Future Generation Computer Systems 29 (2013) 1838-1850

Future Generation Computer Systems

B —

Contents lists available at SciVerse ScienceDirect o
FiGICIS!

journal homepage: www.elsevier.com/locate/fgcs ==

A confidence-based filtering method for DDoS attack defense in

cloud environment

Wanchun Dou®*, Qi Chen?, Jinjun Chen b

2 State Key Laboratory for Novel Software Technology, Nanjing University Nanjing, 210093, PR China
b School of System, Management and Leadership, University of Technology, Sydney, Australia

ARTICLE INFO

ABSTRACT

Article history:

Received 24 August 2012

Received in revised form

4 December 2012

Accepted 8 December 2012
Available online 27 December 2012

Keywords:

Distributed denial-of-service attack
Filtering

Confidence

Distributed Denial-of-Service attack (DDoS) is a major threat for cloud environment. Traditional defending
approaches cannot be easily applied in cloud security due to their relatively low efficiency, large storage, to
name a few. In view of this challenge, a Confidence-Based Filtering method, named CBF, is investigated for
cloud computing environment, in this paper. Concretely speaking, the method is deployed by two periods,
i.e., non-attack period and attack period. More specially, legitimate packets are collected in the non-attack
period, for extracting attribute pairs to generate a nominal profile. With the nominal profile, the CBF
method is promoted by calculating the score of a particular packet in the attack period, to determine
whether to discard it or not. At last, extensive simulations are conducted to evaluate the feasibility
of the CBF method. The result shows that CBF has a high scoring speed, a small storage requirement,
and an acceptable filtering accuracy. It specifically satisfies the real-time filtering requirements in cloud

Correlation characteristic
Network security
Cloud environment

environment.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Current status of related research

Cloud computing is a long-held dream of computing as a utility.
As discussed in [1], it has the potential to transform a large part of
the IT industry, making software even more attractive as a service
and shaping the way IT hardware is designed and purchased.
Nowadays, it is evolving as a key computing platform for sharing
resources including infrastructure resources, software resources,
application resources and business processes [2]. However, with
the large amount of resources online, these cloud systems are
facing severe security problems.

Distributed Denial-of-Service (DDoS) attack can be considered
as a major threat to cloud computing. The attackers often compro-
mise vulnerable hosts, called zombies, on the network and install
attack tools on them. These zombies together form a botnet and
will generate large amount of distributed attack packets targeting
at the victims under the control of the attackers. This attack will
block the legitimate access to the servers, exhaust their resources
such as network bandwidth, computing power and even lead to
great financial losses as shown in [3].

In recent years, many researches on DDoS defense have been
carried out and many successful schemes have been put forward.

* Corresponding author.
E-mail address: douwc@nju.edu.cn (W. Dou).

0167-739X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.12.011

There are approximately three major branches of the research:
attack detection [4-6], attack filtering [7-12], and attack trace-
back [13-15].

As mentioned in [7], the branch of attack filtering can be roughly
categorized into three areas based on the point of protection:
source-initiated, path-based and victim-initiated. The method
proposed in this article is in victim-initiated area, which filters
incoming attack packets from victim side. In this area of research,
a number of brilliant approaches have already been proposed.

PacketScore [7] generates value distributions of some attributes
in the TCP and IP headers, and then uses Bayes’ Theorem to score
packets. PacketScore has a pretty high filtering accuracy and it is
also easily deployed. But since its scoring and discarding are related
to attack intensity, it is not suitable for handling large amounts of
attack traffic. Also it has some costly operations in scoring, which
leads to low processing efficiency in real-time filtering.

ALPi [8] is an improvement of PacketScore. Two schemes, LB
and AV, which use leaky buckets and value variances of attributes
respectively are proposed and are evaluated by comparison with
PacketScore. Hop-Count Filtering (HCF) [9] uses the relationship of
source IP address and TTL value to carry out filtering. After building
an IP to hop-count mapping, it can detect and discard spoofed IP
packets with about 90% accuracy. It is effective and easily deployed
but it is vulnerable to distributed attacks because of its assumption
about spoofed IP traffic.

Our method aims at mining the correlation characteristics,
which refer to some simultaneously-appeared characteristics in

http://dx.doi.org/10.1016/j.future.2012.12.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:douwc@nju.edu.cn
http://dx.doi.org/10.1016/j.future.2012.12.011

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850 1839

the legitimate packets. [16,17] use the document popularity and
user browsing behaviors to detect attack packets, which reflect
some correlation characteristics between packets in a flow. But
these characteristics are mainly in the application layer, making
these methods mostly effective for application layer DDoS.

1.2. Motivation

Considering more and more resources are being shared in
cloud platforms, especially in an elastic cloud environment which
could nearly provide unlimited capabilities [18], the effect of DDoS
attacks can be not only much more powerful and influential, but
also in a much wider range. In view of this challenge, this paper
aims at proposing a method for cloud security, which aims to be
much quicker in responding, easier to be widely deployed and
more powerful in ability than before.

1.3. The organization of the paper

This paper is organized as follows: In Section 2, the concept
of correlation and its unique characteristic is introduced, which
forms the basis of our method. In Section 3, we first introduce some
preliminary knowledge, and then give a scenario of our method,
Confidence-Based Filtering. In the next two sections, we focus on
the details of the behaviors of our method in two periods, the
non-attack and the attack period respectively. In Section 6, the
performance of our method under different types of DDoS attacks
are evaluated based on real world traffic. Section 7 discusses some
important issues about the ability of the method, and at the end
Section 8 gives a brief conclusion and the direction of future work.

2. Correlation characteristic
2.1. Definition of correlation characteristic

In order to discriminate attack packets from legitimate ones, the
method proposed in this paper utilizes correlation characteristics.
Our method defines the concept of correlation as follows,

Definition 1 (Correlation). Correlation is the situation that some
interior events in the packet flows take place at the same time.

Take the correlation in user browsing behaviors as an example.
For NBA fans that live in Los Angeles, the majority of them tend to
love the team Los Angeles Lakers. So when they log onto the web-
site of ESPN, the servers of ESPN will receive more packets which
request the Lakers webpage and have the IP addresses from the
area around Los Angeles as the same time. So this is a correlation
between webpage requests and the source IP addresses.

With the definition of correlation, we can define correlation
characteristic as follows,

Definition 2 (Correlation Characteristic). Correlation characteristic
is the distinguishing feature of a correlation situation.

In our method, the correlation situations will be quantized to
values, so the corresponding correlation characteristics are their
value distributions.

2.2. Utilizing correlation characteristic

Like user browsing behaviors mentioned above, there are a
large amount of correlation characteristics and some of them can
be very complicated. These kinds of correlation characteristics are
different for different user, server and application, which will be
quite hard for attackers to notice and mimic. Considering that,
using this kind of characteristics to judge the legitimacy of packets
can be feasible, which is the main idea of this paper.

More specifically, our method focuses the probe on transport
and network layers. The correlation characteristics that we mine
in these two layers are the co-appearances between attributes
in IP header and TCP header. These attribute pair characteristics
are distinctive because certain characteristics of the operating
system, network structure and even hobbies of users can affect
the values of these attributes, and thus make some attribute pairs
related. In [9], the hop-count filtering constructs an IP2HC table
which maps source IP addresses to TTL values, and filters attack
packets by checking the validation of TTL according to the source
IP address. It can be seen that the key point of its success is
utilizing the correlation characteristics between TTL and source IP
address. In view of this, it is reasonable to generalize this idea to
all correlation characteristics between attributes in IP header and
TCP header.

So the basic assumption of this idea is that there are indeed
some unique correlation characteristics for all attribute pairs in
IP header and TCP header in legitimate packet flows. To vali-
date this assumption, we extract consecutive 10° packets from
samplepoint-B in the MAWI Traffic Archive [19]. We count the
occurrences of the values of 15 attribute pairs in IP header and TCP
header, and study their value distributions. In Fig. 1, we show four
representative ones among them, in (a)-(d) respectively. All of the
attribute values we select are 16-bits (for 32-bits attributes like IP
addresses, we only use the first 16-bits of them), and the x-axis in
Fig. 1 is the combined values of the attribute pairs, which are 32-
bits. The y-axis is the number of appearances of the attribute value
pairs.

As shown in Fig. 1, all 4 types of value distribution are much
different from common ones such as normal distribution, uniform
distribution, Poisson distribution, etc. They tend to have peaks in
some certain attribute value pairs, and have nearly no occurrences
in the other value pairs. This indicates that for each attribute pair,
some values appear much more frequently than the other ones, and
this unusual distribution is unlikely to be mimicked if the attackers
do not own as much packet flow information as the victim.

Next we will test whether these correlation characteristics are
unique for different end systems. If they are unique enough, the
attackers are unlikely to build a universal attack flow which can
break down all end systems which use our method. We extract
consecutive 10° packets from another samplepoint in the MAWI
Traffic Archive [19], samplepoint-A, to do the same experiment as
the one with samplepoint-B described above. In (e)-(h) of Fig. 1,
we present value distributions of the same attribute pairs as the
ones in (a)—(d).

From comparisons between (a) and (e), between (b) and (f), and
between (c) and (g), the value distributions of these three attribute
pairs are quite different for samplepoint-A and samplepoint-B.
This indicates that most value distributions of attribute pairs can
be viewed as unique characteristics for each end system. The
only exception happens in the comparison between (d) and (h),
which shows that the value distributions of source IP address
and destination port number pair are similar to each other for
samplepoint-A and samplepoint-B. This reminds us that value
distributions for few attribute pair may not be unique. Considering
that, all attribute pairs should be taken into consideration and be
analyzed in a comprehensive way if we want to mine them as
unique characteristics for end systems.

2.3. Conclusion

There are some unique correlation characteristics between
attributes in IP header and TCP header in legitimate packet flows
for each end system. In view of this, if attribute pair value
distributions of the attack flows are not similar to those of victim’s,

1840

L\.\LI,| . ; . .

1 2 3 4 5 6 7

Value of (Packet Length, Dst. Port No.) Pair in Samplepoint-B , 154

L sha L L

05 1 15 2 25
Walue of (TTL Protocol Type) Pair in Samplepoint-B8

a

x 10

12000 -

10000 -

Number

4000 +

i L L L
1 2 3 4 5 6

Value of (Packet Length, Dst. Port No.) Pair in Samplepoint-A x10°

Nurber

05

2000 4000 6000 8000 10000 12000 14000 16000
Value of (TTL Protocol Type) Pair in Samplepoint-A

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

b

10000
9000
8000

7000

Nurnber

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000
Value of (TCP Flag,Source IP Addr.) Pair in Samplepoint-B

2
£ 4t
=z
3t
2f
1t
%‘2 04 06 08 1 12 14 16 18 2
Value of (Source IP Addr.,Dst. Port No.) Pair in Samplepoint-B x10°
f x10°
35
3
25
w il
a
[
5
x15
1
05
N ali il .
500 1000 1500 2000 2500
Walue of (TCP Flag Source IP Addr) Pair in Samplepoint-A
h x 10"
9
8

Number

ek g pEmp g plls g
02 04 06 08 1 12 14 16 18 2
Value of (Source IP Addr Dst. Port No) Pair in Samplepoint-A 1#

Fig. 1. Value distributions of 4 types of attribute pairs in IP header and TCP header from samplepoint A and B. (a), (e) are the value distribution of the total packet length
and destination port number pair from samplepoint A and B respectively; (b), (f) are the value distribution of TCP flag and source IP address pair from samplepoint A and B
respectively; (c), (g) are the value distribution of TTL and protocol type pair from samplepoint A and B respectively; (d), (h) are the value distribution of source IP address

and destination port number pair from samplepoint A and B respectively.

we can utilize these correlation characteristics in our method to
distinguish legitimate packets from attacker ones.

Fortunately, to the best of our knowledge, most DDoS attacks
do not notice and mimic the value distributions of attributes in

IP and TCP headers when generating packets. In fact, they do not
have any chance to mimic most of them, since they need to fill
many attribute values to meet their own attack requirements. For
example, as shown in [3], attackers need to fix the protocol type

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850 1841

Table 1
Key terms appeared in this paper.
Terms Description
n The number of the attributes under consideration in the method
A; The i-th attribute in the packet, (1 <i <n)
m; The number of values which attribute A; can have
ajj The j-th value of attribute A;, (1 <j < m;)
t A time interval in packet flows
Ny The total number of packets in the packet flow in one time
interval t

N(A; = a;;) The number of packets whose attribute A; has value g;; in this
packet flow in one time interval t

N(A: = a,, The number of packets whose attribute A, has value a; ,,

A; = asy) attribute A has value q; , in this packet flow in one time
interval t

p A packet in the packet flows

p(i) The value of attribute A; in packet p

values when launching protocol-based attacks such as SYN flood,
CMP flood, HTTP flood, etc. When in need of spoofing IP addresses
and port numbers, they simply use random values. Considering
that, the attribute pairs’ value distributions in attack flows are
not likely to resemble those in legitimate flows. It makes our idea
feasible enough.

In the rest of this paper, we will design a feasible and effective
filtering method, which can leverage the correlation characteristics
of attribute pairs in IP header and TCP header to defend against
DDosS Attack.

3. Confidence-based filtering method
3.1. Preliminary knowledge

3.1.1. Key terms

To helpillustrate our method, some key terms used in this paper
are summarized in Table 1.

3.1.2. Confidence and CBF score

In this part, we will first introduce two concepts: the one named
confidence for measuring correlation characteristics, and the one
named CBF score for judging the legitimacy of packets. With the
concept of CBF score, we will define the CBF legitimacy of a packet.

The concept of confidence reflects how much trust we can put
on a correlation characteristic between attributes. Similar to the
concept of confidence defined in association rules in a data mining
area [20], in this paper we define it formally as follows,

Definition 3 (Confidence). Confidence is the frequency of appear-
ances of attributes in the packet flows. The confidences (Conf for
short) for single attributes and attribute pairs are calculated as (1)
and (2),

Confidence for single attributes:

N A =da;;
COHf(A,‘ = ai,j) = M, (1)
Ny
wherei=1,2,3,...,n,j=1,2,3,...,m,
Confidence for attribute pairs:
N(A;, = ai, j,, A, = ai, j,)
Conf (Ai, = aj, j,, Ai, = @i, j,) = & DL 2220 (2)

Ny
wherei; = 1,2,3,...,n,i, = 1,2,3,...,n,j; = 1,2,3,...,
my,j»=1,2,3,...,m.

In(1)and (2), the meanings of the variables are listed in Table 1.

Indicated by Definition 3, the more times an attribute pair
appears in the legitimate packet flows, the higher the confidence
value of this pair we can get. The concept of confidence is the basis
of the calculation of CBF score and the whole filtering process, so
we name our method Confidence-Based Filtering, CBF for short.

With confidence values of attribute value pairs, the legitimacy
criterion of a packet is defined as follows,

Definition 4 (CBF Score). CBF score for a packet is the weighted
average of the confidence of the attribute value pairs in it. The CBF
score for a packet p is calculated as (3):

d
Z W(Ak] s Akz)conf(Ak] = p(k1)’ Akz = p(kz))
Score(p) = !

(3)

d
Z W(Ak] ’ A’(z)
k=1

In this definition, d is the total number of the attribute pairs
involved in the calculation of score. Ay, and Ay, are two attributes
in the k-th attribute pair. W (Ay,, Ay,) is the weight for the k-th
attribute pair. Considering the range of each confidence value is
in [0, 1], the range of Score(p) is also in [0, 1]. Choosing weighted
average confidence values of all attribute pairs can decrease the
effect of the exception cases described in Section 2.

Thus, in order to calculate CBF scores of packets, we need to
prepare the confidence of each attribute value pair in legitimate
packet flow beforehand. In our method, we design a dataset for
these confidence values, named nominal profile. The generating
details of it are discussed in Section 3.

In (3), the attribute pairs which cannot be easily copied by
attackers will be given a high weight. Thus, a higher score of a
packet corresponds to more frequently-appeared and difficultly-
copied correlation characteristics, and thus more likely to be
legitimate. So we can choose a discarding threshold to make the
judgment of filtering. In view of this, the legitimacy of the packets
is defined as follows,

Definition 5 (CBF Legitimate Packet). The legitimate packet in CBF
is the one whose CBF score is above the discarding threshold.

So on the contrary, those packets with scores lower than the
discarding threshold are regarded as attack ones.

3.2. Confidence-based filtering

The overall process of CBF method can be divided into two
periods: non-attack period and attack period. A scenario of our
method is shown in Fig. 2. Its details will be introduced in the
following sections.

In the non-attack period, the main target is to generate nominal

profile. For incoming packets, our method firstly extracts the
required attribute value pairs from them. With (2) in Definition 3,
the number of appearances of these value pairs will be counted and
their confidence values calculated. Then these confidence values
are used to update nominal profile.
In the attack period, most packets are not legitimate, so CBF will
stop generating nominal profile. Like in the non-attack period,
extracting the attribute value pairs from the incoming packets is
the first step. With these value pairs, our method searches nominal
profile for their confidence values in legitimate flows. Then CBF
score, the filtering criterion, is calculated using (3) in Definition 4.
After a packet discarding strategy is selected, CBF will judge the
legitimacy of the packet based on Definition 5, and decide to let it
pass or not.

1842 W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

Non-Attack Period

attribute pairs

Def.3 confidence
L=
values

Update

PacketsExtract
Attack Period

. . Look u
attribute pairs P

Nominal Profile

confidence | Def.4
values

Discard or Pass
CBF score ———»

Nominal Profile

Fig. 2. Scenario of confidence-based filtering.

Table 2
Single attributes selected from IP/TCP header.
Location Attribute Description
Total length The length of the datagram, measured in octets, including internet header and data.
IP header Time to Live (TTL) The maximum time the datagram is allowed to remain in the internet system
Protocol type The next level protocol used in the data portion of the IP datagram
Source IP address The destination IP address (our method uses the 16-bit prefixes of it)
Flag Control bits that indicate different connection states or information about how a packet should be handled
TCP header A Lo
Destination port number The destination port number
Table 3
Example of nominal profile with two attribute pairs.
Attribute value pair TTL, packet size TTL, TCP flag
1 1 TTL = 1, packet size = 1 0.1% TIL=1,TCPflag=1 0.01%
1 TTL = 1, packet size = - - - TTL=1,TCPflag=- - -
1 255 TTL = 1, packet size = 255 1.5% TTL = 1, TCP flag = 255 1.2%
2 1 TTL = 2, packet size = 1 0.1% TIL=2,TCPflag=1 0.05%
255 255 TTL = 255, packet size = 255 0.3% TTL = 255, TCP flag = 255 0.08%

4. Confidence-based filtering method in the non-attack period

4.1. Nominal profile structure

In this part, we will introduce the structure of nominal profile.
Firstly, we select six candidate single attributes as shown in
Table 2. Then, we combine every two (not the same) of the six
attributes and get 15 attribute pairs. After combination, the values
of attribute pair will have 32-bit sizes since the 6 single attributes
all have sizes of no more than 16-bit. Table 3 shows an example
of the nominal profile structure which contains two attribute pairs
(TTL, packet size) and (TTL, source IP address).

The overall construction of the nominal profile is divided into
small time intervals, which are called windows. The size of a win-
dow can be set to fixed ones or dynamic ones. In each time interval
t, our method CBF counts the number of the value appearances of
these 15 attribute pairs, and then uses Definition 3 to calculate the
confidence values. At the end of each time interval, the new con-
fidence values are used to update the nominal profile. In order to
minimize the false negative rate, the highest confidence value of
an attribute value pair in the nominal profile is stored, which means
the updating only takes place when the new confidence value is
higher than the one stored in the nominal profile.

4.2. Profile storage saving

In order to construct the nominal profile, CBF calculates the con-
fidence values of every attribute value pair and stores them in a
certain data structure. However, this may incur a storage problem.
The common strategy for storing them will use a 3-dimension ar-
ray. The first dimension is for the attribute pair and has a length of
15. The second dimension is the value set of a certain attribute pair,
which has 32-bit size. The third dimension is the confidence value
dimension and the size of it depends on the precision requirement

of confidence values. If we use 32-bit for the third dimension, the
overall needed storage will be 15 x 232 x 4 bytes, which is equal
to 240 GB. This amount of storage cannot be feasible in practice.

This storage problem takes place in two steps in our method:
the counting step and the storing step. In the counting step,
our method needs this 3-dimension array to prepare spaces for
counting the attribute pair value appearances. In the storing step,
we also need the same kind of 3-dimension array to store the
confidence values.

The solution to this problem starts from modifying the storing
style of the nominal profile. So we will first introduce the storage
saving strategy in storing step, and then introduce the strategy in
the counting step. Here, the performance evaluation of our storage
saving is shown.

4.2.1. Storage saving in storing step

In the storing step, we can use iceberg-style profiles [21]. In this
implementation, we only store the confidence values of attribute
value pairs which are higher than a predetermined threshold,
e.g., 0.001%. We call this threshold minconf, which means the
minimum confidence value in the nominal profile.

As studied in Section 2, most of the attribute value pairs have
no occurrence, which means their confidence values will be zero or
very small if above zero. So if using minconf as the baseline, most
of the attribute value pairs will not be stored, cutting the size of the
needed data storage down proportionately. So with a hash function
to search and store them, this storage problem in the storing step
is successfully solved.

4.2.2. Storage saving in counting step

After using the iceberg-style profile, we only need to handle
the attribute value pairs whose confidence values are greater than
minconf. In view of this, we can generate confidence values of

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

1843

TTL | Flag | Conf
2 | 2 |00 T T For T ot
32 | 20 J0.006) (4) 2 | 2 | 0035
17 {2 1003 [—— 5T 55 [0.006
17 | 20 | 0.004 T T 003
4 | 2 | o001
14 | 20 | 0.002

TTL | Conf

32 | 0.04 I L e

60 | 0.001 2 | 004

17_| 007 " [17 o7]

14 | 0.006 14| 0.006 \

36| 0.004 \

3)

\ 2/
/ ’

Flag | Conf //

2 02 N /

4 [o003]| (2 Flag | Conf | /

20 01 |/ =2 02 |

26 | 0.004 20 | o1

Fig. 3. Example of generating confidence of attribute value pairs (TTL, Flag) from confidence of single attribute TTL and single attribute Flag. The minconf in this example is

set to 0.005.

Table 4
Descriptions of the operations in Fig. 3.

No. Description

1 Extract the TTL values whose Conf is greater than 0.005 (minconf)
Extract the Flag values whose Conf is greater than 0.005 (minconf)

3 Combine the values of TTL and Flag whose Conf is greater than 0.005
(minconf), then calculate the Conf for these combined values

4 Extract the values of attribute pair (TTL, Flag) whose Conf is greater
than 0.005 (minconf)

attribute value pairs by the confidence values of single attribute
values, which can solve the storage problem in counting step. This
solution is based on the following observation:

Observation. If the confidence value of any single attribute value
in an attribute value pair is not greater than minconf, the confidence
value of this value pair will still not be greater than minconf.

Proof. For attribute value pair (A, = a, x, As = ds), suppose we
have Conf (Ar = a,) < minconf. According to (1) defined in Defi-
nition 3, N(A; = a, x) < N, -minconf.Since N(A; = a; x, As = as,)
< N(A; = a;,), we have N(A;, = a, x, A; = ;) < N, - minconf.
According to (2) defined in Definition 3, Conf (A, = a, x, As = asy)
< minconf. O

So we can firstly count the number of appearances of single at-
tribute values and calculate the confidence of them using (1) in
Definition 3. Then we get the candidate attribute value pairs from
the combination of only single attribute values whose confidence
values are greater than minconf. So at the counting step, we will
only prepare storage spaces for the candidate attribute value pairs
instead of all possible ones. So at the last step, we select the at-
tribute value pairs in the candidate ones whose confidence values
are higher than minconf to update the iceberg-style profile.

Fig. 3 shows an example of this storage saving process, and
Table 4 gives the descriptions of operations which are circled in
the figure. In this example, we generate the values of attribute
pair (TTL, Flag) whose confidence values are greater than 0.005
(minconf) from the confidence values of single attribute TTL and
Flag. First we calculate the confidence of the TTL values and Flag
values, and then extract 3 TTL values and 2 Flag values whose
confidence values are greater than 0.005. Then we combine these
3 TTL values and 2 Flag values, and get 6 (TTL, Flag) candidate
attribute value pairs. We calculate the confidence of these value
pairs, and extract 3 of them whose confidence values are greater
than 0.005. These 3 (TTL, Flag) value pairs and their confidence
values are the data which we need to update the nominal profile.

4.2.3. Performance of the storage saving strategy

Table 5 shows the storage requirements for 3 min data in a
trace recorded in WAWI Traffic Archive [19]. We set the window

Table 5
Profile storage requirements for different minconf values at storing and counting
period.

minconf Storing period Counting period
Number of Size of Average Size of
confidence confidence number of counting
values values (kB) counting spaces spaces (kB)
0.01 177 0.691 175.393 0.685
0.001 2213 8.645 1138.607 4.448
0.0005 5242 20.477 2100.714 8.206
0.0001 54120 211.406 9080.893 35.469
0.00005 210900 823.828 15978.429 62.416
Step 1. Count the number of appearances of single attribute values and
then calculate the confidence of them;
Step 2. Select the single attribute values with confidence higher than
minconf to generate the candidate attribute value pairs;
Step 3. Scan the packet flow again to count the occurrences of the
candidate attribute value pairs and calculate their confidence;
Step 4. Use the confidence values which are higher than minconf to
update the nominal profile;
V-

Fig. 4. Details of CBF in one window in the non-attack period.

size to 5 s and use 32-bit to store each confidence value and each
counting space. For measuring storing period storage, we count the
number of confidence values which are actually stored in iceberg-
style profile after processing all 3 min data. For counting period,
we calculate the average number of needed counting spaces for
candidate attribute value pairs in each window. The result in the
table shows that even using extremely low minconf like 0.00005,
the storage usage at storing period and counting period will not
exceed 1 MB, which is much less than 240 GB. And the storage
requirement of a proper minconf like 0.001 is around 8 kB at storing
period and 4.5 kB at counting period, which is feasible in most
cases.

This sharp cutting down in storage also indicates that the
frequently-appeared attribute value pairs only make up a small
share of all possible value pairs, which validates our observations
in Section 2. As shown in Section 6, a minconf around 0.0005 can be
effective in filtering. So the core storage size for CBF is only about
20 kB, which makes it easily deployed in cloud platforms.

4.3. Non-attack period process details

Based on the solution of storage saving, a more specified process
in the non-attack period during one time window is described in
Fig. 4.

1844 W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

Incoming
Packets
i calculate the
Period 1 Conf of single
attribute values
calculate the get candidate
Period 2 Conf of single attribute value
attribute values pairs
calculate the get candidate caleulate the
. . . Conf of candidate
Period 3 Conf of single attribute value attribute value
attribute values pairs .
pairs
calculate the get candidate caleulate the use the Conf
. . . Conf of candidate .
Period 4 Conf of single attribute value . above minconf'to
. . attribute value
attribute values pairs . update the profile
pairs
ves X ves X ves X ves)

Fig. 5. Pipeline implementation time line for CBF in the non-attack period.

This is a 4-pass process and it can be largely accelerated if
being carried out in parallel. As shown in Fig. 5, the single attribute
value counting, the candidate attribute value pair generating, the
second time scanning and updating profile can be put in a pipeline
implementation, which will make CBF much faster, and more
suitable for real-time filtering and cloud computing.

5. Confidence-based filtering method in the attack period

5.1. Calculating CBF score

Indicated in Fig. 2, in attack period CBF will firstly look up
the nominal profile for the confidence values corresponding to the
attribute value pairs in the current packets and then calculate the
scores for them. In most cases, the confidence values of frequently-
appeared attribute value pairs will be found in nominal profile
successfully. But considering that we use an iceberg-style profile,
the confidence of some rarely-appeared attribute value pairs will
be absent. In this case, we will use minconf value instead when
these confidence values are required in score calculation.

The adjustments of the attribute pair weights will take into
consideration the unique characteristics of the operating system,
the network structure and many other elements. The general idea
is to make more outstanding the correlation characteristics which
are less possible to be copied by attackers and more related to the
inherent features of the server. For example, when under a denial-
of-service attack, the source IP address in a packet is spoofed in
most cases. So we can give the attribute pairs including source
IP address a higher weight. On the other hand, we can give the
attribute pairs including protocol type or TCP flag a lower weight
because the ranges of their values are limited, thus it is easy for
attackers to guess.

Fig. 6 gives an example of the scoring process, and Table 6 gives
the descriptions of operations which are circled in the figure. In
this example, we assume that only 3 single attributes are involved
in CBF filtering, which are TTL, IP protocol and TCP flag respectively.
The scoring process starts from looking up the confidence of
attribute value pairs in nominal profile. Because of the iceberg-style
storing, we cannot find the confidence of the value pair in which
TTL is 30 and IP protocol is 6. So we use minconf to represent its
possible confidence value. Then a weighted average calculation is
carried out with these confidence values to generate the CBF score

Table 6
Descriptions of the operations in Fig. 6.
No. Description
1 Find entry (TTL = 30, IP protocol = 6) in nominal profile
2 Find entry (IP protocol = 6, TCP flag = 2) in nominal profile
3 Find entry (TTL = 30, TCP flag = 2) in nominal profile
4,6 Find the confidence value successfully
5 Cannot find the confidence value, use minconf instead
7 Weighted average the confidence values from 4, 5, 6

for this incoming packet. If the weights for (TTL, IP protocol), (IP
protocol, TCP flag) and (TTL, TCP flag) are 5, 1 and 3, the CBF score
for the packet in the example is given by

(5 x 0.0005 4+ 1 x 0.1+ 3 x 0.09)
B5+1+3)

The scoring part of CBF only requires a few looking-ups in nominal
profile and some arithmetic operations. The asymptotic time
complexity of CBF at this period is in O(1), so it will be fast enough
even if large amount of packets burst in when under denial-of-
service attack.

= 0.0414.

5.2. Discarding strategy

After the CBF scores of packets are generated, we will use them
to distinguish attack packets from legitimate ones. According to
Definition 5, CBF will only accept the packets with scores greater
than the discarding threshold. Thus for the example in Fig. 6, if the
discarding threshold is 0.03, the packet will be judged legitimate.
On the other hand, if it is 0.05, the packet will be an attack one.

The discarding threshold can be fixed based on the CBF score
distribution of legitimate packets. According to Definition 4, the
CBF score is independent from the utilization of the victim, so the
fixed discarding threshold is feasible if the distribution of the scores
is known. And the processing speed will be very high with a fixed
discarding threshold.

Also dynamic discarding threshold can be adopted. Like the load-
shedding algorithm used in [22], we first use current utilization of
the victim and the maximum utilization to generate the amount
(@) of suspicious traffic. As shown in Fig. 7, we can then generate
the cumulative distribution function (CDF) of the scores in current

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850 1845
NominalProfie
i IP protocol | TCP flag conf i
T ! ! 1 2 0.003 | |
i Nominal Profile _ | | > 1 3 0.05 !
! TTL IP protocol conf ! | !
i 2 17 0.02 | | - i
i 3 6 oo | | |2 6 2 |
| 29 17 0w | |l
| 30 17 0.06 L Not found,
@ i i use minconf 0.0005 instead
C- 1
com [| | @
nlf 01‘]((11ng Ay A2 A3 A CBF Score
acket TTL=30 IP protocol = 6 (TCP) | TCP flag =2 (SYN) verage
|
i Nominal TTL TCP flag conf i
@ | Profile 2 2 0.03 i
| 2 6 0.002 !
; > 3 2 0.09 1 ®
Fig. 6. Example of the scoring process in CBF. The circled numbers are the operations in scoring process, which are described in Table 6.
g Table 7
100% . .
The hardware and software environments of our experiments.
Hardware environment Processor Intel Core 2 Duo
processor (2.26 GHz)
Memo 2GB
ooy ry
Software environment Attack simulation program Written in C++
Environment Defense algorithms Written in C++
(CBF and PacketScore)
Table 8
Parameter values of CBF and PacketScore used in the experiment.
Parameter Value
CBF PacketScore
Window size (s) 5 5
0 > minconf 0.005 0.01
iscardi CDF . .
discarding threshold Selection of single attributes The 6 attributes The 6 attributes
(dynamic) . .
in Table 2 in Table 2
Discarding threshold selection strategy ~ Fixed Dynamic

Fig. 7. Decide the dynamic discarding threshold using &.

time window and decide the discarding threshold using @. So the
packets whose CBF scores are below this discarding threshold are
the @ amount most suspicious ones in the current traffic, which
we need to discard. However, this dynamic discarding threshold
calculation may incur the additional scores counting and CDF
computing, which will be slightly slower than a fixed one.

6. Performance evaluation

In this section, we will use real world statistics to test the
filtering method CBF. For the input of our method, we adopt
the data in the MAWI Traffic Archive [19], which contains many
online traffic data collections. Worth noting is that our method
utilizes the resources in transport and network layers, and the
basic architectures in these layers are almost the same in cloud and
normal network environments. So the result of our experiment in
the normal network environment mentioned above is sufficient to
show our performance in cloud environment.

The hardware and software environment of the evaluation is
listed in Table 7. In this section, we will firstly introduce the
simulation conditions including the data source, the parameter
selection for the method and different attack types. The result is
shown and analyzed by taking into consideration the comparison
with PacketScore [7].

6.1. Simulation conditions

6.1.1. Data

We select the data from samplepoint-B in MAWI Working
Group Traffic Archive [19]. The part of data used in this section is
collected from 14:00:00 to 14:15:00 on Jan 1, 2006. There are about
6587 564 packets (2395.28 MB) contained in this data set and the
average rate is 22.33 Mbps.

Every second, the data set has around 6000-7000 packets.

6.1.2. Parameters

The values of the common parameters of CBF and PacketScore
which are used in our experiment are listed in Table 8.

Both of the methods choose the same six single attributes

shown in Table 2. While PacketScore use the six single attributes
directly, for CBF we need to combine them to get 15 attribute pairs,
as described in Section 4.
For CBF method, the value of minconf is set to 0.005. Under this
circumstance, the storage will be around 20 kB at storing period
and 8 kB at counting period, which is affordable in normal servers.
The window size is set to be 5, and our method spends around 0.4 s
to process data during each time window. We believe this time can
be minimized sharply after using pipeline implementations shown
in Fig. 5 and optimizations of the algorithm codes.

1846
a r
Generic Attack Packets
—+— Legitimate Packets

0.2}

)

g
€ 0.15¢

o)

<

o)

a
0.1H
0.05

0 50 100 150 200 250

CBF score

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

0.8 ' P
0.7 /
0.6 -

0.5 v

CDF

0.4
0.3 /
0.2 !

Nominal Attack Packets

011/
— — Legitimate Packets
T T T T

0 L L L L
0 50 100 150 200 250 300 350 400 450 500

CBF score

Fig. 8. CBF score distribution of attack flow and legitimate flow.

The weights in CBF score calculation are set higher in the at-
tribute pairs containing source IP address, TCP server port number
or TTL value, and set lower in those only with TCP flag, IP proto-
col type and packet size. For the fast response in the attack period,
fixed discarding threshold is adopted.

For PacketScore method, the window size is also set to be 5, and
the threshold for iceberg-style profile is 0.01. In our implementa-
tion, the discarding percentage is selected dynamically by a load-
shedding algorithm [22], and CDF is used to calculate the discarding
threshold of the packet score.

6.1.3. Attack types
In this evaluation, we simulate the following types of attacks:

(a) Generic attack.
All attributes in the attack packets are selected randomly in
their allowable ranges.

(b) TCP-SYN Flood attack.

The TCP SYN flag is set in each attack packets and the packet
lengths of them are set to be 40. Other attributes are selected
randomly.

(c) SQL slammer worm attack.

The IP protocol type is UDP, the destination port is set to 1434
and the packet size is between 371 and 400 bytes. Other attributes
are selected randomly.

(d) Nominal attack.

All attributes in the packets are selected randomly in smaller
value ranges, which contain the most frequently-appeared values
of this attribute in the non-attack period. This attack supposes that
the attackers know the value distributions of the single attributes
and mimic it to carry out an attack.

(e) Mixed attack.

In this attack, the attack type of each packet will be selected
randomly from the four types above.

The score calculating and packet discarding of CBF are not
affected by the intensity of the attack and the changing frequency
of the attack types. Thus in this evaluation, we will not largely
focus the tests of CBF on changing the type and intensity of attacks
like [7,8].

6.2. Simulation result and analysis

Fig. 8(a) shows the score distribution of generic attack and
the legitimate flow using more than 100,000 packets of data. To
avoid the trouble with decimal scores, we multiply the original CBF
scores with 10,000 when shown in the graph. Since the legitimate
attribute pair characteristics cannot be easily copied, most generic

Table 9
The performance of CBF and PacketScore under different attack types.

Attack type Attackintensity False positive False negative
rate (%) rate (%)
CBF PacketScore CBF PacketScore
Generic 5% 0.513 3.266 0.695 0.0173
10x 0516 1.729 0.692 0.0432
TCP-SYN 5% 7.701 3.571 7775 1.249
flood 10x 7.703 1.956 7.770 1542
SQL slammer 5x 1.521 3.473 3.883 0.000
worm 10x 1524 1.988 3.881 0.000
Nominal 5% 5229 5.032 6.925 9.519
10x 5234 2929 6.915 13.462
Mixed 5% 4564 4.771 6.524 7.601
10x 4565 2.653 6.524 9.543

attack packets only have scores which consist of basic confidence
minconf, 0.0005. For legitimate packets, high scores around 20-100
take place because they have more frequently-appeared attribute
value pairs. Fig. 8(b) shows the cumulative distribution function
(CDF) of the CBF scores of nominal attack and the legitimate flow
(generic attack is not chosen here because its CDF curve is too
steep to see a clear distribution). It illustrates more clearly that
the majority of attack packets are concentrated in the low-score
region.

To evaluate CBF in a more precise way, we will test its perfor-
mances of false positive (FP) rate and false negative (FN) rate when
filtering. Both CBF and the classic scheme PacketScore are filtering
methods that use attributes in TCP and IP headers to build nominal
profile. Score packets are used to distinguish attack ones from legit-
imate ones. Here, we make some comparisons when highlighting
the ability of CBF.

Table 9 shows the result of their performances. The discarding
threshold values for discarding in CBF are chosen to give the best
performance among all possible ones. Since the CBF scores are not
affected by attack intensity, the FP and FN rates are almost the same
when there are 5 times and 10 times amount of attack packets than
normal.

In most cases, these two methods share similar filtering abili-
ties. In generic attack, CBF has a lower false positive rate because it
is quite hard to generate the accurate attribute value pairs in a ran-
dom approach. In false negative rate, PacketScore has a better per-
formance in SQL slammer worm attack but a worse one in mixed
attack.

In TCP-SYN flood, the performance of CBF has some degrada-
tion. It results from the situation that the TCP-SYN packets may
be also frequent in legitimate time. But the approximate 7.7% false

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

Process Time in 1 Time Window (second)

05F —#— CBF
= PacketScore

0 L L I L 1 L)
0 2 4 6 8 10 12 14 16 18 20

Attack Intensity

Fig. 9. Comparison of CBF and PacketScore methods in process time in the attack
period.

positive rate and false negative rate can also be considered as an
effective filtering in practice.

PacketScore has a worse performance in false negative rate
in nominal attack compared to our method. This is because we
assume the attackers have the information of the single attribute
value distributions in this attack. For CBF, its filtering can be
ineffective if the attackers find the correlation characteristics of
the attribute pairs, but these data are quite impossible to be fully
collected in practice.

At attack period, CBF are quite faster than PacketScore due to
the simplicity of score calculation. Fig. 9 shows the process time in
one time window (5 s) in the attack period for CBF and PacketScore.
The attack intensity in the figure refers to the ratio of the amount
of attack packets to the amount of non-attack packets in our
experiment. Since CBF has no concept of time window in the attack

1847

period, we measure the time that CBF processes the same amount
of packets as those in a 5 s window of PacketScore instead. Due to
the limitation of our experiment environment, we believe that the
process time in the figure for both methods can be reduced largely
by optimizations and hardware supports.

Since the discarding period of PacketScore requires packet
counting and CDF calculating, its process time in the figure under
all attack intensity conditions is higher than that of CBF, which
only needs a few looking-ups to generate a CBF score. For CBF, the
most costly operation is to search the confidence values in nominal
profile, so it can still be faster if a better hash function is adopted.

7. Case study: CBF in the 2014 Youth Olympic Games

In 2014, the second Youth Olympic Games will be hold in
Nanjing, China. The organization issues are planed to be promoted
with a Game Cloud platform and a Commit Cloud platform. In order
to ensure the security of network services in the event, our method,
Confidence-Based Filtering, is selected as one of the candidate
DoS/DDosS attack defense plans in cloud deployment.

For usage, we develop an application based on CBF, named Cmd-
CBF, for Linux OS environment. Cmd-CBF is written in C++, and
the users can type in command lines to control it. Fig. 10 depicts
the module design of Cmd-CBF. In this section, we will introduce
the modules one by one, especially focusing on the implementation
details not covered before, to illustrate how to use CBF in practice.

7.1. Packet capture and judgment

In both the attack period and non-attack period, CBF needs
to capture incoming packets and then judge the legitimacy of
them. In Cmd-CBF, we use libnetfilter_queue package provided
by netfilter [23] in the Linux OS kernel (Linux 2.4.x and 2.6.x
series). This package provides an API to process the packets

Discarding Threshold Decision |

Dynamic Strategy

Fixed Strategy

Discarding Threshold

CDF Calculation

Filtering Ratio .
A Maximum
Calculation Throughput

le———-—
CBF Attribute Pair Weights D

CBF Parameters

CBF Score Calculation |

| &

Attribute Pair 1:
Attribute Pair 2:
Packet Capture
Attributes i .

Packet Judgment

CBF Score < Discarding
Threshold?

CBF Score

Score
Weighted
Average

Pass

NFQUEUE

Attack Detection

Control

Control

Confidence

Read
Iceberg-Style ==
Nominal Profile | Write

Confidence Calculation

CBF Nominal Profile

Single Attributes’
Conf

Attr. | Conf
25 | 0.5%

Candidate Attribute
Conf

s
Pairs Update

Attr.] | Attr.2 | Conf
6 25 0.2%

Fig. 10. Module design of Cmd-CBF for 2014 Youth Olympic Games in Nanjing.

1848 W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

that have been queued in NFQUEUE by the kernel packet filter.
Before running Cmd-CBF, iptables command should be used to
instruct the incoming packets to flow into NFQUEUE, waiting for
judgments. Then, once a packet is received, the attribute extraction
function of CBF will be triggered, and the rest of the CBF method
follows.

When in need of packet legitimacy judgment, Cmd-CBF uses
the verdict mechanism in libnetfilter_queue. In the non-attack
period (Section 4), since the packets are used to generate nominal
profile, we simply allow all of them to pass by marking them with
NF_ACCEPT. In the attack period (Section 5), using the discarding
threshold as a borderline, we mark the legitimate packets with
NF_ACCEPT and the attack ones with NF_DROP. Instructed by these
marks, the packets in NFQUEUE are judged successfully.

7.2. Attack detection

Attack Detection is a very important module which acts like
a switch between the attack period and non-attack period of the
CBF method. As designed, this function should be implemented
by a DDoS detection method such as [4-6] in the front-end of the
defense system. Nevertheless, since the detection method in the
project has not been clearly decided, in Cmd-CBF we provide a
naive but feasible detection method for exclusive usage of it.

In this detection method, we use the max throughput of the
network system as the detection criterion, since high volume of
packets is the most important feature of DDoS attacks. We also set
an inspection window to smooth the switch process. If the av-
erage throughput in the inspection window is greater than the
max throughput, Cmd-CBF switches to the attack period of the
CBF method. On the other hand, if the average throughput is less,
we switch to the non-attack period. Actually, in Cmd-CBF we use
two inspection windows in the detection method, one for attack-
to-non-attack switch, and the other one for non-attack-to-attack
switch. In this way, Cmd-CBF can have different response speeds
for different switch directions, which increases the flexibility in
usage.

7.3. CBF core modules

CBF core modules refer to the three blocks in the middle col-
umn in Fig. 10. They are CBF score calculation (Section 5.1), dis-
carding threshold decision (Section 5.2) and confidence calculation
(Section 4). In Cmd-CBF, the CBF score calculation part has nothing
new compared to the former sections, which involves a weighted
average operation of the attribute pairs’ confidence values.

In discarding threshold decision module, Cmd-CBF implements
both the dynamic and fixed strategies. Fixed strategy is much faster
but the threshold can only be set properly by users who are familiar
with the network environment and CBF method. So for more fool-
proof usage, we also develop the dynamic strategy module, which
takes the max throughput as input and makes a discarding threshold
decision via CDF calculation (see Section 5.2 for more details).

In dynamic strategy, we use the discarding threshold generated
by the last window to judge the packets in the current window.
In this way, once a packet arrives, Cmd-CBF can accept or drop
it directly, instead of waiting until the threshold calculation for
this window finishes. However, this incurs the problem about the
first window: at the moment when Cmd-CBF switches from non-
attack period to attack period, the incoming packets belong to the
first window in the attack period, and no discarding threshold is
prepared for their judgment. To solve it, we extract some packets
from the previous window (in non-attack period), calculate their
CBF scores and use CDF calculation to obtain the discarding
threshold in need. This process slows down the judgment of the first
packet in the first window after the non-attack-to-attack switch,

and we name its time cost Attack Adapting Time. This time cost
can affect the attack response performance of the CBF method, so in
Cmd-CBF, we try to limit it by using a time counter when extracting
packets from the last window. We include this time counter in the
parameter setting of Cmd-CBF, thus users can set them according
to their needs.

In the confidence calculation module, Cmd-CBF implements the
4 steps in Fig. 5 serially, instead of the pipeline process depicted in
Fig. 6. For hash function used in the ice-berg style nominal profile,
we choose the hash_map class provided by Standard C++- Library.

7.4. Parameter and nominal profile

As depicted in Fig. 10, Cmd-CBF uses two main external files:
CBF Parameters and CBF Nominal Profile. CBF Parameters file is used
for setting the parameters for Cmd-CBF. When the application
starts, it will first read the parameters from this file using a
predefined format. When the application stops or the user directly
instructs, it will rewrite this file to record the current parameter
settings. In Cmd-CBF, we limit that the reading and writing of
the file CBF Parameters can only be used when the CBF method
is not running, which prevents the possible faults caused by
changing some critical parameters. For each parameter, Cmd-CBF
also provides some fault-tolerant mechanisms for invalid input
values.

In Cmd-CBF, CBF Parameters file includes the following parame-
ters for user editing: the attack-to-non-attack switch and the non-
attack-to-attack switch inspection time (Section 7.2), minconf, max
throughput, fixed discarding threshold, the Attack Adapting Time
counter (Section 7.3), and the weights for the 15 attribute pairs.

On the other hand, CBF Nominal Profile file is designed for input
and output of nominal profile. In Cmd-CBF, the file first includes
the minconf of the current nominal profile, then the attribute pair
values and their confidence values one by one. When reading the
file, Cmd-CBF will first check whether the minconf in the file is
compatible with the one in use. If minconf in the file is smaller,
Cmd-CBF will pick out the confidence values in the file which are
above the current minconf to update the nominal profile. If the
minconf in the file is bigger, some confidence values in that file
are missing for updating, so Cmd-CBF will ask the users to choose
whether to insist on updating with the incomplete file or to use
one of them and discard the other one.

7.5. Command design

Cmd-CBF uses command lines in the terminal to interact with
users. The manual for usage is shown in Fig. 11.

The startcbf and stopcbf commands are used to control whether
reads the incoming packets from the NFQUEUE. When startcbf is
instructed, Cmd-CBF will trigger the attribute extraction module,
and the whole CBF method will start to function. Once stopcbf is
instructed, it merely pauses the running method, instead of exiting
the command line. To leave Cmd-CBF, the quit command should be
used.

The check command is designed for check some running
information about Cmd-CBF. When checking the cbfparameter,
Cmd-CBF lists all parameters used in the CBF method, including
some constant values which are not in CBF Parameters for user
editing. The cbfstatus reports whether the CBF method is in attack
or non-attack period. For watching the profile generation or CBF
score calculation in real time, users can start livelog, which can be
quit by typing “q” in the keyboard.

The renew command is designed for updating or clearing some
settings or files. In Cmd-CBF we offers in this command the
updating of parameters from CBF Parameters file, the clearing of the
previous running logs in CBFLog file (an external file for recording

W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850 1849

1. startcbf
Description: start capturing packets and CBF method.
2. check [cbfparameter | cbfstatus | livelog]
4.1. cbfparameter
Description: check the current CBF parameter setting.
4.2. cbfstatus
Description: check the current CBF running status.
4.3. livelog
Description: check the CBF running details live. Press "q" to
stop.
3. renew [cbfparameter | log | nominalprofile]
4.1. cbfparameter
Description: update the parameter settings from file.
42. log
Description: clear log.
4.3. nominalprofile
Description: clear nominal profile.
4. set [cbfmode | autofiltering | dynamicthreshold] [0] 1]
4.1. cbfmode
Description: set the CBF running mode.
Value: 0 -- non-attack mode; 1 -- attack mode
4.2. autofiltering
Descripiton: set Filtering Mode
Value: 0 -- manual filtering; 1 -- automatically filtering
4.3. dynamicthreshold
Descripiton: set Discarding Threshold Decision Strategy
Value: 0 — fixed; 1 -- dynamic
5. stopcbf
Description: stop running CBF.
6. quit
Description: quit Cmd-CBF.
7. help
Description: show how to use CBF method.

Fig. 11. Command line design of Cmd-CBF.

the functioning of Cmd-CBF), and the clearing of the current
nominal profile. Here we do not provide users with the updating
of nominal profile from some self-selected CBF Nominal Profile files.
This is because the nominal profile is unique for different end
systems as explored in Section 2, and each user should either stick
to their own nominal profile used before or generate a new one if
no suitable one exists.

The set command is used to change some running status of
the CBF method. In Cmd-CBF, we provide the setting of attack
or non-attack period, automatically or manually filtering, and
fixed or dynamic discarding threshold decision. The setting of
the parameters is achieved with the help of external file CBF
Parameters, so in the set command we leave out this function.

As a result, the help command could provide the users with a
full instruction of the command line usage, external files reading
and writing, and explanations of the terms and expressions used
in Cmd-CBF.

8. Discussion and analysis

CBF utilizes the attribute value pairs in TCP and IP headers to
construct correlation characteristics. In Section 6, these charac-
teristics are tested to be effective in distinguishing attack packets
from legitimate ones under different types of denial-of-service at-
tack. As shown in evaluation results, the most outstanding advan-
tages of CBF are its high efficiency in the attack period and small
storage requirements for nominal profile. These features make CBF
powerful especially in attacks with an extremely large amount of
traffic. In filtering ability, CBF does not have a strictly high accu-
racy compared to the previous researches. But the FP and FN rates
at present are no more than 8%, which has already been acceptable
in most cases.

Indeed, CBF can be ineffective if the attack packet flows mimic
the correlation characteristics of legitimate flows. However, in
order to carry out large quantities of packets as fast as possible,
even finding out the value distribution of single attributes will be
too costly for the attacker. Thus the case where attackers have the
complete attribute pair distributions will not be quite possible in
practice. The situation that the single attribute value distribution is
known by attackers is simulated in nominal attack in Section 6 and
CBF takes on a good performance by maintaining FP and FN rates
around 5%-6%.

In the situation where a distributed attack is carried out, all the
source IP addresses will not be spoofed in the attack flow. But CBF
can still successfully defeat this attack because the ability of CBF
depends on the co-appearance of two attributes. That means even
if the source IP address is authentic, the attack packets need to have
the right attribute which frequently appears along with that source
IP address as well. Considering the difficulty of that, CBF will also
be quite effective when dealing with distributed attacks.

Flash crowds are the situations where a large number of legit-
imate customers happen to visit a server at the same time period.
For CBF, it will not confuse flash crowds with denial-of-service at-
tack. Since the filtering of CBF will not be affected by the number of
packets, the packets sent by legitimate customers will have the fre-
quent correlation characteristics as usual. Thus these packets will
also get a high CBF score to avoid being blocked.

9. Conclusion and future work
9.1. Conclusion

The key concept of CBF is correlation characteristic, which is
the co-appearance of attribute pairs in our implementation. We
introduced confidence to represent the distribution of attribute
value pairs and then devised a feasible approach to generate the
nominal profile in order to store these confidence values. With the
nominal profile, CBF can calculate scores for incoming packets in the
attack period to conduct filtering. Since the confidence reflects the
frequency of appearances of the attribute value pairs, packets with
more attribute value pairs of higher confidence will get a higher
score, which means more legitimacy in this method. As shown
in Sections 3 and 6, CBF has a small storage size, an acceptable
filtering accuracy, and a high scoring speed, which together make
it a practical DDoS defending method in cloud platforms.

9.2. Future work

In the future, a more flexible discarding strategy to set the dis-
carding threshold is required. The candidate one should not be so
time-consuming that CBF loses its advantage of fast response in
the attack period. Also we will work on a more theoretical way
of choosing the weights for each attribute pairs in CBF score cal-
culation. The ideal strategy is adjusting the weights automatically
based on the condition of the network. Finally, some optimizations
and a better hash algorithm should be adopted to further acceler-
ate the speed and the filtering accuracy of CBF.

Acknowledgments

The authors would like to express their thanks for the plentiful
and valuable help given by Liu Zhenxing. This paper is partly sup-
ported by the National Science Foundation of China under Grant
No. 61021062, 61073032 and 60736015, and Jiangsu Provincial
NSF Project under Grants BE2011171.

1850 W. Dou et al. / Future Generation Computer Systems 29 (2013) 1838-1850

References

[1] M. Armbrust, et al., A view of cloud computing, Commun. ACM 53 (4) (2010)
50-58.

[2] L. Zhang, Q. Zhou, CCOA: cloud computing open architecture, in: Proceedings
of the IEEE International Conference on Web Services, 2009, pp. 607-616.

[3] T. Peng, C. Leckie, K. Ramamohanarao, Survey of network-based defense
mechanisms countering the DoS and DDoS problems, ACM Comput. Surv. 39
(1)(2007) 3.

[4] A. Chonka,]. Singh, W. Zhou, Chaos theory based detection against network
mimicking DDoS attacks, [EEE Commun. Lett. 13 (9) (2009) 717-719.

[5] Y. Xiang, K. Li, W. Zhou, Low-rate DDoS attacks detection and traceback by
using new information metrics, IEEE Trans. Inf. Forensics Secur. 6 (2) (2011)
426-437.

[6] H. Liu, M.S. Kim, Real-time detection of stealthy DDoS attacks using time-
series decomposition, in: Communications (ICC), 2010 IEEE International
Conference, 2010.

[7] Y. Kim, W.C. Lau, M.C. Chuah, H.J. Chao, Packetscore: a statistics-based packet
filtering scheme against distributed denial-of-service attacks, IEEE Trans.
Dependable Secure Comput. 3 (2) (2006) 141-155.

[8] P.E. Ayres, H. Sun, H.J. Chao, W.C. Lau, ALPi: a DDoS defense system for high-
speed networks, IEEE]. Sel. Areas Commun. 24 (10) (2006) 1864-1876.

[9] H. Wang, C. Jin, K.G. Shin, Defense against spoofed IP traffic using hop-count
filtering, IEEE/ACM Trans. Netw. 15 (1) (2007) 40-53.

[10] P. Du, A. Nakao, DDoS defense deployment with network egress and
ingress filtering, in: Proceeding of the IEEE International Conference on
Communications, 2010, pp. 1-6.

[11] Z. Duan, X. Yuan,]J. Chandrashekar, Controlling IP spoofing through
interdomain packet filters, [EEE Trans. Dependable Secure Comput. 5 (1)
(2007) 22-36.

[12] F. Soldo, A. Markopoulou, K. Argyraki, Optimal filtering of source address
prefixes: models and algorithms, in: Proc. IEEE INFOCOM, 2009.

[13] M.T. Goodrich, Probabilistic packet marking for large-scale IP traceback,
IEEE/ACM Trans. Netw. 16 (1) (2008) 15-24.

[14] Y. Xiang, W. Zhou, M. Guo, Flexible deterministic packet marking: an IP
traceback system to find the real source of attacks, IEEE Trans. Parallel Distrib.
Syst. 20 (4) (2009) 567-580.

[15] S. Yu, W. Zhou, R. Doss, W. Jia, Traceback of DDoS attacks using entropy
variations, IEEE Trans. Parallel Distrib. Syst. 22 (3) (2011) 412-425.

[16] Y. Xie, S. Yu, Monitoring the application-layer DDoS attacks for popular
websites, IEEE/ACM Trans. Netw. 17 (1) (2009) 15-25.

[17] Y. Xie, S. Yu, A large-scale hidden semi-Markov model for anomaly detection
on user browsing behaviors, IEEE/ACM Trans. Netw. 17 (1) (2009) 54-65.

[18] W. Dou, L. Qi, X. Zhang,]J. Chen, An evaluation method of outsourcing
services for developing an elastic cloud platform,]J. Supercomput. (2010)
http://dx.doi.org/10.1007/s11227-010-0491-2. published online.

[19] MAWI Traffic Archive [Online]. Available: http://tracer.csl.sony.co.jp/mawi/.

[20] H. Jiawei, M. Kamber, Data Mining: Concepts and Techniques, second ed.,
Morgan Kaufmann Publishers, 2011.

[21] B. Babcock, et al. Models and issues in datastream systems, in: ACM Symp.
Principles of Database Systems, 2002.

[22] S. Kasera, et al. Fast and robust signaling overload control, in: Proc. Int’l Conf.
Network Protocols, 2001.
[23] netfilter/iptables project [Online]. Available: http://www.netfilter.org/.

Wanchun Dou received his Ph.D. degree in Mechanical
and Electronic Engineering from Nanjing University of
Science and Technology, China, in 2001. Now, he is a Full
Professor of the State Key Laboratory for Novel Software
Technology, Nanjing University, China. From Apr. 2005
to Jun. 2005 and from Nov. 2008 to Feb. 2009, he
respectively visited the Department of Computer Science
and Engineering, Hong Kong University of Science and
Technology, as a visiting scholar. Up to now, he has
-y chaired three NSFC projects and published more than 60

research papers in international journals and international
conferences. His research interests include workflow, cloud computing and service
computing.

Qi Chen got his B.S. degree from the Computer Science
and Technology department in Nanjing University in 2012.
During 2011-2012, he also worked on network security
as a guest research assistant, co-supervised by Professor
Wanchun Dou from Nanjing University and Lecturer Shui
Yu from Deakin University, Australia. He is now a Ph.D.
student supervised by Professor Z. Morley Mao in the EECS
department of the University of Michigan at Ann Arbor.

Jinjun Chen is an Associate Professor from the Faculty
of Engineering and IT, University of Technology Syd-
ney, Australia. He holds a Ph.D. in Computer Science and
Software Engineering (2007) from Swinburne, a master
degree in Engineering (1999) and a bachelor degree in Ap-
plied Mathematics (1996) from Xidian University, China.
Dr. Chen’s research interests include cloud computing,
social computing, green computing, service computing,
e-science/e-research and workflow management. His
research results have been published in more than 100 pa-
pers in high quality journals and at conferences, includ-
ing the ACM Transactions on Software Engineering and Methodology (TOSEM),
IEEE Transactions on Software Engineering (TSE), and the International Conference
on Software Engineering (ICSE). He received the Swinburne Vice-Chancellor’s Re-
search Award for early career researchers (2008), IEEE Computer Society Outstand-
ing Leadership Award (2008-2009), IEEE Computer Society Service Award (2007)
and the Swinburne Faculty of ICT Research Thesis Excellence Award (2007).

http://dx.doi.org/doi:10.1007/s11227-010-0491-2
http://tracer.csl.sony.co.jp/mawi/
http://www.netfilter.org/

	A confidence-based filtering method for DDoS attack defense in cloud environment
	Introduction
	Current status of related research
	Motivation
	The organization of the paper

	Correlation characteristic
	Definition of correlation characteristic
	Utilizing correlation characteristic
	Conclusion

	Confidence-based filtering method
	Preliminary knowledge
	Key terms
	Confidence and CBF score

	Confidence-based filtering

	Confidence-based filtering method in the non-attack period
	Nominal profile structure
	Profile storage saving
	Storage saving in storing step
	Storage saving in counting step
	Performance of the storage saving strategy

	Non-attack period process details

	Confidence-based filtering method in the attack period
	Calculating CBF score
	Discarding strategy

	Performance evaluation
	Simulation conditions
	Data
	Parameters
	Attack types

	Simulation result and analysis

	Case study: CBF in the 2014 Youth Olympic Games
	Packet capture and judgment
	Attack detection
	CBF core modules
	Parameter and nominal profile
	Command design

	Discussion and analysis
	Conclusion and future work
	Conclusion
	Future work

	Acknowledgments
	References

