
QoE Inference and Improvement Without End-Host Control

Ashkan Nikravesh

University of Michigan
ashnik@umich.edu

Xiao Zhu

University of Michigan
shawnzhu@umich.edu

Qi Alfred Chen

University of California, Irvine
alfchen@uci.edu

Geoffrey Challen

University of Illinois at Urbana-Champaign
challen@illinois.edu

Scott Haseley

University of Illinois at Urbana-Champaign
haseley2@illinois.edu

Z. Morley Mao

University of Michigan
zmao@umich.edu

Abstract—Network quality-of-service (QoS) does not always
translate to user quality-of-experience (QoE). Consequently,
knowledge of user QoE is desirable in several scenarios that
have traditionally operated on QoS information. Examples
include traffic management by ISPs and resource allocation
by the operating system. But today these systems lack ways to
measure user QoE.

To help address this problem, we propose offline generation
of per-app models mapping app-independent QoS metrics to
app-specific QoE metrics. This enables any entity that can
observe an app’s network traffic—including ISPs and access
points—to infer the app’s QoE. We describe how to generate
such models for many diverse apps with significantly different
QoE metrics. We generate models for common user interactions
of 60 popular apps. We then demonstrate the utility of these
models by implementing a QoE-aware traffic management
framework and evaluate it on a WiFi access point.

Our approach successfully improves QoE metrics that reflect
user-perceived performance. First, we demonstrate that prior-
itizing traffic for latency-sensitive apps can improve respon-
siveness and video frame rate, by 46% and 115%, respectively.
Second, we show that a novel QoE-aware bandwidth allocation
scheme for bandwidth-intensive apps can improve average
video bitrate for multiple users by up to 23%.

Keywords-Measurement; Application Performance; Quality
of Service (QoS); Quality of Experience (QoE)

I. Introduction
For network-based applications (apps) like video, Voice

over IP (VoIP), and web browsing, knowledge of end users’

QoE is valuable in various ways. When dealing with conges-

tion, any ISP can shape traffic in a manner sensitive to the

perceived QoE of its users, e.g., throttling every flow only

to the extent that does not significantly degrade QoE for

the corresponding users. An app’s servers can leverage the

knowledge of users’ QoE to appropriately adapt its traffic

delivery to its users. For example, a video service can reduce

the video bitrate to eliminate rebuffering delays incurred at

a higher bitrate. Furthermore, if the operating system (OS)

on a user’s end device can detect when the user is suffering

from poor QoE, it can attempt to diagnose the problem.

However, today, all of these useful QoE-aware mecha-

nisms for traffic management, app delivery adaptation, and

user experience problem diagnosis are stymied by a basic

limitation: determining a user’s QoE for a particular app

requires software on the user’s device that is capable of mea-

suring QoE metrics for that app, and reports information to

the entity (OS, ISP, or application server) implementing the

QoE-aware mechanism. This limitation stems from several

reasons.

• App-specific QoE metrics. The metrics that capture

user QoE vary significantly across apps, e.g., rebuffering

delays for video, mean opinion score for VoIP, and page

load times for the Web. This makes it challenging, if not

impossible, to write one software, which if installed on a

user’s device, can measure the user’s QoE for any arbitrary

app.

• A lack of API to communicate QoE. In cases where the

user interacts with an app via client software offered by

that app’s provider, that client is able to measure the user’s

QoE and relay such information to the app’s servers.

However, there typically does not exist an interface via

which an app’s client software can relay measured QoE

information to other entities that can make use of this

information, such as the user’s OS or ISP.

• Third-party clients. It can also be challenging for an

app’s own servers to discover user-perceived QoE because

users often access apps via client software not developed

by the app provider, e.g., YouTube accessed on Internet

Explorer, or a messaging service accessed via a third-party

client that has support for several messaging services.

As a result of these limitations, we are currently at an

impasse. There is growing recognition that dealing with

network traffic based on traditional QoS metrics, (e.g., allo-

cating an equal share of the bottleneck link’s bandwidth to

all flows, irrespective of which apps those flows correspond

to) does not accurately account for users’ QoE. Yet, all of

the wonderful QoE-aware optimizations detailed above are

infeasible to implement today due to the lack of software

on end devices which can measure and report QoE to the

entity implementing the optimization.

To chart a way forward out of the current impasse, we

43

2018 Third ACM/IEEE Symposium on Edge Computing

978-1-5386-9445-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SEC.2018.00011

argue that it is indeed feasible for an entity that has access

to a user’s network traffic to infer the user’s QoE, despite not

having direct access to app-level QoE measurements from

the user’s device. Our proposed approach for inferring QoE

corresponding to a traffic flow is to rely on models that can

map the flow’s QoS metrics (such as latency, bandwidth,

and loss rate) to the corresponding app’s QoE metrics.

While a generic QoS-to-QoE model is impractical, our key

observation is that such models are indeed feasible on a per-
app basis.

Here, we use objective metrics for quantifying QoE, as

subjective tests are time consuming and human subjects

must be involved in the assessment process; this does not

scale for a large number of apps. While the objective QoE

metrics may not reflect the actual user experience for many

applications, they have a direct relationship with subjective

QoE metrics like user satisfaction and engagement [37],

[53], [55], [39], [22]. In fact, according to the recommen-

dations by International Telecommunication Union (ITU),

objective QoE metrics for video streaming can be used

to estimate and model the subjective (perceived) QoE [7].

In addition, applications themselves rely on the mappings

between network QoS metrics and objective QoE metrics to

adapt to the changing network condition and improve the

end-user perceived performance.

In this paper, we first describe how app-specific models

that map QoS metrics to corresponding QoE metrics can

be generated. Apps often provide multiple features, and

each app usage may have a different corresponding QoE

metric. To find the most common usages from which to build

our models, we perform an app usage measurement study,

collecting app usage data from 99 real users interacting with

531 apps over 10 days. We then develop UsageReplayer, an

app-independent tool to replay these user interactions across

different apps in testbeds. By varying QoS metrics as we

replay user traces, we are able to understand the effect QoS

has on the QoE of individual app usages and build our QoS-

to-QoE models.

We present results for three types of apps: video confer-

encing (AppRTC and Skype), on-demand video streaming

(playing three state-of-art adaptive streaming schemes), and

55 interactive apps. For video streaming and video confer-

encing apps, we find significant non-linearities between QoS

and QoE, validating the need for our models. For interactive

apps, we find that the QoE of these apps are highly sensitive

to the changes in end-to-end delay.

Once equipped with per-app QoS-to-QoE models, we

present the design and implementation of QOEBOX, a QoE-

centric traffic management framework. QOEBOX is a proxy

solution and is transparent to both user-facing apps and

backend servers. It relies on the QoS-to-QoE models to

infer apps’ QoE. Deploying QOEBOX at the edge of the

network can be an ideal strategy for cellular networks and

ISPs, as being able to measure the QoS metrics in the

vicinity of end-users and incorporate the generated models

into the scheduling and resource allocation components

within the edge of the these networks can further improve

the accuracy of the system. Therefore, we implement and

evaluate QOEBOX on a WiFi access point.

Finally, we present how the per-app QoS-to-QoE models,

once generated, can be utilized for the purpose of traffic

management. We showcase direct applications of the models

by implementing two QOEBOX modules: classification and

prioritization of apps traffic, and an optimal fair bandwidth

allocation scheme. In the former, we show that identifying

and prioritizing the traffic of various usages can improve

app responsiveness by up to 964%, which translates into 6

seconds of extra delay (§V-A). In the latter application, we

demonstrate that we can leverage the models to optimally

allocate bandwidth to multiple users and improve average

video bitrate by 23%, without hurting QoE of any of the

users (§V-B).

Our contributions can be summarized as follows:

• We propose offline generation of per-app models mapping

app-independent QoS metrics to corresponding app-specific

QoE metrics. We generate the models by replaying real

users’ common interactions in popular interactive apps, two

popular video conferencing apps, and three video streaming

apps, with significantly different QoE metrics. We identify

important combination of QoS values that causes change in

QoE of these apps using a new adaptive sampling technique.

• We design and implement QOEBOX, a proxy-based QoE-

centric traffic management framework. QOEBOX maps the

traffic belonging to an app to its corresponding QoE model,

and invokes custom modules to apply traffic shaping poli-

cies.

• We showcase how the models can be utilized for the pur-

pose of traffic management by designing, implementing, and

evaluating two QoE-aware traffic managements schemes on

WiFi access points: prioritizing latency sensitive traffic and

an optimal fair bandwidth allocation for bandwidth intensive

apps. We show that for both schemes, we can significantly

improve various QoE metrics, including frame rate, app

responsiveness, and video bitrate, without modifying the

end-host or requiring a very precise model.

II. Motivating Examples
Equipping OSes, ISPs, cellular carriers, and cloud

providers with the knowledge of app QoE has several

benefits. First, it enables these entities to efficiently allocate

resources in a way that maximizes their users’ QoE. Second,

it provides a feed-back control loop in which these entities

can continuously monitor users’ QoE, detect and diagnose

performance degradation problems, and react by allocating

resources appropriately. Third, the knowledge of users’ QoE

provides an opportunity for application servers to move their

adaptation logic from end-user device to cloudlets or base-

44

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1200 1400 1600 1800 2000 2200

Q
oE

: V
id

eo
 b

itr
at

e
(k

bp
s)

QoS: BW allocation for DIRECTV (kbps)

Bandwidth
allocation
reduces

Bitrate stays
the same

After Before

(a) QoE-aware bandwidth al-

location for DIRECTV.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1200 1400 1600 1800 2000 2200

Q
oE

: V
id

eo
 b

itr
at

e
(k

bp
s)

QoS: BW allocation for YouTube (kbps)

Before After

Bandwidth
allocation
increases

Bitrate
improves

(b) QoE-aware bandwidth al-

location for YouTube.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

Q
oE

: A
pp

 la
un

ch
 ti

m
e

(s
)

QoS: Latency for Weather app (ms)

BeforeAfter

Latency
reduces

App launch
time improves

(c) QoE-aware traffic prioriti-

zation for Weather app.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1200 1400 1600 1800 2000 2200

Q
oE

: V
id

eo
 b

itr
at

e
(k

bp
s)

QoS: BW allocation for YouTube (kbps)

Before &
After

Bandwidth
allocation is
almost the

same

Bitrate stays
the same

(d) QoE-aware traffic prioriti-

zation for YouTube.

Figure 1: Problem of resource management for two scenarios, in which two users using different apps at the same time.

stations, where they have a more accurate estimate of end-

user QoS (e.g., allocated bandwidth).
An important case that can benefit from per-app QoS-to-

QoE models is resource management in home WiFi routers.

In this section, we use two simple motivating examples

of QoE-based traffic management schemes to illustrate the

usefulness of QoS-to-QoE models in improving app QoE.

In both examples, we consider a scenario where two users

are connected to the Internet through a WiFi access point

(AP).
Example 1. QoE-aware bandwidth allocation. Suppose

two users, user A and B, are watching videos using the

YouTube and DIRECTV apps, respectively. The amount of

bandwidth each app receives ends up depending on the trans-

port and application protocols. In our example, DIRECTV—

which uses Apple HLS—and YouTube both use a single

TCP connection to download video chunks, so both get

1800 Kbps from of total link bandwidth of 3600Kbps. Since

YouTube and Apple HLS use adaptive bitrate streaming

and different encoding schemes, the video bitrates for the

YouTube and DIRECTV apps are different—620 Kbps for

YouTube and 1277 Kbps for DIRECTV. However, as we

see in Figure 1(a), the QoS-to-QoE model of Apple HLS

indicates that its user can achieve a bitrate of 1277 Kbps

with less bandwidth. In fact, the extra bandwidth is wasted,

in the sense that it is spent on downloading the chunks faster.

And as we see from the QoS-to-QoE model for YouTube

in Figure 1(b), if we were to allocate this extra 200 Kbps

bandwidth to YouTube, it can switch to a higher bitrate.
From this example, we see that a change in bandwidth

does not necessarily lead to a change in video quality,

and with per-app QoS-to-QoE models, an AP can allocate

bandwidth in such a way to improve the overall video quality

of the system. Note that QoE is also affected by rebuffering

frequency and bitrate switches, which are not illustrated in

this example. In §III, we show how QoS-to-QoE models are

generated, and in §V-B we formulate a bandwidth allocation

problem as an optimization problem, which utilizes these

models to maximize overall QoE.
Example 2. QoE-aware traffic prioritization. Suppose

now that user A is launching the Weather app while user B is

watching a YouTube video. The YouTube app aggressively

tries to consume all available bandwidth, which results in an

increase in queuing delay in the router’s buffer. The QoS-

to-QoE model of the Weather app shows that its QoE is

sensitive to changes in latency (Figure 1(c)). Due to extra

queuing delay caused by YouTube traffic, the Weather app’s

launch time increases to 11s. To reduce end-to-end latency

of the Weather app, one solution pointed out by previous

works [14], [29] is to prioritize its traffic. As depicted in

Figure 1(d), by prioritizing the Weather app’s traffic, we can

improve its launch time to 9s, without affecting the QoE of

YouTube.

We see from this example that applying traffic prioritiza-

tion policies can also improve the overall QoE of the system,

given per-app QoS-to-QoE models. In §V-A, we design and

implement a traffic classification and prioritization module

that can control the interaction between different types of

traffic with different QoS requirements.

III. Generating QoS-to-QoE models
QoE is measured in different ways by different apps:

latency and frame rate for video conferencing, video quality

for video streaming, and page load time for web browsing.

Consequently, a single mapping from QoS to QoE for all

apps does not exist. Because of the differences in the proto-

cols used by different apps, even generating separate QoS-

to-QoE models for every app type is infeasible. For instance,

Skype and Google Hangouts use different techniques to

deal with packet loss [53]. Even with the same underlying

network packet loss rate, users may experience different QoE

when using the two apps. Furthermore, apps often provide

multiple activities, services, and features to users, each with

possibly its own QoS requirement. For example, searching

for a video in YouTube vs. playing it, and posting a picture

on Facebook vs. updating a status. As a consequence, we

focus on generating QoS-to-QoE models on a per-app basis,

and at the per-usage level within the app.

We define a usage to be a particular interaction with an

app, generally with a particular UI component. Scrolling

the news feed in Facebook and clicking the play button in

YouTube are examples of usages. The set of usages maps

to the set of features than an app exposes to users, though

some features are not exposed this way (e.g., notifications),

and some usages might map to the same feature, depending

how the app is designed. We use the expression usage type

45

to categorize the usage, with scroll, click, and app launch
being examples of usage types.

To generate per-app models, we need to identify the

various usages of an app, find the relevant QoE metric for the

usage, and understand how various QoS metrics affect that

QoE metric. We now describe in detail how we accomplish

this.

A. Recording and Identifying App Usages
There are multiple approaches to identifying app usages.

We could rely on app developer support, use an automated

state exploration technique, or collect app traces from au-

tomated or actual interactive sessions. We chose to collect

traces from actual interactive sessions for two reasons. First,

collecting traces provides us with the opportunity to replay

those traces later, something we rely on when building our

QoS-to-QoE models. Second, collecting traces from actual

users allows us to understand which apps are commonly

used, and which usages are most common. While a monkey

testing approach could generate traces for a large number

of apps as well, we would not be able to discern the

important usages. Understanding which usages are most

common allows us to focus on building the models that will

provide the largest benefit.

1) Recording App Usage Traces
We record app usage traces using a modified version of

the Android framework. We define each touch event as a

single interaction. To capture interactions, we instrument

the onTouchEvent function in the View class to record

two actions: click and scroll. The View class is the parent

class of all Android UI components, including widgets—

buttons, text fields, etc.—and layouts. So onTouchEvent
will be called when any of View’s child classes is touched.

This way, we can capture touch actions with arbitrary apps

without instrumenting app source code.
To uniquely identify the touched UI component and

replay the action later, we fingerprint and record each UI

component that is interacted with. The fingerprint consists

of multiple attributes of the UI component. Depending on

what is available, it can include: (1) the app name, (2) the

Activity class name, (3) its parent class name, (4) the

name of the View class, (5) its relative location in the layout,

(6) its resource ID, and (7) a hash of the text and content

description.
To protect users’ privacy and avoid capturing sensitive

data, we hash the UI components text and content descrip-

tion. We also do not record any text entered by users.

2) Crowdsourcing App Usage Collection
Any Android device running our modified Android frame-

work would be capable of collecting interactive user traces.

But to do this at a large scale, we crowdsourced the task,

deploying our recording framework on the PhoneLab [45]

testbed as part of an IRB approved study. 99 users using

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

C
D

F

Number of usages type for each app

Figure 2: Number of distinct us-
ages for top 100 apps.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Usage rank

Facebook
Google+
YouTube
Guardian

Instagram
Tumblr

Figure 3: Distribution of the
frequency of interactions for each
usage for six popular apps

Nexus 6 smartphones running Android 6.0.1 (CyanogenMod

13.0) participated in the experiment. We recorded how they

interacted with different apps for 10 days between Nov. 1st

and Nov. 10th, 2016. Importantly, most users of the testbed

use their testbed device as their primary smartphone, which

enables us to identify which apps are most popular and

which usages are most common.

3) Identifying Common App Usages

From our PhoneLab experiment, we collected input event

data from 99 users interacting with 531 apps. For this

analysis, we chose the top 100 apps in terms of the total

number of interactions in our dataset. As illustrated in

Figure 2, the number of distinct usages varies significantly

across different apps. The app with largest number of usages

is Facebook with 9082 different UI fingerprints that are

touched by users 300K times in total.

Almost all the apps with a relatively large number of

interactions but small number of usages are games and

web-based apps. For the gaming apps, to display animation

content and to be consistent across various app activities, all

content is displayed in a custom-built View. For instance,

for Candy Crush Saga, we only captured two usages in

which a single custom View (GameView) is either scrolled

or clicked by users. For web-based apps, all the content is

displayed in a WebView. Since native Android widgets are

not used by these two app types, we could not distinguish

between different inputs, which limits our ability to replay

users’ interactions and create models based on usage.

Examining the frequency of the top interactions for each

app allows us to identify common usages. Figure 3 shows the

distribution of the frequency of interactions for each usage

for six popular apps. As shown, 75% of total interactions for

each app correspond to only 10 usages. This shows that we

can capture how the app is being used and identify common

user interactions by only considering a small number of

usages. By crowdsourcing our usage data collection, we

were indeed able to identify which apps are commonly used

and which app usages are most common.

B. Replaying App Usage Traces

Before we can measure QoE for the usages of interest and

build a QoS-to-QoE model, we need a way to replay the app

46

usage traces that were previously collected. To accomplish

this, we built a new tool called UsageReplayer, which takes

each individual trace as input, and replays the actions step

by step to reach the particular usage of interest. The input to

UsageReplayer is a json file, which contains the steps to

reach the usage that have been extracted from each user

input trace. Figure 4(b) shows an example json file to

replay “scrolling on the search results of a keyword” in the

YouTube app.

The json file consists of an array of actions. For each

action, the fingerprint of its corresponding UI component is

specified by the list of attributes that uniquely identify it.

UsageReplayer measures the QoE metric for each action

of interest if the value of measure attribute is true.

UsageReplayer is an app-independent replay tool that is im-

plemented using UIAutomator, which is an Android testing

support library. This makes our approach suitable for black

box testing—we do not need access to app source code.

We have published the source for UsageReplayer in

Github [2]. Our sources include common usages with the 55

top apps collected from 99 users. This tool can be used to

generate realistic smartphone application traffic by replaying

and emulating how different users interact with different

apps.

C. QoE Measurement

Our goal is to build the QoS-to-QoE model for each usage

by replaying it in a testbed where we can control the network

conditions experienced by the app. But first, we must be able

to measure QoE for each usage, which we do using the three

techniques described below.

App-independent Android instrumentation. To capture

how quickly apps respond to each user input, we instrument

the onDraw method in the View class. This method is

invoked whenever any of the View’s child classes (e.g.,
TextView, ImageView, and other UI components used

by arbitrary apps) update their content. By passively moni-

toring the onDraw for a given user input, we can infer how

long it takes for the app to respond and update the screen.

To measure app responsiveness, we measure the time from

user input to the last screen update via the onDraw event

(we exclude UI update from Ads-related Views). This is

analogous to the onload event for page load time in web

browsing.

App responsiveness is a critical QoE metric [8], [49].

To the best of our knowledge, this is the first system that

measures responsiveness for a large number of apps by

passively monitoring changes to the screen. Differing from

AppInsight [48], we instrument the Android framework as

opposed to app binary. Therefore, our system does not need

access to app binary and we do not need to instrument each

individual app.

App source code instrumentation. In cases where the app

is open source—such as AppRTC and ExoPlayer—we can

 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200 250 300 350 400

La
un

ch
 T

im
e

(s
)

Latency (ms)

Ebay
TripAdvisor

Twitter

(a) Launch time monotonically in-
creases with adding more latency.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0.5 1 1.5 2 2.5 3 3.5 4

La
un

ch
 T

im
e

(s
)

Bandwidth (Mbps)

TripAdvisor
AOL

Maps
Ebay

(b) Launch time is not affected by
increasing bandwidth when band-
width is higher than a threshold.

Figure 5: Mapping (a) latency and (b) bandwidth to launch time.

instrument the source code directly. This allows us to record

app statistics, debugging information, and QoE measures.

App-specific Android instrumentation. Different apps use

different UI components and may have their own QoE met-

rics. To capture app-specific QoE metrics for these apps, we

need to further instrument the Android framework in a way

required by the particular app. For instance, YouTube uses

Android’s throbber widget when a video stalls. So to capture

video stall events, we instrument the ProgressBar class.

Another example is Skype. It exposes certain debugging

statistics for developers using a TextView. Statistics shown

include instantaneous QoS and QoE metrics. QoE Doc-

tor [20] periodically records the UI tree to capture changes

in app-specific UI components. In contrast, we directly

instrument the corresponding classes of these components in

the framework layer to monitor such changes. Our method

is able to avoid the UI tree processing overhead and more

accurately measure QoE metrics.

D. QoS-to-QoE Mapping

To construct the mapping from individual QoS metrics to

the corresponding QoE value, we vary one QoS metric at a

time, keeping the other metrics fixed.

As depicted in Figure 4a, we emulate different network

settings for latency, bandwidth, and loss rate through traffic

shaping using tc at the WiFi access point. To emulate

variable latency, we add extra delay to downlink packets

using netem. To emulate bursty packet loss, we also use

netem, which allows us to specify the percentage of packets

to be randomly dropped, and how much dropping a packet

should depend on its previous packet [11]. We run every app

so that it can communicate with its own app server. Where

necessary (e.g., for collaborative apps such as those that offer

video conferencing), we run multiple clients to mimic the

operation of the app. We then measure its corresponding

QoE value at the client using the techniques described above.

For each network setting, we wait until QoE stabilizes, as

there might be a delay during which the app tries to adapt

to new network conditions.

The mapping has to be generated again when new features

are added to the apps. Given the infrequent updates of the

47

WiFi AP

Sender Receiver

Youtube

Measure
QoE

Sampling
Algorithm

Traffic
Shaping

AppRTC

Replayer

Facebook

(a) Traffic shaping at WiFi AP applied to different types of apps
including video conferencing, VOD, and interactive apps.

{"app": "YouTube",
"package": "com.google.android.youtube",
"name": "scroll_search_results",
"actions": [

{"action": "click", "findby": {"id": "com.
google.android.youtube:id/menu_search",
"desc": "Search"}},

{"action": "search", "findby": {"id": "com.
google.android.youtube:id/
search_edit_text"}, "text": "election"}
,

{"action": "scroll", "measure":true, "
findby": {"id": "com.google.android.
youtube:id/results"}}

]
}

(b) An example json file to replay “scrolling on the search results
of a keyword” in the YouTube app

Figure 4: Our experimental setup for generating QoS-to-QoE mappings

popular apps1 and the fact that model generation is done

automatically and in an offline fashion, updating the model

for each usage requires minimal user involvement and does

not need to be repeated frequently. We discuss how we can

distinguish between the traffic of different versions of an

app in §IV-A.

We now describe how we generate this mapping for the

usages collected from our user traces. We exclude YouTube,

Hangouts, and Skype and generate their models separately,

as their QoE metric is different from the rest of the usages.

1) Interactive apps

To create the model for the most common usages of

each app, we picked the top three usages to replay for

each app, which covers 74% of total user interactions. We

excluded gaming apps and interactions for which we could

not identify a UI component during replay—usually because

a fingerprint failed to uniquely identify a UI component. We

created replayable json files for 56 apps and 186 usages,

which includes 83 scrolls, 47 clicks, and 56 launches.

For these 56 apps, we generate the model for three usage

types: scroll, click, and cold start launch. For these usage

types, app responsiveness—the time it takes for the app

to update the screen—is the key QoE metric [8], [49]. To

capture responsiveness, we use onDraw events as previ-

ously explained. We generate the model by replaying these

usages under various QoS values. To construct the mapping,

we vary one of the QoS metrics (i.e., bandwidth, loss, and

latency) at a time, while keeping the other metrics fixed.

To determine whether a usage is directly affected by

latency, we compute Spearman’s rank correlation coeffi-

cient between latency and app response delay. As shown

1According to a study by McIlroy et al. [43], only 14% of popular apps
are updated bi-weekly or more frequently and only 35% of updates add
new features to the apps.

in Figure 5a, we increase the downlink latency at 50ms

granularity and measure its corresponding QoE value. Here,

a high correlation coefficient indicates the monotonicity of

the increase in app response delay when increasing end-to-

end network delay. We find that for 49% of clicks and 85%

of launches, the correlation coefficient between app response

delay and latency is higher than 0.9. This indicates that most

launches are latency sensitive. However, only 32% of the

scrolling usages are latency sensitive. We find that for most

of the scrolling usages with a low correlation coefficient, the

app does not download the data while scrolling. Instead, it

fetches the content when initially loading the Activity.

However, latency-sensitive scrolls do lazy-loading and fetch

content as the user scrolls.

To see how app response delay is affected by bandwidth,

we increase the bandwidth, starting from 300Kbps, and

measure its corresponding app response delay value. As

shown in Figure 5b, we observe that QoE is not affected

by increasing the bandwidth when bandwidth is higher

than a specific value. We find that these values—which

specify the bandwidth requirement of each usage—are in

fact small (median bandwidth is around 2.2Mbps for launch

and 1.5Mbps for click). This is attributed to the fact that most

of mobile apps’ uplink and downlink transfers are small (less

than 100KB [30]), and under high bandwidth conditions,

latency plays a more important role in determining short-

lived flows’ performance than bandwidth does.

As we have shown, the QoS requirement of each usage

can be derived from its QoS-to-QoE model. In §V-A, we

will show how leveraging this information can help ISPs

improve QoE of latency sensitive usages.

2) Video streaming and video conferencing apps

Video conferencing and on-demand video streaming are

two popular types of apps with different QoE metrics

48

 0

 500
 1000

 1500
 2000

 2500

 3000
 3500

 4000
 4500

 5000

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500
 5000

 5500
 6000

 6500
 7000

 7500

V
id

eo
 B

itr
at

e
(k

bp
s)

Bandwidth (kbps)

Youtube DASH
MS Smooth Streaming

Apple HLS

Figure 7: Mapping bandwidth (QoS metric) to video bitrate (QoE
metric) for Youtube, Microsoft Smooth Streaming, and Apple HLS

and requirements. For video conferencing, frame rate and

video/audio delay are the key QoE metrics and have di-

rect relationships with user satisfaction [53], [55]. For

video streaming, video bit-rate and rebuffering frequency

are the key QoE metrics [33], [40], [15], [52]. For video

conferencing, we generate models for two popular apps:

AppRTC [12] and Skype. AppRTC is a video conferencing

app developed by Google. It uses Chrome’s native WebRTC

implementation and shares the same WebRTC code base

as Google Hangouts. For on-demand video streaming, we

use the ExoPlayer library [4]. It provides a pre-built video

player for Android using DASH and is currently used by

YouTube and Google Play Movies [5]. Using ExoPlayer,

we can play three state-of-art HTTP-based adaptive stream-

ing schemes: YouTube DASH, Apple HLS, and Microsoft

Smooth Streaming.

To minimize disruption, both apps adapt their QoE to

variations in QoS. AppRTC and Skype adapt their encoded

and decoded frame rate to respond to available bandwidth.

As shown in Figure 6, various QoS metrics affect QoE

differently. Since both Skype and AppRTC use Forward

Error Correction (FEC) techniques [53] they can tolerate

some amount of packet loss—up to 5%. However, both are

highly sensitive to bandwidth variations.

For all three metrics, we observe that changes in QoS

do not necessarily lead to changes in QoE. For example,

video frame rate changes only at certain transitions in QoS.

We made the same observation for all the video steaming

schemes shown in Figure 7. Here the relationship between

QoS and the QoE metric (video bitrate) is even more

discrete2. This is particularly important to consider when

performing traffic management, since the impact of changing

bandwidth on app QoE is important for network operators.

In §V-B we show how ISPs can tune QoS to control QoE by

using the QoS-to-QoE mapping for the corresponding app.

For on-demand video streaming, rebuffering ratio and

bitrate switches are the other key QoE metrics. We observe

that the duration and frequency of rebuffering events depend

on the degree to which the bandwidth is changed and current

2These mappings are consistent across different videos, as video streaming
services usually transcode uploaded videos into a specific set of bitrates.

Algorithm 1 Adaptive sampling of QoS metric space

1: procedure SAMPLE(n-dim space R) � n QoS metrics
with arbitrary range r

2: NewSubSpaces ← {...}
3: for each ri do
4: if ri ≤ Thresh(i) then
5: Ri1, Ri2 ← divide ri by 2
6: NewSubSpaces.append(Ri1, Ri2)

7: if len(NewSubSpaces) = 0 then
8: return
9: else

10: for each Ri in NewSubSpaces do
11: BadQoESamples ← 0
12: for each Edge ej do � Each Space R has 2n edges
13: if QOE(ej)=Bad then
14: BadQoESamples ← BadQoESamples +1

15: if 0 < BadQoESamples/2n < 1 then
16: SAMPLE(Ri)

 0

 1.25

 2.5

 3.75

 5

 6.25

 7.5

 8.75

 10

 300 400 500 600 700 800 900 1000 1100

P
ac

ke
t l

os
s

(%
)

Bandwidth (kbps)

Fps<10
Fps>=10

Figure 8: Sampled QoS values based on Algorithm 1

buffer occupancy. Due to lack of visibility into the current

buffer occupancy, our model cannot be used to precisely

estimate the rebuffering ratio. In our experiment, since

the bandwidth is gradually increased by 100Kbps for each

sample, we did not observe any rebuffering events. Inferring

the number of bitrate switches requires keeping track of the

bitrate of each user, which would be unscalable to do so.

Thus, our proposed approach can only be applied to infer

video bitrate.

E. Adaptive Sampling of the QoS Metric Space

While we have shown how to map from individual QoS

metrics to the corresponding QoE value, constructing a

precise model

QoE = f(bw, delay, loss rate)

requires emulating all combinations of QoS values. How-

ever, as QoS metrics are continuous variables, experimenting

with all possible combinations is impractical. We propose a

sampling technique to find important combinations of QoS

values. We argue that we can map QoE values to a limited

set of QoE classes. In fact, customer satisfaction models

typically follow a threshold-based approach to distinguish

between various levels of customer satisfaction and dissat-

isfaction. For example, if frame rate is above a threshold,

users may not notice any further improvement. Then, we can

selectively increase our sampling of the QoS metric space

close to the borders of different QoE classes.

49

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

F
ra

m
e

ra
te

 (
fp

s)

Bandwidth (kbps)

AppRTC (VGA)
AppRTC (HD)
Skype (VGA)

Skype (HD)

(a) Mapping bandwidth to frame rate for
VGA and HD video quality.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

F
ra

m
e

ra
te

 (
fp

s)

Delay (ms)

AppRTC (HD)
Skype (HD)

(b) Mapping delay (added by AP) to
frame rate for VGA and HD video quality.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

F
ra

m
e

ra
te

 (
fp

s)

Bursty packet loss (%)

AppRTC (HD)
Skype (HD)

(c) Mapping packet loss to frame rate for
HD video quality.

Figure 6: Mapping various QoS metrics to frame rate (QoE) for AppRTC and Skype

 0

 50

 100

 150

 200

 250

 300

 350

Linear

2 nd
 Deg.

Poly

3 rd
 Deg.

Poly

4 th
 Deg.

Poly

5 th
 Deg.

Poly

Adaptive
Sam

p.

R
M

S
E

 (
K

bp
s)

Different Modelings

Linear and Polynomial Regression

Figure 9: Compare accuracy of adaptive sampling with regression-
based modelings.

We describe our algorithm in Algorithm 1. In this algo-

rithm, to identify the boundary between different classes of

QoE, the algorithm reduces the search space by half and if

it observes samples from different QoE classes in each sub-

space, it recursively calls the algorithm on that sub-space.

For simplicity, we present the version of our algorithm for

the case where we have a thresholded model for QoE [19],

[13] with two classes —Good or acceptable and Bad or

unacceptable—and n QoS metrics. But the algorithm is

easily extensible to more than two QoE classes. We demon-

strate the result of sampling for AppRTC in Figure 8. For

simplicity, two QoS metrics are sampled: bandwidth and

packet loss. As shown, our sampling algorithm is able to

clearly identify the boundary between the two classes of

QoE.

F. Evaluation

We evaluate the accuracy of the models generated by the

adaptive sampling technique by comparing it with mappings

that use linaer and polynomial regression. Specifically, we

compare our technique with Prometheus [13], which uses

linear regression (i.e., LASSO regression) to map network

traffic features to the binary classification of QoE. We

consider the model we generated for a Microsoft Smooth

Streaming video (Figure 7) to compare the accuracy of

our adaptive sampling technique with linear and 2nd to

5th degree polynomial regression. To train the regression-

based models, we generate the same number of randomly

selected bandwidth and video bitrate samples. To measure

the accuracy in terms of root mean squared error (RMSE),

we used another set of random samples (20% of the size

of the samples we used for training). Figure 9, shows that

our model provides 98% and 97% higher accuracy for

predicting the video bitrate than linear (e.g., Prometheus)

and 2nd degree polynomial regression, respectively. This is

attributed to the fact that due to the complex interaction

between app protocol and network conditions, we may not

be able to generate the QoS-to-QoE mapping using linear

or polynomial models.

G. Impact of System-level QoS Metrics

While we study and model the impact of network-level

QoS metrics on app QoE, system-level QoS metrics (e.g.,
CPU load, GPU, RAM) may also affect QoE. For instance,

poor GPS signal can increase launch time of an activity

tracker app. To understand how robust the models are to

common system-level QoS variations and device hardware

differences, we generated the models in two scenarios: (1)

device hardware differences, for which we experimented on

Galaxy S3 (2012) and Galaxy S7 (2016), and (2) resource

contention from background apps, for which we used a

synthetic background program to increased CPU load by

20% (the maximum increase from background apps [21]).

We performed experiments for both video streaming and

video conferencing, but did not find any change in the

generated model. This suggests that the models generated

for the apps considered in this paper are relatively robust to

common system-level QoS metric variations.

We do admit that for certain apps, e.g., some gaming apps,

the QoE can be affected by system-level QoS metrics such

as GPU and CPU. Such models that consider both system-

level and network-level QoS metrics can be utilized in OSes

(e.g., OS-level scheduler) and are a part of our future work.

IV. QOEBOX: QoE-Aware Traffic Manage-
ment

To optimize the use of their network, network operators

may utilize various traffic shaping techniques. For example,

an ISP may throttle flows traversing a congested link. Or,

it may attempt to apply limits to certain traffic categories,

such as streaming video [26].

50

QoS-QoE
Model

Users Traffic

Detect app
and usage

name

QoS
Measurement

Module 1

Module 2

Module 3

Combine
tc rules

srcip to
app/usage
mapping

Per flow QoS
and

available bw estimate

app/usage
name,
traffic

fingerprint,
model (f),

QoS

Traffic Shaping Rule Generator

Figure 10: QOEBOX architecture.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Launch
Weather

Like/Click
Tinder

Scroll
News NPR

Search
Video

YouTube

PLT
google.com

A
pp

 R
es

po
ns

e
T

im
e

(m
s)

Without Video Traffic
With Video Traffic
With Prioritization

Figure 11: App response delay of five usage types under
three scenarios: without concurrent video traffic, with
video traffic, and with prioritization.

To respond to different app demands, we argue that net-

work operators cannot treat all traffic equally. For example,

in the face of congestion they should attempt to allocate

network resources to minimize the degradation in QoE

experienced by users. As shown by previous studies [39],

[44], when QoE drops below a certain threshold, users

become frustrated. They may respond by quitting the app

or abandoning the service.

In this section, we demonstrate the practical utility of per-

app QoS-to-QoE models for addressing these problems. We

design, implement, and evaluate QOEBOX, a QoE-centric

traffic management framework. QOEBOX is a proxy solution

that can be installed on any Linux-based middlebox located

on a network path carrying all traffic for one or more users.

QOEBOX is transparent to both user-facing apps and back-

end servers. It does not need to communicate with end-hosts

to get instantaneous user-perceived QoE. Instead, it relies on

per-app QoS-to-QoE models, which are generated offline, to

applies various traffic shaping techniques to optimize the use

of network and improve end-user QoE.

As illustrated in Figure 10, QOEBOX consists of three

main components: app name and usage detection, QoS

measurement, and traffic shaping rule generator.

A. App Name and Usage Detection

As traffic from one or more devices is routed through

QOEBOX, the first step is to detect app name and usage for

each flow. This allows the system to find its corresponding

model and apply the appropriate QoE-aware traffic shaping

policies.

To map flows to apps, network operators can use existing

deep packet inspection tools such as nDPI [10] or other app

traffic classification techniques [54], [51]. However, we face

two unique challenges not addressed by existing techniques.

First, we need to detect usage as well as app name, as

different usages within the same app may have a different

QoS-to-QoE models. For instance, searching for videos

in YouTube is latency sensitive, while watching videos is

bandwidth sensitive. Second, we need to detect the app name

and usage as early as possible. This is particularly important

for latency-sensitive traffic, which tends to be short-lived.

This gives QOEBOX only a short amount of time to identify

the usage and apply the proper traffic shaping policy.

Our implementation of QOEBOX uses a DNS-based tech-

nique to infer the app name and usage. Our technique is

based on the observation that for each usage, the set of

domain names used by uplink traffic is unique to that usage.

For example, when an app is launched, it may send data

to various tracking and advertisement services, whereas for

scrolling, it may only fetch the content that is going to

be shown to user. These DNS-based fingerprints can be

generated automatically by replaying usages on different

devices and times. Then, the fingerprint for each usage will

be the intersection of the sets of domains observed across

different runs. Fingerprints for different versions of an app

can be generated in a similar way. These fingerprints can be

created based on other attributes, including IP address and

port. Specifically, in enterprise networks, network admins

may already know the fingerprints or network signature of

their “managed applications” [9], [1] and these fingerprints

can be provided to QOEBOX as input. Using these finger-

prints, QOEBOX can map a set of IPs to their corresponding

app/usage name.

B. QoS Measurement

To infer end-user QoE for a given app, we must be

able to measure the QoS of its flows in order to apply its

QoS-to-QoE model. This includes an estimate of bandwidth

consumed by app, packet loss, latency, and an estimate of

available link bandwidth.

Since not all network operators have visibility at the

network edge, the ability to infer QoS depends on the metric

and protocol specification. For example, some QoS metrics

such as UDP packet loss can be measured in the core

network only if the protocol exposes some information such

as sequence number.

To overcome these challenges, we leverage existing tools

and techniques to measure bandwidth, packet loss, and delay

from passive analysis of user traffic [30]. For instance, to

infer packet loss and delay from TCP traffic, we keep track

of sequence/ack numbers and TCP handshake RTT. For

UDP traffic, if the protocol includes timestamp and sequence

51

number, it is possible to estimate delay and measure packet

loss. For instance, the Real-time Transport Protocol (RTP)—

a popular protocol for real-time applications and used by

WebRTC [12]—includes both timestamp and sequence num-

ber in the header. Even if the payload is encrypted we can

still measure TCP and UDP throughput.

While measuring bandwidth, loss, and latency for TCP

connections and UDP streams, QOEBOX also measures

available link bandwidth and reports it to the traffic shap-

ing rule generator module. Available bandwidth is needed

when multiple bandwidth-intensive usages are detected and

competing for network resources. In that case, QOEBOX

can leverage the model to optimally allocate the available

bandwidth to competing flows. In §V-B, we describe the

design, implementation, and evaluation of a QoE-aware

bandwidth allocation scheme that leverages this information.

To estimate available bandwidth, we adopt the technique

described in [28]. By passively monitoring the apps’ traffic

and measuring aggregated throughput of all TCP flows that

have transferred enough bytes to exit slow-start, QOEBOX

can estimate the achievable bandwidth when the link is

saturated.

C. Traffic Shaping Rule Generation

QOEBOX allows network operators to implement various

QoE-aware traffic management schemes and include their

implementation as a module. As input, each module takes

the model, as a function, per-flow QoS information, app and

usage names, and their corresponding traffic fingerprint. As

output, the module generates a set of tc rules for a class
of traffic. In the generated tc rules, filters specify the

traffic that should be processed by each class. Here, the

traffic fingerprint of each usage can be included in the filters.

Modules can classify traffic based on various attributes,

including app name and app type (e.g., video streaming),

and one module can apply its shaping on a class of traffic

that is classified by another module. Thus, we have a notion

of ordering between classes. We will showcase an example

of this ordering in §V, in which a module first classifies

the traffic as latency sensitive or bandwidth intensive, then

another module applies QoE-aware bandwidth allocation

only on traffic belonging to the bandwidth intensive class.

To enforce ordering among different modules, QOEBOX

takes the relation between the modules as input and uses

Hierarchical Token Bucket (HTB) qdisc to combine the

generated rules from different modules.

QOEBOX is designed and implemented as a middlebox

that can be installed on any Linux-based machine. Depend-

ing on where QOEBOX is installed (e.g., cellular base-station

or home WiFi access point), it can measure and control

different QoS metrics. Thus, as a result of the modular

design, network operators can implement and include dif-

ferent modules to control QoS and enforce various QoE-

aware traffic management schemes on different platforms

and networks.

V. Case Studies
We design, implement, and evaluate two modules for

WiFi access points, as case study: a traffic classification and

prioritization module, and QoE-aware bandwidth allocation

module. Both make a direct use of the models generated

for various types of apps. For evaluation, we cross-compile

QOEBOX and these modules as a package with OpenWrt

SDK for Chaos Calmer (15.05.1) release. We evaluate QOE-

BOX on a TP-Link Archer C7 WiFi router with OpenWrt

15.05.1 and we consider home network scenarios where the

number of users typically ranges from 1 to 10.

A. Classifying and Prioritizing Different Traffic Types

Our goal is to properly allocate resources and satisfy us-

ages’ various QoS requirements by applying traffic shaping

policies while managing competition between traffic from

different usages. To do this, this module first classifies the

traffic based on the app and usage’s model. Traffic from

different user interactions may behave differently under

different network conditions. For instance, normally video

streaming is delay tolerant. But at low bandwidth, as the

video chunk sizes become smaller, it may also become

sensitive to increases in latency. Thus, this module takes

the current QoS values as an input to classify the flows.

The model generated for each flow is used to determine if

changing the current value of each individual QoS metric

(i.e., bandwidth and latency) will affect QoE.

As a result of classification, apps and usages with the

same requirements will be assigned to the same class. This

separation and control is necessary, as traffic from different

classes can interact poorly and adversely affect each other’s

QoE. The poor interaction between different classes of

traffic can be caused by the fact that each usage has its

own QoS requirements. As a result, they tend to leverage

different protocols that satisfy their needs. For instance,

video streaming apps require high bandwidth to provide

high quality video to users. To achieve this goal, video

streaming apps use TCP, which tries to aggressively consume

all the available bandwidth. However, in the presence of

other classes of traffic, this strategy can adversely affect the

QoE of other apps.

QOEBOX classifies flows into three classes:

1) Latency sensitive traffic that includes various usage

types, such as click, launch, and scroll in interactive

apps;

2) Bandwidth and latency sensitive traffic that repre-

sents video conferencing apps; and

3) Bandwidth intensive traffic such as video streaming,

foreground app installation, and file downloads.

and uses HTB qdisc in tc to generate the classes.

We first focus on characterizing the interaction between

these three classes of users’ traffic. To characterize how

52

bandwidth intensive traffic affects the other two traffic

classes, we conduct the following experiment. First we

measure the QoE of 5 devices replaying different types of

latency sensitive usages. We repeat this 20 times for each

usage. Then we add three more devices that play a YouTube

video, representing bandwidth intensive usage. We compare

the app response delay for latency sensitive usages with

and without the presence of video streaming traffic. We

repeat this experiment for video conferencing with AppRTC

which represents bandwidth and latency sensitive usage. We

then compare video quality of video conferencing with and

without the presence of video streaming traffic.

Since YouTube uses TCP, it can consume all available

bandwidth. We observe that this behavior affects video

conferencing and interactive latency sensitive apps in two

different ways. Figure 11 shows that when video streaming

traffic co-exists with different latency-sensitive usages, the

median, 75th, and 95th percentile of the response time for

all 5 usage types increases. For example, median PLT of

google.com rises by 73%, while 95th percentile of app

response time for scrolling in NPR increases by 964%. This

translates into between 1 and 6 s of extra delay. As explored

in previous work [46], this increase in app delay is caused

by bursty video traffic that increases queuing delay at the

router buffer and corresponding end-to-end latency.

For video conferencing apps, Figure 12 shows that when

other users are watching YouTube, median frame rate drops

from 24 fps and 27 fps to 2 fps and 7 fps for AppRTC

and Skype, respectively. For AppRTC, although the SCTP

protocol aggressively tries to obtain more bandwidth, it loses

the competition with TCP and cannot deliver all frames

successfully. In addition, additional delay caused by queuing

in the router leads to high frame drops at the receiver.

Because video conferencing apps cannot tolerate delay, late

packets are dropped.

Previous studies have addressed poor interaction between

different traffic types by prioritizing traffic from latency-

sensitive apps. QOEBOX prioritizes traffic classes as fol-

lows: (1) Latency-sensitive traffic, (2) Latency and band-

width sensitive traffic, (3) Bandwidth-intensive traffic, and

(4) Background traffic, which is both latency and bandwidth

tolerant. We used prio qdisc in tc to enforce these

priorities.

The effects of traffic prioritization are shown in Fig-

ures 11 and 12. Figure 11 shows that latency-sensitive usages

recover the performance they achieve without concurrent

video traffic. Figure 12 shows that video frame rate for

the video conferencing app also improve to their values

without concurrent video traffic. By prioritizing the traffic

of latency sensitive usages, these usages can automatically

receive the amount of bandwidth they need, thus satisfying

their bandwidth requirement, as explained in §III-D.

For flows with unknown models—which is caused by

inaccurate app name and usage detection—we ensure that

their performance will not be affected by QOEBOX. To

achieve this goal, QOEBOX first tries to detect whether a

flow with an unknown model is short-lived or long lived.

If it is short-lived, it will be assigned the same priority as

latency and bandwidth sensitive traffic, otherwise, it will be

assigned the lowest priority. In terms of bandwidth, it will

be allocated an equal share of the available link’s bandwidth.

Although prioritizing the traffic has been extensively

explored in previous studies, we are the first to demonstrate

its effectiveness on improving QoE of various types of apps

and usages.

B. QoE-Aware Bandwidth Allocation

One observation arising from the model we built for

video streaming and conferencing apps is that a change to

QoS does not necessarily lead to a change in QoE. For all

the three adaptive video streaming schemes in Figure 7,

the video bitrate is discrete. One immediate implication

of the model is that allocating more bandwidth to video

streaming apps does not necessarily improve the video

bitrate. Moreover, applications do not seem to control the

amount of bandwidth they consume. This is due to use

of TCP at the transport layer, which may try to download

chunks as fast as possible and consume a large amount of

bandwidth, and that amount of bandwidth might be more

than enough for the selected bitrate.

To understand this effect better, we did an experiment

with YouTube. Based on the YouTube model in Figure 7,

2.5Mbps and 3.5Mbps will lead to the same bitrate. But

the app does in fact consume its total allocated bandwidth.

YouTube consumes the allocated bandwidth to download

video chunks faster, but the extra bandwidth does not result

in a higher bitrate. Thus, allocating the optimal amount of

bandwidth to each user is necessary.

To motivate the need for limiting the bandwidth of each

user, we run an experiment with 10 devices simultaneously

streaming a 10 min HLS video. We first limit the total

bandwidth to 20Mbps and compare the mean video bitrate

and rebuffering duration with the case where each device is

individually limited to 2Mbps. We find that when limiting

the bandwidth of each user separately, the mean video bitrate

drops by 10%. However, the mean rebuffering time improves

from 18 s to no rebuffering. We attribute this to the fact that

due to the buffering, downloading consecutive video chunks

exhibits an ON-OFF pattern. When multiple capacity-based

ABR clients are streaming videos simultaneously, the over-

lap between these ON-OFF patterns may cause devices

to overestimate the available bandwidth. This causes them

to switch to a too-high bitrate, which eventually leads to

rebuffering events.

These observations lead us to derive a new bandwidth al-

location scheme to improve overall QoE of video streaming

apps. To allocate the bandwidth efficiently across different

apps with different models, we formulate the problem as

53

0

5

10

15

20

25

30

AppRTC Skype

F
ra

m
e

ra
te

 (
fp

s)

w/o Video Traffic
w Video Traffic
w Prioritization

Figure 12: Frame rate of
AppRTC and Skype w/o and
with video traffic, and with
prioritization.

 0
 0.2
 0.4
 0.6
 0.8

 1

10 20 30 40
V

id
eo

 B
itr

at
e

(N
or

m
al

iz
ed

 M
ea

n
an

d
S

td
de

v)
Total Bandwidth (Mbps)

Eq. BW
Optimal Bitrate without fairness

Optimal Bitrate with fairness
Eq. BW with optimization

Figure 13: Video bitrate of 10 users
streaming video at random times and
duration.

 0
 0.2
 0.4
 0.6
 0.8

 1

Upto 30 Upto 40 Upto 50

V
id

eo
 B

itr
at

e
(N

or
m

al
iz

ed
 M

ea
n

an
d

S
td

de
v)

Num. of users

Eq. BW
Optimal Bitrate without fairness

Optimal Bitrate with fairness
Eq. BW with optimization

Figure 14: Simulation results of
different number of users streaming
video under 100Mbps bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 15 25 35 45

T
ot

al
 M

O
S

 (
N

or
m

al
iz

ed
)

Total Bandwidth (Mbps)

Same BW
Maximized Bitrate

Figure 15: Total MOS of 10 users
streaming video and downloading a
file at the same time.

an optimization problem. We first use the model to find

the minimum bandwidth required for each QoE class (for

video streaming, QoE classes correspond to discrete bitrate

values). To account for fluctuations in network bandwidth

or any inaccuracy in the model, we add extra bandwidth

ε3 to the minimum value. We then form the function f
to map discrete bandwidth values b to their corresponding

bitrate value v. Then, for each user, we need to choose from

available discrete bandwidth values to maximize the overall

bitrate with the constraint that the total allocated bandwidth

must be less than available bandwidth.

This problem is equivalent to the multiple-choice knap-
sack problem (MCKP) [36]. The bitrate vij corresponds to

the value of bandwidth j for app i and we need to choose

exactly one bandwidth value for each device. We can also

incorporate additional constraints reflecting common ISP

policies—limiting the total bandwidth of a particular app,

or capping users’ bandwidth based on their service plan.

One issue with MCKP is that it does not consider fairness,

so the users of the same app may be assigned different

bandwidth values. To enforce fairness across the users of the

same app, we modified the MCKP formulation as follow to

make the users of the same app receive equal bandwidth:

maximize

n∑

i=0

∑

j∈Si

Vijxij

subject to

n∑

i=0

∑

j∈Si

Bijxij ≤ TotalBW,

∑

j∈Si

xij = 1, i = 1, . . . , n xij ∈ {0, 1}, i = 1, . . . , n, j ∈ Si

Where:

• n is the number of apps—instead of users in MCKP;

• Si is the set of bandwidth values available to choose

for app i;
• Vij = ki × vij where ki is the user count for app i;

3for our experiments, we choose 100Kbps as ε

• Bij = ki × bij is the total bandwidth allocated to the

users of app i.

Various algorithms are available to solve the MCKP. We

used a dynamic programming formulation explained in [36]

to solve MCKP. Solving MCKP with dynamic programming

requires finding optimal bandwidth allocations (i.e., Bi for

app i) for a range of input values, i.e., available bandwidth

values and apps. Using these precomputed solutions, we

can update the apps’ bandwidth value in response to the

changes in available bandwidth, without extra computational

overhead. We use HTB qdisc to limit the bandwidth of each

app to its corresponding precomputed bandwidth Bi.

To evaluate how much our optimization algorithm can

improve overall video bitrate, we did an experiment with

10 devices. Each device plays a video from a random app

at random times and for a random duration. We perform

this experiment for 1 hour. Then we compare mean video

bitrates of devices using three different bandwidth allocation

approaches: (1) same bandwidth for each device, (2) optimal

bandwidth without fairness, and (3) optimal bandwidth with

fairness. We show the results under four different bandwidth

values in Figure 13. Optimal bandwidth without fairness

improves mean bitrate by up to 30%, and with fairness

by up to 26%. However, as can be seen, there is a high

standard deviation in both approaches, meaning that MCKP

may allocate high bandwidth to some users, while other

users may be allocated a very low bandwidth.

To reduce this disparity, we modify the optimization

formulation in the following way. First, we equally divide

and allocate the available bandwidth to all the users (b̄). Then

for each user, based on its model, we find b̄’s corresponding

bitrate value vi and then the minimum bandwidth required

for vi (bi). Here if bi < b̄, we can potentially use all the

extra bandwidth of Bextra =
∑

i b̄ − bi to improve video

quality. To do so, we formulate the problem as a MCKP with

Bextra as the total available bandwidth and optimally allocate

this extra bandwidth to users that can use it to switch to

higher bitrates. As can be seen in Figure 13, compared with

54

optimal bandwidth with and without fairness, this approach

can achieve the lowest standard deviation in exchange for 1

to 7% lower bitrate.

We also performed a simulation of public WiFi networks,

where the number of users can be higher (up to 50). As in

our home WiFi network experiment, users can start watching

videos at random times and for a random duration. As shown

in Figure 14, with 100Mbps bandwidth, we can achieve up

to 25%, 22%, and 24% higher average bitrate for the three

proposed bandwidth allocation schemes.

Here we formulate the problem for video streaming

apps and we maximize a single QoE metric (i.e., video

bitrate). In case there are multiple bandwidth intensive

apps with different QoE metrics (e.g., downloading a file

in foreground and video streaming), first we need to map

all various QoE metrics to a single metric. To do so, we

can utilize existing models and subjective quality evaluation

methods that provide the mapping between different app-

specific objective QoE metrics to app-independent MOS

(Mean Opinion Score). To evaluate our proposed bandwidth

allocation scheme in such scenario, we did an experiment

with 10 devices: 8 devices streaming YouTube videos and 2

devices are downloading a 10MB file4. We use the models

that map video bitrate to MOS from [38] and download time

to MOS from [24]. Figure 15 shows the results under five

different bandwidth values. As can be seen, our proposed

scheme improves the overall MOS by 25%.

VI. Related Work
Our work builds upon and complements a series of related

work on QoE models and traffic management. In this section,

we discuss some of the prior work in these areas and

highlight the limitations that we address.

QoE Predictive Models. There is a rich body of work that

leverages predictive models to estimate video QoE within the

network [50], [18], [35], [41]. Schatz et al. [50] presented

methods to estimate the number of stalling events and their

duration for YouTube using network level measurements.

Casas et al. [18] presented YOUQMON, which can detect

stalling events in YouTube video stream by analyzing the

traffic collected in 3G core network, and then map it to

MOS (a subjective QoE metric). Mangla et al. [41] pre-

sented VideoNOC, a platform for video QoE monitoring

in cellular networks. VideoNOC analyzes HTTP header

information to infer various objective QoE metrics for video

streaming services. Balachandran et al. [16] presented a

data-driven approach to develop a predictive model of user

engagement in video streaming services. The developed

model maps quality metrics (i.e., objective QoE metrics)

to user engagement metrics, including viewing time and

number of visits. Compared to these video streaming specific

4Traffic of mobile video is four times the traffic of app download and file
sharing [3]

methods, our work is more broadly applicable to a wide

range of apps and QoE metrics. The closest work to ours is

Prometheus [13], which estimates app QoE using passive

network measurement, and then uses linear regression to

map network traffic features to the binary classification of

QoE. In contrast, we argue that the QoS-to-QoE mapping

may not be linear, due to (1) the complex interaction be-

tween app protocol and network conditions, and (2) the non-

linear relationship between QoS metrics (e.g., bandwidth)

and user satisfaction [37]. Moreover, to gather training data

for prediction, Prometheus relies on passive measurement of

QoS from real mobile devices, while we propose an offline

sampling technique that efficiently samples QoS values close

to the boundary of different QoE classes. ExBox [19] is a

QoE-aware admission control mechanism for WiFi networks

that leverages IQX hypothesis model [25] to estimate QoE

of incoming flows and then classifies them as admissible or

non-admissible.

QoE Aware Traffic Management. Traffic prioritization is

a known technique to mitigate in-network bufferbloat [46],

[31], [29]. Prioritizing traffic from certain applications us-

ing per-class queuing is also recommended by IETF as

one of the best practices for active queue management

on network devices [14]. As a part of IEEE 802.11e [6]

standard, Wireless Multimedia (WMM) service is proposed

and supported by commercial WiFi routers to classify and

prioritize the traffic of certain types of apps. However, it

requires end-device input and classification. In fact WMM

service has been always enabled in all our experiments.

Bozkurt et al. [17] and Martin et al. [42] propose traffic

management schemes for home networks that rely on users’

preference and apps’ input, respectively, to prioritize the

traffic. The idea of application-aware adaptation through

collaboration between the system and individual apps was

initially proposed by Noble et al. [47]. In this paradigm, the

OS monitors QoS metrics, notifies applications of changes

in the metrics, and enforces resource allocation decisions

made by the applications. Jiang et al. [32] propose a network

paradigm where apps and network providers can collaborate

by exchanging information such as QoE data. In comparison

to these approaches, our proposed traffic management frame-

work is designed for unmodified and unaware apps, i.e., it

does not need to communicate with end-host and it does

not require users’ input. Several prior efforts focus on the

problem of bandwidth allocation for various type of apps,

specifically video traffic. FESTIVE [34] is a client side so-

lution which provides a trade-off between fairness, stability

and efficiency. Q-Point [23] and QFF [27] are SDN-based

approaches to address fairness and maximize aggregated

QoE of multiple competing clients simultaneously watching

video. In comparison with these approaches that focus on a

single type of app, our bandwidth allocation technique can

be applied to different types of apps. As a practical QoE-

aware traffic management framework, we cover all types of

55

apps, and classify and allocate the resources with respect to

their QoS-to-QoE model.

VII. Conclusion
In this paper, we propose offline generation of per-

app models mapping app-independent QoS metrics to app-

specific QoE metrics. By building QOEBOX, a QoE-based

traffic management framework, we show how network

operators can utilize these QoS-to-QoE models to optimally

allocate the resources between various types of apps and

improve end-user QoE. We design, implement, and evaluate

two direct applications of the model, as a QOEBOX modules

for WiFi access points: a traffic classification and prioriti-

zation and an optimal fair QoE-aware bandwidth allocation

scheme.

Acknowledgment
We thank the anonymous reviewers and our shepherd,

Ellen Zegura, for their helpful feedback. This work is

supported in part by NSF under the grants CCF-1628991

and CNS-1629763.

References
[1] Apple: Configuration Profile Reference. https:

//developer.apple.com/library/content/featuredarticles/
iPhoneConfigurationProfileRef/Introduction/Introduction.
html.

[2] UsageReplayer github repository. https://github.com/
AndroidUsageReplayer/AndroidUsageReplayer.

[3] Ericsson mobility report, june 2016. https://www.ericsson.
com/assets/local/mobility-report/documents/2016/ericsson-
mobility-report-june-2016.pdf.

[4] ExoPlayer. https://google.github.io/ExoPlayer.

[5] ExoPlayer: Adaptive video streaming on Android - YouTube.
https://www.youtube.com/watch?v=6VjF638VObA.

[6] IEEE SA - 802.11e-2005 – part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifica-
tions - amendment 8: Medium access control (mac) quality
of service enhancements. https://standards.ieee.org/findstds/
standard/802.11e-2005.html.

[7] ITU-T P.1203 (11/2016): Models and tools for quality assess-
ment of streamed media. http://handle.itu.int/11.1002/1000/
13158.

[8] Measure Performance with the RAIL Model. https://
developers.google.com/web/fundamentals/performance/rail.

[9] Meraki Documentation: MDM Configuration Settings.
https://documentation.meraki.com/SM/Profiles and Settings/
Configuration Settings.

[10] nDPI: Open and Extensible LGPLv3 Deep Packet In-
spection Library. http://www.ntop.org/products/deep-packet-
inspection/ndpi/.

[11] netem. https://wiki.linuxfoundation.org/networking/netem.

[12] WebRTC Native Code. https://webrtc.org/native-code/.

[13] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and
H. Yan. Prometheus: Toward Quality-of-experience Estima-
tion for Mobile Apps from Passive Network Measurements.
In Proc. of HotMobile, 2014.

[14] F. Baker and G. Fairhurst. IETF Recommendations Regarding
Active Queue Management . RFC 7567, Internet Engineering
Task Force, 2015.

[15] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica,
and H. Zhang. A Quest for an Internet Video Quality-of-
experience Metric. In Proc. of HotNets-XI, 2013.

[16] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica,
and H. Zhang. Developing a Predictive Model of Quality of
Experience for Internet Video. In Proc. of ACM SIGCOMM,
2013.

[17] I. N. Bozkurt and T. Benson. Contextual Router: Advancing
Experience Oriented Networking to the Home. In Proc. of
SOSR, 2016.

[18] P. Casas, M. Seufert, and R. Schatz. YOUQMON: A System
for On-line Monitoring of YouTube QoE in Operational 3G
Networks. SIGMETRICS Perform. Eval. Rev.

[19] A. Chakraborty, S. Sanadhya, S. R. Das, D. Kim, and K.-
H. Kim. ExBox: Experience Management Middlebox for
Wireless Networks. In Proc. of CoNEXT, 2016.

[20] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui,
K. Sontineni, and K. Lau. QoE Doctor: Diagnosing Mobile
App QoE with Automated UI Control and Cross-layer Anal-
ysis. In Proc. of IMC, 2014.

[21] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Van-
nithamby. Smartphone Energy Drain in the Wild: Analysis
and Implications. In Proc. of the ACM SIGMETRICS, 2015.

[22] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Gan-
jam, J. Zhan, and H. Zhang. Understanding the Impact
of Video Quality on User Engagement. In Proc. of ACM
SIGCOMM, 2011.

[23] O. Dobrijevic, A. J. Kassler, L. Skorin-Kapov, and M. Mati-
jasevic. Q-POINT: QoE-Driven Path Optimization Model for
Multimedia Services. In Proc. of WWIC, 2014.

[24] S. Egger, P. Reichl, T. Hoßfeld, and R. Schatz. “Time
is bandwidth”? Narrowing the gap between subjective time
perception and Quality of Experience. In Proc. of IEEE ICC,
2012.

[25] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic quanti-
tative relationship between quality of experience and quality
of service. IEEE Network, 24(2):36–41, 2010.

[26] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng,
T. Karim, E. Katz-Bassett, and R. Govindan. An Internet-
Wide Analysis of Traffic Policing. In Proc. of ACM SIG-
COMM, 2016.

56

[27] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and
N. Race. Towards Network-wide QoE Fairness Using
Openflow-assisted Adaptive Video Streaming. In Proc. of
FhMN, 2013.

[28] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman.
Speed Testing Without Speed Tests: Estimating Achievable
Download Speed from Passive Measurements. In Proc. of
IMC, 2010.

[29] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen.
Understanding On-device Bufferbloat for Cellular Upload. In
Proc. of IMC, 2016.

[30] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen,
and O. Spatscheck. An In-depth Study of LTE: Effect of
Network Protocol and Application Behavior on Performance.
In Proc. of SIGCOMM, 2013.

[31] N. Iya, N. Kuhn, F. Verdicchio, and G. Fairhurst. Analyzing
the impact of bufferbloat on latency-sensitive applications. In
Proc. of IEEE ICC, 2015.

[32] J. Jiang, X. Liu, V. Sekar, I. Stoica, and H. Zhang. EONA:
Experience-Oriented Network Architecture. In Proc. of Hot-
Nets, 2014.

[33] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shedding Light
on the Structure of Internet Video Quality Problems in the
Wild. In Proc. of CoNEXT, 2013.

[34] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive Video
Streaming with FESTIVE. In Proc. of CoNEXT, 2012.

[35] M. Katsarakis, R. C. Teixeira, M. Papadopouli, and
V. Christophides. Towards a Causal Analysis of Video QoE
from Network and Application QoS. In Proc. of Internet-
QoE, 2016.

[36] H. Kellerer, U. Pferschy, and D. Pisinger. The Multiple-
Choice Knapsack Problem, pages 317–347. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[37] S. Khirman and P. Henriksen. Relationship between quality-
of-service and quality-of-experience for public internet ser-
vice. In Proc. of PAM, 2002.

[38] T. Kimura, M. Yokota, A. Matsumoto, K. Takeshita,
T. Kawano, K. Sato, H. Yamamoto, T. Hayashi, K. Shiomoto,
and K. Miyazaki. QUVE: QoE Maximizing Framework for
Video-Streaming. J. Sel. Topics Signal Processing, 2017.

[39] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality
Impacts Viewer Behavior: Inferring Causality Using Quasi-
experimental Designs. In Proc. of IMC, 2012.

[40] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality
Impacts Viewer Behavior: Inferring Causality Using Quasi-
Experimental Designs. IEEE/ACM Transactions on Network-
ing, 21(6):2001–2014, 2013.

[41] T. Mangla, E. Zegura, M. Ammar, E. Halepovic, K.-W.
Hwang, R. Jana, and M. Platania. VideoNOC: Assessing
Video QoE for Network Operators Using Passive Measure-
ments. In Proc. of MMSys, 2018.

[42] J. Martin and N. Feamster. User-driven Dynamic Traffic
Prioritization for Home Networks. In Proc. of W-MUST,
2012.

[43] S. McIlroy, N. Ali, and A. E. Hassan. Fresh apps: an empirical
study of frequently-updated mobile apps in the Google play
store. Empirical Software Engineering, 21(3):1346–1370, Jun
2016.

[44] H. Nam, K.-H. Kim, and H. Schulzrinne. QoE Matters More
Than QoS: Why People Stop Watching Cat Videos. In Proc.
of INFOCOM, 2016.

[45] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas,
T. Kosar, C. Qiao, S. Y. Ko, and G. Challen. PhoneLab:
A Large Programmable Smartphone Testbed. In Proc. of
SENSEMINE, 2013.

[46] K. Nichols and V. Jacobson. Controlling Queue Delay. Queue,
2012.

[47] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile Application-aware Adapta-
tion for Mobility. In In Proc. of SOSP, 1997.

[48] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Ober-
miller, and S. Shayandeh. AppInsight: Mobile App Perfor-
mance Monitoring in the Wild. In Proc. of OSDI, 2012.

[49] U. Reiter, K. Brunnström, K. De Moor, M.-C. Larabi,
M. Pereira, A. Pinheiro, J. You, and A. Zgank. Factors
Influencing Quality of Experience, pages 55–72. Springer
International Publishing, 2014.

[50] R. Schatz, T. Hoßfeld, and P. Casas. Passive YouTube QoE
Monitoring for ISPs. In Proc. of IMIS, 2012.

[51] Q. Xu, Y. Liao, S. Miskovic, M. Baldi, Z. M. Mao, A. Nucci,
and T. Andrews. Automatic Generation of Mobile App
Signatures from Traffic Observations. In Proc. of IEEE
INFOCOM, 2015.

[52] S. Xu, S. Sen, Z. M. Mao, and Y. Jia. Dissecting VOD
Services for Cellular: Performance, Root Causes and Best
Practices. In Proc. of IMC, 2017.

[53] Y. Xu, C. Yu, J. Li, and Y. Liu. Video Telephony for
End-consumers: Measurement Study of Google+, iChat, and
Skype. In Proc. of IMC, 2012.

[54] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M.
Mao. SAMPLES: Self Adaptive Mining of Persistent Lexical
Snippets for Classifying Mobile Application Traffic. In Proc.
of MOBICOM, 2015.

[55] X. Zhang, Y. Xu, H. Hu, Y. Liu, Z. Guo, and Y. Wang.
Profiling Skype video calls: Rate control and video quality.
In Proc. of INFOCOM, 2012.

57

