receives data from a GPS receiver and provides
the data back to multiple user-space applications. Parsing GPS data
and generating location reports is just a small portion of it. Thus, we
propose to utilize program slicing [20] to remove irrelevant parts.
Static program slicing takes the source code and a slicing criterion
(e.g., a call-site of some function) as input. It then performs static
analysis to generate a program slice that may affect the values of
the slicing criterion. For instance, the potential slicing criterion for
gpsd can be the function of generating location reports. Also, pro-
gram slicing can help us reduce human efforts in code extraction,
so Goal (4) can be guaranteed.

To ensure the real-time requirement in the CV environment, for
each component in Figure 1, we break down the time overhead and
optimize the performance case by case. In § 5.2, we show our efforts
on optimizing sensor data reading, which can eliminate overhead
introduced by context switches between the normal world and the
secure world.

5 INITIAL RESULTS
In this section, we present our current progress on implementing
CVShield. Also, we conduct experiments to evaluate the perfor-
mance on the current implementation.

5.1 Testbed Setup
Our testbed is based on the Boundary Devices Nitrogen6Q develop-
ment board [5], namely the SABRE Lite board. The overall hardware
of this board is similar to commercial OBUs [8]. The board has 1GB
of memory and contains an i.MX6 SoC with a quad-core ARM
Cortex-A9 processor with TrustZone security extensions. We use
Linux kernel version 4.9.128 [4], provided by Boundary Devices, as
the non-secure kernel. The secure kernel is based on OP-TEE [15].

5.2 Current Implementation and Performance
As an initial step, our current implementation is at the stage of
protecting sensor data reading. By modifying OP-TEE, we integrate
CSU driver and enable TZASC-380 driver. We reuse imx_uart dri-
ver in OP-TEE codebase for GPS I/O, which provides read/write
capabilities of the serial device. Since the serial device transmits
data byte by byte, we further wrap it up to provide C-style I/O
API. To understand the performance of sensor reading, we expose
read_s API to the normal world and measure its performance with
the baud rate of 115200. In the normal world, we develop a small test
program that repeatedly calls the exposed API. For different sizes
of data, the test program invokes the read function 1000 times. We
measure the execution time of each function call and calculates the
average value. Table 1 summarizes the results on exposed APIs. For



a real GPS device, the polling interval is about 0.044 seconds, and
the average size of fetched data is around 7.91 bytes. Our current
implementation can handle real GPS data and only takes around
0.686 ms to read 7.91 bytes of data for each polling.

Table 1: Performance of exposed serial device I/O APIs.

Size (bytes) 10 100 1000 10000
read_s (ms) 0.87 8.79 87.98 880.02
read_mem (ms) 0.79 8.71 87.91 879.90

Optimization. We analyze the execution time of the exposed API
(see Figure 2) and propose a passive communication mechanism
based on the shared memory, because we want to reduce introduced
overhead as much as possible. In comparison with the normal case
(Figure 2a), the extra time overhead in Figure 2b comes from (1)
context switches (around 0.041 ms) and (2) memory copy between
the normal world and the secure world. In § 2, we mention that
the context switch (i.e., smc instruction) generates a synchronous
exception and suspends the execution in the normal world. To avoid
synchronous context switches, we design a passive communication
mechanism that utilizes the asynchronous hardware interrupts.
As shown in Figure 2c, the secure kernel handles interrupts from
hardware devices using an idle CPU core. Then, the secure kernel
writes data into a read-only memory chunk that is shared with the
normal world. In this case, the applications do not need to trigger
context switches, but only monitor the shared memory (e.g., an
array) and process the latest data accordingly. Based on this design,
we implement a sensor data reading API read_mem. By comparing
two rows in Table 1, we confirm that our optimization can reduce
the time overhead caused by context switches.

Apps

Non-sec. 
kernel

Device

read()

(a) Normal

Apps

Non-sec. 
kernel

Secure 
Kernel

Device

read_s()

Context 
switch

Polling

(b) w/o Optimization

Apps

Secure 
Kernel

Device

read_mem()

Interrupts

Shared 
memory

(c) w/ Optimization

Figure 2: Optimization of sensor data reading. (a) does not in-
corporate TEE, while (b) shows a trusted API of sensor read-
ing. (c) avoids context switches and eliminates the time over-
head via shared memory.

6 CONCLUSION AND FUTURE PLANS
Rapid advances in CV technology have increased the probability
of cyberattacks (e.g., spoofing attacks) [7]. In this position paper,
we propose a TEE-based system CVShield to protect sensor data
integrity. Overall, CVShield relocates security-critical code sections
of sensor data reading, processing, encapsulation, and transmission
into TEE so that the malicious attacker in the normal world cannot
modify and transmit falsified data. To automate the security-critical
code extraction andminimize TCB size, we utilize program slicing to
remove code sections that are irrelevant to sensor data processing.
To ensure the functionalities of normal-world applications, we

expose trusted services to provide the latest sensor information and
CV packet transmission capability with the normal world. Also, we
consider optimization during the design and development phases
to ensure the efficiency of CVShield.

For future plans to finalize CVShield, we would like to:
(1) Incorporate more peripherals (e.g., CAN bus, CV network in-

terface, Camera, LiDAR) into TEE and present experimental
results to prove the effectiveness of the defense scheme.

(2) Explore whether program slicing can be extended to code
sections of sensor reading and transmission to further reduce
human efforts on porting device drivers, which requires the
program analysis on kernel modules.

(3) Evaluate end-to-end performance on the whole system to
understand the bottleneck and optimize the system to meet
the real-time constraints in the CV network.
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