
Proactive Vulnerability Discovery and Assessment in
Smart, Connected Systems Through Systematic Problem

Analysis

by

Qi Chen

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2018

Doctoral Committee:

Professor Z. Morley Mao, Chair

Professor Henry X. Liu

Professor Atul Prakash

Assistant Professor Zhiyun Qian, University of California, Riverside

Professor Michael K. Reiter, University of North Carolina, Chapel Hill

Qi Chen

alfchen@umich.edu

ORCID iD: 0000-0003-0316-9285

c© Qi Chen 2018

To my parents, Professor Jianhua Chen and Mingxiu Ma,

and my love, Yu Stephanie Sun.

ii

ACKNOWLEDGEMENTS

Getting a Ph.D. is quite a long and tough journey. Looking back at the past six years, I

find myself constantly making mistakes, getting rejected, and questioning about whether I

am really that talented to become a competent researcher in the end. The only reason that

gets me this far is the tremendous help and support from so many people along the way.

First and foremost, I would like to thank my advisor, Professor Z. Morley Mao. She

is always willing to make herself available whenever I need her guidance, no matter for

research, work, or life. Her consistent passion about research and her encouragement when

I stuck are no doubt the most important reason why I am able to overcome so many hurdles

in my Ph.D. journey. I especially admire her endless energy and resilience in pursuing

higher standards in research and career, making her a perfect role model for my upcoming

faculty career. I am extremely fortunate to have her being my advisor.

Next, I want to thank my girlfriend, Yu Stephanie Sun, for accompanying me for more

than 7 years since we were both undergraduate students in Nanjing University. Without her

unconditional love and support, I don’t think I can even have the courage to take on the

challenge of pursuing a Ph.D. degree. Having her alongside me is the best thing that ever

happened to me in my whole life.

I am very much grateful to my dissertation committee, Professor Atul Prakash, Pro-

fessor Mike Reiter, Professor Zhiyun Qian, and Professor Henry Liu for their valuable

feedback and help in refining the dissertation. I would like to especially thank Zhiyun for

closely working with me on various research projects. His guidance is of tremendous help

to me, especially at the early stage of my Ph.D. study.

iii

I appreciate the collaboration opportunity with Dr. Eric Osterweil and Matt Thomas

at Verisign Labs starting from my internship in May 2015. They taught me how to per-

form network measurement and data-driven research, which becomes a core skill set in my

following research. I have been fortunate enough to have them being my mentors.

I would also like to thank Professor Henry Liu and Dr. Yiheng Feng for collaborating

with me so successfully in the last two years of my Ph.D. study. They taught me so much

about the transportation field, without which it’s impossible to finish my last project – in

my option, the most exciting one – about smart transportation security. The challenges I

overcame in this highly interdisciplinary research collaboration will absolutely have a long

lasting benefit in my upcoming career.

I also want to thank my colleagues and friends in Ann Arbor. I would like to first thank

Dr. Yihua Guo and Haokun Luo. We three came to Michigan at the same year and became

best friends ever since. I have highly enjoyable interaction with them both academically

and socially throughout my Ph.D. study. We did tons and tons of funny (or silly) things

together, for example the special interest group of foosball (SIGFOOS) and the player

ranking system [112], and the “car-breaking” midnight chat with Yihua (please check out

his dissertation for more details [210]). I also had lots of happy time with Dr. Earlence

Fernandes, who started the Ph.D. program at the same year with me and also worked in

the computer security research field. We were almost always roommates when travelling

to security conferences and workshops, and shared nearly every piece of achievements and

milestones in our Ph.D. study.

Also many thanks to my former group members, Dr. Qiang Xu, Dr. Junxian Huang,

Dr. Sanae Rosen, and Mark Gordon, who helped me through tough times at the beginning

of my Ph.D. study. In addition, I have enjoyed working on research projects together with

Dr. Yunhan Jack Jia, Yuru Shao, Professor Ding Zhao, Professor Amir Rahmati, Professor

Harsha Madhyastha, Professor J. Alex Halderman, Yucheng Yin, Yulong Cao, Shengtuo

Hu, Jeremy Erickson, Chao Kong, Yikai Lin, David Ke Hong, Dr. Ashkan Nikravesh,

iv

Jason Ott, Jie You, Shiqi Wang, Shihong Huang, Xiaochen Yu, EJ Lin, Rob Levy, and

industry researchers Dr. Jie Hui, Aaron Drake, Dr. Kevin Lau, and Karthik Iyer. I also

had a lot of fun with Yuanyuan Zhou, Professor Feng Qian, Professor Roya Ensafi, Dr.

Mehrdad Moradi, Tom Andrews, Shichang Xu, Xiao Zhu, Lei Ruan, Deepak Kumar, Pro-

fessor Michael Bailey, Dr. Yunjing Xu, Dr. Jing Zhang, Dr. Yue Liu, Dr. David Bild,

Jiecao Yu, Shikai Li, Dongyao Chen, Dr. Yu-Chih Tung, Dr. Fei Li, Xianzheng Dou, Dr.

Zhe Wu, Zhiqiang Sui, Professor Kassem Fawaz, Arun Ganesan, Mert Pese, Nishil Talati,

Kevin Eykholt, Dr. Denis Foo Kune, Dr. David Devecsery, Dr. Michael Chow, Andrew

Quinn, Dr. Sara Rampazzi, Tim Trippel, Ofir Weisse, Zhongjun Jin, Wai Wong, Xiaochi Li,

Professor Eric Wustrow, Professor Zakir Durumeric, Travis Finkenauer, Ben VanderSloot,

Matt Bernhard, and many others.

Finally, I want to thank my parents, Professor Jianhua Chen and Mingxiu Ma, for their

guidance and support in both my life and career. Thanks again to Stephanie who has always

been sources of love and support. This dissertation is dedicated to them.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xii

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Network Stack: Systematic Detection of Packet Injection Vulner-

abilities in Network Communication 7

1.2 Network Stack: Discovery and Systematic Analysis of Name Col-

lision Vulnerabilities in Network Service Discovery 8

1.3 Smart Control: Systematic Discovery and Analysis of Algorithm-

level Vulnerabilities in Next-generation Smart Transportation . . . 9

1.4 Dissertation Organization . 10

II. Background and Related Work . 11

2.1 Problem Domain 1: Network Communication Protocol Security . . 11

2.1.1 Related Work . 11

2.2 Problem Domain 2: DNS System Security in the New gTLD Era . 13

2.2.1 Background: DNS Ecosystem 13

2.2.2 Background: Internal DNS Namespace and iTLD Usage 15

2.2.3 Background: DNS-based Service Discovery 16

2.2.4 Background: Server Authentication Mechanisms 17

2.2.5 Related Work . 17

2.3 Problem Domain 3: Software Security in Next-generation Smart

Transportation . 20

vi

2.3.1 Background: CV Technology and Recent Advances . . . 20

2.3.2 Related Work . 22

III. Systematic Detection of Packet Injection Vulnerabilities 24

3.1 Introduction . 24

3.2 Attack Threat Model . 27

3.3 Illustrative Example . 28

3.3.1 Packet Injection Attack for TCP 28

3.3.2 Attacker-controlled Implicit Information Leaks 30

3.4 PacketGuardian Overview . 32

3.4.1 Analysis Steps . 32

3.4.2 PacketGuardian Design 34

3.5 Taint-based Summarizer . 36

3.5.1 Taint Analysis Engine 36

3.5.2 Function Summary . 39

3.6 Path Construction and Vulnerability Analysis 42

3.6.1 DFS Path Construction and Analysis Framework 42

3.6.2 Accept Path Analysis 44

3.6.3 Leakage Path Analysis 45

3.7 Evaluation . 48

3.7.1 Tool Effectiveness and Accuracy 49

3.7.2 Tool Efficiency . 52

3.7.3 Result analysis . 52

3.8 Limitation and Future Work . 60

3.9 Summary . 61

IV. Discovery and Systematic Analysis of WPAD Name Collision Attack . 62

4.1 Introduction . 62

4.2 The WPAD Service Discovery Protocol 65

4.3 Threat Model and Attack Surface 66

4.3.1 Threat Model . 67

4.3.2 Attack Surface . 69

4.3.3 Dataset . 70

4.4 WPAD Query Leakage Characterization 72

4.4.1 Quantification of Leaked Queries 72

4.4.2 Leak Cause Analysis 74

4.4.3 Result Summary and Highly-vulnerable ASes 80

4.5 Attack Surface Quantification . 80

4.5.1 Quantification Method 80

4.5.2 Evaluation . 82

4.6 Attack Surface and Exploit Status Characterization 84

4.6.1 Attack Surface Characterization 86

4.6.2 Registration Status . 89

vii

4.6.3 Exploit Status . 93

4.7 Remediation Strategy Discussion 93

4.8 Summary . 99

V. Systematic Analysis and Detection of Client-side Name Collision Vul-

nerability . 101

5.1 Introduction . 101

5.2 Client-side Name Collision Vulnerability 105

5.2.1 Threat Model . 105

5.2.2 Vulnerability Definition 107

5.3 Exposed Service Characterization 108

5.3.1 Methodology . 108

5.3.2 Exposed Services . 113

5.4 Vulnerability Analysis . 115

5.4.1 Methodology . 115

5.4.2 Service Discovery Usage Scenarios 119

5.4.3 Vulnerability Analysis 121

5.4.4 Discussion . 126

5.5 Exploitation Case Study . 127

5.5.1 MitM Attack . 127

5.5.2 Malicious Library Injection 129

5.5.3 Document Leakage . 131

5.5.4 Credential Theft . 132

5.5.5 Phishing Calls and Messages 133

5.5.6 Phishing Contacts & Calendar Events 135

5.6 Defense Discussion . 136

5.6.1 Service Level Defense Discussion 136

5.6.2 DNS Ecosystem Level Defense Discussion 138

5.7 Summary . 139

VI. Systematic Discovery and Analysis of Algorithm-level Vulnerabilities

in Next-generation Smart Transportation 140

6.1 Introduction . 140

6.2 The I-SIG System . 145

6.3 Threat Model . 150

6.4 Analysis Methodology Overview 151

6.4.1 Attack Goals . 152

6.4.2 Analysis Methodology Overview 153

6.5 Data Spoofing Strategy . 155

6.5.1 Attack Input Data Flow and Direct Spoofing Strategy . . 155

6.5.2 Spoofing Strategy For The Transition Period Only . . . 156

6.6 Vulnerability Analysis . 158

6.6.1 Experiment Setup . 158

viii

6.6.2 Attack Effectiveness Quantification 159

6.6.3 Congestion Attack Analayis 161

6.6.4 Personal Gain and Safety Attacks 168

6.7 Exploitation Case Study: Congestion Attack 172

6.7.1 Exploit Construction 172

6.7.2 Attack Evaluation . 177

6.8 Defense Discussions . 182

6.9 Summary . 185

VII. Conclusion and Future Work . 186

7.1 Conclusion . 186

7.2 Future Work . 189

BIBLIOGRAPHY . 193

ix

LIST OF FIGURES

Figure

3.1 Packet injection attack threat model in §III. 27

3.2 An illustrative code example of a simplified implementation for handling

an incoming TCP packet in Linux kernel 3.15. 28

3.3 PacketGuardian design overview. 33

3.4 Path analysis process in DFS path construction and analysis framework. . 42

3.5 Code snippet for conditions of entering TCP fast path. 54

3.6 Leakage of snd nxt through sink TCPChallengeACK. 55

3.7 False positive causes for RTP-VLC accept path analysis. 57

4.1 Illustration of the WPAD name collision attack. If an internal namespace

TLD is delegated as a new gTLD, internal namespace WPAD query leaks

can be easily exploited using MitM attack from anywhere on the Internet. 67

4.2 The most popular first labels in root NXD traffic. 72

4.3 The most popular delegated new gTLDs observed in root NXD WPAD

queries. 73

4.4 Countries ranked by WPAD query leak percentage. The figure inset

shows the complete probability distribution, illustrating the long tail. . . . 74

4.5 ASes ranked by WPAD query leak percentage in US. 75

4.6 ASes ranked by their domain suffix entropy scores. Home access net-

works with top leak query volume (Table 4.2) are also high-entropy ASes.

A13 is the only exception that did not appear in the top 12 WPAD query

leak ASes. 77

4.7 Relationship of attack surface query ratio and period length p. 82

4.8 Relationship of attack surface query ratio and persistence duration n.

Since the 6 new gTLDs have different delegation dates, the data range

for the curves are different. 83

4.9 CDF of attack surface query ratio in TLD percentage and TLD leaked

WPAD query traffic percentage. 84

4.10 CDF of attack surface period number in TLD percentage and TLD leaked

WPAD query traffic percentage. 85

4.11 Attack surface size distribution for new gTLDs delegated as of 2015/08/25. 87

4.12 Breakdown of new gTLDs in the leftover part in cross AS attack surface

comparison. 87

x

4.13 Attack surface domain registration percentage for new gTLDs in the top

vulnerable AS A1. 89

4.14 Linear fitting results for the estimation time for a new gTLD to have all

attack surface domains fully-registered. 89

4.15 Protected leaked WPAD query percentage CDF for partial deployment of

new gTLD registry level defense. The figure inset lists the top 18 new

gTLDs which can protect 80% of total leaked queries if the defense is

deployed. 95

4.16 Filtered leaked WPAD query percentage CDF for partial deployment of

AS level defense. The figure inset shows the CDF for the top 524 ASes. . 95

5.1 The generalized name collision attack threat model. 106

5.2 Automatic labeling results for the top 300 non-registered service string

candidates. 114

5.3 Illustration of usage scenario U1 and U2 of DNS-based service discovery

(§5.4.2) in our service client collection. 120

6.1 The blocking effect created by our congestion attack on a real-world

intersection map with real traffic demand. Due to the attack from one

single attack vehicle parking nearby, in the northbound and southbound

approaches the vehicles in the left-turn lanes spill over their lanes and

directly block the entire approaches, causing massive traffic jams. 144

6.2 The operation scenario for the I-SIG system. 147

6.3 Illustration of a signal plan. Number 1 to 8 are phases. 148

6.4 The I-SIG system design. 149

6.5 The data flow of spoofed vehicle driving data in the I-SIG system. PR

means penetration rate. 155

6.6 Illustration of the last vehicle advantage. By exploiting it, even the

spoofed data from a single attack vehicle can significantly influence the

signal planning. 165

6.7 Percentage of snapshots vulnerable to the last vehicle advantage and the

estimated COP solving time with two to eight planning stages. 165

6.8 Relative differences between the average delay increase percentages us-

ing the three exploits with limited trial budgets and those by trying all

possible options. 176

6.9 Average vehicle delay every one minute with and without attack. The

repeated blocking effects start at around second 1125. 182

xi

LIST OF TABLES

Table

3.1 Categorization of implicit information leaks and position of the work in §III. 31

3.2 Taint value calculation and propagation logic for intra-procedure propa-

gation. CT includes the constraints that the current statement is control

dependent on. 37

3.3 Statistics for the 6 code bases in our evaluation. 49

3.4 Evaluation of accumulative improvement using rcv nxt leakage in TCP-

Kernel. 49

3.5 Summary of vulnerability analysis results. Number labeled with “*” in-

dicates that it can be smaller under special channel conditions. win1 and

win2 is usually between 214 to 220, rem win is less than 4096 by default,

and seqno win is 100 during default initialization. 50

3.6 Protocol state leakage analysis result. Ssrc for RTP-VLC and

my/peer vtag for SCTP-Kernel is not included since our tool does not

output any high-entropy leakage for them. 53

4.1 Popular OSes and browsers that support WPAD. 66

4.2 AS code names (used in Fig. 4.5 and Fig. 4.6) of the top 12 WPAD query

leak ASes in the U.S., accounting for 85% of total leak queries. We

anonymize the AS names for privacy consideration. 76

4.3 Top domain suffixes of the leaked WPAD queries in home access net-

work AS A1. For privacy consideration, we anonymize some company

or institution names with their business types in brackets. 76

4.4 Common OS configurations that can cause a device to mistakenly issue

internal queries when the device is used outside internal network. 79

4.5 Attack surface domain characteristics (as of 2015/09/26). 85

4.6 Attack surface domain registration status (as of 2015/09/26). 85

4.7 Registration ratio of legacy gTLD string for some registrants, showing

potential blind attack attempts. The email addresses are anonymized for

privacy reason. 90

4.8 Effectiveness and deploy number estimation for remediation strategy at

new gTLD registry, victim AS, and end user levels. “Not evaluated”

means that we cannot evaluate its effectiveness using current dataset. . . . 94

xii

5.1 Functionality characterization of the exposed internal network services

and the potential security implications. Circled numbers are the ranges of

the average daily query leak volumes: ① > 100,000, ② 10,000 – 100,000,

③ 1,000 – 10,000, ④ 100 – 1,000, ⑤ 10 – 100. N denotes non-registered

service. Documentations for individual services are in Table 5.2 and Ta-

ble 5.3. 109

5.2 Descriptions and documentations of the exposed internal network ser-

vices (Part 1). N denotes non-registered service. 110

5.3 Descriptions and documentations of the exposed internal network ser-

vices (Part 2). N denotes non-registered service. 111

5.4 Services in the exposed service dataset without sufficient information for

us to perform service design characterization. Numbers in circle denote

the range level of the average daily query leak volume: ① > 100,000, ②

10,000 – 100,000, ③ 1,000 – 10,000, ④ 100 – 1,000, ⑤ 10 – 100. NR

denotes non-registered service names. 115

5.5 Vulnerability analysis results for the collected client implementations of

the exposed services. “q” and “r” denote query-side and response-side

mixing in domain discovery (detailed in §5.4.3). “*” means that the vul-

nerability status depends on user decisions. 116

5.6 Services excluded in the client-side name collision vulnerability analysis.

NR denotes non-registered service. 117

5.7 Exploitation case studies for the identified client-side name collision vul-

nerabilities. V1 to V4 are detailed in §5.4.3. 128

6.1 Vulnerability analysis results for congestion attacks in full deployment

period and transition period with 75% penetration rate. PR is short for

penetration rate. Two-stage planning and five-stage planning in the COP

algorithm configuration are denoted as 2-S and 5-S respectively, with the

former being the default choice. 161

6.2 Vulnerability analysis results for congestion attacks in transition period

with 50% and 25% penetration rates. PR is short for penetration rate.

Two-stage planning and five-stage planning in the COP algorithm config-

uration are denoted as 2-S and 5-S respectively, with the former being the

default choice. 162

6.3 Vulnerability analysis results for personal gain attack and safety attack.

PR is short for penetration rate. Two-stage planning and five-stage plan-

ning in the COP algorithm configuration are denoted as 2-S and 5-S re-

spectively, with the former being the default choice. For the transition

period, we only show the results for 75% PR since the results for 50%

and 25% PRs are very similar to those for 75% PR. 169

6.4 Practical exploit effectiveness for congestion attacks. PR is short for pen-

etration rate. Two-stage planning and five-stage planning in the COP

algorithm configuration are denoted as 2-S and 5-S respectively, with the

former being the default choice. 174

xiii

6.5 Evaluation results for the practical exploits. PR is short for penetration

rate. Two-stage planning and five-stage planning in COP are denoted as

2-S and 5-S, with the former being the default choice. 179

xiv

ABSTRACT

The world is increasingly connected through a series of smart, connected systems such

as smartphone systems, smart home systems, and emerging smart transportation and au-

tonomous vehicle systems. While leading to improved services, such transformation also

introduces new security challenges. To address these challenges, in contrast to existing

defense mechanisms that are mostly ad hoc and reactive, my dissertation research is dedi-

cated to developing systematic problem analysis approaches that can proactively discover

and assess new security problems in smart, connected systems.

To achieve this goal, my dissertation focuses on two most fundamental capabilities

in any smart, connected system: network stack and smart control, and demonstrates that

static/dynamic program analysis and network measurement can be used to systematically

identify new code-level and network-level security challenges in smart, connected systems,

and gain insights about problem severity to address design trade-offs in the defense solu-

tions. More specifically, my research is able to leverage these techniques to discover a

new attack vector (US-CERT alert TA16-144A) that is unexpectedly brought by the recent

expansion in the DNS system, and new algorithm-level security vulnerabilities in the next-

generation smart transportation systems. For these discoveries, systematic vulnerability

cause analysis is performed subsequently to uncover the associated new network-level and

code-level security challenges. On the defense side, these techniques are also used in my

dissertation research to build the first automated detection tool for packet injection vulner-

ability, a recurring problem in network communication protocols, and define more useful

attack surface to balance the design trade-off in name collision attack defenses.

xv

CHAPTER I

Introduction

The world is entering a new era of transformational change: both ourselves as humans

and our physical living environments are becoming increasingly connected by smart tech-

nologies. Such revolution starts from the popularization of smartphones, which are now

connecting more than 2.5 billion individuals to the Internet and others on the move [86].

Soon after that, physical objects such as door locks, cars, and traffic lights are increas-

ingly computerized [14, 55, 46], forming numerous Cyber-Physical Systems (CPS), and

then further become ubiquitously interconnected with the recent advances of the Internet

of Things (IoT) technology [102, 10, 52, 131]. The resulting systems from such transforma-

tion, which we call smart, connected systems, include smart, connected end systems such

as smartphones, IoT devices, and emerging autonomous vehicles, and smart, connected

distributed systems such as smart home and emerging smart transportation systems.

These smart, connected systems feature more ubiquitous network-based access and in-

formation sharing, and more functionality rich and usable control platforms, leading to new

opportunities for innovation, improved services, and enhanced quality of life. However,

such transformation also introduces new security challenges. First, the newly-introduced

system capabilities, e.g., network connectivity and smart control, inevitably increase the at-

tack surface and also the problem complexity, making security analysis and defense design

more challenging than before. Second, to fully utilize the new system capabilities, new sys-

1

tem operation models (e.g., machine learning based perception and control in autonomous

driving [138, 49, 60]) and new user interaction methods (e.g., voice control [4, 53, 44])

are typically created. This inherently introduces new security requirements, with which a

secure and robust design can be fundamentally challenging. Third, even if these challenges

at the design level are fully solved, challenges still remain at the implementation level. As

repeatedly discovered in my dissertation research (e.g., for network protocols in §III and

smart control algorithms in §VI), the actual implementation of security-critical features

may not always conform to the design due to various reasons ranging from development

mistakes to deployment-time constraints.

In this dissertation, my research focuses on the manifestation of these three security

challenges in two most basic features in any smart, connected system:

(1) Network stack. Network connectivity is the most basic capability in smart, con-

nected systems to enable more advanced sensing, actuation, and control. However, adding

network-based access into previously isolated physical objects largely increases the attack

surface, making remote compromise possible. For example, the widespread security weak-

nesses in today’s IoT devices have already be remotely exploited and caused a series of

massive Distributed Denial of Service (DDoS) attacks [81]. Wireless communication ser-

vices in modern vehicles, e.g., Bluetooth and cellular connections, were found to have

various vulnerabilities that allow remote attackers to have long distance vehicle control and

location tracking [171]. To solve these problems, not only the design of the network proto-

cols but also their implementations need to be secure, which are both challenging research

problems today [250, 234, 152, 121, 266]. In addition, even with effective security features

carefully designed and correctly implemented, it also requires the users of the protocols,

e.g., developers at higher layers, to avoid misuses of these features, which is also shown to

a common source of security vulnerabilities in practice [184, 196].

(2) Smart control. In smart, connected systems, the system controller is the key en-

abler of the advanced and intelligent services by making more optimized use of the network

2

connectivity and system capabilities, e.g., enabling autonomous driving based on a variety

of machine learning algorithms [138, 49, 60], and enabling more intelligently traffic light

control based on more optimized traffic control algorithms [82]. Like discussed earlier, a

secure and robust design for these new system control features can be fundamentally chal-

lenging and in many cases even requires multidisciplinary research efforts to address. For

example, it is found that the machine learning models used in smart, connected systems

such as smart homes and autonomous vehicles are generally vulnerable to adversarial in-

put and can be deliberately tricked into making wrong control decisions in autonomous

driving [167, 247], voice assistants [165, 283], and face recognitions [263]. At this point,

how to generate a sufficiently robust machine learning model is still an open problem that

requires joint research efforts from both machine learning and security communities to

solve [166, 233]. In my research, we find similar problems in smart traffic signal control

algorithms, which we believe also requires joint research efforts from both transportation

and security communities to solve (detailed later in §VI).

To address these security challenges, existing defense mechanisms are mostly ad hoc

and reactive, creating case-by-case solutions to fix exposed vulnerabilities, many times

even after they have been actively exploited in practice, such as the recent Mirai botnet and

WannaCry ransom attacks [81, 137]. These solutions can neither systematically address

the exposed problems in existing smart, connected systems, nor be applied to future smart,

connected systems to prevent similar problems. With the transformation to smart, con-

nected systems becoming increasingly faster and pervasive, this situation only deteriorates

and becomes more favorable to attackers.

Research goal. To win this arms race, my research aims at developing systematic pro-

gram analysis approaches that can proactively discovery and assess new security challenges

in existing and future smart, connected systems. More specifically, these approaches sys-

tematically look for vulnerabilities using rigorous techniques such as static/dynamic pro-

gram analysis for code-level vulnerabilities and network measurement for network-level

3

vulnerabilities, and thus lead to design improvements that are more systematic than before.

Thus, even for future smart, connected systems in different application domains, most of

the methodology and solution design can be adapted and evolved.

To achieve this goal, my research leverages three types of analysis techniques to achieve

high rigorousness:

• Static program analysis. Static program analysis is capable of automatically analyz-

ing the behaviors of computer programs based on their source code or binaries with-

out executing them. Before the analysis, the targeted program behaviors usually need

to be precisely defined at the code level. Thus, static program analysis is most useful

in detecting and analyzing known classes of vulnerabilities. With the main benefit

in automation, it has been applied to address various security problems including

detecting vulnerabilities such as buffer overflow [182] and cross-site scripting [275],

detecting privacy leakage [203, 158], detecting and analyzing malware [268], etc.

Due to the lack of run-time information, tools built upon static program analysis

techniques tend to overestimate a program’s vulnerability status and thus have high

false positive rates [262, 158].

• Dynamic program analysis. Dynamic program analysis analyzes a computer pro-

gram by generating test inputs to trigger the behaviors of interest. Compared to static

program analysis, dynamic program analysis techniques do not require access to the

source code or binaries of the target programs, and thus can more conveniently han-

dle situations where the binaries are obfuscated [278], or running remotely, e.g., on

a remote server [170]. Also, since it executes the program, it can provide run-time

information and handle dynamic program language features, and thus does not suffer

from false positives. In addition, such analysis can have generic analysis metrics,

e.g., code coverage in fuzz testing [5], instead of pre-defined vulnerability patterns,

and thus may help discover new classes of vulnerabilities. However, it is very diffi-

cult to efficiently generate test inputs that can ensure a high code coverage, and thus

4

usually have high false negative rates [115]. Thus, it is complementary to static anal-

ysis techniques, and sometimes they are used in combination to balance the trade-off

between efficiency and effectiveness [160, 289].

• Network measurement. Since static and dynamic program analysis techniques target

computer program behaviors, they are applicable to vulnerabilities at the code level

but not those at the network level, e.g., those caused by configuration, policies, or

inter-dependencies in networked systems. For the latter, network measurement is an

effective method to systematically discover new network-level vulnerabilities [193],

analyze vulnerability status [192, 244], analyze vulnerability causes [172], monitor

vulnerability patching status [252], etc. In such network measurement based analy-

sis, it needs to first define the network traffic patterns of interest, e.g., a vulnerability

related traffic signature, which is similar to the program behavior used in static and

dynamic program analysis. Since connectivity is the most basic capability in smart,

connected systems, network measurement is a necessary vulnerability analysis tech-

nique when studying the network-level security problems in these systems.

These three analysis techniques are thus generally applicable for systematically discov-

ering and characterizing security problems that can manifest as patterns in source code,

run-time system behavior, or network traffic. When applying these techniques, it’s usually

necessary to address various design challenges due to the need for balancing different prop-

erties of the solution systems, e.g., efficiency, effectiveness, scalability, etc. For example,

one program analysis technique, symbolic execution, is capable of creating inputs to all ex-

ecution paths in a program, but suffers from severe scalability limitations and can hardly be

applied to important real-world code bases such as the Linux kernel [254]. Thus, care must

be exercised to choose appropriate analysis techniques and creatively define analysis targets

in the solution system design to solve a problem in practice. In this dissertation, one com-

mon strategy my research uses is to first understand the different levels of problem severity

and then design the solution system to target the most severe subset of the problem. For

5

example, my work in §III is able to identify a subset of packet injection vulnerabilities that

has the highest exploitability in practice and then design the vulnerability detection system

to prioritize them, which is found to effectively reduce false alarms without compromising

vulnerability detection effectiveness.

In this dissertation, my research demonstrates that static/dynamic program analysis

and network measurement can be used to systematically identify new code-level and

network-level security challenges in smart, connected systems, and gain insights about

problem severity to address design trade-offs in the defense solutions. More specifi-

cally, my dissertation research is able to leverage these analysis techniques to (1) build the

first system to automatically detect packet injection vulnerability, a recurring problem in

network communication protocols; (2) discover a new attack vector (US-CERT alert TA16-

144A [127]) that is unexpectedly brought by the recent expansion in the DNS system, and

perform subsequent systematic analysis at both network and software levels for its defense,

and (3) perform the first security analysis of the next-generation Connected Vehicle (CV)

smart transportation system, which discovers new security vulnerabilities at the level of the

traffic control algorithm.

Research impact. My dissertation research has impact in both academia and in-

dustry in the form of research papers in top-tier security conferences, media coverage

in The Register, SC Magazine, Security Week, Naked Security, Bleeping Computer,

etc. [56, 125, 143, 140, 111, 88, 117, 126, 142], vulnerability disclosures such as a US

Department of Homeland Security (DHS) US-CERT Alert [127], and industry discussions

and responses [136, 100].

6

1.1 Network Stack: Systematic Detection of Packet Injection Vulnera-

bilities in Network Communication

In the network stack of smart, connected systems, off-path packet injection attacks

remain a serious threat to communication integrity, causing attacks such as phishing and

malicious script injection. Current solution is to apply case-by-case patches, but due to

the complex nature of the problem, new variants of packet injection vulnerabilities are

still emerging in recent years, targeting critical protocols such as TCP. We argue that such

recurring problems need a systematic solution. In my dissertation research, we design

and implement PacketGuardian, a precise static taint analysis tool that comprehensively

checks the packet handling logic of various network protocol implementations [173]. The

analysis operates in two steps. First, it identifies the critical paths and constraints that lead

to accepting an incoming packet. If paths with weak constraints exist, a vulnerability may

be revealed immediately. Otherwise, based on “secret” protocol states in the constraints, a

subsequent analysis is performed to check whether such states can be leaked to an attacker.

In the second step, observing that all previously reported leaks are through implicit

flows, our tool supports implicit flow tainting, which is a commonly excluded feature due

to high volumes of false alarms caused by it. To address this challenge, we propose the

concept of attacker-controlled implicit information leaks, and prioritize our tool to detect

them, which effectively reduces false alarms without compromising tool effectiveness. We

use PacketGuardian on 6 popular protocol implementations of TCP, SCTP, DCCP, and RTP,

and uncover new vulnerabilities in Linux kernel TCP as well as 2 out of 3 RTP implementa-

tions. We validate these vulnerabilities and confirm that they are indeed highly exploitable.

Detailed results are summarized on our project website [87].

7

1.2 Network Stack: Discovery and Systematic Analysis of Name Colli-

sion Vulnerabilities in Network Service Discovery

Besides network communication, another important network function in smart, con-

nected systems is service discovery, which helps an end system automatically configure

network services. We find that Web Proxy Auto-Discovery (WPAD), a popular service dis-

covery protocol based on domain name system (DNS), has significant DNS query leakage

problem and can be exploited to launch Man in the Middle (MitM) attacks from anywhere

in the Internet. We call this newly-exposed MitM attack vector WPAD name collision at-

tack, and perform the first systematic vulnerability study [172]. We first characterize the

query leakage problem to understand the fundamental problem cause, and then use attack

surface definition and quantification to systematically study the vulnerability status in the

wild. Our results show that 10% of highly-vulnerable domains have already been registered

and their exploitation can start at any time, showing real threat to Internet users. Based on

our analysis, we propose and empirically evaluate a set of remediation strategies. Due to

the significant impact on corporate and end users, the U.S. Department of Homeland Secu-

rity (DHS) released a US-CERT alert based on our work Various DNS operators contacted

us to obtain the list of highly-vulnerable domains [127]. Domain name company Verisign

also acknowledged the attack severity [136].

While we have shown that the name collision problem is a real threat today, our un-

derstanding of its impact on the internal services is limited to the WPAD service. In fact,

over 600 services are registered to support DNS-based service discovery, and thus the name

collision problem may have much broader impact than the WPAD service alone. Thus, we

then generalize the WPAD exploit to a new class of attacks on DNS-based service discov-

ery, and perform a systematic study of the affected services under name collisions [175].

We find that the name collision problem broadly breaks common security assumptions

made in todays service software, and nearly all of the affected services expose vulnerabil-

8

ities in popular clients. To demonstrate the severity, we construct exploits and find many

new name collision attacks including another MitM attack vector, document leakage, mali-

cious library injection, and credential theft. Leveraging the insights from our analysis, we

propose multiple service software level solutions. We have performed responsible disclo-

sure and got email acknowledgement from Apple, Microsoft and Comcast on the identified

vulnerabilities.

1.3 Smart Control: Systematic Discovery and Analysis of Algorithm-

level Vulnerabilities in Next-generation Smart Transportation

As discussed earlier, smart control is another fundamental capability in smart, con-

nected systems besides network connectivity. Thus, I also perform vulnerability analysis

on system controllers, by focusing on the emerging Connected vehicle (CV) based smart

transportation systems. In such systems, vehicles and the transportation infrastructure are

connected through wireless communication, which is an ongoing effort of the U.S. De-

partment of Transportation (USDoT) to dramatically improve the transportation systems

in mobility, safety, environmental impact, and public agency operations [129]. Having

demonstrated the potential to greatly improve transportation mobility efficiency, such dra-

matically increased connectivity also opens a new door for cyber attacks. In this work, we

perform the first detailed security analysis of the next-generation CV-based transportation

systems [176]. As a first step, we target the USDOT (U.S. Department of Transportation)

sponsored CV-based traffic control system, which has been tested and shown high effective-

ness in real road intersections. In the analysis, we target a realistic threat, namely CV data

spoofing from one single attack vehicle, with the attack goal of creating traffic congestion.

We first analyze the system design and identify data spoofing strategies that can poten-

tially influence the traffic control. Based on the strategies, we perform vulnerability anal-

ysis by exhaustively trying all the data spoofing options for these strategies to understand

9

the upper bound of the attack effectiveness. For the highly effective cases, we analyze the

causes and find that the current signal control algorithm design and configuration choices

are highly vulnerable to data spoofing attacks from even a single attack vehicle. These

vulnerabilities can be exploited to completely reverse the benefit of the CV-based signal

control system by causing the traffic mobility to be 23.4% worse than that without adopt-

ing such system. We then construct practical exploits and evaluate them under real-world

intersection settings. The evaluation results are consistent with our vulnerability analysis,

and we find that the attacks can even cause a blocking effect to jam an entire approach.

In the jamming period, 22% of the vehicles need to spend over 7 minutes for an original

half-minute trip, which is 14 times higher. We also discuss promising defense directions

leveraging the insights from our analysis.

1.4 Dissertation Organization

This dissertation is structured as follows. Chapter II describes background and related

work for the problem domains studied in my dissertation research. In Chapter III, we

describe our design and implementation of the first automated detection tool for packet

injection vulnerability, a recurring problem in network communication protocols. In Chap-

ter IV, we describe our discovery of a new attack vector, WPAD name collision attack, that

was unexpectedly brought by the recent expansion in DNS, and our subsequent systematic

cause analysis and vulnerability assessment. Chapter V then describes our generalization

of the WPAD name collision attack and the first systematic analysis of the vulnerability sta-

tus at the service level under this generalized class of attacks. In Chapter VI, we describe

the first security analysis of next-generation smart transportation and the discovery of new

algorithm-level security vulnerabilities. In Chapter VII, we conclude this dissertation and

discuss potential future directions.

10

CHAPTER II

Background and Related Work

In this chapter, we describe the background and related work for the three problem

domains studied in my dissertation research: network communication protocol security,

DNS system security in the new gTLD era, and software security in next-generation smart

transportation.

2.1 Problem Domain 1: Network Communication Protocol Security

2.1.1 Related Work

Network protocol analysis. To detect protocol design vulnerabilities, prior work has used

formal methods such as model checking and specification languages to perform rigorous

protocol specification testing [163, 162]. However, these cannot prevent vulnerabilities

due to weak implementations. For implementation-level vulnerabilities, static analysis has

been applied to identify system DoS vulnerabilities [169], on-path protocol manipulation

attacks [225], and protocol interoperability problems [248]. However, none focused on

the off-path packet injection vulnerability studied in this paper. In addition, due to the

unique vulnerability pattern (detailed in§3.3.2), our work needs to support implicit data

flow analysis and address the associated challenge of high false positive rates, which is not

handled by previous work.

11

Side-channel attack and detection. Recently years witness a rise in the discovery of

new side channels. For storage channels, it has been found that proc file systems can be

abused as side channels to infer keystrokes [285], webpage [215], and system state [174].

In particular, Qian et al. [250, 251] used proc file packet counters to infer TCP sequence

number. Another popular channel is timing channel, including code path [222], data [155],

and cache-access timing channel [282, 209]. In network protocol attacks, some header

fields are also found to be useful for inferring sequence number [204]. In comparison,

our goal is not to report new side channels but focuses on designing an automated tool to

systematically detect side channels.

In contrast to new side channel discovery, automated detection of side channels has

been less explored. Dynamic analysis such as black-box testing has been used to find

side channels in web application [170], and timing side channels in SSL/TLS implementa-

tion [237]. To overcome the limitation of dynamic analysis in the analysis completeness,

static analysis tools are also developed to detect web application and cache side chan-

nels [284, 188]. In comparison, our work focuses on storage side channels for network

protocol states, which is not covered by existing tools. In addition, our work identifies and

prioritizes the detection of a new category of highly-exploitable implicit information leaks

called attacker-controlled implicit information leaks (detailed in§3.3.2), which is also not

discussed in previous work.

Static analysis for taint-style vulnerability. For taint-style vulnerabilities, static analysis

tools have been designed to detect buffer overflow [182], format string vulnerabilities [261],

and SQL injection and XSS [216, 220, 271]. Recently, Yamaguchi et al. [281] propose

to use code property graph to effectively mine such vulnerabilities in large amounts of

code. Different from them, our analysis targets packet injection instead of code injection,

which requires handling much more and also diverse checks due to header field semantics.

Moreover, we have a follow-up leakage analysis which is not included in previous tools.

Static taint analysis are also used to detect information leakage vulnerabilities in recent

12

years, especially for privacy leakage in Android system [158, 203, 208]. However, these

tools exclude implicit flow tainting due to its low-entropy in leakage and the problem of

high FPs [221]. In comparison, our tool taints implicit flows as required by our analysis

goal, and proposes to target attacker-controlled implicit information leaks to mitigate the

FP problem while maintaining high accuracy.

Quantitative information flow for side channel assessment. Quantitative information

flow (QIF) is an approach to estimate the capacity, e.g., the entropy, of information

leaks [230, 181]. Previous work used QIF to quantify the information leaks from cache

side channels [189] and from network traffic of web applications [284, 170, 177]. In com-

parison, our work focuses on research challenges in detecting information leaks in network

protocols, instead of the challenges in quantify them. Following up our work, Zhou et

al. design a framework for more scalable and flexible side-channel leakage assessment in

software, which is able to quantify the storage side channels studied in this paper [292].

2.2 Problem Domain 2: DNS System Security in the New gTLD Era

2.2.1 Background: DNS Ecosystem

DNS (Domain Name System) [238] is a distributed system which translates domain

names to network service identifiers (such as IP addresses for computers in the Inter-

net or a private network). Domain names are a set of labels separated by dots, for ex-

ample www.example.com, and are organized in hierarchical subdomains of the DNS

root domain. The first level of domain name labels under the root domain are the

TLDs [123], including gTLDs such as .com, and country code Top-Level Domains such

as .us. Directly below TLDs are Second-Level Domains (SLD) [104], e.g., example

in www.example.com. In this dissertation, the term domain is defined to be any DNS

name, and TLDs and SLDs are specific types of domains.

Domain name management and delegation. In DNS, a DNS zone is defined as the

13

set of DNS domain names that are contiguous in the DNS tree hierarchy, and which are ad-

ministered by the same authority. The DNS root zone is the canonical top of the DNS tree.

It is the authoritative zone for all of DNS’ TLDs. The structure and contents of the DNS

root zone are determined by an organizational role called the Internet Assigned Numbers

Authority (IANA), which is performed by the Internet Corporation for Assigned Names

and Numbers (ICANN). The DNS root zone’s actual operational and authoritative main-

tainer is a role called the Root Zone Maintainer (RZM), which is currently performed by

Verisign. ICANN delegates the management of its subdomains, the TLDs, to TLD registry

operators. Under TLDs, SLDs are registered in the process of domain name registration.

Domain name registration. A domain name registration is the delegation of the ad-

ministration of an SLD and its subdomains under a TLD, which usually involves 3 parties:

TLD registry operators, registrars, and registrants [246]. At a high level, registry operators

manage TLDs, registrars conduct the daily business of transacting with clients for SLDs,

and registrants pay to receive administrative authority to run SLDs. Once a domain is reg-

istered by a registrant, the registrar submits certain information to the corresponding TLD

registry operators, and the WHOIS database [141] then maps the registered domain name

to the registrant details.

Domain name resolution. In the domain name resolution process, end hosts rely on

recursive DNS resolvers, usually configured by network providers, e.g., corporate net-

work administrators and home network providers. Using the cached results whenever

possible, the resolvers query the name servers following the DNS domain label hierar-

chy, getting either the corresponding IP address, or an NXDomain response (rcode 3 in

RFC1035 [239], NXD for short), indicating that no such domain name exists.

The New gTLD Program. In the history of DNS, the set of TLDs has remained rel-

atively small and stable, with only 66 new TLDs added in 14 years before 2013 [245]. In

2011, with the goal of enhancing competition and consumer choice, ICANN approved the

launch of the New gTLD Program [146], which in less than 2 years has added over 700

14

new gTLDs as of 2015/08/25. To differentiate these new gTLDs from the legacy ones such

as .com, in this dissertation they are also referred to as nTLDs. This enormous wave of

new gTLD delegation raised name collision concern in the domain name industry [245],

and in this dissertation, we perform the first systematic study of one of the consequences

of this problem in the wild.

2.2.2 Background: Internal DNS Namespace and iTLD Usage

The DNS ecosystem described above is the public DNS namespace for domain names

visible to the Internet. Similarly, a local area network, e.g., a corporate network, can also

set up an internal DNS namespace with private domain names. This helps control the

access to internal confidential information, and can operate despite any external network

connectivity disruption, making it a common practice for companies.

To create an internal DNS namespace, internal name servers are used to serve the zone

files for a customized internal domain, and the resolvers are configured to query these

servers instead of the DNS servers in public namespace. To make the internal domain name

easy to reference and also to prevent confusion between internal and public namespaces,

some administrators in the past used TLD strings that have not been delegated (in the public

DNS namespace) as iTLDs.

The use of iTLDs implicitly assumes that these TLD strings will not be delegated in

the public namespace; however, with the launching of the New gTLD Program, many of

the popular iTLD strings have already been delegated today and are open for public regis-

teration [151]. This breaks the implied assumption that previously undelegated iTLDs will

never be delegated. As a side effect, the leaked internal queries to these iTLD strings that

were previously benign now expose issuers to the MitM attacks studied in this dissertation.

15

2.2.3 Background: DNS-based Service Discovery

The WPAD proxy configuration belongs to a general class of DNS-based service dis-

covery processes that utilize named and structured DNS records to facilitate service dis-

covery in a discovery domain. The traditional approach for the discovery issues A or

AAAA DNS queries with the service name prepended to the discovery domain. A more

advanced approach is to use SRV records [1]. To discover service svc over transport

protocol prot (e.g., TCP or UDP) in domain comp.ntld, the SRV query format is

svc. prot.comp.ntld. From the response, the client obtains the server’s domain

name and the port number. Subsequent A or AAAA queries are then issued to obtain the

server’s IP address.

This DNS-based discovery process is formally defined in RFC 6763 [40], named the

DNS-based Service Discovery or DNS-SD. In the discovery process, a DNS PTR query

is first issued to retrieve a list of available service instance names. For each instance

name, an SRV query is then issued to locate the server name and port. Like the traditional

SRV-based discovery process, the PTR and SRV queries in DNS-SD all use the format

svc. prot.comp.ntld. DNS-SD is compatible with both unicast DNS and multi-

cast DNS (mDNS) [179]. When used with mDNS, DNS-SD can provide Zeroconf [144],

which can discover services on nearby devices in local link without setting up unicast DNS

servers. A popular Zeroconf implementation is the Apple Bonjour [22], which is built-in

with the latest macOS [23].

My dissertation research considers the general concept of DNS-based service discov-

ery including both the standard DNS-SD procedure and the traditional approach. For the

query format, we refer to the queries in the form of svc. prot.comp.ntld as stan-

dard queries and others as non-standard queries. To standardize the discovery process,

the official use of certain service names are registered in the Internet Assigned Numbers

Authority (IANA) service name registry [65]. In this dissertation, we refer to the service

names in the IANA registry registered names and others as non-registered names.

16

2.2.4 Background: Server Authentication Mechanisms

To prevent connecting to an unintended server, the service client can perform server

authentication to validate the server identity before performing the designed service func-

tionality. When TLS is used, the client can use the server’s TLS certificate to certify the

server’s ownership of the requested name subject, e.g., the domain name. In the validation

process, the certificate chain is inspected to check if the certificate is issued by a trusted

certification authority (CA). For the public Internet, a set of trusted third-party CAs are pre-

installed in popular OSes or browsers. For an internal network, the network administrators

typically use self-signed local CAs [24], which are installed into the end user systems be-

forehand.

Another popular authentication approach is to use a PSK distributed to the client and

the server. PSK-based authentication methods can be used for client authentication only,

for example by sending the key in plain text or hashed format to the server. Some methods

can provide both client and server authentications called mutual authentication, e.g., Ker-

beros [73] and DIGEST-MD5 [134]. In my dissertation research, we perform a systematic

vulnerability analysis to understand whether the clients with server authentication support

are robust enough under the name collision threat model.

2.2.5 Related Work

DNS spoofing attacks. Like the WPAD name collision attack studied in §IV in this dis-

sertation, some previous DNS spoofing attacks also try to deceive victims using malicious

DNS response. One attack category assumes that the attacker is MitM and thus replies

forged response when observing a query. This can be achieved through attacking the net-

work configurations of the victim devices. For example, prior work [269, 59] show that

scripts on web pages can change home routers’ DNS configurations and point the client

resolver IP to attacker’s servers. Another category of attacks assumes that the attacker is

off path. One such example is DNS cache poisoning attack [267, 240], which corrupts the

17

resolver’s cache with spoofed DNS responses, causing all downstream devices to be redi-

rected to the attacker’s IP addresses. These previous attacks exist since the victim cannot

determine whether the received DNS responses are legitimate or manipulated, which can

be solved by DNSSEC protocol [157, 156]. Compared to them, the attacker in the WPAD

name collision attack is actually authoritative for the request domains. This means that

she can legitimately give malicious response and launch MitM attack without the need of

spoofing, making it exploitable even if DNSSEC is used.

Attack on DNS and DNS-based service discovery. To attack end systems using ma-

licious DNS responses, previous attacks require the attacker to be either on the resolving

path [190], or off the path but physically inside the targeted network [267]. Compared to

these attacks with tight attack placement and timing requirements, the name collision at-

tack studied in this dissertation only needs a domain registration to exploit users from all

over the world, which are thus easier to launch and also of larger scale. Recently, Lever et

al. proposed the concept of residual domain trust abuse in the public DNS namespace, and

used DNS traffic to characterize such abuse [227]. In comparison, residual trust exploita-

tion is for the same domain in a single namespace triggered by domain re-registration, but

the trust exploitation in this work is for domains across namespaces triggered by the name

collision problem. Besides, our work also performs vulnerability analysis at the service

software design level, which is not discussed in previous work.

Besides DNS systems, there has also been work on studying the security problems in

using DNS-SD. Könings et al. analyzed the mDNS traffic in a university network to study

the privacy leakage [223]. Xing et al. studied the major Zeroconf frameworks, and found

popular apps such as AirDrop are vulnerable to MitM attacks [159]. Compared to these

local network attacks, our work considers the name collision attack threat model, which

are more powerful, of larger scale, and easier to launch (discussed in §5.2.1). Due to such

threat model difference, our analysis covers not only the local-link discovery usage scenario

targeted in these previous work, but the unicast DNS domain discovery usage scenario as

18

well.

New TLD delegation study. The addition of new gTLDs into the DNS root zone usually

requires considerable debate about the extent to which new TLDs will actually serve a real

need. Before the New gTLD Program, the growth of gTLD set maintained a very slow

and steady rate. Some previous work studied the impact of certain early gTLD delegation,

e.g., for .biz [213] and .xxx [212], and recently Halvorson et al. perform the first study

targeting the New gTLD Program [211]. These studies mostly focus on characterizing the

registration intent; in comparison, our work targets newly-discovered security problems

specifically introduced by the new gTLD delegation.

Name collision from new gTLD delegation. Before our work, concerns from the domain

name industry have already been raised about potential name collision problem from new

gTLD delegation [243]. Several studies have measured the leaked DNS queries to the DNS

root servers and shown the potential risks of information leakage, denial of service, and

MitM attack [245, 265]. The discussions resulted in a name collision management frame-

work from ICANN in 2013 [68], which allows the majority of new gTLD strings to be

delegated by following an Alternate Path to Delegation (APD). In APD, the new gTLD

registries are required to block large numbers of high-risk SLDs according to measurement

of DITL (Day in the Life of the Internet) dataset. Later on in 2014 a new framework allows

releasing these blocked names after a 90-day period called “controlled interruption” for

testing and resolving name collision problem [67]. However, previous studies have shown

that the block list is ineffective due to the statistical limitation of DITL dataset [270]. In

addition, the controlled interruption period is unlikely to change anything for problems sim-

ilar to the WPAD name collision attack, since the victim machines automatically perform

the vulnerable operations even without user awareness [265]. This indicates the lack of a

systematic approach to understand and find effective solutions for the newly-exposed name

collision problem. Our work uses in-depth cause analysis and attack surface quantification

to fill this critical research gap.

19

Vulnerability in server authentication usage. Previous work uncovered a series of

security problems in server authentication in TLS, e.g., certificate validation vulnerabili-

ties due to incorrect use of TLS APIs [196, 200]. In comparison, my dissertation research

uncovers additional usage that is not incorrect or weak by itself, but only becomes vulner-

able under the name collision attack threat model. For PSK-based authentications, some

methods are known to be weak due to the lack of server authentication, e.g., Basic and

NTLM [61, 30]. Instead of finding new security problems in these authentication mecha-

nism, our work focuses on characterizing the vulnerable use of these weak methods in the

network service clients, which is found to be a common vulnerable design choice under

name collision attacks.

2.3 Problem Domain 3: Software Security in Next-generation Smart

Transportation

2.3.1 Background: CV Technology and Recent Advances

Connected vehicle (CV) technology uses wireless communications to connect vehicles

and the infrastructure with the goal of dramatically improving the transportation systems

in mobility, safety, environmental impact, and public agency operations [129]. Due to the

high data transmission requirement in the transportation scenario, the DSRC (Dedicated

Short Range Communications) protocol is specifically designed for the CV communica-

tion scenarios with dedicated band allocated by the Federal Communications Commission

(FCC) [43].

The communication in the CV environment has two categories: vehicle-to-vehicle

(V2V) communication, and vehicle-to-infrastructure (V2I) communication. To support

them, both the vehicle and the infrastructure sides need to install DSRC devices, which

are called On-Board Units (OBUs) and Road-side Units (RSUs) respectively. In such CV

environment, vehicles use OBUs to periodically broadcast Basic Safety Messages (BSM)

20

including its real-time trajectory data, e.g., location and speed, to the surrounding vehicles

and infrastructure. This enables a series of safety functions on the vehicle side, e.g., blind

spot and lane change warnings, and also enables the traffic infrastructure to leverage the

real-time traffic data to improve traffic control performance.

Recent advances in the CV deployment. With the DSRC standard becoming ma-

ture [219], OBUs and RSUs products are already on market today [28]. USDOT estimates

that equipping the OBUs would cost around $341 to $350 per vehicle in 2020 [130]. This

makes the CV technology a very cost-effective option to increase transportation system

performance in practice, and the USDOT has already proposed to mandate all new light-

duty vehicles to equip OBUs [128]. The market penetration rate will gradually increase

after such mandate [135], and in our analysis we call the vehicles with and without OBUs

equipped vehicles and unequipped vehicles respectively.

To foster the development of CV-based transportation systems, in 2010 the USDOT

launched the Dynamic Mobility Applications (DMA) research program and developed

nearly 70 such systems, or CV applications [35]. To encourage service providers, re-

searchers, and application developers to participate, these applications are open sourced

and are available free to the public [89]. Built on the success of the DMA program, on

September 1, 2016, the USDOT awarded $45 million to start small-scale deployment of

these systems, called the CV Pilot Deployment Program, in three sites including New

York [129]. In my dissertation research, we perform the first security analysis of such CV-

based transportation systems as a timely study to understand the potential security problems

and challenges at the design level before large-scale deployment.

Security and Credential Management System (SCMS). As one of the most impor-

tatnt infrastructure, the transpiration systems are highly security and safety critical. Thus,

to enhance the communication security in the CV environment, the USDOT will deploy the

Security and Credential Management System (SCMS) on both the vehicle and infrastruc-

ture sides [133]. It is a Public-Key Infrastructure (PKI) system that requires every BSM

21

messages to be signed by the sender’s digital certificates issued beforehand, and thus the

receivers can verify the signature before acting on it [133, 276].

2.3.2 Related Work

Data spoofing attack in the CV environment. Similar to our work, previous work

also identifies data spoofing as a realistic attack vector in the CV environment. Amoozadeh

et al. studied the V2V-based automated vehicle platoon system, and found that spoofed

attacks can cause rear-end collision or significant instability [153]. A more recent work

summarizes a comprehensive list of data spoofing attack sources including not only DSRC

but also other sensors such as GPS [187]. While these work focus on data spoofing attacks

on the vehicle side through V2V, our work is the first study that exposes concrete data

spoofing attacks on the transportation infrastructure side through V2I. In addition, com-

pared to V2V attacks that can at most affect one lane of vehicles at a time, V2I attacks can

affect all vehicles in an intersection as concretely shown in our evaluation, and thus are

able to cause much wider impact on the transportation system.

Critical infrastructure security. Several studies have investigated the security of criti-

cal infrastructure and facilities, e.g., smart grid [154, 229]. These studies highlight the secu-

rity challenges and the severe consequences brought by introducing connectivity into these

previously isolated critical systems, which is also concretely shown in this work for the

next-generation CV-based transportation. Closer to our work, Ghena et al. performed the

first publicly available security analysis of a deployed traffic infrastructure system [202].

Their work found that the traffic controllers uses weak credentials and can be remotely

controlled by the attacker. In comparison, our work targets the next-generation CV-based

traffic control instead of the traditional one. In addition, the weak credential problem they

discovered is a known problem across many embedded network devices [183], and can be

fixed using state-of-the-art authentication mechanisms [202]. In comparison, our study as-

sumes that such problem has already been solves, and targets new security problems at the

22

traffic control algorithm level.

Traffic control algorithm security. Prior to our study, very few studies explored the

security problems in the traffic control algorithms. Laszka et al. performed a theoretical

analysis to estimate the potential congestion an attacker can create assuming that she can

arbitrarily compromise multiple signal controllers [226]. A follow-up study was then per-

formed for the same attack goal but with a weak assumption, in which the attacker can

only compromise the sensors that collects traffic flow information [201]. In comparison,

neither of these work analyzes the CV-based signal control scenario targeted in our work.

In addition, compared to their thread model that assumes the ability of compromising ar-

bitrary numbers of infrastructure-side devices, our threat model, data spoofing from one

signal attack vehicle, is much more realistic (§6.3).

23

CHAPTER III

Systematic Detection of Packet Injection Vulnerabilities

3.1 Introduction

The encryption coverage on today’s Internet is unfortunately still poor: only 50% in

2017 [58]. Thus, off-path packet injection attacks remain a serious threat to network se-

curity. Recently a number of such attacks and their variants have been reported includ-

ing off-path TCP packet injection [250, 251, 204, 205] and DNS cache poisoning at-

tacks [267, 240]. These attacks jeopardize the integrity of network communication, and

lead to serious damage where personal data from unsuspecting users can be leaked when

visiting a web site. Despite application-layer encryption support (e.g., SSL and TLS), net-

work connections are still vulnerable. For instance, for HTTPS connections, the initial

request sent by the browser may still be an unencrypted HTTP request, and the server sub-

sequently redirects the client to the HTTPS site. As shown in a recent study [250], an

off-path attacker can inject a legitimate response to the very first HTTP request. Further-

more, such packet injection attacks can result in DoS, e.g., by injecting a reset (RST) packet

with an inferred TCP sequence number.

To combat such threats, the network stacks typically implement stringent checks on

various fields to verify if an incoming packet is valid. In fact, a number of RFCs like

RFC 5961 [253] are dedicated to this purpose. However, two problems remain. First, the

design of an RFC may not be formally verified to be secure. Second, even if the design

24

is secure, the actual implementation may not always conform to the design. In fact, the

implementation is generally much more complex and difficult to get right. For instance, it

has been shown that TCP implementations on Linux and FreeBSD are significantly weaker

than what the RFC recommends regarding the mitigation against off-path attacks [251].

This calls for a systematic approach to verify protocol implementations.

In this work, we fulfill this very need by developing an effective and scalable static

program analysis tool, PacketGuardian, which can systematically evaluate the robustness

(e.g., the level of security strength) of a network protocol implementation against off-path

packet injection attacks. To ensure effectiveness and accuracy, our tool uses a precise

context-, flow-, and field-sensitive static taint analysis with pointer analysis support. To

address the scalability challenge caused by such high analysis sensitivity, we choose a data

flow analysis of summary-based approach, which is known to be more scalable compared

to other frameworks [258], and is demonstrated to scale to very large code base like the

Linux kernel [280].

At a high level, the tool operates by performing analysis in two steps: (1) Find all paths

leading to the program execution point of accepting an incoming packet. This helps iden-

tify the critical checks that a protocol implementation relies on to prevent packet injection,

and may directly reveal a packet injection vulnerability if any check is weak. (2) Motivated

by the observation that strong checks typically rely on certain hard-to-guess or “secret”

communication protocol state, e.g., TCP sequence numbers, or RTP source IDs, we per-

form a subsequent analysis to check whether such secret states can be leaked to an attacker

through side channels.

In network protocol implementations, these “secret” protocol states are unlikely to be

leaked directly through explicit flows, and all previously reported leakage has been through

implicit flows [250, 251, 204]. Therefore, PacketGuardian supports implicit flow tainting,

which is known to be of much less value compared to explicit flow tracking (implicit flow

usually leaks at most 1 bit of information) and at the same time cause large numbers of

25

false positives [221]. It is thus a commonly excluded feature in nearly all taint analysis

tools [158, 203, 208, 216]. To address the false positive challenge without compromising

tool effectiveness, we leverage a key insight that the previously-discovered practical leaks

are all attacker-controlled implicit information leaks, meaning that an attacker can influence

which bit to leak. By prioritizing this special type of leak, we effectively reduce the false

positive number and make the tool more useful for finding practical vulnerabilities.

Our analysis requires access to source code, which is a realistic assumption for many

key network protocols. The tool we have developed is fully functional and is able to analyze

arbitrary portions of the Linux kernel source code. By applying our tool to the Linux kernel

TCP, SCTP, DCCP, and variants of open source RTP protocol implementations, we are

able to identify a set of new vulnerabilities not previously reported. For example, for the

3 RTP implementations, two can be compromised by injecting less than 51 packets. For

the Linux kernel TCP implementation, our tool identifies 17 high-entropy protocol state

leakage, with 11 of them successfully validated in a realistic test bed. This illustrates that

the Linux kernel TCP stack is still vulnerable even after the recent patches for the previous

known leakage [253, 191], indicating the complex nature of the problem.

The contributions of this work are as follows:

• We formulate the problem to systematically analyze the security properties of net-

work protocol implementations against off-path packet injection attacks, and develop an

effective and scalable static program analysis tool to address it using a precise context-,

flow-, and field-sensitive taint analysis with pointer analysis.

• To enable the detection of practical information leaks due to implicit flows while

ensuring low false positives, we propose the concept of attacker-controlled implicit infor-

mation leaks and prioritize our tool to detect them. To the best of our knowledge, we are

the first to design a taint analysis tool for detecting attacker-controlled implicit information

leaks.

• We implement and apply our tool on 6 real implementations for 4 network proto-

26

Alice Bob

Off-path

attacker

Collaborative

attacker

(optional)

A,s

B,s

A,?

Figure 3.1: Packet injection attack threat model in §III.

cols. From the result, we are able to discover new and realistic vulnerabilities confirmed

by proof-of-concept attacks for Linux kernel TCP and 2 out of 3 RTP implementations.

3.2 Attack Threat Model

Fig. 3.1 depicts the threat model for the off-path packet injection attack considered in

this work. As shown, an existing communication channel (e.g., a TCP connection, a UDP

session, or RTP session) is established between Alice and Bob. The attacker’s goal is to

inject a packet into the channel targeting Bob, pretending to be a packet from Alice. The

attack goal can be to inject payload, e.g., to launch attack such as phishing, or to trigger

the termination of the channel, resulting in denial-of-service (DoS). The attacker in this

threat model is off-path, i.e., much weaker and more realistic than a man-in-the-middle

attacker. To ensure channel integrity, Alice and Bob usually share several secret protocol

states, denoted as s in the figure, and include it in the packet. These states are unknown to

the off-path attacker and should be hard to guess.

To incorporate recently-discovered packet injection vulnerabilities [250, 251, 204, 205],

our threat model also optionally considers a collaborative attacker sharing the same system

as Bob. This collaborative attacker can be an unprivileged malware program [250, 251], or

a script in the browser [204, 205]. This collaborative attacker is tasked to provide feedback

27

1: void tcp_rcv_established(tcp_sock* tp,

 sk_buff* skb) {

2: If (!skb->ack && !skb->rst) return;

3: If (!tcp_validate_incoming(tp, skb)) return;

4: If (tcp_ack(tp, skb) < 0) return;

5: accept_payload();

6: }

1: bool tcp_validate_incoming(tcp_sock* tp, sk_buff* skb) {

2: If ((skb->seq >= tp->rcv_nxt) && (skb->seq <= tp->rcv_nxt + tp->win1)) {

3: tcp_send_dupack(tp, skb);

4: return false;

5: }

6: return true;

7: }

1: bool tcp_ack(tcp_sock* tp, sk_buff* skb) {

2: If (skb->ack_seq < tp->snd_una) {

3: if (skb->ack_seq < tp->snd_una - tp->win2) return -1;

4: return 0;

5: }

6: If (skb->ack_seq > tp->snd_nxt) return -1;

7: return 0;

8: }

1: void tcp_send_dupack(tcp_sock* tp, sk_buff* skb) {

2: If (skb->seq < tp->rcv_nxt)

3: tp->net_statistics[DelayedACKLost]++;

4: }

Version <= 3.7:

1: void tcp_rcv_established(tcp_sock* tp,

 sk_buff* skb) {

2: If (!tcp_validate_incoming(tp, skb)) return;

3: If (skb->ack && tcp_ack(tp, skb) < 0) return;

4: accept_payload();

5: }

Figure 3.2: An illustrative code example of a simplified implementation for handling an

incoming TCP packet in Linux kernel 3.15.

about any packet injection attempt of the off-path attacker, facilitating the inference of the

secret protocol state for a successful injection.

3.3 Illustrative Example

3.3.1 Packet Injection Attack for TCP

To illustrate how static analysis can help detect packet injection attacks for TCP,

Fig. 3.2 shows a significantly simplified implementation example for handling an incom-

ing TCP packet, which is the entry for an injection packet from an off-path attacker.

This implementation is mostly based on Linux kernel 3.15, from which we only include

the important logic, i.e., sequence and acknowledgment number checks. In this figure,

tcp rcv established() is the main entry function, parameter tp is the socket sta-

tus maintained by the system, and parameter skb is the data structure for the incoming

packet. Function accept payload() copies the packet data into the application layer,

indicating the acceptance of the incoming packet for this TCP connection, i.e., a successful

injection.

To evaluate the robustness of this implementation against off-path packet injection,

the key question is what strong checks exist to prevent an off-path injected packet

28

from reaching accept payload(). As we can see in tcp rcv established(),

3 checks on line 2, 3, and 4 exist. The check on line 2 requires the incoming packet

to have either ACK or RST bit set, which is easy to bypass by an attacker. The checks

on line 3 and 4 call into tcp validate incoming() and tcp ack(), and can be

passed only if the former returns true, and the later returns a non-negative value. In

tcp validate incoming(), to return true, the seq field of the incoming packet

needs to fall into the receive window [tp->rcv nxt, tp->rcv nxt + tp->win1],

and the size of this window is usually between 214 to 220. tp->rcv nxt is a proto-

col state unknown to an off-path attacker, thus it takes up to 218 guesses to pass the

check. In addition, for tcp ack() to return a non-negative value, ack seq needs to

fall into [tp->snd una - tp->win2, tp->snd nxt]. Like rcv nxt, snd una

and snd nxt are also protocol states unknown to the attacker, making this check also

hard to pass. Combined with the check in tcp validate incoming(), it takes up to

236 = 68, 719, 476, 736 guesses for a single packet to be accepted, making it practically

unexploitable. Therefore, these are important checks to prevent off-path attackers. In this

work, we use the number of packets needed for one injection as the metric for evaluating

off-path packet injection robustness of a protocol implementation, denoted by Npkt.

We note that the robustness strongly depends on the implementation details. As shown

in the bottom-left rectangle of Fig. 3.2, before Linux 3.7, the ACK bit check was much

weaker. In this case, off-path attacker can simply set the ACK bit to 0 to avoid the checks

in tcp ack(), resulting in a large reduction in Npkt from 236 to 218. This turns out to be

a missing implementation of a check required by the protocol specification [191]. Thus,

even for a well-designed protocol, the corresponding implementation of it may not be robust

against off-path packet injection attacks.

If strong checks do exist, which usually depend on secret protocol states unknown to the

attacker, a further question is whether with the help of a collaborative attacker, these proto-

col states can be leaked. This is of concern since previous work [251, 204] has shown that

29

rcv nxt and snd nxt can have leakage through storage channels such as proc files. The

threat demonstrated by Qian et al. [251] is especially realistic as rcv nxt and snd nxt

can be inferred under only a second. The upper-right rectangle in Fig. 3.2 illustrates this

reported leakage for rcv nxt. Since it is very unlikely to pass the check on line 1 in

tcp validate incoming(), the attack packet reaches tcp send dupack(), and

if seq set by the attacker is smaller than rcv nxt, it changes a counter DelayedACK-

Lost in proc file, otherwise not. If we inspect this counter closely, each comparison leaks

1 bit of information, and thus at most 32 guesses/packets are needed to infer the exact

value of rcv nxt. Note that at the time of Qian et al. [251], the check in tcp ack() is

easy to bypass. In the current version, the check in tcp ack() is strengthened as shown

in the bottom-right rectangle in Fig. 3.2, and even if rcv nxt is guessed, the code still

does not have exploitable vulnerabilities for packet injection. However, from our auto-

mated vulnerability detection shown later in §3.7, we discover 14 new highly-exploitable

leaks for snd nxt/snd una even after the fix. Thus, even for well-implemented pro-

tocols with strong checks, the protocol states of these checks can still be leaked through

attacker-accessible channels, rendering the checks ineffective.

To systematically discover such vulnerabilities, we argue that automated analysis is re-

quired to ensure correctness and coverage, given that the implementations are rather com-

plex — 64 different paths with more than 300 direct and 600 indirect checks are found

before accepting an incoming packet in Linux kernel 3.15.8.

3.3.2 Attacker-controlled Implicit Information Leaks

In the above example, the leakage of protocol state rcv nxt is one case of implicit

information leaks as the secret is leaked through control dependency (predicates on line 2 in

tcp send dupack()). Compared to classic implicit information leaks, this instance is

quite special in that it involves attacker-controlled data in the predicates (skb->seq in the

example), giving an attacker the ability to influence the control flow. We name this special

30

Implicit information Exploit- Example of exploits and related work

leak category ability Exploit case Attack Detection/defense

Classic Low N/A N/A N/A

Strict control High Crypto key extraction [209, 287, 282, 228] [188, 288, 274, 255]

dependency (SCD) Side-channel leaks in [178, 174, 291] [284, 170, 232]

based [161] web/Android apps

Attacker-controlled High Packet injection attack [250, 251, 204] This work

Table 3.1: Categorization of implicit information leaks and position of the work in §III.

type of leaks attacker-controlled implicit information leaks, a new concept proposed in this

work. As shown in the illustrative example, since attacker-controlled data is involved, an

attacker can use different input to actively trigger leaks from the same predicate multiple

times and thus extract the secret bit by bit, making it highly-exploitable in practice.

Table 3.1 shows a categorization of implicit information leaks to help illustrate the

position of this new concept and this work. Classic implicit information leaks is from

a secret information related predicate (e.g., if (secret > 100)) to an information

sink (e.g., a public value), which usually just leaks 1 bit of information (e.g., whether

secret is above 100 or not). Since the leakage volume is extremely low compared to

explicit information leaks, and tracking it causes large numbers of false positives [221,

161], detecting classic implicit information leaks is a commonly excluded feature in nearly

all taint analysis tools [158, 203, 208, 216].

To enable detection of severe information leaks from implicit flows without causing

high volumes of false positives, Bao et al. propose to limit implicit flow tracking to a

special type of control dependency called strict control dependency (SCD) [161]. SCD

denotes the correlation between an equivalency predicate (e.g., if (secret == 100))

and an information sink, thus when the information sink is changed, it directly reveals

all bits of the secret, making it much more severe than the classic implicit information

leaks. Cryptographic key extraction through cache side channels [209, 287, 282, 228] is

one real-world exploit example of SCD-based leaks, which leverages the SCD in bitwise

equivalence testing of the secret key in certain cryptographic system implementations such

as RSA implementation of GnuPG [287, 282]. Another exploit example is side-channel

31

leaks in web and Android applications [178, 174, 291], in which network traffic pattern is

SCD on user choices in web or Android applications. As shown in Table 3.1, both examples

are studied extensively on both attack and defense sides.

Attacker-controlled implicit information leaks is a newly-identified category of highly-

exploitable implicit information leaks, and similar to Bao et al. [161], we propose to prior-

itize this special type of leaks in order to balance the vulnerability detection effectiveness

and false positives. This concept is orthogonal to SCD in that attacker-controlled data is

involved in the control dependency. The target of this work is to identify exploitable cases

of such leaks focusing on off-path packet injection attacks [250, 251, 204], and we are the

first to design a taint analysis tool for detecting this type of leaks (detailed in §3.6).

3.4 PacketGuardian Overview

In this section, we first describe the analysis required for detecting packet injection

vulnerabilities, and then present a design overview of PacketGuardian which supports this

analysis.

3.4.1 Analysis Steps

Following the discussion in §3.3, we break the analysis into two steps: accept path

analysis and protocol state leakage analysis.

Step 1: Accept path analysis. For a packet injection, the goal is to pass all checks

and reach the program point where the packet is accepted, e.g., accept payload()

in Fig. 3.2. In this chapter, we refer to these paths as accept paths. For a particular protocol

implementation, the off-path packet injection robustness depends on the weakest accept

path. Thus, the first analysis step is to find the weak accept paths in the implementation.

The output needs to highlight the checks related to attacker-controlled information, e.g.,

header fields, to help analyze the accept path strength.

Step 2: Protocol state leakage analysis. If all accept paths are all well-protected by

32

File crawler

Analysis-

related files

SCC

generator

Func

SCC list

Pointer

analysis

Taint engine

Function

summary

- Taint summary

- Pointer analysis

summary

- Taint tracking

summary

- Path summary

Attacker-

controlled data

Accept path

constructor

Packet

accept func.
Leakage

sinks

Leakage path

contructor

Protocol

states

Packet injection

vulnerabilities

Weak

accept

paths

High-

entropy

Leakage

paths

Taint-based summarizer Vulnerability analyzer

Tool user

Figure 3.3: PacketGuardian design overview.

“secret” protocol states unknown to the attacker, the implementation can still be vulnerable

if these protocol states are vulnerable to information leakage as illustrated in §3.3. Thus,

after accept path analysis, we follow up with an information leakage analysis for important

protocol states.

The first step is to analyze the strength of the checks related to attacker input on the pro-

gram path reaching a pre-defined analysis sink, which is similar to the traditional code in-

jection analysis, and thus it can be modeled as a static taint analysis problem with attacker-

controlled data as taint source like in previous work [216, 290, 281]. The second step is an

information leakage problem and again can be solved by static taint analysis.

Note that symbolic execution is alternative choice, but since it tracks finer-grained in-

formation for each variable than taint analysis, it comes with much higher computation

overhead, which is unlikely to be efficient and scalable enough in practice, especially in

our case high analysis sensitivity are necessary (shown in §3.7.1). Thus, we choose taint

analysis in the current design.

33

3.4.2 PacketGuardian Design

To support the analysis in §3.4.1, PacketGuardian has 2 major components: taint-based

summarizer, and vulnerability analyzer, as shown in Fig. 3.3. In this section, we briefly

introduce the design of each component, and details are provided in §3.5 and §3.6.

Pre-processing. To support taint analysis, the source code needs to be first pre-processed to

the format required by a certain static analysis tool. We choose CIL [242] for our analysis,

so for its input requirement, .c files are pre-processed to .i files in this step.

Taint-based summarizer. With pre-processed source code, given an entry function, taint-

based summarizer performs a precise static taint analysis with flow, field, and context sen-

sitivity with pointer analysis. In §3.7.1, we show that such analysis strength is required to

discover real vulnerabilities with minimum false positives (FPs). Further, we employ im-

plicit flow tracking (with separate taints from explicit flows), as the protocol logic checks

commonly induce leakage through control dependence (see §3.3). Note that implicit taint-

ing is known to generate a large number of FPs [221], and nearly all existing taint analysis

tools choose to ignore implicit flows [158, 203, 208, 216]. We show that after prioritiz-

ing attacker-controlled implicit information leaks, PacketGuardian does not suffer from the

excessive FP problem.

To achieve context sensitivity, our static taint analysis needs to be performed in an

inter-procedural data flow analysis framework, with two major choices: IFDS/IDE frame-

work [257, 259], and summary-based (or functional) approach [273]. IFDS/IDE frame-

work performs analysis from function caller to callee, and in the worst case, the analysis

complexity is proportional to the number of call graph edges. In contrast, summary-based

approach first generates strongly-connected components (SCC) of the call graph and com-

putes function summary from callee to caller. In this approach, each function only needs to

be analyzed once and thus has lower complexity and significant performance gains [258].

Its disadvantage is that it needs storage for function summaries, and the callee-to-caller

order makes taint path construction unnatural. To support high sensitivity and implicit

34

flow tracking, our analysis faces a significant scalability challenge if applied to a large

code base like the Linux kernel. Fortunately, as demonstrated in previous studies [280],

summary-based approach can scale to very large programs.

Following these design choices, as shown in Fig. 3.3, all related source files are first

crawled in a breath-first search framework starting from the entry function. After merging

these files, function SCCs are computed and serve as input to the taint analysis engine. Taint

analysis are then performed in the order of callee to caller, and output function summaries.

Vulnerability analyzer. In vulnerability analyzer, our tool uses the function summaries

from the taint-based summarizer to construct paths for accept path analysis and protocol

state leakage analysis in §3.4.1. Taking attacker-controlled data as taint source and packet

accept functions as sink, accept path constructor constructs accept paths with the attacker-

controlled data related predicates labeled. The output is further analyzed, with the result

being either an obvious packet injection vulnerability, or a set of protocol states that the

implementation relies on to prevent injection.

If the accept paths are well-protected by a set of protocol states, leakage path con-

structor performs the second step to find possible leakage of these important states. In

this analysis, we also use the function summaries, but the taint sources and sinks become

the protocol states and public side channels accessible to the attacker. These channels can

be storage side channels [251, 215, 174, 291], public events like sending packets [204],

timing, power, etc. Besides detecting leaks, we also construct the leakage paths to help

tool users understand and analyze these leaks. In this step, we prioritize attacker-controlled

implicit information leaks, as all previously reported highly-exploitable leaks are of this

special type [250, 251, 204].

With the choice of summary-based approach, even though the taint sources and sinks

are different in the two steps, our tool only needs to perform taint analysis, the most time-

consuming part, once instead of multiple times for each source and sink pair. While iden-

tifying sources and sinks is a problem for taint analysis in general [256], PacketGuardian

35

users can conveniently try different sinks in the analysis without re-running the taint anal-

ysis.

Manual effort in analysis. In our design, the manual effort mainly lies in identifying pro-

tocol states, and the amount of it depends on the number of output paths and predicates. As

detailed in §3.6, our design mitigates this problem using path pruning and taint information

annotations, which is shown to be effective in §3.7, e.g., our pruning reduces 42.6% paths

on average.

3.5 Taint-based Summarizer

In this section, we detail the two core designs of the taint-based summarizer, the taint

analysis engine and function summary.

3.5.1 Taint Analysis Engine

In this section, we detail the design of taint environment, propagation logic, and how

we support flow, context, and field sensitivity with pointer analysis.

Taint environment. To specify the tainting relationship, each program variable v is asso-

ciated with a taint environment γ : v → T , where T is a set of taint values {ti|i = 1, ..., k}.

Each taint value ti is associated with a variable vi, meaning that v is tainted by variable vi.

In our design, variables in γ include local, global, formal, and function return variables.

Each v is specified by a tuple with its identification information such as variable name and

type.

Taint label of explicit and implicit flows. As discussed in §3.4.2, it is a design requirement

to include implicit flows, which is known to cause excessive FPs [221]. At the same time,

the importance of explicit leaks is much higher than implicit leaks since the former directly

leaks the entire data. Thus, to distinguish leaks of different importance and be able to

support policies on limiting implicit flow tainting [218], we label each taint value with 2

boolean values d and c, for taint values coming from explicit flows (d = true) or implicit

36

Statement/expression Taint operation

Const, Sizeof(typ/str) Texp = ∅

v Texp = Ld(γ(v))
Sizeof(exp1) Texp = Ld(Texp1

)
Cast(exp1) Texp = Ld(Texp1

)
unop(exp1) Texp = Ld(Texp1

)
biop(exp1, exp2) Texp = Ld(Texp1

) ∪l Ld(Texp2
)

exp : exp1?exp2 : exp3 Texp = Lc(Texp1
) ∪l Ld(Texp2

) ∪l Ld(Texp3
)

v = exp γ(v) = Ld(Texp) ∪
l Lc(∪

l{Tctk |ctk ∈ CT })

Asm({expini
|i}, γ(voutj) = Ld(∪

l{Texpini
|i)

{voutj |j}) ∪lLc(∪
l{Tctk |ctk ∈ CT })

Table 3.2: Taint value calculation and propagation logic for intra-procedure propagation.

CT includes the constraints that the current statement is control dependent on.

flows (c = true). This is a unique design in PacketGuardian and not supported in most

existing taint analysis tool [158, 203, 208, 216].

Taint propagation. The tainting process is to propagate taint values by updating γ(.) after

processing each statement. Table 3.2 shows the taint propagation logic in the statement and

expression format defined by CIL [242]. This table only has intra-procedure propagation

logic, and inter-procedure logic will be covered later.

In the table, we introduce 3 new operations for taint label management, Ld, Lc, and

∪l. Ld and Lc modify the labels of all taint values in a set with explicit flow and implicit

flow label respectively, and ∪l is simply the set union operation but with label merging, for

example if both sets have v but with different labels di, ci and dj , cj , the merged taint value

label is (di||dj) and (ci||cj).

Flow-sensitive tainting with both explicit and implicit flows. Our taint propagation is

performed in a data flow analysis framework, where each stmti has a taint environment

γi(.), and after tainting according to the rules in Table 3.2, γi(.) is updated and passed to

the egress statements in CFG. Our data flow analysis is a may-taint analysis to tradeoff

potentially higher FPs for lower FNs (we have other mechanisms to lower FPs later on). To

increase the analysis efficiency, we use topology order to visit CFG nodes.

To support implicit flow tainting, we maintain a constraint path, CT , during the data

flow analysis. CT describes the list of conditional branch statements such as if exp and

37

Switch exp, which we call constraints (denoted by ct), that the current statement is con-

trol dependent on. Each ct is described by a tuple {exp, Texp}, and adds a new ct after

processing a conditional branch statements with exp. We compute the control dependence

relationship with a postdominator analysis [273], and delete the ct from CT if the current

statement is not control dependent on it. With this constraint list, we compute the implicit

flow taint value set by merging Texp of all ct in CT . As shown in Table 3.2, this implicit

flow taint is added in taint propagation after applying Lc(.).

Context sensitivity. To support context sensitivity, function call statements need to be

correctly handled for inter-procedure taint propagation. According to our design, the taint

modifications after calling a callee function can also be described in a function taint envi-

ronment γf (.), by merging the return statement taint environments in the callee function

using ∪l operation.

Before being applied, γf(.) needs to be transformed to the caller function context since

γf(.) is computed in the callee context. This transformation is done in an instantiate func-

tion Inst : vcallee → vcaller, which replaces the formal parameter variables in callee func-

tion with the caller actual parameter variables in the call site of caller function. Inst(.)

also handles the side effect in the process for the callee function variables, i.e., caused by

changing the values of de-referenced pointer formal or global parameter variables, using a

context-sensitive pointer analysis explained later.

Field sensitivity. As shown in the example in §3.3, the header fields related to protocol

states in a network protocol are usually implemented as a few fields of a composite type

variable. Thus, it will cause large numbers of FPs if we don’t distinguish same variable

with different fields and taint the whole variable like in some previous tools [203, 114].

We support field sensitivity with the standard technique of expanding each variable with

an offset element in the variable tuple. After adding this feature, both the intra- and inter-

procedure taint propagation logic need to be updated accordingly.

Adding offset element in variable tuple can also cause γf(.) to keep increasing with

38

same variable having different offset due to recursive fields (e.g., next in linked list data

structure) in a loop. To solve this problem, we add an iteration limit of loops, which is a

common practice in field-sensitive data flow analysis.

Taint with pointer analysis. As shown in §3.3, network protocol implementations use

pointer extensively, and in our example, the leakage sink is changed with de-referencing

a pointer, making pointer analysis a must. In our design, we choose pointer analysis to

support referencing and de-referencing pointers when needed during taint propagation. To

better work with our taint analysis, our pointer analysis is also flow-, field-, and context-

sensitive based on the traditional flow-sensitive pointer analysis framework [214].

With this feature, our analysis has another environment, pointer environment, Ptr :

v → {vi|i = 1, ..., k}, meaning that v points to a set of variables {vi|i = 1, ..., k}. Like

taint environment, we associate each statement stmti with a pointer environment for flow-

sensitive analysis. In inter-procedure case, the pointer relationship in a callee function is

summarized to a a function pointer environment Ptrcallee, and Inst(.) is also needed to

transform the variables to caller function context accordingly.

Note that parameter aliasing is a classic problem in summarizing points-to relationship,

which is typically solved by partial transfer functions (PTF) [277]. In network protocol

implementations, pointer parameters typically are used for semantically different purposes,

e.g., tp for socket status and skb for the incoming packet in the illustrative example (§3.3),

thus we assume no parameter aliasing in the current implementation. This may introduce

inaccuracies, and we plan to implement PTF for improvement in future work.

3.5.2 Function Summary

After taint analysis, the function summary are generated with 4 parts : taint summary,

pointer summary, taint tracking summary, and path summary.

Taint and pointer summaries. Taint and pointer summaries are the function taint envi-

ronment γf (.) and function pointer environment Ptrf(.) respectively (detailed in §3.5.1).

39

After generated, they are fed back into the taint analysis engine for subsequent analysis to

support inter-procedure taint and pointer analysis.

Taint tracking summary. As mentioned in §3.4.2, since we choose summary-based ap-

proach over IFDS/IDE for scalability, tracking taint propagation becomes unnatural. How-

ever, we do need this tracking since it benefits our vulnerability analysis by making the

taint result explainable. Thus, we design taint tracking summary to fulfill this goal in Pack-

etGuardian. Note that this summary has another important benefit for our analysis as it can

help us locate the indirect constraints of implicit flow taint to obtain a complete accept path

and leakage path (detailed later in §3.6).

Like function taint and pointer environments, this summary is specified by a track-

ing environment Track : 〈v, t〉 → TR, where t = γf(v) and TR is the set of track

values. Each track value describes one source for a taint value, which can come from intra-

procedure explicit flow, intra-procedure implicit flow, or inter-procedure explicit or implicit

flow from a callee function. Since explicit flow is relatively easy to understand, to lower the

tracking overhead we only record the source file line numbers of the program point passing

the taint. For implicit flows, we create a track value for each ct in CT to make it precise.

For inter-procedure taint tracking, we don’t let the track value propagate from callee

to caller function like in taint and pointer summaries. Otherwise, the track value set will

increase accumulatively at each time of inter-procedure propagation, making the analy-

sis hard to scale. More importantly, in that case each taint tracking summary will have

complete taint history for each variable and taint value pair, which is unnecessary since

only a few important variables need tracking. Thus, in our design, during function call we

only store a “function pointer” in the TR, and delay the actual inter-procedure tracking

computation till the vulnerability analysis phase when needed. This “function pointer” is

designed to have complete context information to load the callee taint tracking summary

and reconstruct the inter-procedure tainting path later.

Path summary. To meet the goal of outputting the accept and leakage paths for explaining

40

the packet injection vulnerability, during the taint analysis we also summarize the important

paths. Like taint tracking summary, recording the inter-procedure program paths is not

necessary, and we only record the intra-procedure program paths, and keep a “function

pointer”.

To satisfy the analysis requirements, the path we record has 2 parts, a constraint path

and a path end point. The constraint path is the same as CT mentioned earlier, and here the

list of ct is those ones that the path end point is control dependent on. To help explain the

path and also enable further tracking of the expression taint, we expand ct = {exp, Texp}

with 3 elements: variable taint value set {〈vi, ti, T rack(〈vi, ti〉)〉|i = 1...k}, branch br, and

line number, where vi is a variable used in exp. Variable taint value set gives fine-grained

information about the taint values and track values for each variables used in ct, which

helps the path pruning and prioritizing detailed later in §3.6. Branch br records whether

this path takes the true branch of ct or the false branch of it.

The path end point can be in two forms: a function, or a sink-related statement. The

path end point of a function is designed to serve for the role of “function pointer” men-

tioned earlier, and it can also serve for the vulnerability analysis with a function sink, e.g.,

accept payload() in Fig. 3.2. The path end point of a sink-related statement is de-

signed to mainly serve for protocol state leakage analysis when this statement is related to a

channel accessible to an off-path attacker. For example, this statement can be modifying a

public value in storage channels [250, 174], or related to a special instruction in data timing

channels (e.g., SSE instructions discussed by Andrysco et. al. [155]), etc. In our current

implementation, we focus on storage channels and record the statement changing a global

variable, or the de-referenced value of a formal or global parameters since they may point

to a global variable depending on the caller context.

41

Output

A path from

path summary

End with sink?

Path property

check

Important

Layered?

Keep DFS Discard

No

Invalid

Yes

Not important

No

Yes

Figure 3.4: Path analysis process in DFS path construction and analysis framework.

3.6 Path Construction and Vulnerability Analysis

In this section, we first introduce a path construction and analysis framework, and then

detail accept path analysis and protocol state leakage analysis.

3.6.1 DFS Path Construction and Analysis Framework

The difference between an accept path and a leakage path merely lies in the analysis

sink definition and the constraint analyzing and filtering rules that can be applied to re-

duce FPs. Thus, both analysis can be supported by a general path construction framework

following a DFS (depth-first search) paradigm based on the path summary. As mentioned

in §3.5.2, each path in a path summary has a constraint path part and a path end point part.

Starting from an entry function, the DFS path construction process analyzes the paths in

the summary, passes the paths to the callee functions if the path end point is a “function

pointer” and continues the DFS process. The process ends when it reaches the analysis

sink defined by an analysis task, and output concatenated inter-procedure paths. Like the

inter-procedure propagation in taint analysis engine, here we need to use the calling context

stored in the “function pointer” and Inst(.) to change the variable context.

Path analysis with implicit flow tracking. In the path construction process, we analyze

42

each path in the path summary following the procedure shown in Fig. 3.4. We first check

whether the path end point is the analysis sink or whether it is a “function pointer” that

can call into the analysis sink. If not, this path is unrelated to the analysis task and we

discard this path. After that, the property of the path is checked according to the purpose

of the analysis task. If its property is considered valid for the analysis, it will be further

judged on its importance; otherwise it is discarded. If its property is considered important

and the layered analysis mode is on, the path result will be output. Otherwise, the DFS

process continues to its callee function. The layered analysis mode will be described later

in this section. When reaching the analysis sink, we only output the path if it is considered

important.

The path property is determined by analyzing the variables and variable taints of the

constraints in the constraint path. These constraints are directly related to the analy-

sis, which we call direct constraints. However, besides direct constraints there are also

other important constraints that the analysis sink depends on. For example, in Fig. 3.2,

the sequence number check on line 2 in tcp validate incoming() is one of the

most important checks preventing off-path packet injection, but it is not the constraint

that accept payload() is control dependent on. This dependence is passed through

the return value of tcp validate incoming() to the direct constraint on line 3

in tcp rcv established(). In order to find these indirect constraints, we use

Track(〈v, t〉) in variable taint value set stored in the path summary, and if t includes im-

plicit flow taints, we track its taint path to the indirect constraint that passes these taint

values. Based on our taint tracking design, these indirect constraints can be found in an

inter-procedure fashion.

Layered path construction. To ensure minimum FNs, the path pruning rules in our accept

path and leakage path analysis prefer to be conservative. However, this conservativeness

may lead to more FPs, causing heavy analysis overhead. This problem can be quite serious

for us since our output is program paths and nested constraint can exponentially increase the

43

path number. To mitigate this problem, PacketGuardian supports a layered analysis mode,

which is included at the bottom of Fig. 3.4. In this mode, when the path is important, we

stop the DFS process and output the partial results. With these partial results, tool users

can filter out the paths that are not of interest as early as possible, and feed the rest back

to the tool to continue the DFS. As shown in our evaluation later in §3.7, this can largely

reduce both the number of unimportant output paths and the analysis time. To reduce

manual effort, PacketGuardian only stops when the path is considered important as this

indicates that some constraints on the path are tightly related to the analysis but it is hard

to automatically tell whether they are of interest.

3.6.2 Accept Path Analysis

In accept path analysis, the path is constructed and analyzed with attacker-controlled

data and accept functions as input. Attacker-controlled data is usually the function param-

eters related the incoming packet (e.g., skb in Fig. 3.2), and accept functions are functions

that indicate the acceptance of the incoming packet, for example copying data to upper

layers, or terminating the channel. If it is hard to find such functions, PacketGuardian also

supports adding pseudo accept functions to label the analysis sink of interest.

Analysis sink check. In this analysis the analysis sink is a function, so we only consider

the paths with end points of functions in path summary. Also, we only care about end point

functions that are or may call into the accept functions. Thus, before the analysis, we first

create a list of such functions by a DFS crawling process, and then in the analysis sink

check discard the paths without an end point function in the list.

Constraint path property check. In the path analysis, each constraint is determined with

a property of protocol state check, weak check, and strong check. For a constraint ct, we

first check whether it is tainted by attacker-controlled data by looking at Texp, and if not,

it is a comparison related to a protocol state and thus labeled as channel state check. If it

is tainted through explicit flows, we find out which variable v is attacker-controlled using

44

the variable taint set in ct, and use exp to understand the comparison this constraint does

for v. If it is tainted through implicit flows, the important comparison is done in a indirect

constraint and we use the tracking described in §3.6.1 to find it out. We only consider this

constraint to be weak check if (1) except v, all other variables are constants, or (2) this

constraint requires v to be non-equal to non-constant variables. For the former, an attacker

can easily spoof the corresponding packet fields to pass the check, and for the latter, it is

very likely that a random value can pass the check. For all other cases, we conservatively

label the constraint as strong check to avoid FNs.

In the path construction framework, if the path has a strong check constraint, it is con-

sidered important, and otherwise unimportant. A path is considered invalid if it has conflict

constraints, e.g., one constraint requires v to be larger than a value while another one re-

quires it to be smaller. In our tool, we use a simple approach to detect this conflict by

checking whether two constraints are exactly the same but one has br = true and another

has br = false.

Weak path candidate output. After the DFS path construction, all the output paths are

valid accept paths. To reduce analysis effort, by default the path output consists of only

protocol state check and strong check constraints. We include protocol state checks as it

can help understand the channel conditions for an accept path. Note that we filter out the

weak check constraints only in the last step so that the user can also configure the tool to

show all constraints.

Since the goal is to identify the weakest accept path, we also apply path filtering to filter

out stronger paths before the final output. If the constraints of one path is a subset of that

of another path, the latter is stronger and will be filtered out.

3.6.3 Leakage Path Analysis

In this analysis, the information sources are the protocol states the strong accept path

checks depend on, and the sinks are the channels accessible to an off-path attacker. Based

45

on our path summary design, our sinks can be a function, a statement, or the paths reach-

ing an important program point. This can support storage channels related to a statement

that changes a global value [215, 250, 174], timing channels related to a statement or pro-

gram path lengths [155, 222], or public events related to a function such as sending a

packet [204].

Leakage detection. The taint summary for the entry function is a summarized variable

tainting relationship, and we can directly tell whether there is possible storage channel

leakage by checking if the storage channel sink variables are tainted through explicit or

implicit flows. This is a convenient way to quickly tell the leakage status, but lacks de-

tailed information for understanding the leakage, especially for implicit information leaks.

Also, it cannot cover channels except storage channels. Thus, we also use the DFS path

construction framework to construct leakage paths in this analysis.

Explicit information leaks are relatively easy to understand and PacketGuardian user

can just use the taint propagation line numbers in the tracking summary to analyze the

leakage. The user can also use the DFS path construction framework to construct the paths

just like the accept path construction in §3.6.2 with a change of the analysis sink. However,

in a protocol implementation the protocol states are usually not directly leaked through

explicit flows to a storage channel – more common leakage is implicit information leaks as

shown in recent vulnerability reports [250, 204].

For implicit information leaks, as discussed in §3.3.2, even though classic ones are

generally considered of less value and commonly excluded in taint analysis tool de-

sign [158, 203, 208, 216], attacker-controlled implicit information leaks proposed by this

work are highly-exploitable according to existing vulnerability reports for practical proto-

col state leakage [250, 204]. Thus, our leakage path analysis targets this special type of

leaks, and a very important benefit of this is that this can largely reduce FPs, which is a

critical problem for implicit flow analysis [221].

In this following part of this section, we describe how to use the DFS path construction

46

framework to find leakage paths through attacker-controlled implicit flows.

Analysis sink check. In this analysis, we filter out the paths which cannot reach the leakage

sinks we defined. For storage channels, we can use the taint summary to check this, and

for function sinks and other statement sinks, a DFS process like in the accept path analysis

can be used to label function callees of interest, and discard the path of no interest in the

DFS path construction.

Constraint property check. In the path analysis, each constraint is determined with a

property of unrelated, valid low entropy, invalid low entropy, and high entropy. Since we

target attacker-controlled implicit information leaks, the constraint is of interest only if it

is tainted by both attacker-controlled data and the information sources. If not, it is labeled

as unrelated constraint. If related, we find out the variables tainted by attacker-controlled

data va and those tainted by the information source vs respectively in direct and indirect

constraints. With exp in the constraint we can figure out the comparison it does, and label

the constraint as invalid low entropy if the constraint requires va to be equal to vs, and as

valid low entropy if the requirement for va is to be non-equal to vs. For both cases the

constraint has low entropy, but for the former it is unlikely to pass this check while for the

latter it is very likely. For all other cases, we label the constraint as high entropy.

If the path has an invalid low entropy constraint, it is considered invalid and will be

discarded. Otherwise, if it has a high entropy constraint, it is considered important. For all

other cases it is considered unimportant. Like in accept path analysis, we also check the

constraint conflicts and discard the paths with conflicts. For this analysis, layered analysis

mode can be very helpful since it is usually hard to judge the entropy automatically. For

example, in the illustrative example the receive and send window ranges are depending

on dynamic protocol states and protocol design, making automatic judgement difficult.

As shown in our evaluation in §3.7, with tool users filtering out paths with invalid low

entropy constraints which are labeled conservatively as high entropy ones, finding practical

vulnerabilities can be much more efficient.

47

Leakage path candidate output. Each leak is categorized by the high entropy constraints

and the leakage sink, and by default PacketGuardian does not present unrelated and valid

low entropy constraints to the user. PacketGuardian users can also configure the tool to

output all constraints for more details. For an output path to break the non-inference prop-

erty [206] and cause leakage, the same sink cannot be triggered for both true and false

branches of a high-entropy constraint under all conditions. To check this, for a leakage

path p1 we first find all paths, say p2, sharing the same sink with p1 but takes the opposite

branch in the high-entropy constraint cthigh in p1. Then, we check whether all constraints in

p2 excluding cthigh are a subset of all other constraints in p1. If so, p1 is considered invalid

and won’t be included in the output.

3.7 Evaluation

Following the design, we implemented the taint-based summarizer and vulnerability

analyzer in OCaml with roughly 15K and 2.8K lines of code respectively. In this section,

we evaluate the tool’s effectiveness, accuracy, efficiency by applying it to 6 real network

protocol implementations, covering 4 different network protocols. All experiments are run

on a desktop computer with a 2.60GHz 8-core Intel Xeon CPU and 128 GB memory.

Code bases. The first code base we target is TCP in Linux kernel version 3.15.8, and we

denote it as TCP-Kernel. Different from previous work which reported vulnerabilities in

TCP code base by manual inspection [251], our tool performs automated analysis, and out-

puts not only all existing ones but also 11 new highly-exploitable ones. Besides TCP, we

also choose two other famous protocols in the Linux kernel, SCTP and DCCP, denoted as

SCTP-Kernel and DCCP-Kernel. Both of them are transport layer protocols providing reli-

able message delivery like TCP but having distinct features to support other communication

requirements.

Besides transport protocols, we also analyze an application layer protocol, RTP, which

is one of the most popular protocol for delivering audio and video over IP networks. We

48

Code base Analysis entry function Func #

TCP-Kernel tcp rcv established() 1730

RTP-oRTP rtp process incoming packet() 141

RTP-PJSIP on rx rtp() 67

RTP-VLC rtp queue() 22

SCTP-Kernel sctp sf eat data 6 2() 290

sctp sf do 9 1 abort() 277

DCCP-Kernel dccp rcv established() 359

Table 3.3: Statistics for the 6 code bases in our evaluation.

Tool w/o features TP # FP # FN # Low-entropy #

w/o field 4 501 0 27

w/o implicit flow 0 N/A 4 N/A

w/o pointer analysis 0 N/A 4 N/A

w/o layered 4 0 0 1336

w/ all above 4 0 0 (base line) 14

Table 3.4: Evaluation of accumulative improvement using rcv nxt leakage in TCP-Kernel.

pick 3 different popular libraries, oRTP 0.24.1, PJSIP 2.4, and VLC 2.2.0, all of which

implement RTP. In the following sections, we denote them as RTP-oRTP, RTP-PJSIP, and

RTP-VLC.

For all 6 cases, the analysis chooses the function handling incoming packets as the entry,

which are listed in Table 3.3. The last column shows the number of functions reachable

from the entry point, showing the complexity of the code bases.

3.7.1 Tool Effectiveness and Accuracy

Table 3.5 summarizes the vulnerability and accuracy result for all 6 code bases. Column

2 describes the type of accept path defined in the analysis task, which in our experiments

we consider 2 types: data and close, which means the analysis sink is to feed data to upper

layers and to close the channel respectively. We call them inject-payload and close-channel

accept paths in this section. Column 4–6 show the number of output paths, true positive

(TP) number and false positive (FP) number. Here the ground truth is the feasible paths

among all accept paths before pruning, and since our design is conservative in path pruning

and filtering, we do not have any false negative (FN) cases for all 6 code bases. Column

49

Weak path output Pkt # Pkt # needed Protocol states

Code base Type Path Path TP FP needed for for injection that the strong

w/o # # # injection w/ protocol checks rely on

prune state leakage

rcv nxt,

TCP-Kernel Data 64 9 9 0 (2
32

win1
× 2

32

win2
)* (32 + 32) snd nxt,

snd una

Close 40 1 1 0 232 32 rcv nxt

RTP-oRTP Data 21 15 10 5 51 * N/A N/A

RTP-PJSIP Data 1 1 1 0 3 N/A N/A

RTP-VLC Data 32 8 4 4 232 * 232 ssrc

my vtag,

Data 12 5 4 1 232 × 2
32

rem win
232 + 2

32

rem win
base tsn,

SCTP-Kernel cumulative

tsn ack point

Close 5 2 2 0 231 231 my vtag,

peer vtag

Data, dccps gsr,

DCCP-Kernel Close 2 1 1 0 2
48

seqno win
2
48

seqno win
dccps swh,

dccps swl

Table 3.5: Summary of vulnerability analysis results. Number labeled with “*” indicates

that it can be smaller under special channel conditions. win1 and win2 is usually between

214 to 220, rem win is less than 4096 by default, and seqno win is 100 during default

initialization.

3 shows the path number without the path pruning described in §3.6.2. As shown, our

pruning reduces 42.6% output paths on average without introducing FNs. Since this output

will be analyzed by an analyst, this pruning greatly reduces human efforts.

Column 7 shows the worst case number of packets needed for one injection after the

accept path analysis, which is Npkt defined earlier in §3.3. As shown, the Npkt for 3 Linux

kernel code bases is at least 107 for either inject-packet or close-channel cases, which are

unlikely to be exploitable in practice. Their protections solely rely on a few “secret” proto-

col states unknown to the off-path attacker, which are listed in the last column.

In contrast, the 3 code bases for RTP protocol show diverse results. RTP-oRTP and

RTP-PJSIP only need 51 and 3 packets to achieve injection, which are both easy to ex-

ploit in practice. But for RTP-VLC 232 packets are needed, which is rather robust. All 3

code bases claim to follow RTP RFC 3550, but our result indicates that even following the

same design, their packet injection robustness can be very different due to implementation

50

differences.

For the code bases that do not have practical vulnerabilities in accept path analysis,

we proceed to the second analysis step — protocol state leakage analysis. The Npkt after

leveraging leakage are shown in the column 8. For TCP, both protocol state rcv nxt

and snd nxt/snd una have high-entropy leakage, and largely degrade the Npkt to only

64 and 32 for inject-payload and close-channel cases respectively. Leakage for snd nxt

and snd nxt/snd una have been reported previously [251] by manual discovery, and it is

noteworthy that the snd nxt/snd una leakage has already been strengthened after Linux

kernel version 3.8 and thus the vulnerability no longer exists. However, using our tool, we

automatically find 4 high-entropy leakage for rcv nxt, including the one reported before

and 3 new ones. We validated all of them through experiments and confirm that they

are indeed exploitable. For snd nxt/snd una, even after the fix, our tool successfully

reports 13 new ones and 7 of them are validated.

For inject-payload case in SCTP-Kernel, a low-entropy leakage of my vtag exists and

also greatly reduces Npkt from 232 × 232

rem win
to 232 + 232

rem win
. However, it is still a large

number and not exploitable in practice. For RTP-VLC, DCCP-Kernel and close-channel

case in SCTP-Kernel, no high-entropy leakage is output and thus their Npkt with leakage

remains the same. In §3.7.3, we provide more details on these results.

We further conduct an experiment to understand the effects of our static analysis en-

hancement. As shown in Table 3.4, we breakdown the accuracy improvement with each

analysis enhancement using the rcv nxt leakage analysis in TCP-kernel. The evaluation

includes TP, FP, FN, and low-entropy leakage, and due to the difficulty of determining

ground truth, we use the result of the tool with all features as baseline to evaluate FN for

other cases. The results show that all static analysis enhancements, especially implicit flow

tainting tracking, are necessary and play an important role.

51

3.7.2 Tool Efficiency

Before the taint analysis, the code pre-process is a one-time effort which takes around

8.7 hours for the entire Linux kernel, and only less than a minute for oRTP, PJSIP, and

VLC.

For taint-based summarizer, since summarizing the entire Linux kernel is infeasible, we

limit the scope of TCP-Kernel, SCTP-Kernel, and DCCP-Kernel to the net folder under

the self-contained Linux kernel networking subsystem. TCP-kernel takes the longest time

of 7.8 hours, which we believe is acceptable considering that the computed summary can

be reused later for further analysis. In addition, the time can further improved by analyzing

functions in parallel as shown in Saturn [280], which is another advantage of our choice of

summary-based approach.

With the function summaries, the accept path and protocol state leakage path analysis

are very efficient, and perform these analysis on all code bases is less than 10 seconds.

Note that this efficiency also benefits a lot from our layered analysis mode, for example,

for rcv nxt leakage analysis in TCP-Kernel, it takes 984.5 seconds in total if not using

layered analysis mode.

3.7.3 Result analysis

In this section, we detail the vulnerability analysis results summarized in Table 3.5.

Due to the space limit we cannot provide code-level details for all results, and for more

details about the experiment setup and vulnerability results, please visit our result website

http://tinyurl.com/PacketInjectionVulnerability [7].

3.7.3.1 TCP-Kernel

Accept path analysis. Our tool outputs 9 inject-payload accept paths which are all TPs.

6 out of them are in TCP fast path processing. The conditions for entering fast path is

shown in Fig. 3.5. On line 1, to match the prediction flag it requires the receiver’s exact

52

Code base Protocol state Output Validated Hard to FP # Low-

trigger # entropy

TCP-Kernel rcv nxt 18 4 0 0 14

snd nxt/una 65 7 6 9 43

SCTP-Kernel base tsn, cumulative 3 N/A N/A 0 3

tsn ack point

DCCP-Kernel dccps gsr/swh/swl 5 N/A N/A 1 4

Table 3.6: Protocol state leakage analysis result. Ssrc for RTP-VLC and my/peer vtag for

SCTP-Kernel is not included since our tool does not output any high-entropy leakage for

them.

send window size, which is possible to achieve in some cases, e.g., when TCP connection

is idle. The hard requirement of falling into fast path is that the sequence number, seq,

needs to equal to the protocol state rcv nxt on line 2. The other 3 output paths are on the

slow path, which correctly implements the latest standard specified in RFC 5961 to defend

against off-path attacks. In short, they all require the seq to fall in the receive window,

and ack to fall into another window like shown in Fig. 3.2. Thus, their Npkt is roughly

232

win1
× 232

win2
.

For channel-close case, our tool outputs 1 path due to the effectiveness of our pruning

and it is a TP. This path resets the TCP connection in tcp validata incoming(), and

requires seq to be equal to rcv nxt. Thus, its Npkt is 232. Note this an update as specified

in RFC 5961 from the previous TCP implementation where a TCP RST is accepted as long

as the seq falls in the receive window. This change significantly increases the blind in-

window RST attacks.

Protocol state leakage. Both inject-payload and close-channel accept paths are pro-

tected by protocol state rcv nxt, so we first use this as the leakage source in our leak-

age path analysis. In our experiments, we use network statistics output in netstat,

snmp and sockstat in /proc/net/ as storage channel leakage sinks. To find

the variables that are output to these sinks for taint analysis, we perform static anal-

ysis in file net/ipv4/proc.c starting from proc create(), locate the proc file

function operation registration and find the target variables in the output function, e.g.,

53

1: If ((tcp_flag_word(th) & TCP_HP_HITS) == tp->pred_flags &&

2: TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&

3: !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt) {

...

4: }

Figure 3.5: Code snippet for conditions of entering TCP fast path.

netstat seq show() for netstat. With these sink variables, we first check taint

summary for the entry function, and find that these variables are tainted only by rcv nxt

through implicit flow. Then we use these tainted variables as leakage sinks in the leakage

path analysis.

The leakage results are summarized in Table 3.6. For rcv nxt our tool outputs 18

leakage candidates, and 4 of them are high-entropy TPs. 14 of them are low-entropy leak-

age, which are mostly pruned out by layered analysis. Note that since falling into fast

path requires seq equaling to rcv nxt, all fast path related leakage are filtered out au-

tomatically as invalid low-entropy leakage. Among the 4 TPs, one of them is reported by

previous work [251] by manual discovery. The other 3 are all new discovery, and one uses

the same high-entropy constraint in tcp send dupack() as the one reported, but has

a newly-discovered sink TCPDSACKOldSent in netstat. For the other 2, the attacker

packet also makes the code calling into tcp send dupack() but with different calling

context by deliberately failing the PAWS check, e.g., by using an old time stamp, before

the seq check (line 2 in Fig. 3.2).

After knowing rcv nxt, the attacker can successfully reset the connection and causing

DoS. However, to injection payload, the attacker still lacks the knowledge of snd nxt or

snd una to pass the ack check. We then run another leakage path analysis with these

two values together as leakage sources. Like rcv nxt, the sink variables are only tainted

by implicit flow. In this setting, we assume that the attacker already knows the correct

rcv nxt using the leaks discovered above. For leakage sinks, we use the same ones as

54

��������

������	�

���
	������

������

�����

Figure 3.6: Leakage of snd nxt through sink TCPChallengeACK.

those in the rcv nxt analysis.

Since at this time the exact rcv nxt is known, the attacker’s packet can exploit leak-

age vulnerabilities in more program paths including both fast path and slow path area. Our

tool outputs 66 leakage candidates for snd una, and 43 of them are low-entropy leakage

which are filtered during layered analysis. Among the 9 FPs, 3 cases are caused by re-

quiring packet length to be smaller than data offset field or having an incorrect checksum

value, but actually such packets are dropped in tcp v4 rcv() before entering our en-

try function tcp rcv established(). Other 4 FP cases requires a fast path protocol

state tcp header len to be greater than 4, but in the implementation it can only be 0

or 4. The last 2 cases are caused by conflicting constraints across procedures, which can

be solved by applying more advanced constraint solver such as a SMT solver [185], which

we leave as future improvement. The 13 TPs are all new discovery, and 8 are in fast path

while 5 are in slow path. All the 8 fast path ones use the comparison between snd nxt

and ack one line 3 in Fig. 3.5, and after this comparison, there are 8 different sinks in

tcp rcv established(), tcp send ack(), etc.

The 5 leaks in slow path both goes into tcp ack(), and the high-entropy constraint

they use is on line 1 and 2 in tcp ack() of Fig. 3.2. As shown in Fig. 3.6, probability of

reaching the return on line 3 is 231−win2
232

, which leaks around 1 bit of information under

the assumption that win2 is usually smaller than 220. In the code base, right before the

55

return on line 3 there is a tcp send challenge ack(), in which sink TCPChal-

lengeACK is triggered when the challenge ACKs that are already sent is under a thresh-

old set in /proc/sys/net/ipv4/tcp challenge ack limit, which is usually

around 100.

Validation. We setup a TCP connection between desktop computer A and B, and have

another attack computer using raw socket to send attack packets to B to validate these leaks.

Computer B is installed with Linux kernel 3.15.8 and added debug information along the

program path to validate whether the leakage path is triggered exactly as our tool output,

and at the same time monitor the corresponding leakage sinks in A’s proc file system. For

rcv nxt, we validate all 4 high-entropy leakage. For snd nxt/snd una, 7 out of the 13

cases are validated. The other 6 cases are relatively hard to trigger, for example, 5 of them

requires kernel configuration CONFIG NET DMA, which is only available for processors of

certain architecture, e.g., Intel Xscale I/O processors 32/33x.

3.7.3.2 RTP

Since the 3 RTP code bases flow the same network protocol and thus similar to each

other in most of the core logic, we cover their results all together in this section. RTP

usually doesn’t have the option to close the channel with an incoming packet, so our accept

path analysis are all inject-payload accept path analysis.

RTP-oRTP. The output for RTP-oRTP has 15 paths, among which 10 are TPs and 5 are

FPs. The 5 FPs are all caused by two channel variables having the same meaning, one

indicating whether ssrc is set, and another indicating whether the first packet is delivered.

The changing of two variables is usually correlated and thus they have equivalent values,

but our analysis treats them separately, resulting in FP paths with semantically-conflicting

constraints. Among the 10 TP cases, 3 requires guessing the correct 32-bit protocol state

ssrc value, thus Npkt is 232. However, another 3 TPs indicate that in its logic by default

after 50 packets with a new ssrc and consecutive sequence numbers, RTP-oRTP will

56

1: matched_ssrc = NULL;

2: for (i=0; i<n; i++) {

3: if (pkt->ssrc == ssrc) {

4 matched_ssrc = ssrc;

5: break;

6: }

7: }

8: if (matched_ssrc != NULL) {

9: ...

Figure 3.7: False positive causes for RTP-VLC accept path analysis.

change the ssrc to the new one, making the Npkt reducing to 51. The other 6 TPs are all

under very special channel conditions, for example Npkt can be as low as 1 if the attacker

precisely captures the moment when ssrc is not set yet.

RTP-PJSIP. For RTP-PJSIP, the output only has 1 path and it is a TP. In this path, unlike

RTP-oRTP, it changes its protocol state ssrc right away if it sees a new one, and relies

its robustness solely on the sequence number. According to its logic output by our tool,

2 packets with consecutive sequence numbers will trigger a channel restart, and the 3rd

packet’s payload will be accepted. Thus, Npkt for RTP-PJSIP is 3.

RTP-VLC. The output for RTP-VLC has 8 paths and 4 of them are TPs. The causes of

the 4 FPs are shown in Fig. 3.7. In these paths, it takes both the false branch of i<n on

line 2 and the true branch on line 8, which is actually not feasible. This is mainly because

we construct paths in a flow-sensitive framework and merge the paths from the break

on line 5 and i<n on line 2 when reaching line 8. This can be solved by path-sensitive

analysis which has higher precision but also much higher overhead. For the 4 TPs, 2 of

them requires the correct ssrc, thus their Npkt is 232. Like RTP-PJSIP, the other 2 TPs

change ssrc right away, and since RTP-VLC maintains sequence number state separately

for each ssrc, the Npkt is actually 1. However, changing ssrc in RTP-VLC is only when

the channel is configured to support more than one ssrc, and by default RTP-VLC only

supports one. Thus, in normal cases the Npkt is 232 for RTP-VLC.

57

RTP-VLC protocol state leakage. Among these 3 RTP code bases, only RTP-VLC is

hard to inject in default setting due to the protection from the protocol state ssrc. In the

taint summary of the entry function, 14 variables are tainted by ssrc, all through implicit

flows. To check the leakage possibility, we set all these 14 variables as leakage sinks in the

leakage path analysis but no high-entropy leak is found.

Validation. We build oRTP 0.24.1 and PJSIP in pjproject 2.4, establish audio communica-

tion between computer A and B, and read payload in B from application layer APIs. Since

proc file netstat only shows the local IP address and UDP port for the RTP channel,

the attacker computer sends attack RTP packets to B with correct destination IP address

and port but different source IP address and port from A’s. In the audio data we sent, we

include packet number so that we know which packet’s payload gets in to the upper layer.

We successfully validate that the payload of the 51-st packet for oRTP, and the 3rd packet

for PJSIP gets accepted. We also confirm that for VLC without correct ssrc the injection

cannot succeed.

3.7.3.3 SCTP-Kernel

Accept path analysis. Our tool outputs 5 paths for inject-payload accept path analysis,

and 4 are TPs. One SCTP packet can have multiple chunks, and the 1 FP case is because

it requires previous chunks from the same packet to have ready been accepted, which is

an implementation semantic information that is not known by our tool. One of the TPs

has no special channel condition dependence, and it requires (1) it has the correct 32-bit

protocol state my vtag, and (2) the sequence number tsn falls into a window win starting

from a protocol state base tsn, and by default this win is 4096. At the same time, tsn

also needs to be larger than the previously-received tsn, stored in a third protocol state,

cumulative tsn ack point. We denote the valid tsn range as rem win, which is

win excluding the parts before cumulative tsn ack point. Thus, the Npkt is 232 ×

232

rem win
. The other 3 TPs all depend on special channel conditions and their Npkt is not

58

smaller.

For close-channel case, our tool outputs 2 results and both are TPs. One path handles

error cause code in the incoming packet, and the other handles packets without error cause

code. In both cases, the packet needs to have correct my vtag or peer vtag, which are

both 32 bits. Considering the probability that my vtag equals peer vtag, the Npkt is

231.

Protocol state leakage. The accept paths are protected by my vtag, base tsn, and

cumulative tsn ack point, so we use them as leak sources. For sinks, we also

use storage channel like in TCP-Kernel, and for SCTP we use SNMP statistics in proc

file /proc/net/sctp/snmp. To get the variables in these sinks, we perform the same

static analysis described in §3.7.3.1.

We run the leakage path analysis and find no high-entropy leaks. From the analysis log

we find that all leakage paths start with my vtag check, and thus are low-entropy leaks.

One of them can be used to tell whether the attack packet has the correct my vtag by

looking at sink SctpInPktDiscards. This needs 232 packets in the worst case, but it can still

be helpful to lower the Npkt from 232 × 232

rem win
to 232 + 232

rem win
.

With the knowledge of my vtag, we still needs to have a tsn that can fall into the

window specified by base tsn and cumulative tsn ack point. We use them as

leak sources and find 3 leaks but all are low-entropy ones.

For the close-channel accept paths, the protocol states they rely on are my vtag and

peer vtag. In the taint summary, the sinks are also only tainted by implicit flows, but

our tool outputs no high-entropy leaks for both of the sources.

3.7.3.4 DCCP-Kernel

Accept path analysis. In DCCP, the checks for copying payload and resetting connection

are the same. In this analysis, our tool outputs 1 path and it is a TP. In this path, the

DCCP sequence number seqno needs to fall into a sequence window seqno win around

59

a protocol state dccps gsr as long as 48 bits, and the higher and lower bounds of this

window are another two protocol states dccps swh and dccps swl. Thus, the Npkt is

248

seqno win
. Note that the initial size of this seq win is only 100, making it impractical to

inject. In normal cases there should be another check for the DCCP acknowledge sequence

number ackno, but as shown in our analysis output, attacker can send a DATA type DCCP

message without acknowledge sequence number to avoid that check.

Protocol state leakage. We use all 3 protocol states as sources in this analysis. For sinks,

currently DCCP does not create a proc file to store global statistics yet, but it does have a

structure for SNMP statistics like TCP-Kernel and SCTP-Kernel, which has same leakage

potential if enabled in the future. Thus, we use these variables as leakage sinks. Our tool

outputs 5 leaks and 4 of them are TPs. The 1 FP path requires (1) the attack packet is a

SYNC or SYNCACK packet having the right ackno, (2) seqno is larger than dccps swl,

and (3) it fails the seqno win check. However, when (1) and (2) happen, dccps gsr is

updated with seqno and it won’t fail the seqno win check. In our analysis, we can know

that dccps gsr is updated, but cannot be sure that seqno can pass the seqno win check.

The 4 TPs all require seqno to fall into seqno win, and thus are all low-entropy leaks.

3.8 Limitation and Future Work

Possible FNs due to implementation simplification. We design and implement a high

precision data flow analysis with implicit flow tainting and pointer analysis to avoid FNs

as much as possible. However, there may still be cases causing FNs due to simplified

implementation. For example, as described in §3.5.1, we add an iteration limit of loops

to avoid adding recursive fields and this may lead to FN cases if the leakage sinks have

recursive fields.

Failure to identify semantically-conflicting and low-entropy constraints. As discussed

in §3.7.3, the majority of the FPs are caused by conflicting constraints that are tricky to

identify. In the future, we plan to use a SMT solver [185] commonly employed by symbolic

60

execution as tool improvement.

Limited scope of storage channel. As described in §3.6.3, our tool is designed with

the capability to cover a range of leakage channels such as storage channels, data timing

channels, and public events like sending packets. However, in our experiments we only use

storage channels in proc file system as leakage sinks, and may miss practical vulnerabilities

leaked through other channels. In the future, we plan to incorporate other sinks in the

leakage path analysis.

3.9 Summary

In this chapter, we design and implement an effective and scalable static program anal-

ysis tool, PacketGuardian to systematically analyze the security properties of network pro-

tocol implementations against off-path packet injection attacks. PacketGuardian uses a

context-, flow-, and field-sensitive taint analysis with pointer analysis to achieve high pre-

cision, and also targets attacker-controlled implicit information leaks. The solution signifi-

cantly eases the classic problem of false positives of implicit flow tracking while still yields

high detection accuracy of practical exploits. By applying our tool on 6 real network proto-

col implementations, we are able to discover new and realistic vulnerabilities confirmed by

proof-of-concept attacks for both Linux kernel TCP and 2 out of 3 RTP implementations.

61

CHAPTER IV

Discovery and Systematic Analysis of WPAD Name

Collision Attack

4.1 Introduction

Recently, Man in the Middle (MitM) attacks on web browsing have become easier than

they have ever been before — the attacker only needs to register one of certain domain

names, and web traffic of Internet users from all over the world can be automatically redi-

rected to the attacker’s MitM proxy. The underlying vulnerability comes from a problem

called “Name Collision” [245]. Name collisions occur when administrators configure their

internal systems to use names from local/internal namespaces that are also used in other

namespaces (such as the global Domain Name System, DNS), and a collision happens

when a query for a name is resolved in an unexpected namespace.

The MitM attack focused upon in this chapter is a name collision based attack that arises

from leakage of internal namespace Web Proxy Auto-Discovery (WPAD) queries. These

WPAD queries are designed to automatically configure proxies for end systems only from

within an administrative domain such as a corporate internal DNS namespace, but only in

two of 13 DNS root servers, roughly 20 million such queries are observed to be leaking to

the public DNS namespace every day. This has been a known problem for years but remains

understudied, mainly because these queries typically use undelegated TLDs as internal Top-

62

Level Domains (iTLDs) [194, 147, 84], and thus were not exploitable previously. However,

in the recently-launched New gTLD (generic Top-Level Domains) Program [146], many of

these popular iTLD strings have begun to be delegated and are open for public domain

name registration, allowing attackers to exploit these leaked WPAD queries by setting up

MitM proxies from anywhere on the Internet with only a domain name registration. Note

that this is not a limitation or weakness of new gTLDs per se, but instead a manifestation of

a name configuration problem leading to name collisions which we argue should be fully

mitigated.

To characterize the magnitude of this newly-exposed MitM threat, we perform the first

systematic study of the underlying problem causes and the vulnerability status in the wild.

First, we investigate the fundamental underlying cause of WPAD query leaks from inter-

nal networks. Using a local testbed and traffic analysis, we find that a major cause that

accounts for a significant proportion of the leakage traffic is actually a result of settings

on the end user devices. More specifically, we find that under common settings, devices

can mistakenly generate internal queries when used outside an internal network (e.g., used

at home). From this finding, we identify a set of highly-vulnerable Autonomous Systems

(ASes) with both high volume of leaked WPAD queries and high diversity of vulnerable

query domain names, which is found to be dominated by home access network ASes.

Second, for these highly-vulnerable ASes, we perform a systematic assessment of the

vulnerability status in the wild. Leveraging the insights that most domain names in leaked

WPAD queries are transient and low-volume, we propose that a more useful characteriza-

tion of attack surface should focus on domain names that persistently expose many vic-

tims. We call such domain names highly-vulnerable domains (HVDs), because an adver-

sary could gain more value from operating them. From this definition, we then design an

attack surface quantification method which systematically balances the trade-off between

query persistence and high query volume. This allows us to focus on the most exploitable

domain names. For example, for the delegated new gTLD .network, only 4% of the

63

domain names in the leaked WPAD queries match the HVD definition.

By applying our attack surface quantification method to the victim ASes, we find that

almost all of the leaked queries are for new gTLD domain names defined to have high vul-

nerability, which indirectly validates our attack surface definition. If these domain names

are registered by an attacker, she becomes authoritative to answer all the vulnerable queries,

and actual exploits can start at any time. Fortunately, as of September 2015, the registration

of these HVDs just started, and our registration status analysis (detailed in §4.6.2) does not

find statistical evidence showing that these domains are being maliciously targeted for reg-

istration. Nevertheless, we did find seemingly naı̈ve attack registration patterns in the wild,

showing potential attack attempts. These results illustrate real MitM threat for Internet

users in the wild, and provide a strong and urgent message to deploy proactive protection.

To effectively defend against this attack, remediation strategies can be deployed at the

new gTLD registry level to scrutinize the registration of HVDs, and also at the AS level

and end user level to prevent the vulnerable queries from being leaked to the public DNS

namespace. Based on the insights from the problem cause and vulnerability characteriza-

tion, we discuss feasible defense methods for each of these three levels, and use empirical

data analysis to estimate and compare their effectiveness and deployment difficulties.

We summarize the key contributions as follows:

• Targeting the new MitM attack vector exposed by name collisions, we perform

a characterization of the problem and its severity, and an in-depth analysis on the funda-

mental internal namespace WPAD query leakage problem. From the analysis, we are able

to uncover the major leak sources and the underlying device-side causes using both local

testbed and DNS root server traffic analysis.

• We present a candidate definition and quantification method for the attack surface

of this MitM threat, and use it to systematically study the vulnerability status in the wild.

With this, we are able to find a set of highly-vulnerable domains (HVDs) which persistently

expose many victims in the wild. We find that over 97% of the leaked WPAD queries are

64

for these HVDs, and at this point, the HVDs for 10% of the new gTLDs have already been

fully registered. These results show a real threat for Internet users in the wild.

• To prevent users from being exploited by this newly-exposed attack vector, based

on the insights in our cause analysis and vulnerability quantification, we discuss a set of

remediation strategies at the new gTLD registry, AS, and end user levels, and use empirical

data analysis to evaluate their effectiveness and deployment challenges.

4.2 The WPAD Service Discovery Protocol

WPAD (Web Proxy Auto-Discovery) is a protocol designed for browsers or operating

systems (OSes) to automatically locate a web proxy configuration file. It is primarily used

in internal networks where clients are restricted from communicating to the public HTTP

network, e.g., in some corporate networks. The proxy configuration file is by default named

wpad.dat, which is written in proxy auto-config (PAC) format, and specifies the proxy

IP and port using code PROXY 〈IP〉:〈port〉.

To find the proxy configuration file, WPAD supports two methods: DHCP WPAD and

DNS WPAD. In the implementation, usually DHCP WPAD is attempted first by issuing a

DHCPINFORM message to the local DHCP server. If the local infrastructure supports this

proxy configuration, the PAC file location is included in option 252 in the response.

If no such configuration is found in DHCP, DNS WPAD is performed. Without an

explicit configuration like that in DHCP WPAD, DNS WPAD infers the location of the

proxy file based on the device domain name. For example, in a company’s internal network,

a corporate device can be configured with internal domain company.ntld in the OS.

In DNS WPAD proxy discovery, the proxy file location is inferred from this name and

fetched using HTTP request http://wpad.company.ntld/wpad.dat, involving

a DNS request for wpad.company.ntld. To serve this proxy discovery, a company

can simply set up a web server with wpad.dat under its root directory, and point a DNS

record for wpad.company.ntld in its local DNS zone file to this server. In this process,

65

Supported OSes Verified versions Enabled

and browsers for DNS WPAD by default

Internet Explorer 6–11 Yes

Browser Chrome 43 No

Firefox 12, 33 No

Safari 8 No

Windows OS XP, Vista, 7, 8, 8.1, 10 Yes

OS Ubuntu 12.04, 14.04 No

Mac OS X 10.10 No

Table 4.1: Popular OSes and browsers that support WPAD.

all the WPAD DNS queries should be served only by the local DNS resolvers, but as we

show later, millions of such queries are leaked to the public DNS namespace every day,

causing the name collision problem.

Browser and OS support. WPAD service discovery can be supported in both OS and

browser levels. The configuration is typically named “Automatically detect setting” in the

LAN proxy setting [145]. Table 4.1 summarizes the popular browsers and OSes supporting

WPAD, along with their versions which we have verified using a local testbed. As shown,

DNS WPAD is supported by all popular browsers and OSes, and some of them even use

it by default, e.g., Windows OSes and Internet Explorer (IE) browsers. Note that for the

browsers and OSes that do not enable it by default, the local network administrator, e.g.,

the IT department in a company, may enable it during the device setup process so that

end devices can use its convenient proxy discovery feature. For the browsers tested in our

experiments, the discovery process starts right after the browser is launched. With a valid

PAC file fetched, all subsequent web traffic is redirected to the configured proxy.

4.3 Threat Model and Attack Surface

In this section, we describe the threat model and attack surface definition of the newly-

exposed MitM attack vector, which we call WPAD name collision attack.

66

DNS root

server

After ntld delegation

and company.ntld

registered by attacker

Victim device hardcoded

w/ vulnerable domain

company.ntld

Vulnerable AS

1

Victim device hardcoded

w/ vulnerable domain

company.ntld

Web

Authoritative DNS

server operated by

attacker

Attacker web server

& MitM proxy

1

2

3

Vulnerable AS

Figure 4.1: Illustration of the WPAD name collision attack. If an internal namespace TLD

is delegated as a new gTLD, internal namespace WPAD query leaks can be easily exploited

using MitM attack from anywhere on the Internet.

4.3.1 Threat Model

As introduced in the previous section, the WPAD protocol is designed to only con-

figure proxies for end systems from within an administrative domain such as a corporate

internal DNS namespace. Ideally, for a device belonging to a corporate domain, it performs

discovery to configure a WPAD proxy only inside that domain. While these queries may

have always been vulnerable to DNS spoofing attacks, the adversaries would need to be

67

on-path or be able to spoof DNS responses in a narrow attack window. The intended local

scope of queries, the on-path requirement, and the narrow attack window have kept WPAD

deceptively safe.

However, because internal queries leak to the DNS root servers and internal namespaces

now collide with new gTLD domains, which are both happening in large scale today as

characterized later in §4.4.1, the inherent security weaknesses in WPAD are significantly

easier to exploit. Fig. 4.1 illustrates the WPAD name collision attack, in which a malicious

domain registrant can exploit name collisions of leaked WPAD queries, and launch MitM

attacks from anywhere on the Internet. In this attack, victim devices are assumed to be

configured to use DNS WPAD for automatic proxy discovery by issuing WPAD queries in

an internal DNS namespace, e.g., company.ntld. Here, .ntld is assumed to be used

as iTLD but also delegated in the public DNS namespace. Under some common settings

(uncovered in §4.4), such queries are mistakenly leaked out. This allows an attacker to

create name collisions for these queries by registering the domain name company.ntld

in new gTLD .ntld. Thus, the leaked WPAD queries from affected systems, which may

be anywhere on the Internet are sent to the attacker’s authoritative name server and get

resolved to fetch the attacker’s proxy configuration file. This causes all the subsequent web

traffic in the browser or traffic from the entire OS to be redirected to the proxy controlled

by the attacker. The victim user may not even recognize the attack, since the WPAD proxy

discovery is fully automated at the browser launch time, and some OSes and browsers

enable it by default without explicit consent from users (shown in Table 4.1). The attacker

can leverage this MitM position to not only eavesdrop sensitive data such as confidential

documents and user credentials, but also manipulate the traffic to inject malicious code,

launch phishing attacks, or other malicious impacts to vulnerable systems.

In this attack, the adversaries only need to register new gTLD domains to direct po-

tentially vulnerable WPAD queries to them. This means that if a potentially colliding

internal domain is registered, the attacker can detect and respond authoritatively to WPAD

68

queries without the need of spoofing. This frees the on-path requirement and elimi-

nates the narrow attack window drawback of previous WPAD attacks. More importantly,

the authoritative nature of the malicious responses makes this attack exploitable despite

DNSSEC [157, 156].

This attack is also very stealthy, since once the domain name is registered, due to pri-

vacy protection it is difficult for both new gTLD registries and third parties to examine

its subdomains for attack attempts. Note that we do not assume that the attacker is fully

aware of the set of the vulnerable domains (i.e., domains with leaked queries), and thus

deliberately exploits them. The attackers can be sophisticated registrants who know some

vulnerable domains based on their own analysis, e.g., by sniffing local network queries or

accessing DNS traffic collected by organizations such as DNS-OARC [120]. Meanwhile,

the registrants can also be innocent at the domain registration time, but realize and start

exploitation after observing a large number of misdirected WPAD queries. Another possi-

bility is that the registrant is completely honest but the DNS servers are compromised by

an attacker to exploit these vulnerable queries.

4.3.2 Attack Surface

In order to characterize the magnitude of this newly-exposed MitM threat, we propose

a candidate methodology to quantify the WPAD attack surface exposed by registrations of

new domain names under new gTLDs. With that, we describe a measure of how exposed

(or open) the total attack surface is based on registration status.

Our threat model focuses on the fact that MitM attacks can be launched against any

client who issues a WPAD query to a domain name that is controlled by an attacker. Thus,

all domain names with leaked queries to the public namespace are vulnerable. However, we

find that most of the domains in the leaked query traffic appears infrequently with low query

volume, implying that they may not be easily exploited in practice. For example, we find

that for the delegated new gTLD .network, 42.3% of the domains with leaked queries

69

(e.g., company.ntld in Fig. 4.1) to two of 13 DNS root servers appeared in less than

14 days within a one-year period. Furthermore, less than 4% of these domains account

for more than 98% of all leaked WPAD traffic observed at the two DNS root servers.

Thus, using all the domains with leaked queries as the attack surface is an overestimate

of the actual vulnerability status in practice. Therefore, we define a notion of “highly-

vulnerable domains” based on a more accurate and useful attack surface characterization

method described as follows.

Attack surface: highly-vulnerable domains (HVDs). In this work, we define highly-

vulnerable domains for a new gTLD to be those WPAD query domains persistently expos-

ing a large number of victims. We denote these domains as the attack surface for this new

gTLD. These attack surface domains or HVDs need to have two properties: (1) high persis-

tence, meaning that their queries are leaked to the public namespace frequently over a long

time period, e.g., every day or days with regular periodicity, and (2) high query volume,

indicating that once registered, many victims can be continuously exploited. From this def-

inition, these domains are quantifiably attractive targets for adversaries, and are likely to

keep exposing such vulnerability after the delegation of their TLD strings.

This methodology defines a measurably stable set of highly-vulnerable domain names.

To quantify the attack surface based on this definition, we first concretely define the level of

persistence using period length p and persistence duration n. We then balance the trade-off

between persistence and high query volume by systematically exploring p and n, detailed

later in §4.5.1. This quantification method allows us to estimate the size and composition

of domains that, when registered, constitute the bulk of the WPAD name collision vulner-

abilities.

4.3.3 Dataset

We describe the datasets used in our study as follows.

New gTLD list. We obtain the new gTLD list along with their delegation dates directly

70

from ICANN website [151]. In this work, we consider the new gTLDs delegated before

2015/08/25, consisting of 738 new gTLDs in total.

Root NXD WPAD. Due to the usage of non-delegated iTLDs, the leaked internal

namespace queries are captured and replied with NXD by the DNS root servers. Thus,

our vulnerability characterization and attack quantification mainly rely on NXD traffic col-

lected at 2 of the 13 root servers — A root and J root, both managed by Verisign. Both root

servers utilize IP anycasted services from a globally diverse set of locations [101], which

should reduce any significant geographical biases in the data collection. The leaked queries

become unobservable in this dataset after the delegation of their TLD strings. Thus, in the

analysis of each new gTLD, we only use the data collected before its delegation date.

This dataset was collected internally by Verisign for around 2 years, spanning from

September 2013 to July 2015. Since the first new gTLD delegation in the New gTLD

Program occurred in October 2013, this dataset covers leaked query traffic for all the new

gTLDs delegated so far. To study leaked WPAD queries, we extract the query traffic with

query names in the form of wpad.〈domain name〉. Considering that single label do-

mains, e.g., wpad.ntld are more easily defended at the new gTLD registries, in this

dataset we only include WPAD queries with at least 2 labels in 〈domain name〉, e.g.,

wpad.sld.ntld, wpad.3ld.sld.ntld, etc.

New gTLD zone files and WHOIS data. Once a domain is registered, it appears in the

corresponding new gTLD’s zone files. Meanwhile, mapping from registered domains to the

domain registrants are included in the new gTLD’s WHOIS data. To study the registration

status and registration pattern of HVDs in our attack surface, we use new gTLDs’ zone

files from ICANN Centralized Zone Data Service (CZDS) [149] and WHOIS data from

BestWhois service [20], which are both pulled daily from 2014/02 to 2015/09.

71

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

www
10 _ldap

wpad
b lb db r dr isatap

venueproxy

_kerberos

 0

 1

 2

 3

 4

 5

A
v
e

ra
g

e
 d

a
ily

 q
u

e
ry

 #

A
v
e

ra
g

e
 d

a
ily

 q
u

e
ry

 %

Popular first label in NXD queries

Figure 4.2: The most popular first labels in root NXD traffic.

4.4 WPAD Query Leakage Characterization

The WPAD name collision attack stems from the unintentional leakage of internal

WPAD DNS queries into the public DNS namespace. This problem emerged soon after

the popularization of the WPAD protocol [245, 265], however remains understudied since

it was not easily exploitable until the expansion of the new gTLDs.

To systematically characterize this newly-exposed threat and help find effective solu-

tions, we need to first have an in-depth understanding of this fundamental leakage problem.

In this section, we first characterize its severity by quantitative measurements of leaked

WPAD query traffic seen in the DNS root servers, and then elucidate the underlying causes

of these leaks using query traffic analysis and controlled local testbed experiments.

4.4.1 Quantification of Leaked Queries

Fig. 4.2 shows the popular first labels ranked by their average daily query numbers

in NXD traffic at DNS root server A and J from January to July in 2015. In DNS-based

protocols, usually the protocol name is the first label. Thus, in the figure many labels

belong to popular protocols such as WPAD, ISATAP, etc. The first label query number

distribution exhibits a very long tail. As shown, WPAD protocol is ranked top 4 with

more than 20 million leaked queries every day, showing high severity in terms of the query

72

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

.global

.ads
.group

.network

.dev
.office

.prod
.hsbc

.win
.world

.one
.sap

.site

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

A
v
e

ra
g

e
 d

a
ily

 q
u

e
ry

 #

A
v
e

ra
g

e
 d

a
ily

 q
u

e
ry

 %

Popular delegated new gTLDs in NXD WPAD queries

Figure 4.3: The most popular delegated new gTLDs observed in root NXD WPAD queries.

leakage problem. Using the number of distinct IP address and WPAD query domain pairs

in our 2-year root NXD WPAD dataset, these queries are estimated to have at least 6.6

million potential victim users in the wild.

For these leaked WPAD queries to be exploitable in our attack, their TLD domains need

to be delegated so that the attacker can register the SLD and create name collisions. We

study the 738 new gTLDs that have already been delegated before 2015/08/25, and find

that 65.7% (485) of them exhibited leaked WPAD queries to the 2 DNS root servers in

our dataset before their delegation, revealing a significant attack surface. In §4.5, we use

a more systematic approach to quantify the attack surface for these delegated new gTLDs

based on the definition in §4.3.2.

To understand the vulnerability exposed by the new gTLDs that have already been

delegated today, we measure the daily query percentage of these delegated new gTLD

strings in the leaked queries using 1 month of root NXD WPAD data immediately prior to

the delegation of the first new gTLD in the New gTLD Program on 2013/10/23. Fig. 4.3

shows the daily query volume and the overall query percentage in root NXD WPAD dataset

for delegated new gTLD strings with leaked queries. As shown, even though the query

percentage is not high, some top ones such as .global already have over 30,000 leaked

WPAD queries every day. In total, 2.3% of the daily leaked WPAD queries, which are over

73

 0

 10

 20

 30

 40

 50

 60

 70

 80

US AU NL CN RU PL CA GB TR FR DE BR
W

P
A

D
 q

u
e

ry
 l
e

a
k
 %

Country code ranked by WPAD query leak perc.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200

Figure 4.4: Countries ranked by WPAD query leak percentage. The figure inset shows the

complete probability distribution, illustrating the long tail.

238,000 queries per day on average from only 2 DNS root servers, belong to the delegated

new gTLD set. According to our threat model, these queries are already exploitable today.

Note that these are query volumes from just 2 of the 13 DNS root servers. Furthermore,

the number will only increase as more new gTLD strings continue to be delegated (as

of 2016/03/20, 27.2% (201) more new gTLDs have been delegated since this study was

conducted).

4.4.2 Leak Cause Analysis

4.4.2.1 Major Leak Source ASes

To identify the cause, we start by measuring where the leaks originate. We first break

down the leaked WPAD traffic into country level according to their query IP addresses.

Fig. 4.4 shows the country codes ranked by their average daily leak percentage in our root

NXD WPAD dataset from January to July 2015. As shown, U.S. (United States) dominates

the leaked traffic with nearly 70% worldwide, and its share is over 6× more than that of

the country ranked the second. In the following analysis, our focus is mainly on the leaked

query traffic from the U.S.

Within the U.S., we further characterize the query traffic according to ASes. Fig. 4.5

74

 0

 5

 10

 15

 20

 25

 30

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10A11A12
W

P
A

D
 q

u
e

ry
 l
e

a
k
 %

 i
n

 U
S

AS ranked by WPAD query leak perc.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 200
 400

 600
 800

 1000

 1200

 1400

 1600

 1800

 2000

Figure 4.5: ASes ranked by WPAD query leak percentage in US.

shows the ASes with top average daily WPAD query leaks from January to July, 2015. As

shown, the overall distribution exhibits a long tail, in which nearly 2000 ASes have leaked

queries, but the majority of these queries come from only a few top ASes. The top 12

ASes account for 85% of all the leaks, and their names are listed in Table 4.2. In the table,

we denote these ASes A1 to A12 to obfuscate the actual AS in our data. As shown, 10

out of the 12 ASes are home access network ASes. The remaining two ASes both operate

open (publicly accessible) DNS resolvers, and we find that the queries come predominantly

from source IP addresses within the IP address ranges listed as open DNS resolver servers

on their websites. Thus, both ASes are associated with open resolver usage, which is also

commonly configured by home access network users. These results suggest the major cause

of WPAD query leaks is user behavior at home instead of in corporate networks.

4.4.2.2 Leak Domain Suffixes

To investigate why WPAD queries are leaked from home, we closely examine the do-

mains of leaked WPAD queries in these home access network ASes. Surprisingly, instead

of being dominated by a few popular home device domain names as we expected, we found

that the leaked queries have on average more than 10,000 different domain suffixes in these

12 ASes. For example, home access network AS A1 originated WPAD queries with more

75

AS code name Home access network related

A1 Yes

A2 Yes

A3 Yes

A4 Likely

A5 Yes

A6 Yes

A7 Likely

A8 Yes

A9 Yes

A10 Yes

A11 Yes

A12 Yes

Table 4.2: AS code names (used in Fig. 4.5 and Fig. 4.6) of the top 12 WPAD query leak

ASes in the U.S., accounting for 85% of total leak queries. We anonymize the AS names

for privacy consideration.

Domain suffix Query Home network Corporate network

string % related related

〈defense contractor〉 0.28 No Unclear

.master.

corp.local. 0.26 No Yes

〈marketing〉.local. 0.22 No Yes

root.local. 0.21 Unclear Unclear

〈manufacture〉.inc. 0.15 No Yes

〈town name〉.local. 0.14 No Yes

prod.dca. 0.13 No Yes

〈consulting〉.local. 0.13 No Yes

us.local. 0.13 Unclear Unclear

〈real estate〉.local. 0.12 No Yes

〈computer〉.lan. 0.11 No Yes

〈bank〉.ubc. 0.11 No Yes

datacenters.ww. 0.11 No Yes

〈marketing〉.intraxa. 0.10 No Yes

root.corp. 0.09 No Yes

Table 4.3: Top domain suffixes of the leaked WPAD queries in home access network AS

A1. For privacy consideration, we anonymize some company or institution names with

their business types in brackets.

than 70,000 different domain suffixes, with the most popular one accounting only for 0.28%

of all leaked queries. Moreover, we manually classify the top domain suffixes and find that

they are almost all corporate internal network suffixes instead of home device domains.

Table 4.3 lists the top 15 leaked query domain suffixes from A1. As before, we obfuscate

the details of the domain names for discretion. As shown, none are domains for home

76

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

A4 A1 A7 A13 A2 A3 A6 A5 A10A12 A8
Q

u
e

ry
 s

u
ff

ix
 e

n
tr

o
p

y

AS ranked by entropy

 0

 2

 4

 6

 8

 10

 12

 0 200
 400

 600
 800

 1000

 1200

 1400

 1600

 1800

 2000

Figure 4.6: ASes ranked by their domain suffix entropy scores. Home access networks with

top leak query volume (Table 4.2) are also high-entropy ASes. A13 is the only exception

that did not appear in the top 12 WPAD query leak ASes.

devices such as routers. Based on the labels, e.g., “corp”, “inc”, 12 of them are related to

corporate internal networks that are unlikely to be hosted in home networks. This suggests

that a potential cause of WPAD query leaks can be attributed to individuals using corporate

devices on their home networks.

To further validate this cause, we measure the average daily domain query entropy of

each leak source AS. The intuition is that home access networks with end-user machines

using different internal network domain suffixes should have higher entropy due to the

suffix diversity. In this analysis, we measure the daily query domain suffix entropy using

equation entropy(ASi) = −
∑

suf∈S psuf ln psuf , where S is the set of distinct 2-level

domain suffixes (e.g., company.ntld in Fig. 4.1) appearing in AS ASi in a day, and

psuf is the query percentage of 2-level domain suffix suf ∈ S.

Fig. 4.6 shows the leak source ASes ranked by their average daily domain suffix entropy

scores from January to July, 2015. As shown, the home access network ASes with top leak

query volume are also high-entropy ASes. Moreover, the top 12 high leak volume ASes

are all ranked top 15 in entropy scores out of over 2000 ASes in total, which supports

our hypothesis. Thus, the major cause of the WPAD leaks is very likely using devices

configured with internal domain names outside of internal networks, e.g., using corporate

77

laptops at home.

4.4.2.3 Device-side Causes

From this cause, the major problem is on the device side: why does a corporate device

still issue corporate internal WPAD queries when the device is actually not in the corporate

network? In fact, with the support of DHCP, a device should be able to automatically

update domain suffixes when the network changes. To find out the causes, we set up a local

testbed to perform controlled experiments.

Experiment setup. We use VirtualBox to launch a virtual machine running different

testing OSes on a host machine using NAT (Network Address Translation) configuration.

In our experiments, we choose Mac OS X, Ubuntu 12.04, Windows XP, Vista, 7, 8, 8.1,

and 10 as testing OSes.

The host machine can be connected to 3 different network environments. Two of them

have 2 different domain suffixes configured in DHCP, which are automatically propagated

to the host. The third environment does not have a domain suffix, which is created using

the tethering feature of a smartphone on a cellular network. In our experiment, we switch

the network of the host machine among the 3 environments to simulate network condition

changes on the testing OSes, e.g., from corporate to home network.

Results. As summarized in Table 4.4, we find several common OS settings under which

internal query leaks can happen even with automatic domain configuration from DHCP.

The first case is setting the domain of a computer, which can be found in the control panel

of Windows OSes. This configuration is recommended for businesses and schools, since

it can remotely manage laptops they provide to their employees and students with their

domain controller over VPN or Internet connection [148]. However, we find that once this

is set, the OS keeps this domain name regardless of the DHCP domain configuration, and

thus still issues internal WPAD queries even after the network has already changed.

The second case is about domain search list configuration, which can be accessed in the

78

OS configuration Affected OSes

Set Windows PC domain Windows XP/Vista/7/8/8.1/10

Hardcode domain search list Windows XP/Vista/7/8/8.1/10,

Mac OS X, Ubuntu 12.04

Change from a network with Windows Vista

domain to a network without domain

Table 4.4: Common OS configurations that can cause a device to mistakenly issue internal

queries when the device is used outside internal network.

network setting panels of all OSes we tested. When a queried name is not considered fully-

qualified [239], e.g., a dotless single label like wpad, the OS appends the domains in this

search list one by one until obtaining a valid response. This search list can enable the OS

to support both home network and corporate network by including both of their network

domain suffixes. But if the corporate network domain suffixes are listed first, internal

queries are tried first and thus leaked when outside the internal network. This cause has

been discussed before in the web browsing context [186]; in contrast, in our experiment we

study it for the WPAD proxy discovery process.

The third case is specific to Windows Vista, where we find that the domain is not unset

when changing from a network with a configured domain to a network without a configured

domain. This is likely a specific implementation flaw in Windows Vista, as all other OSes

quickly change the domain setting to an empty string under the same condition. Due to this

problem, corporate computers with Windows Vista leak internal queries when connected

to a network without a configured domain, which can happen both at home and at public

networks such as a café.

These results show that there exist common configurations in popular OSes that can

mistakenly issue internal WPAD queries when the device is used outside corporate net-

works, causing internal query leaks. Note that these experiments are not intended to be

exhaustive in finding all possible device-side causes, which is a rather difficult task. In fact,

these identified causes might just be the tip of the iceberg, and merely patching them may

only fix a small portion of the problem.

79

4.4.3 Result Summary and Highly-vulnerable ASes

Concluding from the characterization results above, we find that millions of vulnerable

queries are leaked from internal networks every day, and the cause for the majority of the

leaks is on the device side. Under common OS configurations, devices with popular OSes

mistakenly keep internal domains even outside internal networks, and thus issue internal

namespace WPAD queries. Once these queries are issued outside an internal network, the

DNS resolvers have no idea where the local name servers are for these internal domains.

Thus, they end up querying the DNS servers in the public namespace.

From our analysis above, we are also able to find 10 ASes with both highest query

leak volume and query domain suffix entropy score in the U.S. as shown in Fig. 4.5 and

Fig. 4.6. These ASes account for 81.2% of total WPAD query leaks in the U.S., and at the

same time expose the largest variety of different victims. Thus, we consider them as the

most vulnerable leak sources in our study. In the following sections, we will focus on these

10 ASes, especially the one with highest query leak volume, A1, to perform systematic

assessment of the vulnerability status in the wild.

4.5 Attack Surface Quantification

Shown in the previous section, a large number of vulnerable WPAD queries are found

in the public DNS namespace, many of which are already exploitable today. In this section

we propose a candidate attack surface quantification method derived from the definition

in §4.3.2, and evaluate its effectiveness.

4.5.1 Quantification Method

As defined in §4.3.2, the attack surface for a new gTLD is highly-vulnerable SLDs

with two properties: (1) high persistence, and (2) high query volume. Because “high”

query volume is a relative measure, we use query ratio, qr, as the metric for the high query

80

volume property. For an SLD set S under a new gTLD ntld, we represent query ratio as

qrntld(S) =
∑

sld∈S Qsld.ntld

Qntld
, where Qsld.ntld and Qntld are the number of leaked queries with

domain sld.ntld, and with new gTLD ntld respectively.

To find highly-vulnerable domains, our method is to first identify domains with high

persistence. This is because a domain can be exploited as long as it is queried again for

WPAD proxy discovery after domain registration. To quantify the level of persistence for

a domain sldi.ntld, we use period length p and persistence duration n to identify domains

with leaked WPAD queries to the DNS root server in every p-day period for at least n

days until the delegation of ntld. High persistence is reflected by a small p and large n,

e.g., the domain has leaked queries every day for at least 1 year before the delegation of

ntld. We use this as evidence indicating that the leakage may likely occur with some degree

of frequency even after the delegation because of high persistence.

For a new gTLD ntld, given a certain p and n, we can find a set of SLDs under ntld,

Sp,n, that meet this level of persistence in root WPAD NXD dataset, with a corresponding

average query ratio value qrntld(S
p,n) =

∑D
i=1

qri
ntld

(Sp,n)

D
. Here, D = ⌊n

p
⌋ is the number of

p-day periods during which WPAD query leaks with domains in Sp,n are observed, which

we call persistence period. In this equation, qrintld(S
p,n) is the query ratio for the i-th

period.

To meet the high query ratio property, we need to find the set Sp,n with the highest

qrntld(S
p,n) under a satisfiable persistence level defined by p and n. This is non-trivial as

there are trade-offs between the choices of p, n and the query ratio value. For the period

length, the smaller, the more persistent, but with a small p we may lose high query ratio

domains with longer appearing periods. And for the persistence duration, the larger, the

more persistent, but with a large n we may lose some recent high query ratio domains.

Fig. 4.7 and Fig. 4.8 show examples of these trade-offs using 6 delegated new gTLD

strings with the highest leaked query percentage (according to Fig. 4.3). As shown, when

p increases, the increase of query ratio slows down, and when n increases, the decrease of

81

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180A
tt

a
c
k
 s

u
rf

a
c
e

 q
u

e
ry

 r
a

ti
o

 (
%

)

Period length p (days)

.global
.ads

.group
.network

.dev
.office

Figure 4.7: Relationship of attack surface query ratio and period length p.

query ratio starts to drop more sharply. Thus, to balance the trade off, for a period length

p, we stop increasing it to avoid sacrificing the persistence level, once the increase rate of

qr reaches a limit, thrp, indicating that we have already included enough high query ratio

domains. For the persistence duration n, we also set such a limit, thrn, and stop increasing

persistence level once the decrease rate of qr exceeds this limit, indicating more sacrifice

in the high query ratio property.

Algorithm 1 shows the pseudocode of our quantification method. For p, our method

first tries p = 1, and then tries multiples of 7 days considering the weekly pattern of DNS

queries, i.e., p = 7(j − 1) where j = 2, 3, This process stops when △qrntld(S
p,n) is

less than thrp, or ⌊n
p
⌋ is less than 2, which reaches the point of no periodicity. For n, our

method tries multiples of 91 days, i.e., N = 91i where i = 1, 2, 3, ..., until △qrntld(S
p,n)

is larger than thresn, or the n is so large that it exhausts our 2-year dataset. We choose 91

days because it is roughly 3 months, which is considered the least persistence duration in

this work to avoid short-term domain query phenomena.

4.5.2 Evaluation

We implemented our attack surface quantification method, and applied to the 10 highly-

vulnerable ASes using the root NXD WPAD dataset. In this section we use A1 as an exam-

ple to show our results, because it was the top AS in both query leak volume and domain

suffix entropy score, and the findings below also apply to the other 9 highly-vulnerable

82

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500A
tt

a
c
k
 s

u
rf

a
c
e

 q
u

e
ry

 r
a

ti
o

 (
%

)

Persistence duration n (days)

.global
.ads

.group
.network

.dev
.office

Figure 4.8: Relationship of attack surface query ratio and persistence duration n. Since the

6 new gTLDs have different delegation dates, the data range for the curves are different.

ASes.

In total, A1 presented queries in 255 out of the 738 new gTLDs delegated as of

2015/08/25. Among them, 19 new gTLDs only have leaked query data for 1 day, which

are not enough to conclude their attack surface according to our definition of persistence.

For the remaining 236 new gTLDs, our method is able to find attack surface domains for

204 (86.4%) of them, which are the ones accounting for 99.99% of total new gTLD WPAD

query leaks in this AS.

Fig. 4.9 shows CDF of attack surface query ratio qrntld, for the 204 new gTLDs in

TLD percentage and leaked WPAD query traffic percentage. As shown, for 185 (90.7%)

of them, the attack surface query ratio qr output by our method are over 92.1%. These 185

new gTLDs account for 98.4% of total new gTLD WPAD query leaks in A1, showing that

we are able to find domains meeting high query ratio property for new gTLDs that expose

most vulnerabilities in a victim AS.

We also evaluate how well the attack surface output by our method can meet the high

persistence property. As shown in Fig. 4.10, for 148 (72.5%) out of the 204 new gTLDs,

which account for 98.8% of total new gTLD WPAD query leaks in this AS, their attack

surface domains have periodical appearance for more than 4 periods (D >= 4). Thus,

our method is also able to find domains meeting high persistence property for new gTLDs

exposing most vulnerabilities.

83

Algorithm 1 Attack surface quantification method

Require: Qntld (the set of daily leaked WPAD query domains for new gTLD ntld in a

victim AS), thrp, thrn
Ensure: Attack surface domain set S for new gTLD ntld

1: ni = 91i, where i = 1, 2, 3, ...
2: p1 = 1
3: pj = 7(j − 1), where j = 2, 3, 4, ...
4: for i = 1.2, 3, ... do

5: for j = 1, 2, 3, ... do

6: Find domain set Spj ,ni from Qntld

7: dPqr = qrntld(S
pj ,ni)− qrntld(S

pj−1,ni)
8: if dPqr 6 thrp or ⌊ ni

pj+1
⌋ < 2 then

9: break

10: end if

11: end for

12: qi = qrntld(S
pj ,ni)

13: dNqr = qi−1 − qi
14: if dNqr > thrn or ni+1 > |Qntld| then

15: break

16: end if

17: end forreturn Spj ,ni

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
D

F
 (

%
)

Attack surface query ratio

TLD %
TLD WPAD query %

Figure 4.9: CDF of attack surface query ratio in TLD percentage and TLD leaked WPAD

query traffic percentage.

4.6 Attack Surface and Exploit Status Characterization

With attack surface successfully computed, in this section we characterize their proper-

ties in the victim ASes, and also study their registration and exploit status in the wild.

84

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Persistence period # (n/p)

TLD %
TLD WPAD query %

Figure 4.10: CDF of attack surface period number in TLD percentage and TLD leaked

WPAD query traffic percentage.

AS code Attack surface domain characterization

name Domain Domain Distinct # of TLDs have Distinct # of SLD strings

query % TLD # only 1 SLD SLD # unique to 1 TLD

A1 1185 97.4 204 109 (53.4%) 1122 1080 (96.3%)

A2 486 97.0 122 75 (61.5%) 463 447 (96.5%)

A3 747 97.7 154 91 (59.1%) 714 694 (91.2%)

A4 3621 96.2 331 130 (39.3%) 3324 3145 (94.6%)

A5 704 96.1 146 80 (54.8%) 673 653 (97.0%)

A6 701 97.2 144 75 (52.1%) 668 646 (96.7%)

A7 1751 95.7 230 117 (50.9%) 1633 1566 (95.9%)

A8 457 97.6 113 74 (65.1%) 439 426 (97.0%)

A10 254 96.8 73 42 (57.5%) 235 224 (95.3%)

A12 255 95.5 70 44 (62.9%) 239 227 (95.0%)

Union 8918 97.0 406 92 (22.7%) 7966 7447 (93.5%)

Intersection 90 58.2 33 21 (63.6%) 80 73 (91.3%)

Table 4.5: Attack surface domain characteristics (as of 2015/09/26).

AS code Registration status (as of 2015/09/26)

name Reg. # # of TLDs w/ reg. # of TLDs w/ full reg.

A1 129 (10.9%) 56 (27.5%) 18 (8.8%)

A2 49 (10.1%) 28 (23.0%) 10 (8.2%)

A3 68 (9.1%) 34 (22.1%) 16 (10.4%)

A4 284 (7.8%) 79 (23.9%) 8 (2.4%)

A5 67 (9.5%) 35 (24.0%) 15 (10.3%)

A6 66 (9.4%) 31 (21.5%) 9 (6.3%)

A7 123 (7.0%) 55 (23.9%) 17 (7.4%)

A8 43 (9.4%) 27 (23.9%) 12 (10.7%)

A10 28 (11.0%) 17 (23.3%) 8 (11.0%)

A12 33 (12.9%) 19 (27.1%) 14 (20.0%)

Union 589 (6.6%) 123 (30.3%) 16 (3.9%)

Intersection 14 (15.6%) 9 (27.3%) 7 (21.2%)

Table 4.6: Attack surface domain registration status (as of 2015/09/26).

85

4.6.1 Attack Surface Characterization

Finding 1. Among the 10 top vulnerable victim ASes, ASes operating open re-

solvers expose the largest attack surfaces. Column 2, 4, and 6 in Table 4.5 show the

number of attack surface domains, distinct attack surface TLDs and SLDs for the 10 highly-

vulnerable ASes discussed in §4.4. As shown, A4 and A7, which both run open resolvers

as discussed in §4.4.2.1, have significantly more attack surface domains, TLDs and SLDs

than other victim ASes, even though their leaked WPAD query traffic is much less than

some home access network ASes such as A1. This is likely because these popular open

resolvers are used in all kinds of network environments and the exposed suffixes are more

diverse compared to a single home access network AS (also shown in Fig. 4.6). This sug-

gests that ASes running popular open resolvers should be the first priority for deploying

AS-level defense.

Finding 2. In victim ASes, large fractions of leaked WPAD queries are for new

gTLD domains defined to have high vulnerability (using our attack surface defini-

tion). Column 3 of Table 4.5 lists the percentage of leaked WPAD queries for the attack

surface domains during their persistence periods in the 10 highly-vulnerable victim ASes.

As shown, for all of these ASes, on average 96.7% of the leaked queries are in the HVDs,

showing a high ratio of exploitability in the wild if these domains are registered.

Finding 3. For most of the new gTLDs, only very few SLDs are highly vulnerable.

Fig. 4.11 shows the attack surface size distribution for new gTLDs with leaked queries from

A1. In the figure, even though some new gTLDs can have very large attack surface, e.g.,

over 250 for .office, 184 (90.2%) of the 204 new gTLDs have fewer than 10 domains in

their attack surface. This uneven distribution also holds for other highly-vulnerable victim

ASes. As shown in column 5 of Table 4.5, for 9 of the 10 ASes, more than half of the

new gTLDs only have one domain in their attack surface. This indicates that for most new

gTLD strings, the attack surface size is actually very small, and thus only a few domains

need to be treated more carefully in registration.

86

 0

 50

 100

 150

 200

 250

 300

.office

.ads

.netw
ork

.dev

.global

.prod

.group

.school

.city

.law

.cloud

.fam
ily

.ibm

.w
ork

.farm

.live

.house

.hsbc

.w
orld

.tech

.church

A
tt
a
c
k
 s

u
rf

a
c
e
 s

iz
e

New gTLDs ranked by attack surface size

 0.1

 1

 10

 100

 50
 100

 150
 200

Figure 4.11: Attack surface size distribution for new gTLDs delegated as of 2015/08/25.

 0

 20

 40

 60

 80

 100

 120

 140

A10 A1 A2 A1 A10 A2

T
L

D
 %

 i
n

 l
e

ft
o

v
e

r

No data
No recent data

Lack periodicity
Borderline

Figure 4.12: Breakdown of new gTLDs in the leftover part in cross AS attack surface

comparison.

Finding 4. Most SLD strings only appear in one new gTLD’s attack surface. We

then measure the popular SLD strings shown across the new gTLD attack surface in A1.

From the result, the 5 most popular SLD strings are us, corp, local, home, and net,

which are mostly generic ones. Out of the 204 distinct new gTLD string in A1, we find

that the most popular SLD string, .us, is only shared by 7 new gTLDs’ attack surface. As

shown in column 7 of Table 4.5, for all the 10 highly-vulnerable victim ASes, more than

90% SLD strings only appear in one new gTLD’s attack surface in the victim AS. This

suggests that if applying SLD reservation as a defense strategy, each new gTLD registry

87

needs to identify its own SLD reservation list based on its WPAD query traffic patterns.

Finding 5. A large portion of the attack surface domains are victim AS unique.

As shown in Table 4.5, 8918 domains across 406 new gTLDs are in the union set of the

attack surface of the 10 highly-vulnerable victim ASes, but only 90 (1%) of these domains

are in the intersection set. Thus, very few attack surface domains are in common among

different victim ASes. Moreover, 3689 (41.4%) of these domains are included in only 1

AS’s attack surface. These results indicate that most attack surface domains are actually

victim AS unique.

To understand why large numbers of domains are AS unique, we pick 3 home access

network ASes in the highly-vulnerable AS set, and pair-wisely compare their attack surface

domains. More specifically, for comparison between AS Ax’s attack surface, SAx
, and AS

Ay’s attack surface, SAy
, we study the leaked query traffic in Ay for domains in SAx

− SAy

and also leaked query traffic in Ax for domains in SAy
− SAx

. We classify the reason

why these domains are not left out in the other AS’s attack surface into 4 categories: No

data, No recent data, Lack periodicity, Borderline. Category No data means that none of

the domains’ leaked queries are observed in the other AS in our 2-year root NXD WPAD

dataset, and No recent data means none of such queries are observed in one month before

the delegation of the corresponding new gTLDs. Category Lack periodicity means that the

domain’s queries appear in less than 50% of the days in 3 months before the delegation

of the corresponding new gTLDs, which indicates that they are left out due to low persis-

tence according to our attack surface definition. Category Borderline means that we could

include them in the other AS’s attack surface, but we left them out due to the balancing of

persistence level and query ratio as discussed in §4.5.1.

The breakdown analysis result of the AS-unique attack surface domains is shown in

Fig. 4.12. In the figure, we find that more than 80% of these domains are left out because

they have no leaked queries for at least a month before the delegation of the corresponding

new gTLDs, which can thus hardly be eligible to be considered as highly vulnerable ac-

88

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
)

New gTLD registeration %

Figure 4.13: Attack surface domain registration percentage for new gTLDs in the top vul-

nerable AS A1.

 0

 2

 4

 6

 8

 10

 12

< 0.5 years

0.5-1 years

1-2 years

2-5 years

> 5 years

 0

 5

 10

 15

 20

 25

 30

T
L

D
 #

T
L

D
 %

Estimated full attack surface registeration time

Figure 4.14: Linear fitting results for the estimation time for a new gTLD to have all attack

surface domains fully-registered.

cording to our attack surface definition. For the other 20% domains, almost all of them lack

periodicity, and only at most 3% of the domains are left out due to the balancing process in

our quantification method. Thus, each victim AS indeed has a large portion of HVDs that

are unique to it. This suggests that to deploy effective defense at the AS level, each victim

AS, especially those highly-vulnerable ones, should customize its own domain filtering list.

4.6.2 Registration Status

Once these HVDs are registered, the actual exploitation can start at any time. Next, we

use new gTLD zone files and WHOIS data to characterize the current registration status of

these HVDs.

89

Registrant # of total # of registered 〈legacyTLD〉.
email registered domains 〈new gTLD〉 domains

〈email1〉 19 19 (100%)

〈email2〉 7 7 (100%)

〈email3〉 2 2 (100%)

〈email4〉 16 10 (62.5%)

〈email5〉 19 9 (47.4%)

〈email6〉 7 3 (42.9%)

Table 4.7: Registration ratio of legacy gTLD string for some registrants, showing potential

blind attack attempts. The email addresses are anonymized for privacy reason.

Finding 6. While for some new gTLDs their highly-vulnerable domains have al-

ready been fully registered, the overall registration status is still in the early stage.

Table 4.6 include statistics of the registered HVDs as of 2015/09/26 for the 10 highly-

vulnerable victim ASes, along with the intersection and union sets. As shown, all 10 victim

ASes have some of these HVDs registered, but the registration percentages are in the range

of 7% to 13%, which is not high. On the TLD level, approximately 22% to 28% of new

gTLDs with attack surface in a victim AS have at least 1 attack surface domain already

registered. For most victim ASes, around 10% of them have already had all of their attack

surface domains registered, indicating that their attack windows are fully open. Recall that

once an HVD is registered, the management of the underlying zones is delegated from the

new gTLD registries to the domain registrants, and thus the WPAD name collision attack

can be set up at any time outside of the new gTLD registries’ control. Fortunately, our

results show that even though some new gTLDs’ attack surface domains in victim ASes

have already been fully-registered, the overall registration has just started, and most HVDs

are still under new gTLD registries’ control.

Finding 7. For majority of the new gTLDs that have not been fully registered yet,

the attack window is opening quickly. Besides a current snapshot of the vulnerability

status, we also analyze the registration trend of these highly-vulnerable domains. In this

analysis, we choose the top vulnerable AS, A1, and estimate how fast the attack surface

domains for a new gTLD in this AS will be fully-registered. For most new gTLDs, we find

90

that generally the total domain registration numbers increase linearly with time after a big

increase at the beginning. Thus, we use a basic linear model to fit the attack surface domain

registration trend for a new gTLD, and enumerate different starting dates until the average

absolute error of the computed registered attack surface domain number is less than 0.5.

Using this method, we estimate the full registration time for the 38 new gTLDs in A1

which have at least one HVD registered (so that the analysis has input) but still not yet fully

registered. Among these 38 new gTLDs, 2 new gTLDs’ HVD registration numbers do not

change in our zone file data set, and thus our method cannot perform linear fitting for them.

For the other 36 new gTLDs, our method is able to find a linear curve with less than 0.5

average absolute error for the registered HVD number. In the fitting, 89.4% (272.1 days)

of the available zone file data for a new gTLD are used on average. Fig. 4.14 shows the

estimation results for these 36 new gTLDs. In the figure, 33% of them are likely to be fully

registered in 1 year, and this percentage increases to 60% in 2 years. This is just a rough

estimation, but does indicate that even though currently most of the new gTLDs’ attack

surface domains are not yet fully-registered, their attack surface is being registered quickly,

suggesting that immediate precautions need to be applied to prevent these vulnerabilities

from further expansion.

Finding 8. We did not find strong evidence of adversaries actively registering at-

tack surface domains, but do observe potential blind attack registrations. Given that

many of these highly-vulnerable domains have been registered, we next analyze whether

some registrants are aware of these highly-vulnerable domains and thus deliberately reg-

ister them for the WPAD name collision attacks. In this analysis, we also choose the top

vulnerable AS, A1. For each new gTLD in this AS, we use 2 time series data each day: the

registered number of attack surface domains, and the registered number of other domains

shown in root NXD WPAD data for a new gTLD before delegation. For new gTLDs with

some of their attack surface domains registered, we compute the Pearson product-moment

correlation coefficient, and find an average correlation score of 0.76, showing a very strong

91

correlation. This means that it is just as likely to register attack surface domains as other do-

mains appearing in the root NXD WPAD data, suggesting that there are no strong evidence

of adversaries actively registering these HVDs.

However, interestingly, we observed registrations that may be used for malicious pur-

poses, such as name collision attacks. More specifically, we find that there are a number of

registrants specifically targeting the registration of legacy TLD strings, e.g., com, net, etc.

as SLDs, under new gTLDs. In this analysis, we refer to the strings of TLDs delegated be-

fore the new gTLD program as legacy TLD strings, which include gTLDs such as .com

and country-code TLDs such as .uk. We obtain legacy TLD string list by comparing the

TLD list on IANA’s root zone database webpage [150], and the new gTLD list on ICANN’s

website [151]. Using the new gTLD WHOIS dataset, we identify a list of registrants having

a very high registration ratio of legacy TLD strings under new gTLDs, which is shown in

Table 4.7. For example, one registrant with email 〈email1〉1 has registered 19 domains

as of 2015/09/26, which all contain com, edu, gov, and org as SLD strings among over

10 new gTLDs. In our new gTLD WHOIS dataset, only less than 20% of the registrants

(identified by email addresses) registered more than 1 domain. Among the 20%, majority

of them use corporate email addresses, and the registration targets are usually product re-

lated domains, e.g., a registrant with a company email registered 351 domains with a SLD

that is the name of their product. The registration behavior in Table 4.7 are very unlikely

for brand protection, since (1) they used individual email addresses, and (2) they targeted

legacy TLD strings instead of product names, which in combination make such behavior

suspicious. One likely reason is that these registrants are trying to exploit one of the ear-

liest reported name collision vulnerability due to an old BIND resolver bug [199]. These

results suggest that potential adversaries do exist who are fully aware of the name collision

vulnerability. Fortunately at this point, they probably just have not found an effective way

of identifying highly-vulnerable domains.

1We anonymize the email addresses of the registrants for privacy considerations.

92

4.6.3 Exploit Status

For the registered HVDs, we are also wondering whether the domain registrants have al-

ready started exploiting the vulnerability by serving a valid MitM proxy. Since the domain

registrants have full control of the zone after the registration, it is not possible for a 3rd party

like us to get an accurate list of subdomains under these HVDs. In our experiment, we use

the list of query names in previous WPAD queries to these domains before the delegation

of their TLDs as a guess of potential attack subdomains. For each WPAD domain query

name qname in the list, we issue request using wget http://qname/wpad.dat and

check whether we can get a valid proxy configuration file. Note that even with this list,

this experiment can still have false negatives since our probing queries can be intentionally

filtered by attackers for only targeted attacks (i.e., only resolve the queries from certain AS,

IP, etc.) in order to prevent external detection.

We perform such probing several times for all the domains in the union set of the 10 vic-

tim ASes’ attack surface domains, but are not able to find valid proxy files. This indicates

that the registrants of the highly-vulnerable domains may not realize this attack vector yet,

implying that now would be a good time to start deploying remediation strategies, which is

discussed in the next section.

4.7 Remediation Strategy Discussion

Considering that the overall vulnerability registration and exploitation are still in the

early stage, it presents an opportunity to proactively mitigate this attack. In this section,

we discuss the potential remediation strategies by 3 different parties involved in the DNS

ecosystem: new gTLD registries, victim ASes, and end users.

Table 4.8 summarizes the results for the estimated effectiveness and deployment diffi-

culties for these remediation strategies. In contrast to the previous sections, which focused

on the 10 highly-vulnerable ASes in the U.S., here we consider estimations based on the

93

Level Remediation strategy Effectiveness Deploy #

New gTLD Scrutinize the registration of the union 97.4% 494

registry set of highly-vulnerable domains

Filter the intersection set of 36.4%

highly-vulnerable domains

Victim AS Filter AS-specific 97.4% 11305

highly-vulnerable domains

Filter responses w/ public IP Not evaluated

Disable WPAD service (if not used in Not evaluated

End user internal networks) > 6.6

Update OS, no hardcoding ∼100.0% million

Filter device-level leaks (in theory)

Table 4.8: Effectiveness and deploy number estimation for remediation strategy at new

gTLD registry, victim AS, and end user levels. “Not evaluated” means that we cannot

evaluate its effectiveness using current dataset.

attack surface quantification using all ASes with leaked WPAD queries in our 2-year root

WPAD NXD dataset. This allows us to present more accurate global vulnerability reduc-

tion percentages and deployment numbers.

New gTLD registry level remediation. To reduce the chance of an attack, the

new gTLD registries, especially the ones we find to have large attack surface (shown in

Fig. 4.11), need to ensure that these HVDs are not registered, or treat them more carefully

and propose policies to scrutinize their registrations. A naı̈ve approach is to reserve the

registrations of all domains seen in NXD traffic. However, according to the experience of

deploying the block list in ICANN’s Alternate Path to Delegation (APD) [68], merely using

2 days of root NXD data for 3 years, each new gTLD registry needs to block 7449.3 do-

mains on average, and 7 new gTLDs need to block over 100,000 domains. Preventing such

a large number of them from being registered, especially those popular ones, is in conflict

with the original goal of providing more registration choices, and also hurts new gTLD

registries’ revenue model. ICANN now changes the policy to allowing their registrations

after a 90-day “controlled interruption” period instead of blocking them forever [67].

According to our attack surface characterization, for most of the new gTLDs, relatively

few SLD are highly vulnerable to the WPAD name collision attack and need scrutinized

registration. For example, for .network, 96% of its domains in NXD traffic have very

94

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400 450

P
ro

te
c
te

d
 W

P
A

D
 q

u
e

ry
 %

 C
D

F

New gTLDs ranked by protected WPAD query %

 0

 2

 4

 6

 8

 10

 12

 14

.global

.ads
.group

.hsbc

.netw
ork

.w
in

.prod

.dev
.sap

.office

.one
.orange

.w
orld

.earth

.bank

.cloud

.ice
.school

Figure 4.15: Protected leaked WPAD query percentage CDF for partial deployment of new

gTLD registry level defense. The figure inset lists the top 18 new gTLDs which can protect

80% of total leaked queries if the defense is deployed.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

F
ilt

e
re

d
 W

P
A

D
 q

u
e

ry
 %

 C
D

F

AS ranked by filtered WPAD query %

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

Figure 4.16: Filtered leaked WPAD query percentage CDF for partial deployment of AS

level defense. The figure inset shows the CDF for the top 524 ASes.

low volume and/or low persistence of WPAD queries. This is why a general-purpose block

list is counterproductive, as opposed to per-SLD and per-TLD analysis performed in this

work. Thus, the attack surface defined and quantified in this work offers a cost-effective

way of deploying new gTLD registry level domain registration scrutinization. With the

attack surface quantification results for all victim ASes, we take the union of the attack

surface domains, and find that in total 494 new gTLDs among the 738 ones delegated

before 2015/08/25 have HVDs. If all of them have registration scrutinization, 97.4% of the

95

global leaked WPAD queries in our dataset can be protected. Consistent with our findings

in §4.6, most of the new gTLDs have only very few HVDs which need protection – among

the 494 new gTLDs, 302 (61.3%) of them have less than 10 HVDs. Thus, for majority of

new gTLD registries, this defense can be deployed with very little sacrifice of the business

revenue while still being highly effective.

Considering that having all 494 new gTLD registries agreeing on the deployment may

be difficult in practice, we also evaluate the effectiveness of a partial deployment. In this

analysis, we rank the 494 new gTLDs by the protected leaked WPAD query percentages

if they deploy scrutinized registration of HVDs, and the CDF is shown in Fig. 4.15. As

shown, deployment at only the top 18 (3.6%) new gTLDs can already protect 80% of the

leaked WPAD query globally. Thus, in the deployment, a more feasible and also very

effective strategy is to start with the most important 20–40 new gTLDs.

Victim AS level remediation. As shown in §4.4, majority of the leaked WPAD queries

come from a few home access network ASes. In addition to new gTLD registry level de-

fense, another direction is to prevent their leaks at the victim AS level. Each victim AS can

distribute a black list of vulnerable domains to their DNS resolvers, and filter the queries

to these domains before sending them to the public namespace. To create such a list for all

ASes, one quick approach is to find the common vulnerable domains using the intersection

set of the attack surface domains for the victim ASes. We estimate the effectiveness of this

approach using the HVD intersection set for 10 highly-vulnerable ASes, which contains 90

domains as shown in Table 4.5. We find that if all ASes adopt this black list, approximately

36.4% of the leaked WPAD queries globally in our 2-year dataset can be filtered. Thus,

even though the creation of the black list is convenient without AS-specific customizations,

this approach has limited effectiveness, mainly because many HVDs are AS-specific as

characterized in §4.6.

To increase the effectiveness, each victim AS should customize its black lists based on

their own query traffic patterns. This can be enabled by DNS traffic monitoring and filtering

96

in the recently-proposed name collision risk management framework [217]. One candidate

approach to create such list is to use the attack surface quantification method proposed

in §4.5 based on NXD query data, which can be obtained either by collecting DNS queries

on their own, or collaborating with DNS root server operators. The deployment locations

are the ASes with HVDs, including 11,305 ASes globally according to our quantification

results. If every AS deploys this, it is capable of filtering 97.4% of the leaked WPAD

queries globally in our dataset. Compared to the new gTLD registry level defense, this

approach can achieve the same level of high effectiveness, but may have higher deploy-

ment challenges due to significantly more deployment locations. Thus, we also evaluate

partial deployment strategy, shown in Fig. 4.16. In this figure, the X-axis is the 11,305

victim ASes ranked by their leaked WPAD query percentages. As shown, deploying at

the top 143 (1.2%) ASes can effectively filter more than 80% of the leaked queries. Thus,

similar to new gTLD registry level defense, it is not entirely necessary to cover all 11,305

victim ASes, and targeting the top 1–5% ASes can already achieve a relatively high level

of effectiveness.

Victim AS level filtering can also be IP based. In the WPAD discovery process, the

leaked WPAD queries are intended to get internal proxy server IP addresses, while in the

WPAD name collision attack the attacker needs to return public proxy IP addresses. Thus,

victim AS resolvers can prevent the attack by filtering the DNS responses with public IP

addresses. The effectiveness of this approach cannot be evaluated using our root NXD

dataset, which is left as future work.

End user level remediation. As shown in §4.4, the major cause of the WPAD query

leaks is using devices with internal domains outside of the internal network. Thus, to

fundamentally solve this problem, this unintended client-side behavior needs to be fixed. If

WPAD proxy discovery service is not actually used in the internal network, we suggest that

the local network administrator, e.g., the IT department in a company, disable this feature

in the supported browsers and OSes (Table 4.1) during corporate device setup process. To

97

more efficiently enforce this policy without the need of enumerating the configurations

of all installed browsers or other related software, the administrator can change OS-level

domain name mapping files such as /etc/hosts to map all permutations of WPAD

URLs within the internal namespace to 127.0.0.1. In this work, the effectiveness of

this approach is not evaluated since it is difficult to measure the amount of leaked WPAD

queries belonging to local networks that do not use WPAD service internally.

For the corporate devices depending on WPAD for internal network proxy discovery,

the WPAD feature in OSes and browsers still needs to be enabled. To prevent WPAD query

leaks for these devices, leveraging our insights of the device-side causes found in §4.4,

companies or other entities with internal domains need to stop hardcoding the internal

domain search list on their devices. If Windows OS is used, they need to stop setting

the Windows PC domain, and also upgrade their OSes. As we mentioned before, these

causes may just be the tip of the iceberg, and there might exist plenty of other causes under

different conditions. Moreover, considering the large variety of software on the device, new

causes, for example domain hardcoding behavior in certain applications, can be created at

any point in the future. Thus, these are only short-term solutions and not future proof.

As a long-term solution, we propose to design an OS-level daemon which can filter

queries based on the network environment. This daemon is a background process which

intercepts DNS queries issued by all applications on the device, and can correctly tell and

filter queries with domains not belonging to current network environment. In order to

distinguish unintended queries, it tracks the network environment at each network status

change, and stores a list of intended domains suffixes for each network environment, either

by learning from DHCP configuration messages, or directly being configured by the user.

To realize this approach, there are still some design challenges, for example how to accu-

rately tell network environments apart when they use same IP address prefixes, which we

leave as future work.

For the short-term and long-term device-side solution above, in theory they can fun-

98

damentally solve the problem; thus, we consider its maximum effectiveness as 100% in

Table 4.8. However, the downside is that it is extremely difficult to reach and apply these

solutions to all end user devices, which is estimated to have at least 6.6 million deploy-

ment points using the number of distinct 〈IP, sld.tld〉 pairs in our 2-year root NXD WPAD

dataset, where IP is the resolver IP sending WPAD queries, and sld.tld is the WPAD query

domain. This is only a lower bound estimation as there might be more than one user device

with domain sld.tld behind a resolver, but it is already at least 2 orders of magnitude larger

than the new gTLD registry and victim AS level defenses described above.

To help facilitate the deployment process, OSes and browsers can displaying warning

messages when detecting potential name collision risks. For example, if the issued WPAD

query is leaked to the public namespace, the response will include a special IP address,

127.0.53.53, during the 90-day “controlled interruption” period [67]. Browsers and

OSes can thus leverage this to display risk warnings and recommend the users to consult

their IT department immediately to resolve the problem. Note that the 90-day “controlled

interruption” period [67] was ineffective to mitigate such issue since the victim machines

automatically perform the vulnerable operations even without user awareness [265]. With

more support from OS and browser sides, end users can be better notified of the imminent

threat to help with the mitigation progress.

To summarize, no single defense approach discussed here can easily solve the problem.

To maximize the chance of preventing the attack in practice, the best choice would be

using these approaches jointly. Considering the serious and disseminated nature of this

vulnerability as shown in this work, actions need to be taken as soon as possible.

4.8 Summary

In this chapter, we perform a systematic study of the underlying problem cause and the

vulnerability status for WPAD name collision attack in the new gTLD era. We first char-

acterize the severity of the problem, and uncover that the major cause of the fundamental

99

leakage problem is very likely devices used in their non-intended network, such as work

laptops at home. Then, using a candidate attack surface definition and a quantification

method, we systematically assess the vulnerability of the attack in the wild. We find that

even though some attack surface domains have already been registered, the overall registra-

tion and exploitation status are still in the early stage, indicating that proactive protection

strategies are still feasible. Based on these insights, we discuss remediation strategies at

the new gTLD registry, AS, and end user levels, and estimate their effectiveness and de-

ployment difficulties. Our work demonstrates the importance of addressing known security

vulnerabilities, which might become more exploitable as assumptions change. This work

also serves as the first in-depth study of one type of name collision problem in the new

gTLD era, hopefully inspiring other follow-up studies.

100

CHAPTER V

Systematic Analysis and Detection of Client-side Name

Collision Vulnerability

5.1 Introduction

With the unprecendented delegation of new generic top-level domains (gTLDs) since

late 2013, increasing amounts of leaked internal domain name system (DNS) namespace

queries are now resolvable in the public DNS namespace [245]. This has exacerbated a

long existing problem, which has been lying fallow, called name collisions, in which a

DNS query is resolved in an unintended namespace [245, 69]. One concrete exploit of

such problem was recently annouced (US-CERT alert TA16-144A), which specifically tar-

gets the leaked WPAD (Web Proxy Auto-Discovery) service discovery queries [172, 127].

In this attack, the attacker simply needs to register a domain that already receives vulner-

able internal WPAD query leaks. Since WPAD queries are designed for discovering and

automatically configuring web proxy services, exploiting these leaks allows the attacker

to set up Man in the Middle (MitM) proxies on end-user devices from anywhere on the

Internet.

The cornerstone of this attack exploits the leaked service discovery queries from the

internal network services using DNS-based service discovery. With over 600 services reg-

istered to support DNS-based service discovery [65], the name collision problem seems

101

likely to be much broader than the WPAD service alone. However, previous work primar-

ily focus on analyzing and preventing name collisions at the new gTLD registry and the

network levels [69, 172, 217, 245], little attention has been paid to understand the vulner-

ability status and the defense solution space at the service level. Since services are the

direct victims of name collision attacks, it is necessary to provide service-level solutions

so that they can proactively protect themselves. More importantly, since the underlying

cause is the domain name resolution in an unintended namespace, compared to defenses at

other levels, only the service clients, the actual issuers of the exploited queries, know the

intended namespace and thus have the chance to fundamentally solve the problem.

In this chapter, we perform the first systematic study of the robustness of the service

client design and implementations under the name collision attack threat model for internal

network services using DNS-based service discovery. Our goal is to systematically iden-

tify client-side name collision vulnerability in the client software, which causes the client to

mistakenly accept the identity of a name collision attack server. Our results are expected to

serve as a guideline for understanding whether and why a certain client software is vulner-

able, as well as providing insights on how to mitigate against this emerging class of attacks.

To perform the study, we first measure the services that are exposed to potential name col-

lisions today by analyzing the leaked queries to the delegated new gTLDs. Based on the

measurement, we form an exposed service dataset with 80 services with high volumes of

service discovery query leaks. Compared to the recent study on the WPAD service [172],

our study for the first time uncovers the wide spectrum of services affected by the name

collision problem and the potential security implications.

With the set of exposed services, we manually collect their client software, with prioriti-

zation for services with higher query leak volumes and clients that are more popular among

corporate or end users. In total, we are able to collect 57 client implementations covering

48 exposed services. To systematically perform vulnerability analysis, we develop a dy-

namic analysis framework capable of analyzing the clients in a simulated name collision

102

attack environment. The analysis is performed by constructing attack server responses, and

a vulnerability is revealed if the client accepts the responses and proceeds with the designed

service functionality.

From the vulnerability analysis, our results reveal that nearly all (45) of these 48 ser-

vices have popular clients vulnerable due to several common software design or imple-

mentation choices. We find that the lack of server authentications, which is also exhibited

in the WPAD exploit, is the root cause for one third of these vulnerable services. For

the remaining two thirds, their clients do use standard server authentications by default,

leveraging TLS certificates or pre-shared keys (PSK). However, nearly all clients using

TLS certificates are found vulnerable due to the default choice of accepting publicly-valid

but previously-unseen certificates from a colliding domain. For the clients using PSK,

we find that majority (88.1%) of them are vulnerable since they do not enforce server

authentication. We also find a common vulnerable design choice specific to a previously

uncovered but popular use of DNS-based service discovery, Zero-configuration networking

(Zeroconf) [22], which mixes the service discovery in different namespaces. These results

show that even with standard server authentication adopted, the name collision attack threat

model still broadly breaks common security assumption in today’s internal network service

clients. We find that one fundamental cause is the lack of namespace differentiation in

the current service discovery and server authentication methods. This problem is newly

introduced by the name collision problem and it leaves the clients incapable of handling

potential name collisions.

To demonstrate the severity of the discovered vulnerabilities, we construct exploits in

our analysis framework and report our findings on a number of new name collision attacks.

These attacks are able to induce exploitation to a wide range of popular internal network

services, including MitM attacks on the Windows tunneling service, malicious library in-

jection on the Ruby library discovery service, document leakage on the macOS printer

discovery service, credential theft on the remote connection services in macOS Terminal,

103

and phishing attacks on the VoIP service in Linphone and the contacts and calendar ser-

vices in macOS and iOS. Through these case studies, we demonstrate the high end-to-end

exploitability of the identified vulnerabilities in practice.

With increasingly more new gTLDs being delegated, such widespread vulnerabilities in

the exposed service clients become more critical than ever and require immediate attention

and remediation. Based on the insights from our study, we propose a series of service

client software design guidelines, e.g., proposals to enable namespace differentiation in the

existing service discovery and server authentication methods. Our proposals complement

the previously-proposed DNS ecosystem level solutions [172, 217] and enable the victim

services to actively defend against name collision attacks.

In summary, our key contributions are as follows:

• We generalize the WPAD name collision attack to a new class of attacks on the

broad set of internal network services using DNS-based service discovery. We perform the

first measurement on the exposed services today and characterize their designed function-

ality and the potential security implications.

• We collect the client implementations for the exposed services and systematically

analyze their vulnerability status under name collision attacks leveraging a dynamic anal-

ysis framework. Our results show that nearly all the exposed services have popular clients

vulnerable due to several common design choices. This suggests that the name collision at-

tack threat model broadly breaks common security assumptions made in the service clients

today.

• Based on the analysis results, we construct exploits and report our findings of a

myriad of new name collision attacks with severe security implications, including MitM

attack, malicious library injection, credential theft, etc. These findings show high end-to-

end exploitability of identified vulnerabilities in practice.

• We identify several fundamental vulnerability causes, including a cause newly in-

troduced by the name collision problem, the lack of namespace differentiation. Based on

104

the insights, we propose a set of service software level solutions, which enables the victim

services to actively defend against name collision attacks.

5.2 Client-side Name Collision Vulnerability

In this section, we describe a generalized name collision attack threat model and the

vulnerability definition.

5.2.1 Threat Model

As characterized in §4.4, internal DNS namespace queries are observed to be leaked

into the public namespace. Among them, as we later characterize in §5.3, are a broad set

of internal DNS-based service discovery queries. With the vast expansion of the public

namespace via the New gTLD Program, many iTLDs are now delegated and these leaked

service discovery, intended only for a internal administrative domain, are now resolvable

in the public namespace.

In this work, we consider the attacker to control delegated new gTLD domains with

internal query leaks, or name collision domains, and provide malicious responses to exploit

these leaks. Such attacker may be (1) sophisticated registrants who become aware of name

collision domains by analyzing local DNS traffic or DNS traffic from OSINT (open-source

intelligence) sources such as DNS-OARC [120], (2) registrants not specifically targeting

name collision attacks at the domain registration time, but realize and start exploitation after

observing the leaked queries, or (3) miscreants who compromise the DNS servers of the

name collision domains, e.g., leveraging software vulnerabilities, to perform exploitation.

Fig. 5.1 illustrates the concept of a generalized name collision attack. Due to the name

collision problem, the leaked service discovery queries from a victim service client first

reach the attacker’s DNS servers. Based on the service name specified in the queries

(§2.2.3), the attacker’s DNS server points the client to an attacker-controlled server for

the service in request. In this step, the attacker controls the domain and thus can provide

105

Victim device using a

name collision domain

comp.ntld

Attacker-controlled

authoritative DNS

server

Attack server for the

service svc

Publicly valid

DNSSEC keys

Publicly valid

TLS certificates

The public DNS namespace

Figure 5.1: The generalized name collision attack threat model.

authoritative responses signed by publicly valid Domain Name System Security Extensions

(DNSSEC) keys. Such discovery process may involve multiple rounds of DNS queries de-

pending on the usage scenario of the service protocol, which is characterized later in §5.4.

After the service discovery step, the service client initiates a connection to the attack

server. In this step, the client mistakenly accepts the identity of the attack server and pro-

ceeds with the intended service functionality. Since the intended server is typically located

in an internal network, we do not assume the attacker is capable of relaying the client re-

quests to the intended internal server and perform MitM attacks. Instead, the attacker’s

goal is to only leverage the server position to induce security breaches. Even though the

attacker is not performing a MitM attack on the sevice discovery process, the attacker may

still be able to exploit the server position to ultimately perform a MitM attack on the end

device as demonstrated by the WPAD name collision attack [172].

To perform the attack, we assume that the attacker can use any resource available in the

public namespace. An important example of such resource is a valid TLS certificate for the

attack server, which can be obtained freely in a few minutes from authorities such as Let’s

106

Encrypt [75]. Compared to the threat model in the WPAD name collision attack, which

only considers one service discovery usage scenario with no modern server authentication

components, the threat model here considers a more general form of a name collision attack

that applies to a much broader set of internal network services using DNS-based service

discovery.

Compared to previous attacks on internal network services, which typically have tight

requirements of both the attack placement and timing, name collision attacks are much

more severe due to several unique properties. The first is the ease in which they can be

launched. Internal network attacks typically require an attack device in the victim’s inter-

nal network, but name collision attacks only require the registration of certain vulnerable

domains. Second, they are of larger scale in terms of victim sources. Compared to the

limited internal scope of internal network attacks, name collision attacks affect all leaked

queries within the same colliding domain from potential victims all over the world. Third,

they are also more powerful, since the attacker can use a number of valid identities in the

public namespace, e.g., DNSSEC keys and TLS certificates, that are typically not available

for internal network attackers. This class of attacks is also stealthy, since after the do-

main registration, it is difficult for third parties to further check the subdomains for attack

attempts due to privacy consideration [207].

5.2.2 Vulnerability Definition

Under the threat model above, we define a vulnerable internal network service with two

properties:

(1) Service query exposure. For a service software to be vulnerable, it needs to (1)

use DNS-based service discovery, and (2) have the discovery queries being leaked to the

public namespace. In §5.3, we use the leaked query traffic collected at the DNS root servers

to measure the services with query leaks, which we call are exposed to the name collision

problem. In this work, the query leakage volumes are used to quantify the degree of such

107

exposure.

(2) Client-side name collision vulnerability. With service query exposure, the ser-

vice client software needs to have vulnerable design or implementations that accept the

identity of the attack server from the discovery. In this work, if these vulnerable design

or implementations, alone or in combination, cause the client software to pass all server

authentication logic if implemented, and reach the execution point of starting the intended

service functionality with the attack server, we call the client software to have a client-side

name collision vulnerability. Since in our threat model the attackers cannot access the le-

gitimate internal server to obtain the right proof of identity, the client should be able to tell

the attack server apart. However, our vulnerability analysis results indicate that the server

authentication logic in today’s service clients is generally not robust enough to correctly

handle name collision attacks. Later in §5.4, we detail the analysis results and findings.

5.3 Exposed Service Characterization

In this section, we measure the exposed internal network services (defined in §5.2.2),

and characterize their functionality.

5.3.1 Methodology

Leaked query dataset. We perform the leaked DNS query measurement using query

traffic collected at DNS root servers in the DNS-OARC Day In The Life of the Internet

(DITL) project [8]. The DITL project has collected DNS traffic from participating DNS

root servers for 48 hours annually since 2006, which delivers the largest scale simultaneous

DNS traffic collection from the global DNS infrastructure [168]. Considering that the

dataset has multi-year collections but each collection is limited to two days, our analysis is

performed at the granularity of days and aims at identifying the most frequently requested

services observed during the collection.

Our analysis uses the 2011 to 2016 query traffic data, which are collected at 10 to 11

108

Exposed service Exposed service Potential security

functionality name implications

Proxy/tunnel config. wpad① (N), isatap② (N), MitM attack

proxy② (N)

Time config. ntp③ Time shifting attack

Software activation vlmcs② (N) DoS

Directory service ns*① (N), alt*① (N), Server spoofing,

(help a client locate lb① (N), db① (N), dns-sd①, service info. leakage

a server of the dr① (N), tracker② (N),

requested service) dns-llq⑤, dns-update⑤

Web service www*① (N), api① (N), Web-based phishing

static① (N), cf① (N), attack, malicious script

share① (N), http②, https③ execution

Server config. retrieval stun④ Config. info. spoofing

Multimedia file access ptp③, dpap④ Phishing attack

Authentication service kerberos① DoS

Coding library retrieval rubygems⑤ Malicious code injection

Database service gc① (N), ldap①, carddav④, Phishing attack,

(organization data, ldaps④, caldav④, caldavs④, organization data

calendar, contacts, etc.) carddavs④ leakage

Remote access to afs3-vlserver④, adisk④, Phishing attack,

computers/file systems smb④, afpovertcp④, ftp④, info. leakage

sftp-ssh④, rfb④, webdav⑤,

odisk⑤, eppc⑤, telnet⑤

System kpasswd②, airport③, System config. info

management servermgr⑤ leakage

Mail autodiscover① (N), Email spoofing, phishing

outlook① (N), mail*① (N),

pop3②, smtp②

VoIP sipinternaltls① (N), sip① Call spoofing, phishing

sipinternal① (N),

sipexternal① (N), sips③

Messaging xmpp-server③, xmpp-client③ Msg. spoofing, phishing

Printer printer③, pdl-datastream③, Internal/personal

riousbprint③, ipp③ document leakage

Scanner/camera scanner③, ica-networking⑤ Phishing attack

Distributed computing xgrid④ Malicious code execution

System monitoring syslog⑤ Organization info. leakage

Table 5.1: Functionality characterization of the exposed internal network services and the

potential security implications. Circled numbers are the ranges of the average daily query

leak volumes: ① > 100,000, ② 10,000 – 100,000, ③ 1,000 – 10,000, ④ 100 – 1,000, ⑤

10 – 100. N denotes non-registered service. Documentations for individual services are in

Table 5.2 and Table 5.3.

out of the total 13 root servers each year. To estimate the total global leakage volume to

all root servers, the query volumes in our results are calibrated by multiplying the average

volumes per root server by 13.

109

Service name Service description and documentation

wpad (N) Web Proxy Auto-Discovery (WPAD) protocol,

used by web clients to locate web proxies [198]

isatap (N) Intra-Site Automatic Tunnel Addressing Protocol (ISATAP),

used by dual-stack (IPv6/IPv4) clients to automatically tunnel

IPv6 packets in IPv4 networks [98]

proxy (N) Popular first label for a web proxy server [139]

vlmcs (N) Microsoft Key Management Services (KMS), used by

Microsoft clients to automatically activate volume license

editions of Microsoft Windows and Office [79]

ntp Network Time Protocol (NTP), used by clients to synchronize

computer clocks in the Internet [85]

ns* (N), alt* (N) Popular first label for a DNS name server [83, 91]

lb (N), db (N), Labels for domain enumeration in DNS-SD [2]

dr (N), dns-sd

tracker (N) Used by BitTorrent users to locate the tracker, which manages

BitTorrent peers in a torrent [118]

dns-llq DNS Long-Lived Queries, used by clients to locate DNS

servers with long-lived query support, which allows clients

to learn DNS data changes without polling the server [41]

www* (N), Popular first labels for a server hosting web content,

api (N), static (N), web elements, and web operations [32, 97, 116, 16, 33]

share (N), cf (N)

http, https Hypertext Transfer Protocol, used by web clients to browse

web content [64, 63]

stun Session Traversal Utilities for NAT (STUN), used by clients to

get the IP address and port allocated to it by a NAT [107]

ptp Picture Transfer Protocol (PTP), used by clients to transfer

images from digital cameras [93]

dpap Digital Photo Access Protocol (DPAP), used by iPhoto clients

to share photos starting in iPhoto 4.0 [23]

kerberos The Kerberos service, used by clients to perform network

authentications [73]

rubygems Used by RubyGems, the package manager in Ruby to help

clients download Ruby coding libraries [42]

gc (N) Used by clients to locate a Microsoft Global Catalog (GC)

server in a domain [80]

ldap, ldaps Lightweight Directory Access Protocol (LDAP), used by

clients to access directory services [76]

carddav, carddavs vCard Extensions to WebDAV (CardDAV), used by clients

to access, manage, and share contact information [26]

caldav, caldavs Calendaring Extensions to WebDAV (CalDAV), used by clients

to access, manage, and share calendaring information [25]

dns-update Dynamic Updates in the DNS, used by DNS clients to add or

delete resource records in DNS zones [45]

afs3-vlserver Used by clients to access the Andrew distributed file system

(AFS) [90]

Table 5.2: Descriptions and documentations of the exposed internal network services (Part

1). N denotes non-registered service.

110

Service name Service description and documentation

adisk Used by Apple Time Machine clients to perform automatic

disk discovery [57]

smb Server Message Block (SMB), used by clients to share file

over a network [106]

afpovertcp Apple Filing Protocol Over TCP, used by clients to share file

over a network [9]

ftp, sftp-ssh File Transfer Protocol (FTP), used by clients to transfer file

over a network [50, 108]

webdav HTTP Extensions for Distributed Authoring (WebDAV), used

by web clients to manage remote web content [62]

odisk Used by Mac Clients to access remote CD or DVD

rfb Remote Framebuffer (RFB) protocol, used by clients to view

and control a window system on a remote computer [122]

ssh Secure Shell (SSH) protocol, used by clients to access a remote

computer [23]

eppc Used by clients to send remote Apple events [23]

telnet Used by clients to access a remote computer [23]

kpasswd Used by clients to change Kerberos passwords [74]

airport Used by clients to configure a AirPort base station [23]

servermgr Used by macOS clients to manage macOS servers [23]

autodiscover (N), Exchange Autodiscover service, used by clients

outlook (N) to automatically configure Microsoft Exchange [15]

mail* Used by clients to locate POP3 or SMTP mail servers [31]

pop3 Post Office Protocol (POP), used by clients to locate POP

mail servers [94]

smtp Simple Mail Transfer Protocol (SMTP), used by clients to

locate SMTP mail servers [109]

sip, sips, Session Initiation Protocol (SIP), used by clients to

sipinternaltls (N), create, modify, and terminate Internet telephone

sipinternal (N), call sessions [110, 96]

sipexternal (N)

xmpp-server, Extensible Messaging and Presence Protocol (XMPP),

xmpp-client used by clients to manage sessions for messaging, network

availability, and request-response interactions [6]

printer Used by client to locate network printers [23]

riousbprint Used by the AirPort base station to share USB printers [23]

pdl-datastream Used by client to locate network printers supporting

Page Description Language (PDL) [92]

ipp Internet Printing Protocol (IPP), used by clients to

locate network printers supporting IPP [71]

scanner Used by macOS clients to locate network scanners [23]

ica-networking Used by macOS Image Capture app to share cameras [23]

xgrid Used by macOS clients to locate Apple xGrid agents for

distributed computing [78]

syslog The Syslog protocol, used by clients to send and receive event

notification messages [99]

Table 5.3: Descriptions and documentations of the exposed internal network services (Part

2). N denotes non-registered service.

111

Before the delegation of a new gTLD, the leaked internal service queries are answered

by the DNS root servers as non-existent domains, or NXD [239]. Thus, from the DNS root

traffic, we form the leaked query dataset by extracting queries with (1) NXD responses,

and (2) TLD strings that have been delegated in the New gTLD Program today. In this

work, we consider the delegated new gTLDs as of March 4, 2017, which include 1,216

new gTLDs in total [151].

Exposed service measurement. To measure the exposed services, we extract the ser-

vice names from the queries in the leaked query dataset using the service discovery query

format (§2.2.3). In our study, our main focus is the services officially registered in the

IANA registry [65]. These are services that are widely used in industry, e.g., sip and

ldap, and their IANA registration entries have service information such as protocol de-

scription, which are critical for us to understand and characterize their functionality.

To measure the registered services, we calculate the average daily query leak volume

for each service in the IANA registry. One problem is that our measurements are impacted

starting late 2013 as many of the new gTLDs began delegation and our observation space of

the leaks decreases. To solve it, we obtain the delegation dates for the targeted new gTLDs

and compute the per-TLD daily query leak volumes for each service, only using the data

collected before each new gTLD’s delegation date. Then, the average leak volume for a

service is the sum of its per-TLD leak volumes.

In this work, we also study the non-registered services, some of which are also popular,

e.g., the WPAD service. However, compared to registered services they are significantly

more challenging to study due to the lack of readily available documentation as they are

typically proprietary. It is especially difficult to identify services with non-standard queries,

since all the first labels in the queried domain names are considered as candidate service

names. This loose filtering condition results in a large number of potential service names

and as described later in §5.3.2 a large portion of them are actually irrelevant, e.g., random

strings potentially sent by Chrome for infobar customization [27].

112

To effectively identify valid non-registered service names from the extremely large can-

didate string set (78.5 million from our measurement in §5.3.2), we use an automated ap-

proach to conservatively rule out service name candidates that lack sufficient information

for our study. We label each candidate service name with nochar, noinfo, noinfo suf, or

info suf. If the name string does not contain an English letter, we label it nochar, indicating

that the string itself lacks useful information about the service. Otherwise, we use a python

script to search the string using Google, and if there are no search results, we label it as

noinfo, indicating that the string is either not related to a service, or not popular enough

so that no related information is available online for our study to proceed. If the label

has search results, we then append it with popular service discovery suffixes and perform

another Google search. For standard queries, we append suffixes tcp and udp. For

non-standard queries, we append example.com, example.net, contoso.com, and

contoso.net, which are popular example domain names in network service documenta-

tions [47, 66]. If these searches do not have results, it is labeled as noinfo suf ; otherwise it

is info suf. In the subsequent protocol study, we then focus on the candidates with info suf

labels.

5.3.2 Exposed Services

From our measurement, 115 registered services in the IANA registry are found to have

service query exposure. The leakage volume distribution exhibits a long tail property with

40.9% (47) of the services receiving less than five queries globally per day. To focus

our analysis on the ones with considerable degrees of query exposure, we pick the top

50 services for subsequent analysis.

For the non-registered services, since the query formats are loosely defined, the output

of our measurement includes 78.5 million candidate strings. Fig. 5.2 shows the automatic

labeling results using the automatic labeling script (§5.3.1). As shown, for the top 50 server

string candidates, the majority (60%) of them are popular names that at least have some

113

 0

 20

 40

 60

 80

 100

1-50
51-100

101-150

151-200

201-250

251-300

 0

 10

 20

 30

 40

 50

S
e

rv
ic

e
 s

tr
in

g
 c

a
n

d
id

a
te

 %

S
e

rv
ic

e
 s

tr
in

g
 c

a
n

d
id

a
te

 #

nochar
noinfo

noinfo_suf
info_suf

Figure 5.2: Automatic labeling results for the top 300 non-registered service string candi-

dates.

online references or configuration tutorials. After the top 50, 60–80% of the names do not

have related online information. As shown, the majority of them either have no letters in

the name, or have no search results even without DNS domain suffixes. While registered

services are the main focus of this work, we pick the 30 service names with info suf labels

among the top 50 candidates for our subsequent analysis. This enables us to cover the most

popular non-registered services, making our study more comprehensive.

In total, we form an exposed service dataset of 80 services with highest levels of service

query exposure today. Table 5.1 characterizes 68 of them according to their designed func-

tionality and potential security implications under name collision attacks. Table 5.2 and

Table 5.3 include the documentations we collected for each of them. For the remaining 12,

we are unable to further analyze them since they either have no online documentation or

no precise service information (details in Table 5.4). In Table 5.1, the average daily query

leak volumes are presented as circled numbers ① to ⑤ indicating five volume ranges. For

non-registered service names, strings that only differ in the suffix numbers, e.g., www1 and

www2, are aggregated into names ending with “*”, e.g., www*.

As shown in Table 5.1, in addition to the previously-studied WPAD service [172], the

name collision problem actually affects a wide spectrum of internal network services with

114

Service name Exclusion reason

ssp④, grid⑤, dltimesync⑤, No online service

fmserver-admin⑤ documentation

server*① (NR), your① (NR), test① (NR), No service specific

int① (NR), personalize① (NR), dc*① (NR), information

ad*① (NR), domaindnszones① (NR)

Table 5.4: Services in the exposed service dataset without sufficient information for us to

perform service design characterization. Numbers in circle denote the range level of the

average daily query leak volume: ① > 100,000, ② 10,000 – 100,000, ③ 1,000 – 10,000, ④

100 – 1,000, ⑤ 10 – 100. NR denotes non-registered service names.

diverse functionality today. More importantly, many of these exposed services are critical

for security and privacy, e.g., proxy configuration, coding library discovery, printer dis-

covery, etc. As shown in Table 5.1, if the service software has client-side name collision

vulnerabilities, attackers may cause a wide range of security problems. In the next section,

we collect the service implementations to concretely evaluate their robustness under the

name collision attack threat model.

5.4 Vulnerability Analysis

To evaluate the robustness of the exposed services under name collision attacks, in this

section we perform vulnerability analysis on the service client implementations and analyze

the causes.

5.4.1 Methodology

Service client implementation collection. For each exposed service, the goal is to

collect its client implementations that are generating the leaked service discovery queries

observed in our measurement. Based on the service names and registration information,

we read over ten pages of Google search results, download and test candidate software.

We only pick a candidate if it is manually confirmed to (1) use DNS-based service dis-

covery, and (2) automatically combine the service name and a discovery domain to form

the discovery query. The discovery domain configuration processes depend on the client

115

Exposed Client implementation Us- Vulnerability cause Vuln.

service age V1 V2 V3 V4 ?

In-domain Windows 10 logon, U1 ✗ - - ✓ ✓

ldap official Linux command ldapsearch

IPA Client logon U1 ✗ - - ✗ ✗

wpad Windows 10 WPAD service U1 ✓ - - - ✓

isatap Windows 10 ISATAP tunnel service U1 ✓ - - - ✓

kerberos In-domain Windows 10 logon, IPA logon U1 ✗ - - ✗ ✗

dns-sd, lb, macOS 10.12 domain enumeration U1 ✓ - - - ✓

db, dr

sip, sipinternal, Skype for Business 2016 U1 ✗ ✓ - ✓ ✓

sipinternaltls, X-Lite, Blink, Phoner, Linphone, Jisti U1 ✓ - - ✓ ✓

sipexternal

gc In-domain Windows 10 DSQUERY command U1 ✗ - - ✓ ✓

mail Outlook 2016 IMAP service U1 ✗ ✓ - ✓ ✓

autodiscover, Outlook 2016 Autodiscover service U1 ✗ ✓ - ✓ ✓

outlook

kpassword Kerberos for Windows U1 ✗ - - ✗ ✗

pop3 Outlook 2016 POP service U1 ✗ ✓ - ✓ ✓

smtp Outlook 2016 SMTP service U1 ✗ ✓ - ✓ ✓

sips X-Lite, Blink, Phoner, Linphone U1 ✗ ✓ - ✓ ✓

Jisti U1 ✗ ✗ - ✓ ✓*

ipp, printer

pdl-datastream, macOS 10.12 printer discovery U2 ✓ - ✓q,r - ✓

riousbprint

xmpp-server ejabberd U1 ✓ - - - ✓

ntp IPA Client logon U1 ✓ - - - ✓

xmpp-client PSI logon, Adium logon U1 ✗ ✓ - ✓ ✓

http macOS 10.12 Safari Bonjour browser U2 ✓ - ✓q - ✓

stun X-Lite, Blink U1 ✓ - - - ✓

afs3-server IBM OpenAFS U1 ✗ - - ✗ ✗

carddav iOS 10.3 Contacts CardDAV account U1 ✗ - - ✓ ✓

adisk macOS 10.12 Time Machine disk discovery U2 ✗ - ✓q,r ✓ ✓

afpovertcp, The Shared section in macOS 10.12 Finder U2 ✗ - ✓q ✓ ✓

smb, rfb

ssh, telnet “New Remote Connection...” U2 ✗ - ✓q,r ✓ ✓

ftp, sftp-ssh in macOS 10.12 Terminal

caldav iOS 10.3 Calendar CalDAV account U1 ✗ - - ✓ ✓

dpap macOS iPhoto photo sharing U2 ✓ - ✓q,r ✓ ✓

carddavs Contacts CardDAV in macOS 10.12, iOS 10.3 U1 ✗ ✓ - ✓ ✓

webdav Cyberduck discovery U2 ✗ - ✓q ✓ ✓

dns-llq macOS 10.12 Back To My Mac service U1 ✓ - - - ✓

severmgr macOS Server 5.1 discovery U2 ✗ ✓ ✓q,r ✓ ✓

dns-update macOS 10.12 dynamic global hostname U1 ✓ - - ✓ ✓

rubygems RubyGems gem and bundle commands U1 ✓ - - - ✓

caldavs Calendar CalDAV in macOS 10.12, iOS 10.3 U1 ✗ ✓ - ✓ ✓

Table 5.5: Vulnerability analysis results for the collected client implementations of the ex-

posed services. “q” and “r” denote query-side and response-side mixing in domain discov-

ery (detailed in §5.4.3). “*” means that the vulnerability status depends on user decisions.

116

Service name Exclusion reason

scanner Need a physical scanner for server setup

ptp Need a physical camera for server setup

airport Need an Apple AirPort for server setup

vlmcs (NR) Need a valid Microsoft production key

for server setup

xgrid, ica-networking Deprecated in the latest macOS

ldaps, https, eppc, Failed to find a client software using the

odisk, syslog service name with unicast domain discovery

www* (NR), api (NR), These are non-official naming conventions;

static (NR), share (NR), Excluded since we are more interested in

cf (NR), ns* (NR), uncovering the vulnerable design and

alt* (NR), proxy (NR), implementation choices made under the

tracker (NR) default service discovery configurations.

Table 5.6: Services excluded in the client-side name collision vulnerability analysis. NR

denotes non-registered service.

implementation details. For the clients we have explored, they typically use the OS domain

or the user account domain. For services with multiple client implementations, our analysis

mainly focuses on the ones that are more popular among corporate or end users and thus

has higher impact. We focus our analysis on the most recent releases available to us so that

our analysis results are current and relevant.

Column one and two in Table 5.5 list the services and the collected client implemen-

tations. This collection includes 57 client implementations covering 48 (70.6%) out of the

68 services with service design information in our exposed service dataset. We prioritize

our efforts to cover the registered services with the highest level of exposure. Specifically,

our collection covers 14 out of the 17 registered services with over 1,000 daily query leaks

in Table 5.1. For the remaining ones, we were unable to obtain valid software for our study

(details in Table 5.6).

Many services are registered for a single product, e.g., gc and outlook. Thus, most

of the services in the table only have one client listed. Also, the list of clients has a skew

towards a particular vendor’s products because that vendor is the major supporter for DNS-

SD and has registered many of them for their own use, e.g., adisk, afpovertcp, dpap,

etc. [65]

117

Analysis steps. Due to service functionality or usage model differences, these service

clients may need to contact multiple servers for different purposes and ultimately result in

different levels of vulnerability exposure in name collision attacks. Thus, to systematically

analyze the client-side name collision vulnerability, we first perform a characterization of

the service discovery usage scenarios implemented in the collected clients. In this analysis,

we first configure the client and server software, and ensure the service functionality is

performed as expected. We then trigger the service discovery in the client, and analyze the

network traffic to understand the usage.

Based on the usage characterization results, we identify the attack points for each usage

scenario and perform vulnerability analysis for a client at every attack point. Our analysis

uses a simulated name collision attack environment and dynamically analyses the vulnera-

bility status. The victim client software is installed in the same computer being connected

to two namespaces, simulating an internal DNS namespace and the public DNS namespace

in which name collisions can occur. Our analysis assumes the absence of the attacker at

the first-time software usage. Thus, we first trigger the designed functionality without at-

tack in the simulated internal DNS namespace. After that, we disconnect the client from

all legitimate internal servers and switch to the simulated public namespace to start the

vulnerability analysis. For the client-side requests at each attack point, we construct pos-

sible attack server responses only using resources available in the public namespace. Note

that since we do not assume the attacker can access the legitimate internal servers (§5.2.1),

the attack and legitimate servers are configured differently in the non-default settings, e.g.,

server names, zone file content, user credentials, etc. Using this analysis method, a client-

side name collision vulnerability is revealed if the client accepts the attack server responses

at all attack points of its usage scenario. Since this method identifies vulnerabilities by

directly testing attacks, it does not have false positives, but can have false negatives since

it may not explore all vulnerable paths in the software, which is an inherent limitation for

dynamic analysis [115].

118

Analysis framework. We develop a dynamic analysis framework to support the anal-

ysis tasks above. The victim client software is installed in a virtual machine configured in

two network environments, each having its own DNS server but using a local zone file with

the same domain name. To conform to our threat model, we registered a real new gTLD

domain to set up the name collision domain. During the vulnerability analysis, we switch

the network environment by changing the client DNS resolver address and shutting down

all server virtual machines in the previous network environment. In this framework, the

traffic between the client and the server are intercepted by a MitM proxy for the protocol

analysis on TLS traffic and the attack server response injection. We develop this proxy by

customizing the SSLSplit tool [113].

For the services using TLS, the servers in the simulated internal namespace are config-

ured with certificates signed by a local CA. To simulate the public namespace, we obtain

valid public certificates for the attack servers for free through the Let’s Encrypt CA [75].

After obtaining the certificates, we configure our DNS servers to only serve the IP addresses

we control.

Note that currently most parts of this analysis are manual. We made this decision

because generally automating the analysis, e.g., identifying, configuring, and triggering a

targeted behavior for arbitrary software, is very challenging. The diversity in platforms and

software design further complicates the task. Despite the manual effort, our analysis covers

a relatively complete range of services so the analysis results, our main contribution, are

not significantly affected. The efforts made in this work also helps shed light on how to

automate the analysis in the future.

5.4.2 Service Discovery Usage Scenarios

Our analysis identified two usage scenarios:

U1. Locate a single server in the discovery domain. In our collection, the clients for

33 of the 48 exposed services are in this usage scenario. As shown on the left of Fig. 5.3,

119

...

Inst2

Inst1

Devices in

local link

Service svc

functionality request

Server for

service svc
Service svc

functionality request

Service

client of U1

Service

client of U2

DNS server for

comp.ntld

Attack

point 2

(AP2)

Attack

point 3

(AP3)

Attack

point 1

(AP1)

Figure 5.3: Illustration of usage scenario U1 and U2 of DNS-based service discovery

(§5.4.2) in our service client collection.

these clients use the traditional service discovery methods via SRV or A/AAAA queries as

introduced in §2.2.3. In U1, the client contacts two attacker-controlled servers, the DNS

server for comp.ntld and the server for the requested service svc. In the figure, they

are labeled as AP2 and AP3, denoting the two attack points in name collision attacks.

U2. Locate multiple servers in both local link and the unicast discovery domain.

The remaining 16 clients, covering 15 of the 48 exposed services, use DNS-based service

discovery to find a list of services instead of a single one. These clients uses PTR queries to

retrieve a list of server names for the user to choose as shown on the right of Fig. 5.3, which

conforms to the Zeroconf usage of the DNS-SD standard [144]. Even though Zeroconf is

mostly designed for discovering nearby devices without unicast DNS server support [22],

these clients have unicast query leaks mainly due to their support of discovering both the

120

local link via mDNS and the discovery domain via unicast DNS. Compared to U1, clients

in U2 have an additional user selection step. Thus, to increase the attack success rate, the

attacker needs to spend extra effort to carefully craft PTR responses to trick the user into

choosing the attack server in the list, which is labeled as AP1 in Fig. 5.3.

5.4.3 Vulnerability Analysis

Using the analysis framework, 57 clients in 45 (93.8%) of the 48 exposed services are

found to be vulnerable. In this section, we report four common vulnerable software design

or implementation choices causing such widespread vulnerability exposure. The analysis

results are summarized in Table 5.5.

V1. Lack of server authentication by default. At AP1 and AP2, even though the

attack zone file setup and the DNS response content are different from the legitimate one,

we find that all 57 clients accept the malicious DNS responses after switching namespaces.

This is not entirely surprising: DNS clients solely rely on their recursive resolvers to locate

the appropriate DNS servers, and thus are are not in the position to differentiate names-

paces.

Even though name collision attackers can pass AP1 and AP2, the 57 clients have the

full potential to block the attack at AP3, where various server authentication methods can

be used. However, to our surprise, we find that the clients for 16 (33.3%) out of these

48 exposed services do not implement any server authentication method by default for the

server(s) from discovery. It includes four printing service software, seven communication

service software, tunneling services isatap, etc. As shown in Table 5.1, the potential

security implications for these services are high severe, including MitM attacks, malicious

script execution, document leakage, etc.

This lack of server authentication is not entirely poor implementation choices. Ser-

vices such as wpad, isatap, stun, etc., have no server authentication specified in their

protocol design [198, 72, 107]. Also for services such as sip and ftp, server authenti-

121

cation is mentioned but the implementation is not enforced [51, 105]. Thus, to solve this

problem, both the service design documentation and the actual implementations need to be

strengthened.

V2. Accept a publicly-valid but previously-unseen TLS certificate by default. In

our client collection, 36 clients for two thirds (32) of the 48 exposed services do use server

authentication in AP3. Seventeen of them use TLS certificates, and when we first trigger

the service functionality in the simulated internal namespace, all of them require explicit

user addition or approval steps to trust the legitimate internal server certificates signed by

the local CA. However, after switching to the simulated public namespace, we find that 16

of the 17 clients by default accept the publicly-valid but previously-unseen TLS certificate

we prepared for the attack server. As shown in Table 5.5, they involve highly popular

clients for VoIP, mail, contacts, and calendar. The only client that does not accept the

attack certificate by default is sips software Jisti, which requires user approval for any

certificate that was not previously seen. However, it still relies on the user to make the

correct security decision instead of directly terminating the connection.

Since in our experiments the connection to the intended server in the internal network

is established first, these clients should be capable of distinguishing the attack certificate

from the legitimate one, e.g., they are not signed by the same CA. Unfortunately, they

make the choice of accepting any previously-unseen publicly-valid certificate by default.

This may be because they are not designed to be only used in the internal network. For

example, for the SIP and XMPP clients, the targeted use cases are not only for the internal

servers but also for the public ones such as sip2sip and xmpp.jp. Thus, to increase the

convenience in the latter use cases their trusted CA lists by default include the public CAs.

Note that this is not a weakness in TLS-based server authentication. The server au-

thentication in TLS is only designed for validating the certificate chain for a given domain

name, and in this case, the certificate chains are indeed valid in both internal and public

networks. The fundamental cause is in the use of TLS-based server authentication in these

122

service clients: they are designed to be used in both internal and public namespaces but

lacks the awareness of differentiating the use in different namespaces. Later in §6.8, we

have more discussions on this problem cause.

V3. Mix local-link and unicast DNS domain discovery. As discussed in §5.4.2,

clients in U2 are mainly designed to discover servers at nearby devices in the local link

using mDNS queries [22] and thus should not be exposed to the name collision problem.

However, to extend such discovery to wider areas beyond a local link, e.g., large corpo-

rate networks with multiple subnetworks, these clients also browse a configured discovery

domain using unicast DNS queries. Unfortunately, such extended functionality support

causes the 16 clients in U2 to have mixed queries to both local link and the unicast DNS

domain, causing service query exposure.

In fact, we find that for many Zeroconf software with unicast DNS discovery, such

extended functionality is actually not always necessary. Two examples are the macOS

Parental Control function, which implements the registered service parentcontrol,

and the Docs To Go software, which implements the registered service dxtgsync. The

macOS Parental Control is designed for parents to monitor and manage their children’s

Mac computers, and Docs To Go is used for a single user to synchronize documents on

various personal devices under the same WiFi. They are mainly designed for accessing

nearby devices in local link without a local unicast DNS server setup, but they by default

generates unicast DNS discovery queries along with the mDNS queries. Another example

is application DropCopy that implements the registered service dropcopy. It is designed

to transfer files among nearby devices similar to Docs To Go. It uses unicast DNS discovery

but does not show the results in the server list, making it more obvious that the unicast DNS

discovery functionality is actually not needed.

To understand why these software implementations choose to support the redundant

unicast DNS discovery, we take a close look at the most popular Zeroconf framework,

Bonjour, and find that this is potentially caused by the default behavior of the discovery

123

API. We analyze the API according to the documentation [21], and find that if the domain

parameter is not specified, the discovery API by default discovers both the local link using

mDNS and the system-configured domain using unicast DNS. Thus, if the developer is

not careful enough, such default API behavior with mixed local-link and unicast domain

discovery unnecessarily causes the software to be exposed to name collision attacks.

Besides the queries, the mixing of local-link and unicast domain discovery also hap-

pens to the discovery results in the responses. Among the 16 implementations in U2, 11 of

them do not differentiate the servers from local-link discovery and those from unicast do-

main discovery in the user selection step. These implementations are all in macOS system

applications, including the printer discovery process and the system terminal’s remote shell

functionality. As illustrated in Fig. 5.3, only the service instance name strings, e.g., “inst1”

if the response is inst1. svc. prot.comp.ntld, are shown to the user without any

indicator of the discovery domain. This makes it impossible for even a security-savvy user

to tell the associated discovery domain for the discovered servers, allowing name collision

attackers to have arbitrary control over the content shown on the user interface and thus

more easily influence the user choice. Later in §5.5, we use concrete examples to illustrate

how this can be exploited to directly prevent the user from choosing the legitimate server.

For the other five clients, the discovered servers in the list are labeled with the namespaces,

e.g., “local” for local link and “comp.ntld” for discovery domain comp.ntld. Actually

among them there are some macOS system applications, e.g., Finder and Safari Bonjour

browser, but unfortunately this practice is not consistently enforced throughout the system.

V4. No enforcement of server authentication in PSK-based authentication. Be-

sides using TLS certificates, PSK can also be used to provide server authentication at AP3.

Since the password is only shared with the intended internal server, the client can detect a

name collision attack server since the attacker cannot prove the possession of the correct

password. In our collection, 42 clients for 33 services use PSK-based authentication by

default. However, we find that 37 clients for 30 (90.9%) out of these 33 services have no

124

enforcement of server authentication. Nineteen of them only use the PSK for client authen-

tication without requiring server authentication by default. For some, the user name and

password are even sent in plain text to the attack server. This not only fails to detect the

attack server but also leads to credential theft.

The remaining 18 clients choose to use mutual authentication methods such as Kerberos

or DIGEST-MD5 by default. However, they are still found vulnerable since they can all be

downgraded to not use mutual authentication if the attack server suggests so, without even

notifying the user that the current authentication is less secure. For XMPP implementations

PSI and Adium, the CardDAV, CalDAV, and WebDAV implementations including macOS

and iOS Contacts and Calendars, HTTP Authentication is used with DIGEST-MD5 by de-

fault, but these clients can all be downgraded to use Basic, which sends the Base64 encoded

password. We find that without TLS being enabled, PSI and Adium actually refuse to use

Basic by default. We suspect that they choose to accept the weaker authentication method

under TLS mainly because they assume that the server has already been authenticated after

it passes the TLS certificate validation. Unfortunately, according to our analysis results for

V2, this assumption is generally broken for the collected clients using TLS, including PSI

and Adium.

The ldap implementation used during Windows 10 logon, the SIP client Microsoft

Skype for Business 2016, the mail client Outlook 2016, and the macOS Finder imple-

mentation of smb all by default use Kerberos. However, they can be downgraded to using

NTLM, which does not provide server authentication [30]. For another ldap client, the of-

ficial Linux LDAP command ldapsearch, when the PSK-based authentication method

is not explicitly specified, the program by default accepts the server suggestion of using

NTLM. The disk discovery implementations in macOS Finder and Time Machine, which

implement afpovertcp and adisk respectively, both use the AFP (Apple Filing Pro-

tocol) [9] and by default use Kerberos. However, it can be downgraded to use DHX2

(Diffie-Hellman Key Exchange 2) that is clearly explained in the documentation that “there

125

is no way for the client to verify that the server knows the password” [3].

Among the 57 clients, only six do not exhibit the client-side name collision vulnerability

in our analysis. Besides the SIP implementation Jisti that depends on the user to make the

right decision, the other five are not vulnerable since they only support Kerberos.

5.4.4 Discussion

As shown above, nearly all (51) of the 57 service clients we collected are vulnerable

to name collision attacks, suggesting that the name collision attack threat model broadly

breaks common security assumptions made in today’s internal network service clients.

From the analysis, we observe two fundamental causes at the software design level. First,

internal service clients today tend to place excessive trust on the server side. As shown,

clients for one third of the 48 exposed services do not use any server authentication by

default. For clients using PSK-based authentication, around 90% of them have no enforce-

ment of server authentication. This is probably because by design these clients are expected

to be used in internal networks, e.g., in companies, which have network isolation and cer-

tain levels of security protections, and thus make the security assumption that the servers

are trusted. Such assumption is broken under the threat model of local network attacks,

e.g., ARP spoofing attacks, but it may be deceptively safe considering that these attacks

usually have tight requirements of the attack placement and timing. However, with inter-

nal query leaks exposing these service clients to malicious servers in the public network,

the name collision attack threat model is thus a new attack vector to break such assump-

tion, and as discussed in §5.2.1, it is more powerful and easier to launch than typical local

network attacks.

Second, the service clients today using DNS-based service discovery generally lack the

awareness of differentiating the namespaces of the domain names in the DNS responses.

In this work, we call it a lack of namespace differentiation. As shown, in service discovery,

11 of the 16 clients in U2 do not differentiate the responses from the local-link namespace

126

(.local) and the unicast domain namespace. For server authentication, 16 out of the

17 clients relying on TLS to authenticate a domain name accept a certificate from the

public namespace by default, even though the previously user-approved certificate for such

domain name is from an internal namespace. This is a fundamental problem introduced

by the newly-emerged name collision attack threat model. By design, DNS namespaces

should be isolated and thus internal network service clients are not expected to differentiate

namespaces. However, since the name collision problem is happening today, such a general

lack of namespace differentiation leaves the service clients incapable of handling potential

name collisions, causing the vulnerability exposure in our analysis.

Based on these insights, in §5.6 we propose a set of defense strategies at the service

client software design level.

5.5 Exploitation Case Study

To demonstrate the severity of the identified vulnerabilities, we construct realistic attack

scenarios in our analysis framework. Table 5.7 summarizes our results. As shown, a num-

ber of new name collision attacks are uncovered with a wide range of security implications,

i.e., a new MitM attack vector in addition to the WPAD name collision attack [172], doc-

ument leakage, malicious code injection, credential theft, and phishing attacks. Note that

the new MitM attack vector exploits an IP tunneling service, and thus besides intercepting

web traffic like the WPAD attack, it can also intercept DNS traffic and launch DNS-based

exploits such as DNS response spoofing.

5.5.1 MitM Attack

In the previous work [172], the name collision attack on the Windows implementation

of wpad has been found to cause MitM attacks. In this study, we find that the Windows

implementation of isatap, a service with completely different design purpose in com-

parison to wpad, can also be exploited by name collision attackers to launch MitM attacks.

127

Section Client software Service name Vuln. design/ Exploitation

impl. choice

§5.5.1 Microsoft Windows 10 isatap V1 MitM attack (web traffic

& DNS traffic)

§5.5.2 RubyGems 2.6.12 rubygems V1, V2 Malicious code injection

§5.5.3 macOS 10.12 printer ipp V1, V3 Document leakage

discovery

PSI 0.15, macOS 10.12 xmpp-client, caldav,

and iOS 10.3 Contacts, caldavs, carddav, V1, V2, V4

§5.5.4 Calendar carddavs Credential theft

macOS 10.12 Terminal ftp, ssh, sftp-ssh, V1, V3, V4

New Remote Connection telnet

§5.5.5 Linphone 3.10.2, PSI 0.15 sip, xmpp-client V1, V2, V4 Phishing calls & msg.

§5.5.6 macOS 10.12 and iOS carddav, carddavs V1, V2, V4 Phishing name card &

10.3 Contacts, Calendar caldav, caldavs calendar event injection

Table 5.7: Exploitation case studies for the identified client-side name collision vulnerabil-

ities. V1 to V4 are detailed in §5.4.3.

In this section, we report the attack construction for the implementation of isatap in

Windows 10.

The protocol for isatap service is ISATAP (Intra-Site Automatic Tunnel Addressing

Protocol) [72]. It is an IPv6 transition mechanism to enable a client to use IPv6 in an

internal network that only has IPv4 network infrastructure. The ISATAP server is connected

to both the internal IPv4 network and an external IPv6 network. When the client uses IPv6,

the traffic is encapsulated in IPv4 packets between the client and the ISATAP server, and

then decapsulated by the ISATAP server to contact the IPv6 sites on behalf of the client.

This mechanism is implemented primarily in Windows OSes and also supported in Linux.

Service query exposure. We first configure a Windows 10 client to log into a Windows

domain, which is common practice in a corporate network [34]. In our simulated name

collision attack environment, we find that the ISATAP service is by default enabled and the

service query exposure happens at the OS booting time, during which the client sends a

query by prepending the isatap label to the Windows domain to discover the ISATAP

server.

Exploitation. We set up the attack server by configuring the Linux ISATAP router

program radvdwith IP forwarding enabled [77]. Since the client makes vulnerable choice

128

V1, i.e., having no server authentication by default, to launch the exploit we only need to

point the client requested query name to our ISATAP server IP address in the colliding

domain zone file.

In the virtual machine setup, our host machine does not have a public IPv6 address

allocation. This emulates a network without IPv6 support, which is common in home

networks using popular cable services in majority of the states in the U.S. [29]. After

switching to the attack environment, after booting the Windows 10 client is found to have

accepted and already configured to use the attack server in the ISATAP tunnel interface.

Then, all web traffic to IPv6 sites are found to be intercepted by our attack server.

In addition, we find that as an IP tunneling protocol, ISATAP can affect not only web

traffic like WPAD, but also DNS traffic. In our experiments, we find that the Windows 10

OS prioritizes the IPv6 DNS servers when both IPv4 and IPv6 DNS servers are configured.

Thus, as long as the DNS configuration includes one IPv6 DNS server, for example popular

public open resolvers [54], the ISATAP tunnel is tried first for any DNS request. This causes

all DNS queries to be intercepted, leading to another dimension of exploits leveraging DNS

response spoofing. In this case, since the attacker acts as the client’s DNS resolver, she can

bypass the DNSSEC integrity check due to the last mile problem for DNS [119] and can

thus read and modify arbitrary DNS responses.

5.5.2 Malicious Library Injection

Service rubygems is used in RubyGems, the Ruby package manager serving Ruby

coding libraries, called gems. In this section, we detail a name collision attack on this

service to inject malicious libraries.

Service query exposure. To use the service, RubyGems first needs to configure the

discovery domain, called adding sources. The sources typically include the official Ruby

package server rubygems.org to discover standard packages, and can also include inter-

nal domains to download libraries developed internally, e.g., those for company-wide use

129

only. After switching to the attack environment in our analysis framework, service queries

to both the official package server and the internal domain are triggered when installing

or updating a gem with the gem commands or the bundle commands. Since the source

configuration is at the coding platform level, as long as the user runs these commands on

a computer with the internal source configured, e.g., a corporate computer, the internal do-

main discovery is always triggered even if the user’s coding task is unrelated to internal

libraries.

Exploitation. We set up the attack server using Gem in a Box [124]. The attack goal is

to let the client install an attacker-prepared version of a public library that should be served

at the official Ruby package server. Compared to infecting internal libraries, preparing

malicious public libraries are easier since the API information is public, and can potentially

infect more parts of a developer’s program when targeting popular libraries. Also it is

more stealthy since the attacker can carefully insert code so that the API functionality

still appears normal. In RubyGems, we find that when the gem or bundle commands

are triggered, all the sources are contacted simultaneously to download the required gem

instead of being contacted one by one. Since the public library we target is served by the

official package server, the malicious library on the attack server needs to compete with the

legitimate one.

From the source code, we find that the client first retrieves the metadata of the requested

gems from all servers, merges them into a list, and picks the last one in the list to install.

Each gem metadata is a tuple with several package information, and the different fields for

gems with the same name are mainly the version number and the source server name. In

the code, this list is sorted using the default Ruby tuple comparator; thus, for gems from the

same source, normally the one of the latest version is picked. For the install commands

of bundle and gem, we find that the source server name field is put before the version

number field in the tuple. Thus, as long as the malicious server name is larger than the

official Ruby package server name in string comparison, the gem from the attack server is

130

picked. In the SRV response, the attacker controls the attack server name string, and can

thus deterministically force the installation of the malicious gem. For the update com-

mands of bundle and gem, only the version number is used so that the gem is installed

only if its version number is larger than the one that is already installed by the client. Thus,

for update commands, the attack gem just needs to use a version number that is higher

than that in the latest public one to force the installation.

For both install and update commands, we have verified that the injection suc-

ceeds by modifying the official net-dns gem to include additional code. These com-

mands can also use HTTPS, but similar to the results in §5.4.3, they are found vulnerable

due to V2. Using our analysis framework, we have also verified the injection attack under

HTTPS. Also note that since the version number is used in the gem selection during the

update commands, the attacker can use a large version number to prevent future updates

of a gem, making the malicious library injection permanent.

5.5.3 Document Leakage

In macOS, the printer service discovery is triggered by going to the Printer & Scanner

preference page, or by clicking on the Print option in an editor. The discovery process

discovers both the local link and the configured device domain for exposed service ipp,

printer, pdl-datastream, and riousbprint. The attack strategies for these ser-

vices are the same, and in this section we only describe the attack on ipp as an illustrative

example.

In the ipp discovery in macOS, only the service instance name fields are extracted and

presented in a list for the user to choose (illustrated in Fig. 5.3). This leads to the vulnerable

design choice V3 on the discovery responses, allowing the attacker to have arbitrary control

over all the user-visible content. Thus, the attack strategy is to pick a deceptive name to

trick the user into using the attacker’s printer. Since printers are typically named using

the brand and the model number, e.g., “Brother HL-6180DW series”, the attacker can just

131

pick some popular names. Even if the user is intended to use a nearby printer in local link

instead of a network printer in the discovery domain, she can still make the wrong choice

since the service instance names alone provide no such information.

In addition, we find that the attacker can control not only the content, but also the order

of the printer names in the list. In the implementation, the discovered printer name list is

sorted in ascending alphabetical order. Thus, an attacker can start the attack printer name

string with an invisible character that is smaller than any English letter in character compar-

ison, e.g., STX (ASCII code 2 [12]). With this, we have confirmed that the attacker-injected

printer name is always ranked the first so that it is more likely to be chosen, especially when

the names in the list all appear legitimate.

For the macOS ipp implementation, no server authentication is used in AP3. Thus,

once the user picks the attack printer, the printed documents are leaked to the attacker.

Thus, to prevent such exploit it solely depends on whether the user can choose the legiti-

mate name. However, since only the service instance name field is used, both the printer

name and order in the user interface are fully controlled by the attacker to influence the

user’s choice.

5.5.4 Credential Theft

For the services in U1, sending a password in plain text to the server in the PSK-based

authentication directly causes credential theft. XMPP client PSI, CardDAV and CalDAV

clients macOS and iOS Contacts and Calendar, all use TLS but accept a publicly-valid

certificate by default. After bypassing such check by exploiting V2, the attack server then

exploits V4 to get the password in plain text by suggesting to use PLAIN for PSI, and Basic

for macOS and iOS Contacts and Calendar. These exploits are stealthy, since these clients

support background launching or syncing: PSI by default launches during OS booting, and

macOS and iOS Contacts and Calendar have periodic syncing that can be as frequent as

every one minute. Details about the attack setup are in §5.5.5, §5.5.6.

132

For the services in U2, causing password leakage requires not only a weak PSK-based

authentication method, but also an effective way to trick the user to select the attack server

in the discovered server list. In the following, we detail credential theft attacks on macOS

service discovery implementations for ftp, ssh, sftp-ssh, and telnet. When using

the macOS default terminal, the user can choose to browse remote connections with these

four options. Once they are clicked, the client issues the corresponding service discovery

queries to both the local link and the unicast discovery domain. If the user picks the attack

server to connect, these clients send the credential in plain text to the attack server.

For these clients, the key step of the exploitation is to leverage V3 to trick the user to

pick the attacker-provided server. In their UI design, we notice that the server names from

the discovery is displayed in a ranked list with a limited height, which requires scrolling

if the list is too long. Thus, the attacker can send a long list of server name strings with

invisible characters that are smaller than any English letter in character comparison, e.g., a

TAB [12], to push the legitimate server names out of the first page of the list. Meanwhile,

the attacker sends a deceptive server name starting with another invisible character that is

even smaller in character comparison, e.g., STX [12]. In the current implementation, when

the server name list is longer than the visible area, the scrolling bar is not shown by default.

Thus, in the list, the attack server appears to be the only choice when the user browses for

remote connections. With the use of a legitimate looking name such as “MacBook Pro,” it

is likely that the user will at least try this only choice, especially when she sees the same

results after re-browsing multiple times.

5.5.5 Phishing Calls and Messages

Service query exposure. For the SIP client Linphone and the XMPP client PSI, a user

account, for example alice@comp.ntld, is needed for service registration. When the

account is configured, these clients perform service discovery of U1 in the user account

domain, typically happening at the software launching time. Since these clients remem-

133

ber the account name, when launching them after switching to the attack environment in

our analysis framework, they still perform discovery based on internal domains in the ac-

count names, causing service query exposure. Both Linephone and PSI support automatic

launching during OS booting. Thus, their query exposure may happen even without user

interaction. In fact, this automatic launching is the default configuration for PSI.

Exploitation. We set up the attack server using Asterisk for Linphone [13], and ejab-

berd for PSI [48]. During the account logon, Linphone sends password in MD5 hash with-

out server authentication, which is the designed SIP authentication method [110]. For PSI,

the authentication process by default uses DIGEST-MD5, which provides server authenti-

cation [61]. By modifying the ejabberd server response in our analysis framework, we let

the server claim to only support PLAIN, which requests the client to send the password

in plain text. As reported in the vulnerability analysis (§5.4.3 V4), with a publicly valid

certificate used to bypass its certificate check, PSI accepts to use PLAIN.

In this attack, our attack servers are implemented to allow a client to log in with any

password. More specifically, after getting the user name from the client logon request, the

attack server creates an account with the same user name but a different password on the

attack server. To allow the victim client to use her password to log in without modifying the

server software, we utilize an attacker-side proxy to replace the credential used in the client

authentication with the valid credential for the attack server. Since the proxy is attacker-

controlled, the credential is still leaked, while the victim client appears to be logged in as

normal.

After the victim client is logged in, the attacker uses another account on her server to

initiate phishing calls or messages. Under both Asterisk and ejabberd, we have confirmed

that the displayed caller or sender names of the attacking accounts are controlled by the

attacker. Thus, the attacker can choose a deceptive name, e.g., “Manager” or “IT Depart-

ment”, to increase the success rate.

134

5.5.6 Phishing Contacts & Calendar Events

Service query exposure. For system applications Contacts and Calendar on ma-

cOS and iOS, the user can configure CardDAV and CalDAV accounts in the form of

alice@comp.ntld, and the account domain becomes the discovery domain. After con-

tacting the discovered server, new contacts and calendar events are retrieved and merged

with those from all other accounts such as the iCloud account to present to the user. These

clients have periodic synchronization with the server, which can be every one minute, one

hour, etc. When the user leaves the internal network, e.g., at home after work, this periodic

synchronization can thus directly lead to service query exposure. In our analysis frame-

work, we set it to synchronize every 1 minute, and have confirmed the query leakage after

switching to the attack environment.

Exploitation. We use Baı̈kal to set up the attack server for these CardDAV and Cal-

DAV clients [19]. To avoid using server authentication, we configure the server to use

Basic instead of the default choice DIGEST-MD5 as the PSK-based authentication mecha-

nism [61]. During synchronization, Contacts and Calendar in both macOS and iOS accept

the server suggestion of Basic, and directly send the password encoded in Base64 to the

attack server. All these clients by default choose to use TLS, but they all make the vulner-

able design choice of accepting our publicly valid certificate by default. Using the proxy

approach detailed in the last section, our attack server lets any client to pass the client

authentication, and thus these CardDAV and CalDAV clients all proceed with the synchro-

nization functionality.

After the clients are connected, our phishing attack goal is to inject malicious contacts

and calendar events. Following the protocol design, after a synchronization, the server

gives the client a synchronization token to record the latest synchronization state. In these

implementations, we find that a state number is used as the token. During the synchroniza-

tion, these clients first request the server state number, and only pull new data from the

server if the server state number is higher than the one from the last synchronization. If

135

the server state number is lower, the client makes no action except storing this lower server

state number as the latest state. Thus, for the name collision attacker, the attack strategy is

to keep a high state number, so if the client-stored state number is lower, the attacker di-

rectly triggers the client data pulling request. In case that the attack server state number is

lower than the client-stored one, the attacker can wait until the client stores the lower state

number after the first round of synchronization, and then start adding phishing contacts or

calendar events to trigger data pulling from the client side.

For macOS and iOS Contacts, to increase the attack success rate, the attacker can

choose to inject name cards that are likely to be frequently searched and dialed by the

user, for example hotline numbers like “Customer Care”. In such attack, since the victim

voluntarily dials the phishing number, she is more likely to follow the attacker’s instruction,

for example telling sensitive personal information such as the SSN number or the account

password. For macOS and iOS Calendar, the phishing calendar events are best used as the

delivery method for other exploits. For example, the events can include links to phishing

websites or PDF files with malicious scripts. To increase the success rate, they can mas-

querade as reminders for popular corporate events such as “Weekly Meeting” and set up to

pop up during working hours.

5.6 Defense Discussion

As shown, the widespread client-side name collision vulnerabilities in the exposed ser-

vice clients cause a wide range of security risks, and thus require immediate attention and

remediation. In this section, we propose a set of defense strategies at both the service client

software level and the DNS ecosystem level.

5.6.1 Service Level Defense Discussion

Based on the insights from our vulnerability analysis in §5.4, we propose several soft-

ware design guidelines to secure future clients using DNS-based service discovery.

136

Integrate and enforce server authentication. As discussed in §6.8 and exhibited

in V1 and V4, one fundamental cause for the exposed vulnerabilities is the general lack

of server authentication in today’s internal network service clients. Since these services

are expected to be used in internal networks, e.g., corporate networks, where each user

has an internal account, adding PSK-based authentication into the client software design

may be most appropriate. To avoid vulnerable choice V4, the implementation needs to

strictly enforce mutual authentication during the negotiation. Since the secret is pre-shared,

the server has no excuse to not prove that it knows the secret. For the cases in which

PSK may be difficult to deploy, e.g., NTP servers or printers, the client should use TLS

certificates to verify the sever identity. To avoid vulnerable choice V2, the TLS certificate

validation with namespace differentiation proposed next should be used. Adding these

server authentication logic is generally beneficial for defending not only name collision

attacks but traditional local network server spoofing attacks as well.

Enable namespace differentiation in service discovery and server authentication

mechanisms. As discussed in §6.8 and exhibited in V2 and V3, the other fundamental vul-

nerability cause is the general lack of namespace differentiation in today’s internal service

clients using DNS-based service discovery. To solve the problem for the service discov-

ery process, the client software developers need to be explicit about which namespace the

discovery is expected to occur in and limit the discovery process to only local link if appro-

priate. At the platform level, we suggest the Bonjour or other Zeroconf platforms to limit

their discovery APIs to only perform local link discovery if unicast DNS domain discovery

is not explicitly specified. Since these platforms are mainly designed for local link dis-

covery, the default API behavior should not include the unicast domain discovery. These

additional resolution requests unnecessarily enlarge the attack surface and allow name col-

lision attacks to happen.

To enable namespace differentiation in the TLS-based server authentication, service

clients need additional functionality to differentiate certificates with the same name sub-

137

ject but from different namespaces. One candidate solution for this may come from a set

of recent standards from the IETF, called DNS-based Authentication of Named Entities

(DANE) [39]. In DANE, authorities specify the authentication information of their ser-

vices through the DNS lookup. This natively addresses the name collision vulnerability in

the same substrate where it is normally exploited: DNS [244]. More concrete evaluation of

this defense solution direction is left as future work.

Application-specific defenses. Internal service clients can also add application-

specific defenses. For example, for the malicious library injection attack on the Ruby

library discovery service (§5.5.2), a library signing process can be added on the internal

servers for the client to check the authenticity of the libraries. Also, for the document leak-

age attack on the printer discovery service (§5.5.3), the client software can disable the use

of invisible characters to prevent the attacker from manipulating printer name display.

5.6.2 DNS Ecosystem Level Defense Discussion

Besides the service level, defense solutions can also be deployed at the DNS ecosystem

level, i.e., by relevant parties such as new gTLD registries, victim Autonomous Systems

(ASes), and end users. In this section, we discuss how to extend the previous DNS ecosys-

tem level remediation strategies for the WPAD name collision attack [172] to the general

form of name collision attacks in this work.

New gTLD registry and victim AS level remediation. Previous work proposes that

the new gTLD registries and the victim ASes with high volumes of query leakage can

mitigate the WPAD name collision attack based on a set of highly-vulnerable domains

(HVDs) [172]. With the HVD set, new gTLD registries can prevent the attack by ensuring

that these HVDs are not registered or at least treated more carefully during registration.

The victim ASes can filter or alter the queries to these domains before directing them to

the public namespace. These remediation strategies are still applicable for the general form

of name collision attacks in this work. The previously established HVD set would need to

138

include the extended service list in addition to the WPAD service.

End user level remediation. At the end user level, the defense mechanisms are more

challenging since the leakage may be caused not only by OS-level hardcoding like those

in the WPAD name collision attack but also by application-level hardcoding such as by the

user account configurations in SIP and XMPP clients. Thus, we propose to design an name

collision defense software which can filter out DNS queries to the public namespace if they

are only intended to be resolved locally. To perform such filtering, a policy configuration

needs to be provided to specify whether the queries to a domain should be “local resolution

only”. This defense software can be integrated into corporate OS images and IT depart-

ments can set such policies during the initial device setup. For example, if the company

using the local domain name comp.ntld does not own the domain in the public names-

pace, it can simply set the policy for this domain as “local resolution only”. A long-term

remediation, though one that could require a significant amount of operational effort, is

to convert from using iTLDs to fully qualified domain names (FQDNs) as the root of this

threat stems from the use of iTLDs that collide with the globally delegated TLDs.

5.7 Summary

In this chapter, we perform a systematic study of the robustness of the service client de-

sign and implementations under name collision attacks for internal network services using

DNS-based service discovery. We measure the services exposed to this threat, and perform

vulnerability analysis on their clients. Our results show that nearly all the exposed services

have popular clients vulnerable, suggesting that the name collision problem broadly breaks

common security assumptions made in today’s internal network service clients. To demon-

strate the severity, we construct exploits and find a set of new name collision attacks with

severe security implications. Based on the insights from our study, we propose a series

of service software design level solutions, which enables the victim services to actively

defend against name collision attacks.

139

CHAPTER VI

Systematic Discovery and Analysis of Algorithm-level

Vulnerabilities in Next-generation Smart Transportation

6.1 Introduction

Connected vehicle (CV) technology will soon transform today’s transportation systems.

In September 2016, the USDOT (U.S. Department of Transportation) launched the CV Pi-

lot Program as a national effort to deploy, test, and operationalize a series of CV-based

transportation systems [129, 35]. In these systems, vehicles and infrastructure are con-

nected through wireless communication, and leverage such connectivity to improve mo-

bility, safety, environmental impact, and public agency operations. These systems are cur-

rently under testing in three cities including New York City [129]. To push for a nationwide

deployment, USDOT has already proposed to mandate all new light-duty vehicles to equip

CV technology [128].

While having a great potential, such dramatically increased connectivity also opens a

new door for cyber attacks. To ensure the security of vehicles and transportation infrastruc-

ture and the safety of drivers and pedestrians, it is highly important to understand potential

security vulnerabilities so that they can be proactively addressed before nationwide deploy-

ment.

In this work, we perform the first security analysis on the next-generation CV-based

140

transportation systems. As a first step, we target the USDOT sponsored design and imple-

mentation of a system called Intelligent Traffic Signal System (I-SIG), which performs one

of the most basic urban traffic operations, traffic signal control. In this system, real-time

vehicle trajectory data transmitted using the CV technology are used to intelligently con-

trol the duration and sequence of traffic signals. Such system is fully implemented and has

been tested on real road intersections in Anthem, AZ, and Palo Alto, CA, and has shown

to achieve a 26.6% reduction in total vehicle delay [82]. In this study, our goal is to iden-

tify fundamental security challenges, especially those specific to CV-based traffic control.

Thus, we are particularly interested in security problems that are at the signal control algo-

rithm level and are caused by design or implementation choices instead of implementation

bugs. The analysis results are expected to serve as a guideline for understanding whether

and why the current design or implementation choices in the I-SIG system are vulnerable,

as well as providing insights on how to fundamentally secure it before large-scale deploy-

ment.

The only attack requirement in our study is that attackers can compromise the vehicle-

side devices on their own vehicles or other people’s vehicles, and send malicious CV mes-

sages to the I-SIG system to influence the traffic control decisions. As reported by previous

work, such compromise can be performed physically [224], wirelessly [171], or through

malware [236]. Also, we assume that the vehicle certificate system developed by USDOT

(§2.3.1) can correctly authenticate all CV messages. Thus, instead of the sender identity,

the attack vehicle can only spoof its trajectory data, e.g., speed and location, in the CV

messages. To maximize the realism, in this work we assume that only one attack vehicle

exists in an intersection. This ensures that both our analysis and the discovered security

problems have high practical implications.

With such a threat model, the attack goal in our analysis is to create congestion in an

intersection. Traffic signal control has been proven to be one of the most cost effective way

to increase transportation productivity, and thus it is highly important to ensure its correct

141

and efficient functioning. This is exactly the reason why the USDOT focuses on deploying

the CV-based signal control system [129]. Thus, as the first security study, this work fo-

cuses on identifying the congestion creation vulnerabilities, aiming at directly subvert such

design goals.

We first analyze the I-SIG system design and identify a set of trajectory data spoofing

strategies that can potentially influence the signal control algorithms used in the system. We

then enumerate all the data spoofing options for the identified strategies on the I-SIG system

to understand the upper bound of the congestion attack effectiveness. A commercial-grade

traffic simulation software, PTV VISSIM [95], is used to generate synthetic traffic snap-

shots as the input to the I-SIG system for this analysis. Based on the results, we analyze

the causes for the highly effective attack results, and construct practical exploits under

real-world attack resource constraints.

In our analysis, we find that data spoofing attacks are highly effective for the signal

control algorithm with the default configurations in I-SIG: the spoofed trajectory data from

one single attack vehicle is able to increase the total delay by as high as 68.1%, which

completely reverses the benefit of using the I-SIG system (26.6% decrease) and cause the

mobility to be even 23.4% worse than that without using the I-SIG system. This is very

surprising, since the I-SIG system uses an optimal signal control algorithm that can mini-

mize the total delay of typically over 100 vehicles in an intersection. Thus, the data from

a single vehicle should not have such significant influence. We find that this is due to a

vulnerability at the signal control algorithm level, which we call the last vehicle advantage,

meaning that the latest arriving vehicle can determine the signal plan. Fundamentally, we

find that this is due to a trade off between security and deployability: due to the limited

computation power on the infrastructure-side devices, the developers are forced to choose

a less optimal configuration of the theoretically optimal signal control algorithm, which

unexpectedly exposes the congestion creation vulnerability.

Even though the deployability issue exists today, this problem may be resolvable in the

142

future when the infrastructure-side devices have more computation power. Thus, we then

analyze whether the I-SIG system is still vulnerable with more optimal configurations. In

such scenario, we find that data spoofing attacks can still be highly effective when the I-SIG

system is in the operation mode for the transition period, i.e., when the market penetration

rate (PR) of the CV technology is lower than 95%. In such period, an algorithm that esti-

mates the status of unequipped vehicles, i.e., vehicles without CV technology, is performed

before the signal control algorithm. This is because the signal control algorithm can be very

ineffective due to lack of visibility of the unequipped vehicles, but we find that this allows

the attacker to manipulate such estimation process to create congestion using spoofed data.

To understand the real-world implications of the identified vulnerabilities, we construct

and fully implement the exploits, and evaluate them using simulations on a real-world

intersection map. To increase the realism, we videotaped all traffic flows in the intersection

for one hour and manually counted the passing vehicles as the input to the simulation

model. The results are consistent with our vulnerability analysis, and surprisingly, we

find that the attacks can even cause a blocking effect to jam an entire approach. Fig. 6.1

shows an snapshot in the simulation when the blocking effect is created. As shown, in the

northbound, southbound, and eastbound approaches, the vehicles in the left-turn lanes spill

over and block the through lanes, causing massive traffic jams. In such jamming period,

22% of the vehicles need to spend over 7 minutes for an originally half-minute trip, which

is 14 times higher.

Based on our analysis, even though the I-SIG system has shown high effectiveness in

reducing traffic delay in benign settings, the current algorithm design and configuration

choices are high vulnerable to data spoofing, and even the data from one single attack vehi-

cle is able to manipulate the traffic control to a great extent, causing massive congestion. To

addressed these problems, we discuss promising defense directions leveraging the insights

from our analysis.

We summarize our contributions as follows:

143

Left-turn lane spills

over and blocks the

entire approach

Gas station

The spillover

starts and blocks

one through lane

Figure 6.1: The blocking effect created by our congestion attack on a real-world intersec-

tion map with real traffic demand. Due to the attack from one single attack vehicle parking

nearby, in the northbound and southbound approaches the vehicles in the left-turn lanes

spill over their lanes and directly block the entire approaches, causing massive traffic jams.

• We perform the first security analysis of a CV-based transportation system, the

USDOT sponsored I-SIG system. We formulate the problem with a highly realistic threat

model, data spoofing from one single attack vehicle, and analyze the system design to

identify a set of data spoofing strategies.

• Targeting the goal of creating congestion, we first perform vulnerability analysis to

understand the upper bound of the attack effectiveness. We analyze the causes for the highly

effective cases, and find that the current signal control algorithm design and configuration

choices are highly vulnerable to data spoofing from even a single attack vehicle. These

vulnerabilities exist throughout the full deployment and the transition periods, and can

cause the mobility to be even worse than that without using the I-SIG system.

• For the identified vulnerabilities, we construct practical exploits and evaluate them

under real-world intersection settings. The results validate the attack effectiveness; further-

144

more, for the transition period, the attacks can even create a blocking effect that jams an

entire approach.

6.2 The I-SIG System

As the first security study on CV-based transportation systems, we target the CV-based

traffic control system developed in the DMA program, called Intelligent Traffic Signal Sys-

tem (I-SIG) [132]. In this system, real-time vehicle trajectory data transmitted via DSRC

are leveraged to perform more effective traffic signal control in an intersection.

In the DMA program, the development of I-SIG was assigned by USDOT to a team of

signal control experts. In this work, we use the latest released version, MMITSS-AZ [37].

This version is fully functional in the field, which has been tested in real intersections in

Anthem and Palo Alto and shown high effectiveness with a 26.6% reduction in the total

vehicle delay [82]. In this section, we first introduce some key concepts in signal control,

and then describe the I-SIG system design.

6.2.0.1 Traffic Control Concepts

As shown in Fig. 6.2, the I-SIG system is operated on an RSU located at an intersection

to control the traffic signals. As shown, there are 8 traffic signals, called phases. Phases

with odd numbers are for left-turn lanes; the others are for through lanes. Each phase is

initially configured with the minimum green light lasting time, tgmin
, the maximum green

light lasting time, tgmax
, the yellow light lasting time ty, and the clearance red light lasting

time tr. During the signal control, a phase can be set to turn green and last for a duration

tg. The green duration tg must be at least tgmin
and at most tgmax

; this is enforced at the

hardware level. After tg time passes, the phase will be yellow for ty, and then red for tr

before the subsequent phase turns green, which is for safety purposes since there might be

red light runners.

145

Signal control is performed by setting tg and the phase sequence, which in combina-

tion called a signal plan. Fig. 6.3 illustrates a signal plan. Number 1 to 8 are phases,

and the green, yellow, and clearance red light periods for each phase are filled with the

corresponding colors. As shown, this plan has two phase sequences, called rings, op-

erating simultaneously. The phases in the same ring is in conflict with each other, and

thus need to be planned sequentially. This is called dual-ring signal phasing, which is the

NEMA (National Electrical Manufacturers Association) standard and the most common in

the U.S. [272]. For each ring, the phase sequence is broken down to stages. Two types of

stages are planned alternatively, one for phase 1, 2, 5, and 6, and another for phase 3, 4, 7,

and 8. The phases in the former stage type are in conflict with those in the latter stage type,

and thus the phases in the same stage are planned as a whole.

A signal control algorithm needs to follow the rules above, and plan (1) tg for each

phase, and (2) the sequence of phases in the same ring and same stage, e.g., phase 1 and 2

in the figure. A typical goal of such algorithm is to reduce the total delay for all vehicles

in the intersection. The delay time for a vehicle spent in an intersection is calculated as

the actual time the vehicle spent to pass the intersection subtracting the so-called free-flow

travel time, meaning that the vehicle is traveling at the speed limit without slowing down

or stopping due to red lights or other vehicles. The traffic load for an intersection is called

traffic demand.

6.2.0.2 System Design

Fig. 6.4 shows the design of the I-SIG system. The BSM messages broadcast by the

equipped vehicles are received by a component called trajectory awareness, which main-

tains the latest trajectory for each vehicle indexed by the vehicle ID in the BSM messages.

It also does some pre-processing tasks for the use in the signal planning component, e.g.,

assigning vehicle data to their requested phases based on the intersection map. The sig-

nal planning component listens to the traffic signal status reported by the signal controller,

146

I-SIG

1 6

4

7

2 5

8

3

Figure 6.2: The operation scenario for the I-SIG system.

and launches signal planning stage by stage. More specifically, at the beginning of each

stage, the signal planning component pulls the pre-processed real-time trajectory data for

the vehicles in the intersection, performs the planning, and sends signal control commands

to the signal controller. In the current design, the following algorithms are used for signal

planning:

The COP algorithm. The signal planning in the I-SIG system uses a dual-ring version

of the COP (Controlled Optimization of Phases) algorithm[260, 197]. The input of the

COP algorithm is each approaching vehicle’s estimated arrival time at the intersection,

which is defined as the estimated remaining time for a vehicle to reach the stop bar of its

current lane. Based on the arrival time, COP uses dynamic programming to calculate an

optimal signal plan with the least estimated total delay. To estimate the total delay, COP

first estimates the releasing time for a vehicle based on the queue length at its arrival time.

If there is no queue, there is no delay; otherwise, it uses a queuing model to estimate when

the queue before the vehicle is cleared. Then, the delay for a vehicle is calculated as its

releasing time subtracting its arrival time. If there are no vehicle requesting a certain phase,

COP skips this phase in its planning so that the subsequent phases that have vehicle request

147

1Ring 1

Stage 1

Ring 2 5

2

6

Stage 2 Stage 3

3

7

4

8

2

5

1

6

...

time

Figure 6.3: Illustration of a signal plan. Number 1 to 8 are phases.

can be planned earlier.

In the design, COP can plan for unlimited number of stages until all vehicles in the

intersection can be served based on its estimation. Since there might be more vehicles ar-

riving at the phases in the second stage, the I-SIG system only applies the planned signal

duration for first stage at each signal control time. Since the operation of the signal con-

troller requires to know what the next phase is after the current phase, the I-SIG system

also sets the phase sequence for the next stage at the time of signal control. This means

that in Fig. 6.3, the I-SIG system cannot change the order of phases in the first stage, since

this is set by the signal control last time. It can change the duration of these phases, and the

sequence of the phases in the second stage based on the output of the COP algorithm.

In the current I-SIG system, a limit of the planning stages is configured in COP. This

is because in practice the signal planning needs to finish within tgmin
, usually 5-7 seconds,

in order to be applied to the signal controller in time. Thus, with computation and memory

resource constraints in practice, COP cannot plan with unlimited stages like in its design.

With limited planning stages, the COP algorithm may not be able to serve all vehicles.

Thus, the current implementation in the I-SIG system first finds the plans with the least

unserved vehicles, and then choose the one with the least total delay. As shown later

in 6.6.3.1, such planning stage limit unexpectedly leaves the I-SIG system vulnerable to

congestion attacks.

Transition period: the EVLS algorithm. If the COP algorithm only optimizes the

148

Phase signal

controller

Trajectory

awareness

Signal planning

COP EVLS

BSM

Signal

status

Real-time

trajectory

data

Signal

control

Figure 6.4: The I-SIG system design.

signal plan for the equipped vehicles, its effectiveness is found to be largely reduced if

the portion of the equipped vehicles is not sufficiently high, e.g., less than 95% [197].

Since it is estimated that the market penetration rate needs 25-30 years to reach at least

95% [135], the I-SIG system uses an algorithm called EVLS (Estimation of Location and

Speed) to estimate the trajectory data of the unequipped vehicles. In the EVLS algorithm,

the trajectory data of the equipped vehicles is used for such estimation leveraging multiple

traffic models (detailed later in §6.5.2).

Design representativeness and current deployment. The use of COP and EVLS is

chosen by the I-SIG designer, the team of USDOT-selected signal control experts, based

on a 2015 paper published in Transportation Research Part C [197], a top-tier journal in

transportation research. The COP algorithm is chosen because it is very suitable for the

CV environment: its input is the arrival time for individual vehicles instead of aggregated

traffic information, and thus can best leverage the per-vehicle trajectory data in the CV en-

vironment to effectively handle traffic dynamics. As discussed earlier, the EVLS algorithm

is developed to overcome the limitation of COP in the transition period. To the best of

our knowledge, this is the only design in the transportation literature that is fully imple-

mented and tested on real roads. In the CV Pilot Program, this system is currently under

deployment in Tampa [36].

149

6.3 Threat Model

As illustrated in §6.2, the operation of the I-SIG system involves both infrastructure-side

devices, i.e., RSUs and signal controllers, and vehicle-side devices, the OBUs. Previous

work found that the traditional transportation infrastructure side devices tend to use weak

credentials so that attackers can easily take full control [202]. This is a known problem

across many embedded network devices [183] and we assume that the next generation CV-

based transportation systems will be fully aware of this problem, and adopt sufficiently

strong authentication mechanisms as advised by previous work [202] so that they cannot

be easily compromised.

Thus, in this work we focus on the attacks from the vehicle-side devices, the OBUs.

More specifically, we assume that the attacker can compromise the in-vehicle systems or

OBUs on their own vehicles or others’ vehicles so that she can send malicious BSM mes-

sages to the RSUs to influence the signal plan. It’s important to note that we do not as-

sume that the attackers can spoof the sender identities in the BSM messages. Introduced

in §2.3.1, the USDOT will deploy the SCMS system to ensure that all BSM messages are

authenticated. Since in this work we are more interested in new security problems specific

to CV-based traffic control, we assume that the SCMS system is sufficiently tested and not

easily exploitable.

Thus, in our threat model the attack vehicles need to use their true identities so that

the sent BSM messages are still correctly signed, but send spoofed vehicle trajectory data,

e.g., speed and location, in these messages. This can be achieved in two ways. First, the at-

tacker may directly compromise OBUs by exploiting software vulnerabilities, similar to the

demonstrated compromises on other Electronic Control Units (ECUs) [224, 171]. Second,

if compromising OBUs is difficult, the attacker can send fabricated CAN messages with

spoofed sensor data to the OBUs by compromising other ECUs [224, 171, 180]. Since

the attack model includes malicious vehicle owners who have arbitrary physical accesses,

as long as in-vehicle systems are not vulnerability-free, which has been proved repeat-

150

edly [224, 171, 236], such compromises are always achievable in practice, just like the

smartphone jailbreaking/rooting practices today.

To maximize the realism of our threat model, in this work we assume that only one

attack vehicle presents in an intersection. Since the COP algorithm targets optimized total

delay for all vehicles in an intersection, which normally have over 100 of them, it should

be very challenging for the data from one single vehicle to significantly influence the signal

planning. However, as shown later, this is actually possible due to several newly-discovered

vulnerable design and configuration choices.

The attacker is assumed to have limited computation power to launch the attack, e.g.,

only using a consumer laptop. More specifically, when using paralleled computation, the

attack laptop is assumed to have four processors to execute simultaneously, which is a

common specification for consumer laptops such as Macbook Pro. Before attacking an

intersection, the attacker is assumed to have performed sufficient reconnaissance and thus

already knows (1) the signal control algorithm choices, by testing the algorithm-specific

vulnerabilities identified in this work (detailed later), and (2) signal control configurations

and the intersection map, by measuring the opened phases, the corresponding signal dura-

tion, and the intersection map beforehand.

Since in the CV environment the vehicles are broadcasting BSM messages to the sur-

rounding devices (§2.3.1) and the attack vehicle is in the victim intersection, we assume

that the attack vehicle can receive the same set of BSM messages as those in the RSU.

Thus, they can run the COP and EVLS algorithms themselves to know the executed signal

plans and also estimate the signal plans to be executed, which is also implemented in our

exploitation process(§6.7.1).

6.4 Analysis Methodology Overview

In this section, we describe the target attack goals and overview the analysis methodol-

ogy.

151

6.4.1 Attack Goals

Targeting the traffic signal control functionality, our analysis considers three attractive

attack goals as follows:

Congestion attack. One immediate attack goal is to directly subvert the core design

goal of the I-SIG system, total vehicle delay reduction. More specifically, the attacker

aims to send spoofed trajectory data to influence the signal plan in order to increase the

total delay of other vehicles in the intersection. The attack vehicle is not necessarily in the

traffic flows; it might just park nearby, e.g., in a gas station as shown in Fig. 6.1, listening

to the BSM messages from other vehicles, and seek chances to launch attacks.

Such attacks can be politically or financially incentivized, e.g., blocking routes to busi-

ness competitors, like denial-of-service attacks on Internet. Since one attack vehicle can

only attack one intersection, to cause larger-scale damage, attackers can form groups to

attack consecutive intersections along arterial roads in an area.

Personal gain attack. Besides causing traffic jams, another attractive attack goal is

to change the traffic signal plan to decrease the travel time for the attack vehicle so that

the attacker can gain unfair advantage at the cost of other vehicles’ travel time in an in-

tersection. Different to the congestion attack scenario, the attack vehicle in this attack is

inside the traffic flow. While it approaches an intersection, instead of broadcasting BSM

messages like normal, it first listens to the broadcast driving data from other vehicles and

then launches data spoofing attacks for its own advantage.

Safety attack. Besides influencing the vehicle travel time, attacking traffic signal con-

trol can also increase the safety risks of other vehicles in an intersection. More specifically,

we target a safety problem specific to the traffic signal control domain, dilemma zone (DZ).

A dilemma zone is an area on the high-speed intersection approach, i.e., at least 35 mph,

where vehicles at the onset of the yellow light can neither safely stop before the stop line

nor proceed through the intersection by the start of the red light [286]. It has been rec-

152

ognized as a major factor causing rear-end and right-angle crashes [279], leading to more

than one million car collisions a year where a quarter of them involves death or injury [38].

On average, it is estimated that each vehicle in the dilemma zone costs $1.13 for the victim

and the government [264].

Targeting this severe safety issue, the concrete goal of this attack is to change the traffic

signal plan to put as many victim vehicles as possible into the dilemma zone. Like the

congestion attack scenario, in this attack the attack vehicle does not need to be in the traffic

flow, and might just park near the intersection when launching the attack.

Later in §6.6.2, we will detail how we quantify the attack effectiveness for each of these

attack goals in our security analysis.

6.4.2 Analysis Methodology Overview

To understand how vulnerable the current I-SIG system design and implementation is

under our threat model, our security analysis consists of the following key steps:

(1) Data spoofing strategy identification. Before analyzing the vulnerability of the

I-SIG system, we first need to identify the meaningful data spoofing strategies. Since the

attack input is the data in the BSM messages, we analyze the data flow of the I-SIG sys-

tem starting from the receiving BSM messages to understand how the spoofed data can

potentially influence the signal control.

(2) Vulnerability analysis for each attack goal. With data spoofing strategies iden-

tified, we then enumerate all the data spoofing options for these strategies on the I-SIG

system to understand the upper-bound attack effectiveness. To quantifiably evaluate attack

effectiveness, we design quantification metrics for each of the attack goals based on their

definitions. To analyze the I-SIG system, we need realistic vehicle trajectory data as input

to trigger the signal planning. Since it is impossible to use real vehicles in an intersection

due to ethical concerns, our analysis uses a commercial-grade traffic simulation software,

PTV VISSIM [95], to simulate traffic patterns with a realistic modelling of driver behav-

153

iors.

To ensure the generality of this analysis, we create an intersection map with the a

generic intersection structure and the common phase configuration in the U.S. We then

use VISSIM to generate traffic flows of normal demand following the common practices

in the transportation research area. We take snapshots of the vehicle trajectory data in the

simulation periodically, which is then used as the input to our analysis. For each snapshot,

we run the signal planning in the I-SIG system with and without attack data input, and

quantify the attack effectiveness using the defined metrics for the three attack goals.

(3) Cause analysis and practical exploit construction. With the attack effectiveness

for all possible data spoofing options quantified, we perform cause analysis for the highly

effective attacks to understand why the current signal control is vulnerable. Leveraging

the insights, we construct practical exploits under real-world attack resource constraints,

e.g., computation power of a normal laptop as described in our threat model (§6.3). As

detailed later in §6.7.1, this means that the attacker cannot exhaustively try all possible data

spoofing options before making the attack decision; instead, she needs to strategically plan

the attack decision process to ensure that she does not miss the attack timing.

(4) Evaluation using simulations with real-world intersection settings. To more

concretely understand the practical impact of the constructed exploits, we implement and

evaluate these exploits using simulations with real-world intersection settings. We use the

map of a real-world intersection with its real phase configurations, and generate traffic

flows according to the real traffic demand that we manually measured for one hour on

that intersection. Also, compared to attacking individual snapshots in the vulnerability

analysis step, in this experiment the attacks are continuously launched for one hour, closely

evaluating real-world attack situations.

154

PR > 95%

Spoofed

vehicle

trajectory

data

Geofence

check

On

map

PR

<= 95%
Vehicle

position

classification

Queue

estimation

Add

slow-down

vehicles

Add

free-flow

vehicles

Queuing

region

Slow-down

region

Free-flow

region

Phase

A
rr

iv
a

l
ti

m
e

2...8

0

1

2

3

…

130

12

1

Arrival table

COP
Signal

plan

Arrival

time est.

e

Strategy

S2

2
Strategy S1

Figure 6.5: The data flow of spoofed vehicle driving data in the I-SIG system. PR means

penetration rate.

6.5 Data Spoofing Strategy

As the first step in our analysis, in this section we analyze attack input data flows to

identify data spoofing strategies.

6.5.1 Attack Input Data Flow and Direct Spoofing Strategy

Fig. 6.5 shows the attack input data flow in the I-SIG system. When the spoofed vehicle

trajectory data is received, it first performs a geofence check, and only accepts the data if

its location is within the geographic boundaries of the intersection. Thus, as described

in §6.3, the attacker needs to perform reconnaissance to know the geographic coordinates

of a targeted intersection, and only generate valid location data to pass the geofence check.

Then, if the configured PR in the I-SIG system is lower than 95%, it is considered

a transition period and the attack data are feed into the EVLS algorithm to estimate the

trajectory data for the unequipped vehicles. Otherwise, it is considered a full deployment

period and the EVLS algorithm is skipped.

A list of vehicle trajectory data entries, including the ones for both the equipped vehicles

and the estimated unequipped vehicles if it is during the transition period, is then processed

to a structure called arrival table. An arrival table is an array with two dimensions: the

estimated arrival time and the phases. The arrival time is rounded to seconds. Each array

155

element at (i, j) is the number of vehicles for the arrival time i at phase j. The first row is

for vehicles with zero arrival time, meaning that they are stopped (speed is 0) and waiting

in queue.

The COP algorithm computes a signal plan with the optimal total delay for all vehicles

based on the arrival table. Thus, the direct goal of the data spoofing attack is to change the

values in the arrival table so that it can influence the planning in the COP algorithm. Since

each vehicle has a position in the arrival table, the direct data spoofing strategy is:

S1. Arrival time and phase spoofing, for both the full deployment and transition

periods. In both the full deployment and transition periods, the attacker can change the

speed and location in its BSM message to set the arrival time and the requested phase of

her choice and thus increase the corresponding arrival table element by one. In current

implementation, the arrival table considers vehicles arriving in no more than 130 seconds.

Thus, in this strategy the attacker has 131 (arrival time) × 8 (phase) data spoofing options.

6.5.2 Spoofing Strategy For The Transition Period Only

To change the arrival table, besides directly spoofing the attack vehicle’s own data, the

unequipped vehicle estimation process in the transition period is another attractive attack

target. Since both the data from equipped and unequipped vehicles are considered in the

arrival table, manipulating the estimation results may more significantly influence the signal

plan than only changing one vehicle’s data in S1.

The unequipped vehicle estimation process, i.e., the EVLS algorithm [197], is detailed

in the lower part of Fig. 6.5. As shown, the equipped vehicle data for each lane are first

assigned into three regions: (1) queuing region, including vehicles waiting in the queue

with zero speed, (2) slow-down region, including vehicles slowing down because of the

front vehicles, and (3) free-flow region, including vehicles far away from the queue so

that they behave independently. The algorithm first finds the stopped equipped vehicle

that is the farthest from the lane stop bar and uses its location as the end of the queuing

156

region. The slow-down region started right after the queuing region, and the algorithm

uses the equipped vehicle’s trajectory data to judge whether it is slowing down due to an

unequipped front vehicle based on a car-following model. After the slow-down region

begins the free-flow region.

After the region assignment, the algorithm first estimates the number of vehicles in

queue by dividing the length of the queuing region by the sum of the vehicle length and

the headway in queue, which is 6.56 meters in the implementation. For the slow-down

region, for each pair of adjacent equipped vehicles, the algorithm inserts unequipped ve-

hicles between them based on the car-following model. Then if the number of vehicles

after the vehicle addition in the queuing and slow-down regions is smaller than the num-

ber of equipped vehicles divided by the PR, the algorithm adds the remaining unequipped

vehicles to the free-flow region.

Among the three regions, we find that manipulating the estimation of the queuing region

is most effective. The attacker can just set the speed to zero and set its location to the

farthest possible point of the most empty lane within the geofence so that the lane can be

fully filled with queuing vehicles after the estimation. In comparison, attacking the slow-

down region is less effective since (1) the number of vehicles it can add is fewer since

the space headway between moving vehicles in the car-following model is larger than that

between queuing vehicles, and (2) the increased delay by adding moving vehicles is no

greater than that by adding queuing vehicles, since the queuing releasing process can create

more delay as introduced in §6.2. Since the COP algorithm is designed to optimize the total

delay, more vehicles to add and more delay time to increase can have more impact on the

signal planning.

Thus, the best strategy is attacking the queue estimation:

S2. Queue length manipulation, for the transition period only. In the transition

period, the attacker can change the speed and location data in its BSM message to set

the location of the farthest stopped vehicle in a chosen lane, and thus add a number of

157

unequipped queuing vehicles after the original farthest stopped vehicle in the EVLS algo-

rithm. Since this attack only adds queuing vehicles, the change to the arrival table is at the

first row. For each phase, the attacker has multiple data spoofing options that can increase

the value from by one to by the maximum queue length she can add considering the loca-

tion of the originally farthest stopped vehicle and the geofence range of the lanes in that

phase.

6.6 Vulnerability Analysis

In this section, we use the identified data spoofing strategies to analyze the vulnerability

status of the I-SIG system.

6.6.1 Experiment Setup

Traffic snapshot generation. As described earlier in §6.4.2, we use a generic in-

tersection settings for this analysis. The intersection structure, e.g., number of lanes for

each phase, is shown earlier in Fig. 6.2. The speed limits for all approaches are 40 mph.

Each arm of the intersection is set to about 300 meters from the center of the intersection,

which is similar to the DSRC communication range [195]. The tgmin
, tgmax

, ty, and tr

of each phase are configured according to the recommendations from the Signal Timing

Manual [272]. In this generic intersection, we use VISSIM to generate vehicles at 0.7 v/c

(vehicle per capacity), which corresponds to the medium traffic demand level [235]. Then

we run the I-SIG system, and take vehicle trajectory snapshots every time the I-SIG system

needs to perform signal planning.

We run the traffic simulation for each scenario three times, each time lasting one hour

with a different random seed following the common practices in the transportation research

area [260, 164]. In total, we generated 873 snapshots. These snapshots are directly used

when we experiment for the fully deployment period. When experimenting for the transi-

tion period, we consider three PR levels, 25%, 50%, and 75%, which is the same as that in

158

the EVLS algorithm paper [197]. In these experiments, we still use the 873 snapshots, but

randomly select a subset of data according to the PR. The random seed for such selection

is the same for all experiments with the same PR so that their results are comparable.

Attack data generation. Using these snapshots, we perform vulnerability analysis of

the I-SIG system for congestion attacks by trying all data spoofing options for the strategies

identified in §6.5. For the full deployment period, only strategy S1 is experimented, and

for the transition period, both S1 and S2 are experimented. For each data spoofing trial, a

new vehicle trajectory data entry with the spoofed data is added to the traffic snapshot as

the attack input.

6.6.2 Attack Effectiveness Quantification

For each snapshot, we run the I-SIG system to get the signal plans with and without

attack. Since our goal is to understand the upper bound attack effectiveness, for a snap-

shot and a chosen data spoofing strategy, we pick the attack result from the most effective

data spoofing trial. Based on the semantics of the attack goals, we calculate the attack

effectiveness as follow:

Congestion attack. For the goal of creating congestions, we analyze the attack effec-

tiveness by comparing the total delay of all vehicles with and without the attack input in

each snapshot. For the signal plans with attack, the total vehicle delay time is calculated

after the attack vehicle data being removed. For the transition period, the ground truth

unequipped vehicle data (instead of the estimated data) are used in the calculation.

In the delay calculation, we use the same vehicle delay estimation method in the COP

algorithm (§6.2). Since this calculation is based on the arrival time estimation, the calcu-

lated delay is not the actual delay since the vehicles may not behave as predicted after the

snapshot is taken. However, considering that the COP algorithm has a demonstrated effec-

tiveness [82, 197], such estimation is effective for our purpose, i.e., comparing the attack

effectiveness among different attack trials. In addition, since our goal is to study the vul-

159

nerabilities at the signal control algorithm level, using this estimation method allows us to

directly evaluate the attack’s influence on the signal planning in the COP algorithm. Later

in our attack evaluation (§6.7.2), we will directly measure the actual vehicle delay using

the ground truth vehicle trajectory in VISSIM.

In this analysis, we quantify the attack effectiveness using three metrics: (1) attack suc-

cess rate, which is the percentage of the snapshots with the total delay increased under the

attack, which we also call vulnerable snapshots, (2) average delay increase time, which is

the average absolute increase of the total delay under attack, and (3) average delay increase

percentage, which is the average ratio of the increased total delay under attack to the total

delay without attack.

Personal gain attack. For the goal of decreasing the attacker vehicle’s travel time, we

need to specify an attack vehicle first for the effectiveness calculation. In our analysis, we

randomly pick a vehicle in each traffic snapshot as the attack vehicle, and remove it from the

snapshot before attack trials. For the signal plan with and without attack, we only compare

the travel delay for the selected attack vehicle. Like in the congestion attack, we use the

same vehicle delay estimation method in the COP algorithm for the delay calculation.

In this analysis, we quantify the attack effectiveness using three metrics: (1) attack suc-

cess rate, which is the percentage of the snapshots with the attack vehicle’s delay decreased

under the attack, (2) average delay decrease time, which is the average absolute decrease of

the attack vehicle’s delay under attack, and (3) average delay decrease percentage, which

is the average ratio of the decreased attack vehicle’s delay to its delay without attack.

Safety attack. As defined in §6.4.1, for this goal the attacker aims to put as many

vehicles as possible into dilemma zones. For the signal plan with and without attack, we

calculate the total number of vehicles inside dilemma zones using the definition of dilemma

zone in the transportation field [286].

In this analysis, we quantify the attack effectiveness using three metrics: (1) attack

success rate, which is the percentage of the snapshots with the number of vehicles inside

160

CV Full deployment Transition period

deployment 100% PR 75% PR

COP configuration 2-S 5-S 2-S 5-S

Strategy S1 S1 S1 S2 S1 S2

Success % 99.9% 96.4% 99.1% 98.3% 83.2% 96.8%

Average delay 1078.7 162.7 982.2 536.3 167.3 533.9

increase (s) & % 68.1% 11.5% 60.2% 32.7% 10.6% 33.5%

Table 6.1: Vulnerability analysis results for congestion attacks in full deployment period

and transition period with 75% penetration rate. PR is short for penetration rate. Two-stage

planning and five-stage planning in the COP algorithm configuration are denoted as 2-S

and 5-S respectively, with the former being the default choice.

dilemma zone increased under the attack, (2) average in-DZ vehicle increase, which is

the average absolute increased number of vehicles inside dilemma zone under attack, and

(3) average in-DZ vehicle increase percentage, which is the average ratio of the increased

number of vehicles inside dilemma zone to that without attack.

6.6.3 Congestion Attack Analayis

In this section, we analyze the results for congestion attacks. The results for the full

deployment period is in §6.6.3.1 and those for the transition period is in 6.6.3.2.

6.6.3.1 The Full Deployment Period

The attack results for the full deployment period are shown in Column 2 to 3 in Ta-

ble 6.1. In these columns, non-successful attacks means that the total vehicle delay is not

changed. As introduced in §6.2, the COP algorithm implemented in I-SIG configures a

limit on the number of planning stages. By default it uses two-stage planning, which is

denoted as 2-S in the table. We first analyze the results with such default configuration:

Two-stage planning results. As shown in Column 2 in Table 6.1, we find that S1 is

quite effective in creating congestions: it is able to successfully increase the total delay

for nearly all (99.9%) snapshots with as high as 68.1% delay increase. In comparison, the

benefit of using the I-SIG system is only a 26.6% total delay reduction [82], but our attack

can completely reverse such benefit and cause the traffic mobility to be even 23.4% worse

161

CV Transition period

deployment 50% PR 25% PR

COP configuration 2-S 5-S 2-S 5-S

Strategy S1 S2 S1 S2 S1 S2 S1 S2

Success % 99.4% 99.2% 83.0% 97.4% 99.9% 98.9% 82.0% 91.6%

Average delay 1001.3 536.2 206.6 569.6 1009.2 531.1 295.8 616.7

increase (s) & % 61.4% 33.0% 12.5% 34.6% 60.6% 32.4% 17.0% 34.3%

Table 6.2: Vulnerability analysis results for congestion attacks in transition period with

50% and 25% penetration rates. PR is short for penetration rate. Two-stage planning

and five-stage planning in the COP algorithm configuration are denoted as 2-S and 5-S

respectively, with the former being the default choice.

than that without using the I-SIG system. This is very surprising, since COP optimizes for

the total delay of typically over 100 vehicles in an intersection, and a single vehicle data

should not have such significant influence.

Vulnerability cause: last vehicle advantage. By manually examining the signal plan

output, we find that for all the vulnerable snapshots, the most successful attack trial adds

a spoofed vehicle with very late arrival time. In this work, we call it the last vehicle ad-

vantage, which is illustrated in Fig. 6.6. As shown, in the signal plan, such late vehicle

determines the green light end time for its requested phase. This delays the green light

begin time for all the phases after it, and thus increases the delay for the vehicles in these

phases. If tg of the phase with this late vehicle reaches tgmax
, the tg for the phases before

this phase will also extend in order to serve this late vehicle, which further delays the ve-

hicles in later phases. Fig. 6.6 illustrates such attack on phase 2. As shown, due to the

spoofed late arriving vehicle, the tg of all the phases in the first stage are extended in order

to be able to serve it, causing long delay to serving time of the vehicles in the second stage.

However, as an algorithm optimizing for the delay of all vehicles, COP should just give

up serving this very late vehicle in this green light if serving it costs too much delay for

other vehicles. We find that the root cause lies in the planning stage limit when imple-

menting COP in practice. Since the default configuration uses two-stage planning, each

phase can only be planned once. Thus, for each phase, planning has to serve all vehicles in

this only serving opportunity, causing the planning to be significantly affected by the last

162

arriving vehicle.

This issue can be alleviated when the COP algorithm is allowed to plan for more stages.

For example, if the planning stage limit is four, COP now has two opportunities to serve

the vehicles for one phase. Thus, even if a vehicle arrives very late, it can delay serving it

to the second opportunity. In this case, vehicles in other phases can be served in the first

opportunity and thus is less likely to be affected. Fig. 6.7 shows the percentage of snapshots

vulnerable to the last vehicle advantage for the COP algorithm configured with two-stage

to eight-stage planning. In the calculation, a snapshot is concluded vulnerable if the most

successful attack trial comes from a spoofed vehicle arriving the last in its request phase.

As shown, for two-stage planning, nearly all the snapshots can be the most successfully

attacked using the last vehicle advantage, and such percentage decreases when more plan-

ning stages are configured. The most significant decrease is at four-stage planning, since

with such configuration all phases get two serving opportunities. With over four planning

stages, the last vehicle advantage is no longer the best trial for any snapshot.

Trade off between security and deployability. Knowing that two-stage planning is

highly vulnerable to late arriving vehicles, we are curious why the I-SIG system devel-

opers chose to set it as the default value. We contacted the developers and find that it is

actually an interesting trade off between deployability and security. As indicated by the

developers, they chose two-stage planning because the running time for more planning

stages are too high in practice to meet the planning deadline. Since the planning has to

finish in tgmin
(§6.2), which is typically around 5-7 seconds [272], they told us that running

three-stage planning on their RSUs takes more than three seconds due to the limited com-

putation power on RSUs, making it too risky to use. Meanwhile, in their testing, they find

two-stage planning does not have much planning effectiveness degradation in comparison

to five-stage planning, so they choose it as the default value.

They told us that they use the mainstream Savari StreetWAVE RSU [103] and the 95

percentile running time for two-stage planning takes 1.2 seconds. We then use the ratio

163

between this number and the corresponding running time on our machine to estimate the

running time for more planning stages on these RSUs. As shown in Fig. 6.7, our estima-

tion results are consistent with their observations: purely running COP with three planning

stages takes around 3 seconds, and with communication delay and the running time of

other parts, e.g., the EVLS algorithm, it is indeed risky to use more than two planning

stages. In our snapshots without attack, we also confirmed that using two-stage planning

only has 6.5% increase in total delay on average than that using five-stage planning. Thus,

choosing two-stage planning is indeed a practical choice that trades small planning effec-

tiveness degradation for reliability. However, such choice is found to be highly exploitable

leveraging the last vehicle advantage.

Expected to be mounted outdoor in every intersection, RSUs need to be sufficiently

reliable with low cost, which leads to performance constraints just like many real-time

embedded systems today [241, 231]. While we have shown that such constraints today

cause security vulnerabilities, we envision that this situation may be resolvable in future

when the infrastructure-side devices have more computation power. Thus, we are also

interested in exploring whether the I-SIG system is still vulnerable after the last vehicle

advantage is largely mitigated, i.e., with more planning stages configured. Thus, next we

perform analysis for the I-SIG system with five-stage planning, with which exploiting last

vehicle advantage is no longer the most successful trial (shown in Fig. 6.7).

Five-stage planning results. Column 3 in Table 6.1 shows the results after we con-

figure the COP algorithm to use five-stage planning. As shown, even though the success

rate is still high, the attack is much less effective: both the increased total delay time and

percentage are nearly 7× less. Thus, without the last vehicle advantage, the I-SIG system

becomes much less vulnerable to the data spoofing from one attack vehicle.

Nevertheless, the attacks can still cause a 11.5% total delay increase on average. Con-

sidering that the benefit of using the I-SIG system is around 26.2% total delay reduc-

tion [82], the attack result still shows moderate effectiveness. We analyze the causes and

164

1Ring 1

Stage 1

Ring 2 5

2

6

Stage 2

3

7

4

8

time
Phase 2 :

1Ring 1

Stage 1

Ring 2 5

2

6

Stage 2

3

7

4

8

time
Phase 2 :

Add a spoofed late

arriving vehicle

Figure 6.6: Illustration of the last vehicle advantage. By exploiting it, even the spoofed

data from a single attack vehicle can significantly influence the signal planning.

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8
 0

 1

 2

 3

 4

 5

%
 o

f
s
n

a
p

s
h

o
ts

C
O

P
 s

o
lv

in
g

 t
im

e
 (

s
)

Planning stage #

Last vehicle advantage
Est. COP solving time

Figure 6.7: Percentage of snapshots vulnerable to the last vehicle advantage and the esti-

mated COP solving time with two to eight planning stages.

find two types of effective spoofing trials:

• Open a skipped phase. If there are skipped phases, the attacker can add the spoofed

vehicle to one of them to force the signal planning to open it. Since an open phase needs

at least tgmin
green light time, which is 7 seconds in our generic intersection settings [272],

this causes the signal plan under attack to waste the time in serving an empty phase at

the cost of the vehicle delay in other phases. If only trying this category of data spoofing

options, the total delay increase percentage is 8.9%, which is already very close to that

165

(11.5%) with all data spoofing options enumerated.

• Extend the green light end time. Besides opening a skipped phase, the most suc-

cessful data spoofing options are to set the spoofed vehicle arrival time to a few seconds

after the original green light end time for a phase. This vehicle needs to wait for a whole

planning stage if its serving is delayed to the next serving opportunity, which increases its

delay and also the total delay by 20-50 seconds depending on the length of the next plan-

ning stage. Thus, in COP it is sometimes more cost effective by just extending the original

green light end time for a few seconds to serve this vehicle. However, such extension is

usually at most 4 seconds since it is no longer cost effective if the total delay added to the

vehicles waiting in the subsequent phases is too much.

The data spoofing options for these two categories in total has around 10.1% in the

total delay increase percentage. For the remaining 1.4% difference to that with all options

enumerated, we find that the left-out successful trials are highly dependent on the traffic

pattern and do not have a clear pattern.

6.6.3.2 The Transition Period

In this section, we analyze the vulnerability status of the I-SIG system in the transition

period. The analysis results are shown in Column 4 to 7 in Table 6.1 and column 2 to 9 in

Table 6.2. In the transition period, strategy S2 can now be used in addition to S1. Thus, in

this section we analyze both strategies for each PR and planning stage configuration. As

described in §6.5.2, S2 can add a number of non-existing unequipped vehicles by exploiting

the queue length estimation in the EVLS algorithm. Since there are around 100 vehicles in

each snapshot, these non-existing vehicles constitute a substantial share of total vehicles in

the signal planning. This should trick the COP algorithm into giving more priorities to this

big group of non-existing vehicles at the cost of other vehicles’ delay.

Overall effectiveness. As shown in the table, for a combination of a PR, a planning

stage configuration, and a data spoofing strategy, the attack success rates and the average

166

total delay increase percentages are 94.0% and 38.2% on average. This show that both

strategy S1 and S2 are effective in creating congestion and can completely reverse the mo-

bility benefit of using the I-SIG system. Also, we find that for each combination, the three

attack effectiveness metrics are relatively the same, with less than 6% absolute differences

in the average total delay increase percentages. This shows that the attack effectiveness is

not significantly affected by PR. Next, we perform more in-depth analysis for the attacks

on the two-stage and five-stage planning configurations respectively.

Two-stage planning results. Column 4-5 in Table 6.1 and column 2-3, and 6-7 in

Table 6.2 show the attack results for the two-stage planning. As shown, strategy S1 can

still achieve over 99.1% success rate, and increase over 60.6% in the total delay. We find

that the underlying cause is the same as that for the full deployment period: the last vehicle

advantage (§6.6.3.1). Since the arrival time to maximally extend the green light time of the

phases is not affected by the traffic conditions, the last vehicle advantage can always be

reliably exploited for the two-stage planning scenarios regardless of the PR.

Strategy S2, which is newly enabled in the transition period, also shows high effective-

ness. For all three PRs, the attack success rates are over 98.3%, and the average total delay

increase percentages are over 32.4%. However, the increased percentages are still around

50% less than those using S1. We compare the most successful data spoofing options from

S1 and S2, and find that for 99.0% of the snapshots, the best trial from S1 is no less than

that from S2. We find that this is because even though adding the non-existing vehicles

can indeed cause the signal planning to extend the tg of a target phase to tgmax
like S1, last

vehicle advantage is able to further cause the tg of the preceding phases to extend so that

the vehicles in the subsequent phases can be further delayed.

Five-stage planning results. Column 6-7 in Table 6.1 and column 4-5, and 8-9 in Ta-

ble 6.2 show the results for five-stage planning. As shown, since the last vehicle advantage

is much less effective for five-stage planning, the success rates and average delay increase

percentages for S1 reduce to at most 83.2% and 17% respectively, as opposed to at least

167

99.1% and 60.2% for two-stage planning. Very similar to the full deployment period, we

find that the most successful data spoofing trials are opening a skipped phase and extending

green light end time.

Thus, with the last vehicle advantage becoming much less effective, S2 is now the dom-

inating strategy. We compare the results between these two strategies for each snapshot,

and find that for 93.5% of the snapshots, the best trial from S2 is no less than that from

S1. We then analyze which data spoofing trials in S2 are the most successful. We find that

for a certain phase, the best trial is to add the most non-existing unequipped vehicles, i.e.,

adding a farthest stopped vehicle using S2. If we only try these 8 options (one for each

phase), the best trials among them and those among all possible data spoofing options only

have 0.009% differences in the average total delay increase percentage. This is expected

since adding more non-existing vehicles should gain more priority in signal planning and

thus cost more delay to the other vehicles. For very few cases these 8 options fail to hit the

most successful data spoofing trial. This is caused by the differences between the estimated

and actual arrival time of the unequipped vehicles; if we calculate the attack effectiveness

based on the estimated arrival time from the EVLS algorithm, these 8 options are always

the best. Thus, in our exploit construction later, we only need to consider these 8 options,

which is much less than trying all (usually over 250) possible options.

6.6.4 Personal Gain and Safety Attacks

In this section, we analyze the results for personal gain and safety attacks. Compared to

the congestion attack, launching these two types of attacks effectively requires the attackers

to have much higher signal control capabilities. For the congestion attack, total vehicle

delay increase can be achieved as long as the attack can create a mismatch between the

signal plan and the actual traffic demand, e.g., by giving a long green light to a phase with

nearly empty traffic. The more significant the mismatch is, the longer vehicle delay time

can be causes. Thus, as long as the attack is able to change the original signal plan, the goal

168

Attack goal Effectiveness Attack scenarios

metrics S1, 2-S S2, 5-S

100% PR 75% PR 75% PR

Success % 9.5% 12.7% 38.2%

Personal gain attack Ave. delay 17.4 16.2 13.6

dec. (s) & % 32.4% 28.9% 29.1%

Success % 0% 0% 9.4%

Safety attack Ave. in-DZ 0 0 0.11

vehicle inc. # & % 0% 0% 132%

Table 6.3: Vulnerability analysis results for personal gain attack and safety attack. PR is

short for penetration rate. Two-stage planning and five-stage planning in the COP algorithm

configuration are denoted as 2-S and 5-S respectively, with the former being the default

choice. For the transition period, we only show the results for 75% PR since the results for

50% and 25% PRs are very similar to those for 75% PR.

of congestion attack is achieved.

In comparison, achieving personal gain and safety attacks are not just about changing

the original signal plan. For the personal gain attack, it needs to (1) change the green light

for a specific phase that the attack vehicle is in, and (2) change that green light in favor of

the travel time of a specific vehicle, i.e., the attack vehicle, not just a mismatch with the

overall traffic demand for that phase. For the safety attack, it does not require the attack

to be capable of controling a specific traffic signal, but it needs very precise control of the

green light length, i.e., with the error of at most 2 to 3 seconds, so that it can put vehicles

at the dilemma zone when the green light is off [286].

Thus, the signal control capability requirements for personal gain and safety attacks are

the subset of those for the congestion attacks. According to the vulnerability analysis for

the congestion attack in §6.6.3, there are two effective attack scenarios that can potentially

have the signal control capability needs for personal gain and safety attacks:

• S1 for two-stage planning. As analyzed in §6.6.3, when I-SIG is using two-stage

planning, the default configuration, in both full deployment and transition periods, the

attacker can exploit last vehicle advantage to control the green light length for a specific

phase.

• S2 for transition period. As analyzed in §6.6.3.2, when I-SIG is not vulnerable to

169

last vehicle advantage, e.g., when using five-stage planning, in the transition periods the

attacker can exploit the vulnerability in the queue estimation in the EVLS algorithm to

control the green light length for a given phase.

Thus, in our experiments we perform vulnerability analysis for personal gain and safety

attacks in these two attack scenarios. Table 6.3 shows a summary of the results.

6.6.4.1 Personal Gain Attack Analysis

In this section, we analyze the results for the personal gain attack under the two attack

scenarios: S1 for two-stage planning and S2 for transition period.

S1 for two-stage planning. As shown in Table 6.3, different from the congestion at-

tack, the success rates for personal gain attacks in the attack scenario for S1 is very low:

only around 10%. We inspect the attack logs and find that the cause is that last vehicle

advantage is in fact not effective for personal gain attack. In two-stage planning, due to the

last vehicle advantage, the system is already trying to extend all the green light to serve all

the vehicles for all the phase. Thus, for an attack vehicle, if it comes after the planned green

light, the system simply cannot extend the green light any more due to hard traffic signal

length limitations such as tgmax
(introduced in §6.2.0.1). If it comes before the planned

green light, it needs to reduce the green light lengths of earlier phases, which cannot be

achieved with last vehicle advantage. Thus, in the table, none of the successful personal

gain attacks comes from lst vehicle advantage.

For the successful cases in Table 6.3, we find that they are dependent on specific traffic

patterns. For example, when there is a skipped phase that should happen before the attack

vehicle’s phase, the attack vehicle can inject a spoofed vehicle to open that phase. In this

case, even originally the attack vehicle cannot be served even when the green light of its

corresponding phase is tgmax
, the skipped phase opened by the attack vehicle can delay the

attack vehicle’s phase, thus making it possible to serve the attack vehicle. Even thought

these cases do not appear very often, leading to only around 10% success rate, the benefit

170

of attacking them is substantial: the attacks can reduce the vehicle delay by around 30% as

shown in Table 6.3.

S2 for transition period. Compared to the attack scenario for S1, the attack success

rate for the scenario for S2 in the transition period is much higher, achieving nearly 40%.

For these success cases, the personal gains are all achieved by exploiting the queue esti-

mation vulnerability in the EVLS algorithm. Without last vehicle advantage, the attack

vehicles can be left out in green lights and thus adding queues of unequipped vehicles can

extend the attack vehicle’s phase till the attack vehicle’s arrival time to achieve personal

gain. At the same time, for the cases when the attack vehicle comes before the planed

green light, it can also add queues of unequipped vehicles to increase the importance of its

corresponding phase. This can force the algorithm to decrease the green light lengths of

the earlier phases and thus serve the attack vehicle earlier. As shown in Table 6.3, personal

gain attacks under this attack scenario not only have high success rate, but also have around

30% gains in vehicle delay time. It’s important to note that even though the delay decrease

percentage for this attack scenario is similar to the attack scenario for S1, the success rate

is around 3× higher, making this attack scenario much more cost-effective.

6.6.4.2 Safety Attack Analysis

In this section, we analyze the results for the safety attack under the two attack scenar-

ios: S1 for two-stage planning and S2 for transition period.

S1 for two-stage planning. As shown in Table 6.3, safety attacks in the attack scenario

for S1 is not effective at all: the success rate is 0%. We double checked the attack logs

and confirmed that none of the attack cases are able to put more vehicles into the dilemma

zone. Similar to the personal gain attacks in this attack scenario discussed in §6.6.4.1, this

is mainly because the I-SIG system tries to serve all vehicles due to last vehicle advantage.

Thus, in nearly all cases the I-SIG system already serves all vehicles and no victim vehicles

can be found even if last vehicle advantage can extend the green light. Theoretically, if there

171

are vehicles coming within a few seconds after the green light when the green light length

is tgmax
, the attack vehicle can use last vehicle advantage to extend the green light to tgmax

and thus put those vehicles in the dilemma zone. However, such cases may be too rare and

thus we are not able to observe them in our experiments.

S2 for transition period. Same as the personal gain attacks for this attack scenario, the

attack cases are able to exploit the queue estimation vulnerability in the EVLS algorithm

to achieve safety risk increases. However, the success rate is only 9.4%, which is not high.

Like we discussed earlier, safety attacks require very precise control of the green light

length. Thus, even with the ability to add queuing unequipped vehicles, the attack is still

not easy to succeed. Nevertheless, for the success cases, the attacker is able to increase

the number of in-DZ vehicles by 132% on average. This more than doubles the safety

risks in normal cases, which is thus quite substantial considering the severity of the attack

consequences.

6.7 Exploitation Case Study: Congestion Attack

6.7.1 Exploit Construction

Real-time attack requirement. In the last section, to understand the upper bound

of the attack effectiveness, we enumerate all data spoofing options, which takes around

24.5 minutes on average on a single core computer. Since we only assume the attacker to

have a consumer laptop that has four processors with usually around 3× speedup, this full

enumeration takes 8 minutes on average. However, in practice the attack decision needs to

be made fast enough so that the traffic condition does not change so much that the attack

decision no longer applies.

Thus, to explore the end-to-end exploitability of the identified congestion creation vul-

nerabilities, in this section we take the real-time attack requirement into consideration and

leverage the insights from our analysis in the last section to perform practical exploit con-

172

struction.

6.7.1.1 Attack Decision Process

To meet the real-time attack requirement, our exploit construction uses a budget-based

attack decision process. In this process, the attacker first passively tracks the phase changes.

Once the phase in the current stage turns yellow, the attacker waits for 1 second and then

triggers the decision process. This is based on our observation that after one second of

yellow light all moving vehicles slow down and their trajectories start to stabilize. Since

typically ty + tr is 6 seconds [272], this gives the attacker up to 5 seconds of decision time.

In the decision period, the attacker first predicts the vehicle trajectory data at the next

signal planning time. Like in the trajectory awareness component in the I-SIG system

(§6.2.0.2), the attacker maintains a vehicle trajectory database to store data like location,

speed, and acceleration for the equipped vehicles based on the received broadcast BSM

messages. In the prediction, the attacker assumes that the vehicles maintain their accelera-

tions and thus predicts their speeds and locations after 5 seconds. In this step, the attacker

needs to use the intersection map obtained from the reconnaissance step (§6.3) to deter-

mine whether a vehicle passes the stop bar of that lane after 5 seconds. If so and the current

acceleration value is negative, we predict that it plans to have a hard stop at the stop bar

and set the stop bar location as the predicted location.

Next, the attacker needs to make decisions about whether to attack, and if so, what data

spoofing option to use. According to our vulnerability analysis, some of the most successful

data spoofing trials are related to the signal plan without attack, e.g., the green light end

time. Thus, the attacker first runs the I-SIG system for the predicted vehicle trajectory data

without trying any data spoofing option. Using the output signal plan and total vehicle

delay without attack, the attacker then tries several data spoofing options just like in the

vulnerability analysis, and pick the most successful one to use in the actual attack.

Since running the I-SIG system is time consuming, a trial budget is used to ensure that

173

CV Full deployment Transition period

deployment 100% PR 75% PR 50% PR 25% PR

COP configuration 2-S 5-S 2-S 5-S 2-S 5-S 2-S 5-S

Strategy S1 S1 S1 S2 S1 S2 S1 S2

Average trial # 3.8 13.3 3.8 14.7 3.8 23.9 3.6 28.8

Success % 99.8% 84.7% 99.1% 95.6% 99.4% 96.6% 99.8% 91.5%

Average delay 1077.4 119.8 1057.1 595.3 1061.0 591.7 1008.98 609.6

increase (s) & % 68.0% 9.3% 60.0% 35.4% 61.2% 35.1% 60.6% 33.9%

Table 6.4: Practical exploit effectiveness for congestion attacks. PR is short for penetration

rate. Two-stage planning and five-stage planning in the COP algorithm configuration are

denoted as 2-S and 5-S respectively, with the former being the default choice.

the whole decision process can finish in 5 seconds. Assuming the other parts, e.g., the BSM

transition time and other local computation time, take less than 1 second (which typically

take much less), we spare 4 seconds in total for (1) running the I-SIG system without

attack, and (2) trying the data spoofing options. Since these trials are independent to each

other, we use parallel computation to accelerate this part. We first measure the running

time for the signal planning without attack, tnormal, and then calculate the trial budget as

3 × 4−tnormal

tnormal
, as the personal laptop with four processors in our lab is measured to have

around 3× speedup. With this, the attacker can plan their trials under this budget. The

detailed budget-based trial strategies for different attack scenarios are described in the next

section.

Based on the trial results, the attacker finds the data spoofing option with the highest

total delay increases. If such increase is larger than zero, the attacker uses the corresponding

data spoofing option to construct the BSM message and broadcast it out. Otherwise, the

attacker does not attack.

6.7.1.2 Exploitation Strategy

In this section, we describe the exploitation strategies, i.e., the budget-based data spoof-

ing trial strategies, for different combinations of PRs and planning stage configurations.

Table 6.4 summarizes the attack effectiveness for the constructed exploits in this section.

E1: Congestion attack for two-stage planning:

174

(1) In the first stage, if there are no skipped phases, try the data spoofing option with the

latest arrival time for any of the two latter phases in stage 1, and then jump to (3). Trying

the latter phases is because their latest vehicles are able to further extend the tg of the two

former phases to tgmax
.

(2) In the first stage, if there is a skipped phase, try the data spoofing option with the

latest arrival time for this phase, and then jump to step (3). If there are two skipped and the

budget allows more trials, try both and then jump to step (3). This is because opening an

originally skipped phase can cause more total delay increase as explained in §6.6.3.1.

(3) In the second stage, if there are no skipped phases, try the two data spoofing options

with the latest arrival time for the two former phases. If the budget allows more trials, try

the latest arrival time for the two latter phases. Try the former phases first is because their

latest vehicles can cause phase sequence switches to further increase the delay.

(4) In the second stage, if there is a skipped phase, try the data spoofing options with

the latest arrival time for this phase. If the budget allows more trials, try the latest arrival

time for the former phases, and then the latter phases. If there are two skipped phase, try

the two data spoofing options with the latest arrival time for these two phases.

As introduced in §6.2.0.2, at each planning time only the planned duration for the first

stage is immediately applied. Thus, in the above strategy we prioritize the attacking on the

first stage so that the attack has an immediate effect. Also, in this strategy we only consider

at most two skipped phase since we do not observe any snapshot in our analysis has more

than two skipped phases under the normal traffic demand.

E2: Congestion attack for five-stage planning in the full deployment period:

(1) If there are skipped phases, try any data spoofing option for each of these phases. If

the budget is not enough, prioritize the ones in the earlier stages.

(2) Try the data spoofing options bg seconds after the originally green end time for

each open phase. For the first time entering this step, bg is 1. If the budget is not enough,

prioritize the ones in the earlier stages.

175

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 t
o

 u
p

p
e

r
b

o
u

n
d

 (
%

)

Data spoofing trial budget

Absolute difference
is only 2.3%

Exploit E1
Exploit E2
Exploit E3

Figure 6.8: Relative differences between the average delay increase percentages using the

three exploits with limited trial budgets and those by trying all possible options.

(3) If the budget allows more trials, repeatedly try (2) with bg being increased by 1 each

time until the budget is used up.

E3: Congestion attack for five-stage planning in the transition period:

(1) For the through phases, try the data spoofing options that add Qp non-existing queu-

ing unequipped vehicles for each phase p. If the budget is not enough, prioritize the ones

in the first stage.

(2) For the left-turn phases, try the data spoofing options that add Qp non-existing

queuing unequipped vehicles for each phase p. If the budget is not enough, prioritize the

ones in the first stage.

(3) If the budget allows more trials, repeatedly try (1) and (2) with Qp being decreased

by 1 each time until the budget is used up.

In this strategy, we prioritize the through phases since their lanes are longer than those

of the left-turn phases, and thus has much (usually twice) larger Qp.

Fig. 6.8 shows the attack effectiveness of these three exploits with different trial budget

on the snapshots in the vulnerability analysis. In the figure, the attack effectiveness metric is

the average total delay increase percentage. As shown, for E1, only 4 trials are need to reach

the upper bound attack effectiveness, i.e., the one by trying all possible options. For E2, the

attack effectiveness converges quickly after using 2 trials, and then decreases very slowly

when bg increases with more available budget. At the tail, the relative difference to the

upper bound attack effectiveness is around 20%, but since the upper bound is only 11.5%,

176

it only has 2.3% absolute difference. As discussed in §6.6.3.1, the best trials responsible

for such difference highly depend on specific traffic patterns. For E3, only 8 trials are

need to reach the upper bound attack effectiveness, which is consistent with the discussion

in §6.6.3.2.

We implement this budget-based trial strategies, and evaluate their effectiveness on

the snapshots in the vulnerability analysis. In this experiment, we use the running time

without attack for each snapshot to dynamically choose trial budget. The results is shown

in Table 6.4. As shown, even though two-stage planning is much faster than five-stage

planning, the maximum trial number needed for E1 is only 6 so the average trial number

is 3.6-3.8. For five-stage planning scenarios, in the worst case the attacker can at most try

13.3 options due to the real-time attack requirement. This is already much less than trying

all possible options, which needs nearly 1000 trials for S1 and around 250 options for S2.

Nevertheless, our trial strategies show high effectiveness with less than 2.2% difference to

the upper bound attack effectiveness.

6.7.2 Attack Evaluation

In this section, we implement and evaluate the constructed exploits using simulations

with real-world intersection settings.

6.7.2.1 Evaluation Setup

Real-world intersection settings. In this evaluation we use the map of a real-world

intersection with its real phase configurations. The intersection map is shown in the screen-

shot in Fig. 6.1. Compared to the generic intersection structure, this intersection has dif-

ferent speed limits on each approach. The speed limits are 30 mph, 35 mph, 40 mph, and

45 mph for southbound, eastbound, northbound and westbound respectively. Only north-

bound approach has dedicated right turn lane, while in other approaches the right turn lane

is shared with the through lane. The map range of the eastbound approach is only extended

177

to 220 meters because of the existence of a close-spaced upstream intersection.

Real-world traffic demand. To increase the practicality of our analysis, we use the

real traffic demand for this intersection in our VISSIM configuration. To measure such

demand, we went to the intersection and videotaped the traffic in the intersection on May

16th, 2017, 4-5 pm. Based on the videos, we manually counted the passing vehicles for

each lane, and calculated the traffic demand of each approach and the turning ratio for each

lane (the possibility of turning left or right for the vehicles), as the input to the VISSIM

traffic model.

Experiment setup. In the experiment, the I-SIG system and attack program can receive

the BSM messages within their DSRC ranges. The DSRC ranges for all approaches are set

to the normal value, 300 meters, except the one for the eastbound approach is 220 meters

as its lanes are shorter. On the attacker side, the BSM messages are used in the attack

decision process detailed in §6.7.1.1. After that, the BSM message sent with the spoofed

data is merged with the other BSM messages. The I-SIG system uses these BSM messages,

which may or may not have the attack message, to perform the signal planning and then

use the plan to control the traffic signals in VISSIM.

For each combination of PR and planning stage configuration, we run the experiments

for one hour three times, each with a different random seed, based on the aforementioned

real-world traffic demand. In this experiment we launch the attack continuously for every

signal planning in the I-SIG system. This is different to the experiments in the vulnerability

analysis in which the attacks are launched individually to each snapshot. In comparison,

such continuous attacking is closer to real-world attack situations. As we will show later,

this is able to create a cumulative attack effect and thus create even more congestion than

that in the vulnerability analysis.

Attack effectiveness measurement. In the evaluation we directly measure the vehicle

travel delay using each vehicle’s trajectory output by VISSIM. To calculate the per-vehicle

delay, we subtract the free-flow travel time, i.e., the travel time at the speed limit, from the

178

vehicle’s actual travel time. Then the total vehicle delay is calculated as the sum of the per-

vehicle delay for all vehicles generated in the experiment. In the VISSIM simulation, for

the same random seed the vehicle generated with the same ID has exactly the same initial

data, e.g., the same generation time and the same initial speed and location. Thus, both the

total vehicle delay and the per-vehicle delay for experiments with and without attack are

comparable.

CV Full deployment Transition period

deployment 100% PR 75% PR 50% PR 25% PR

COP config. 2-S 5-S 2-S 5-S 2-S 5-S 2-S 5-S

Exploit E1 E2 E1 E3 E1 E3 E1 E3

Ave. delay 68435.4 4695.9 64008.0 187746.0 66797.4 197410.0 56618.0 146685.0

inc. (s) & % 66.7% 4.8% 61.7% 181.6% 64.2% 193.3% 46.2% 133.2%

Table 6.5: Evaluation results for the practical exploits. PR is short for penetration rate.

Two-stage planning and five-stage planning in COP are denoted as 2-S and 5-S, with the

former being the default choice.

6.7.2.2 Results

The results are summarized in Table 6.5 and analyzed below:

E1 and E2. Column 2, 4, 6, and 8 show the results for E1. As shown, E1 is able to

increase more than 60% of the total delay for all cases expect when the PR is 25%. These

results are consistent with those in Table 6.4, showing high attack effectiveness. When

the PR is 25%, we find that the errors in the unequipped vehicle estimations in the EVLS

algorithm are greater than those in the generic intersection settings, causing the attack

effectiveness to decrease. Nevertheless, the total delay increase percentage is still very

high (46.2%): for a vehicle, a one-hour trip now takes nearly one and half hours, showing

a significant decrease of the transportation mobility.

The results for E2 are shown in Column 3. As shown, the attack effectiveness is only

4.8%, which is around 50% lower than that in the vulnerability analysis. We find that this

is because both categories of the successful data spoofing trials in §6.6.3.1 can be largely

affected by errors in the vehicle trajectory data prediction in our attack decision process

179

(§6.7.1.1). For the one that opens the skipped phase, any legitimate vehicle requesting that

phase in 5 seconds nullifies the attack effect. For the one that extends the green light end

time, the original green light end time can vary after 5 seconds due to changes in the arrival

table. Among the three exploits, E2 is the most dependent on traffic conditions and thus

more sensitive to the errors in our prediction. Considering that it also has the least attack

effectiveness, E2 is thus the least attractive exploit among the three.

Exploit E3. The results for E3 are shown in Column 5, 7, and 9. Surprisingly, we find

that these attacks are much more effective than those in the vulnerability analysis: when

the PRs are 75% and 50%, the average delay increase percentages are 181.6% and 193.3%,

which are over 5× more than those in the vulnerability analysis. The increase for the 25%

PR scenario is a bit lower, but is still around 4× more.

The lane blocking effect. We find that such significant increase is because continuous at-

tacking is able to cause the attack effect to accumulate, and thus greatly escalates the attack

effectiveness. More specifically, in five-stage planning, since the planning is allowed to

delay serving some vehicles in the current stage for more optimal long-term benefit, these

vehicles are attacked for another time in the next signal planning time. If the vehicle is near

the end of the queue, it can be attacked multiple times. Since in the vulnerability analysis

we only estimate the effectiveness for attacking once, such cumulative attack effect causes

the average total delay to significantly increase in comparison to that in the vulnerability

analysis. Such cumulative attack effect does not exhibit for the two-stage planning scenar-

ios, since two-stage planning only has one serving opportunity for each phase and it is not

allowed to delay serving any vehicle.

We further find that such cumulative attack effect is able to cause an even higher level

of congestion, which can block an entire approach, causing massive traffic jams. This is

because with such effect the queues in the left-turn lanes cannot be effectively released and

thus begin to increase with time. Since the left-turn lanes are shorter in nature, at a certain

point the queues start to spill over to the through lanes and block the through lane. This

180

causes the through lane to start queuing after the spilled-over left-turn vehicles. With both

the real queuing vehicles and the non-existing unequipped vehicles added by our attack in

the through lanes, the COP algorithm sees more than 80 vehicles queuing in the through

lanes and thus only gives the spilled-over left-turn phase the minimum green light time.

Thus, the left-turn phase can now only release the fewest possible vehicles. When some

spilled-over vehicles finally enter the left-turn lane, the following left-turn vehicles quickly

block the through lanes again.

Such blocking effect is shown earlier in Fig. 6.1, which is a screenshot taken at the

1785.80 second in the VISSIM simulation for one of the three random seeds and the 75%

PR. Note that such spillover and blocking effect always appears on at least one approach

in all E3 experiments. As shown in the figure, in both the northbound and southbound ap-

proaches, the left-turn vehicles spill over and block the through lanes, causing long queues

in the approach. In the real-world traffic demand we collected from 4 to 5 pm, the north-

bound approach has the most left-turn vehicles and thus is the earliest to block and thus

have the longest queue at the time of the screenshot.

Fig. 6.9 shows the average delay every one minute with and without attack in the north-

bound approach in this experiment. As shown, the delay under attack usually has an in-

crease when the delay without attack increases. This is because when the approach is more

congested without attack due to a temporarily higher demand, the congestion attack can

further escalate such congestion. As shown, at around second 1125, such higher demand

is leveraged to create the blocking effect, and thus the congestion level is significantly in-

creased. After 10 minutes, the spillover is finally cleared, but in as short as 1 minute, the

blocking effect happens again. In the figure, we can see such repeated blocking effect till

the end of the experiments. In the traffic jam period starting from second 1125 till the end,

nearly 600 vehicles arrive and around 50% of them need to spend nearly three minutes for

an originally half-minute trip (27.7 seconds on average), and around 22% need to spend

over 7 minutes, which is 14 times higher. This means that for these 22% of vehicle, if the

181

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500

T
o
ta

l
v
e
h
ic

le
 d

e
la

y
 t
im

e
 (

s
)

Time (s)

Repeated
blocking

effect starts

W/ attack
W/o attack

Figure 6.9: Average vehicle delay every one minute with and without attack. The repeated

blocking effects start at around second 1125.

trip involves a series of intersections, i.e., in a corridor, a 10-minute trip can now cost over

2 hours.

6.8 Defense Discussions

As shown in our study, even though the I-SIG system has shown high effectiveness in

benign settings, the current algorithm design and configuration choices are highly vulner-

able to data spoofing. To proactively addressed these problems before larger-scale deploy-

ment, this section discusses defense directions based on the insights from our analysis.

Robust algorithm design for the transition period. As concretely shown in our eval-

uation, the most effective congestion attack is on the transition period: the total delay in-

crease percentage is nearly 200%, and by continuously attacking for less than 20 minutes,

it is able to trigger the blocking effect on an entire approach, causing massive traffic jams.

According to the current I-SIG system design, such problem can only be largely alleviated

when PR reaches more than 95%. This is thus the most urgent problem in the current I-SIG

system design: the market penetration rate of CV technology needs to start somewhere,

and thus it inevitably needs to go through a transition period. Even after all new light-duty

vehicles are mandated to install OBUs, which is exactly what the USDOT is proposing

now, there are still heavy duty vehicles and old vehicles on the roads. As estimated by the

182

USDOT [135], it may take 25-30 years to reach a 95% PR after it starts such mandate.

Thus, if such system cannot handle the security challenges for the transition period, it is

not robust enough to get the larger-scale deployment even started in practice.

Fundamentally, this is caused by the lack of a sufficiently robust signal control algo-

rithm for the transition period. As introduced in §6.2.0.2, the COP algorithm is a suitable

design choice for the CV-based signal control, but it is only optimal in the full deployment

period. To ensure that the I-SIG system can still be effective when PR is low, the current

design tries to infer the unequipped vehicle data to solve the dilemma. However, if such

inference is not robust, it can be greatly manipulated for malicious purposes — which is ex-

actly what we have uncovered in this study. Since the amount of vehicle data input is much

less than that in the full deployment period, any signal control algorithm for the transition

period is inherently more sensitive to data spoofing attacks, making it fundamentally more

challenging to ensure the robustness. Considering that the transition period is unavoidable

and may last as long as 30 years, we believe that this calls for a joint research effort among

both the transportation and the security communities to design effective and robust signal

control algorithms specifically for the transition period.

Performance improvement for RSUs. As introduced in §6.2.0.2 and analyzed in §6.6,

the arrival time based signal planning in the COP algorithm is very suitable for the CV-

based signal control, and when given enough computation power, such planning is indeed

very hard to be maliciously influenced by small amounts of spoofed data in the full deploy-

ment period. Unfortunately, due to the limited performance in today’s RSUs, the I-SIG

system has to use a suboptimal implementation of the COP algorithm, which is found to

introduce the last vehicle advantage, allowing the data from one single attack vehicle to

significantly influence the signal control. Because of this, even if the security challenge

for the transition period is addressed, the I-SIG system can still be greatly manipulated by

data spoofing attacks. Thus, it is important to improve the performance of today’s RSUs

so that more optimal configurations can be used in the traffic control. Such improvement

183

can be at both the software level, e.g., code optimization, and the hardware level, e.g.,

CPU and memory upgrades. Such performance improvement is generally beneficial since

more computation capabilities can help better balance the trade-off between security and

performance.

Data spoofing detection using infrastructure-controlled sensors. Besides improving

the robustness at the control algorithm level, another defense direction is to detect and filter

the BSM messages with spoofed data on the infrastructure side. Since these messages are

still correctly signed, such defense must rely on data validity checks. Unfortunately, in the

current design, the I-SIG system only has one data source about the attack vehicle — the

attacker-controlled trajectory data via BSM messages [82]. Thus, any data validity check

methods based on this are unlikely to be effective since the attacker can strategically control

the spoofed data so that the vehicle trajectories appears perfectly normal.

Thus, to ensure high effectiveness, data spoofing detection on the infrastructure side

needs to rely on data sources that attackers cannot easily control, e.g., infrastructure-

controlled sensors, to cross validate the data in BSM messages. We find that there are

actually existing infrastructure-side sensors ready to be used for this purpose. For exam-

ple, the vehicle detectors buries underneath the stop bar of each lane was used to measure

aggregated traffic information in today’s traffic control. Even though they are less useful

in the CV environment, they may be re-purposed to help detect data spoofing, which may

be a cost effective solution since they are installed already. If such aggregated data is not

sufficient, the infrastructure side may need to install sensors with more informative data,

e.g., cameras. One challenge in this direction is how to best leverage different types of

infrastructure-side sensors to design a detection system that is both accurate and hard to

evade, which we leave as future work.

184

6.9 Summary

In this chapter, we perform the first security analysis of the emerging CV-based signal

control system. Targeting a highly realistic threat model, data spoofing from one single

attack vehicle, we perform vulnerability analysis and find that the current signal control

algorithm design and configuration choices are highly vulnerable, which can be exploited

to launch congestion, personal gain, and safety attacks. The evaluation results under real-

world settings validate the attack effectiveness and show that the attacks can even create a

blocking effect that jams whole approaches. Defense directions are then discussed lever-

aging the insights.

This work serves as a first step to understand the new security problems and challenges

in the next-generation CV-based transportation systems. It is expected to inspire a series

of follow-up studies, including but not limited to (1) more extensive evaluation with dif-

ferent intersection sizes and traffic patterns, (2) more extensive analysis considering other

CV-based transportation systems, algorithms, and security implications, (3) more concrete

defense system design and evaluation.

185

CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

In this dissertation, I develop a series of proactive vulnerability discovery and assess-

ment approaches that can systematically discover and assess security challenge in two most

fundamental capabilities in any smart, connected system: network stack and smart control.

More specifically, my research is able to demonstrate that static/dynamic program analysis

and network measurement can be used to make the following two categories of research

contributions:

(1) Systematically identify new code-level and network-level security challenges in

smart, connected systems. In this category, the contributions made in my dissertation

research include:

• Discovering and analyzing WPAD name collision attack (US-CERT alert TA16-

144A [127]). In the network stack, we discover a new MitM attack vector exposed in the

new gTLD era called WPAD name collision attack. We then conduct the first system-

atic vulnerability study of this attack vector by systematically characterizing the problem

severity and the vulnerability causes using network measurement. Through this analysis,

we identify that the cause of the new security problem is that the recent delegation of new

gTLDs unexpectedly breaks the implicit namespace isolation assumptions made in the in-

ternal DNS namespaces. This is a network-level security problem newly exposed in the new

186

gTLD era, which is fundamentally challenging to solve due to the lack of coordination in a

distributed system like the Internet.

• Analyzing client-side name collision vulnerability. We generalize the WPAD name

collision attack to a new class of attacks on the broad set of internal network services using

DNS-based service discovery, and perform the first systematic study of the vulnerability

status, named client-side name collision vulnerability, of internal service software under

this new class of attacks. We first measure and collect the client implementations of the

affected internal service today, and then perform vulnerability analysis using dynamic pro-

gram analysis. We find that nearly all the exposed services have popular clients vulnerable

due to several common design and implementation choices, which suggests that the name

collision attack threat model broadly breaks common security assumptions made in the

service clients today. Through our subsequent vulnerability cause analysis, we find that

such widespread vulnerability exposure is caused by several code-level security challenges

newly exposed in the new gTLD era, e.g., lack of namespace differentiation. Based on the

insights, we propose a set of service software level solutions.

• Discovering and analyzing algorithm-level vulnerability in Connected Vehicle

(CV) based smart signal control. We perform the first security analysis of a CV-based

transportation system, the USDOT sponsored I-SIG system. Targeting a highly realis-

tic threat model, data spoofing from one single attack vehicle, we perform vulnerability

analysis and find that the signal control in the system can be manipulated greatly by data

spoofing from even a single attack vehicle, which can be exploited to launch congestion,

personal gain, and safety attacks. We analyze the vulnerability causes, and find that the

current signal control algorithm design and configuration choices in the I-SIG system are

highly vulnerable to data spoofing attacks, which is a code-level security challenge newly

exposed in the emerging CV-based smart transportation systems. To addressed this chal-

lenge, we discuss several defense directions aiming at increasing the algorithm robustness

and mitigating spoofing attacks.

187

(2) Gain insights about problem severity to address design trade-offs in the defense

solutions. In this category, the contributions made in my dissertation research include:

• Designing PacketGuardian, the first automated detection tool for packet injection

vulnerabilities. In the network stack, to detect packet injection vulnerability, the current so-

lution is to manually inspect the protocol code bases and apply case-by-case patches. How-

ever, due to the complex nature of the problem, new packet injection vulnerabilities are still

emerging. To stop this recurring problem, we build a static program analysis tool, Pack-

etGuardian, to systematically examine network protocol implementations to detect such

vulnerability. In the design, we face a unique challenge due to the design trade-off between

detection precision and recall: to accurately detect leaks of secrete protocol states, implicit

data flows need to be analyzed; however, performing implicit data flow analysis causes high

volumes of false alarms, which is thus a commonly excluded feature. To address this chal-

lenge, we find that only a specific type of implicit data flows is highly exploitable for packet

injection attacks in practice, which we call attacker-controlled implicit information leaks.

Thus, we design our tool to prioritize the detection of such highly-exploitable implicit data

flows, which effectively reduces false alarms without compromising tool effectiveness. Us-

ing PacketGuardian, even though the recently-reported packet injection vulnerabilities have

been patched, we are still able to uncover 17 new ones in the Linux kernel TCP implemen-

tation with confirmed exploitability.

• Designing Highly-Vulnerable Domains (HVDs) for name collision attack defenses.

To defend against WPAD name collision attacks, new gTLD operations and vulnerable

ASes need to know the attack surface, i.e., the set of vulnerable domains, for domain regis-

tration scrutinization and query leakage filtering. However, defining the attack surface has

a unique challenge due to the design trade-off between defense effectiveness and economic

incentive: if including all domain names seen in the query leakage into the attack surface,

large numbers of popular domains are blocked from registration, which hurts the economic

incentive for operating new gTLDs. To address this challenge, we perform analysis using

188

network measurement and find that most domain names in leaked queries are transient and

low-volume, which are thus both of low value and hard to exploit in practice. Leveraging

this insight, we propose a more useful definition of attack surface, called Highly-Vulnerable

Domains (HVDs), which are the domains that persistently expose many victims. Using em-

pirical data analysis, we show that using HVDs as the attack surface can achieve a much

better balance of defense effectiveness and economic incentive: using the list of HVDs,

61% of new gTLD operators only need to block less than 10 domains in total and at the

same time more than 97% of the leaked queries are protected.

7.2 Future Work

Following my dissertation research, there are numerous future directions worth further

investigation:

Critical domain: Systems security in transportation. Transportation systems and

automobiles today will be soon transformed profoundly due to the recent advances in Con-

nected Vehicle (CV) and Autonomous Vehicle (AV) technologies. To secure the security

of such safety critical systems, it is highly desired to perform further research into the

following two subdirections:

• Connected Vehicle (CV) systems security. Following up my dissertation research on

the first security analysis of the CV-based traffic signal control system (§VI), this

research direction can be further explored from two perspectives: (1) CV applica-

tion security, by more broadly and more systematically analyzing the security of

the released USDOT-sponsored CV-based transportation system and application pro-

totypes, and (2) CV communication security, by analyzing the security of the CV

network protocol stack design and implementations on CV devices. The analysis

insights can be used to develop practical defenses at both the infrastructure and vehi-

cle sides. For example, leveraging insights from the current analysis results in §VI,

189

developing data spoofing detection mechanisms leveraging infrastructure-controlled

data sources can be one of the promising defense directions. Since this direction

is interdisciplinary by nature, collaborations between security and transportation re-

searchers may be necessary in order to combine the expertise from both domains for

effective problem solving.

• Autonomous Vehicle (AV) systems security. To enable intelligent driving, all the ve-

hicle subsystems including critical control systems such as brake and acceleration

are now controlled by software, making software quality, especially reliability and

security, a concern that is more critical than ever. Due to the fact that (1) such

control is managed by a complex distributed systems involving tens of microcon-

trollers, and (2) software development in in-vehicle systems is commonly outsourced

to third-party sources [171], it is especially challenging to secure the software stack in

such systems. As demonstrated in this dissertation, static/dynamic program analysis

techniques can be used to tackle such code-level security challenges. For example,

one promising starting point can be developing a security analysis framework us-

ing static and dynamic program analysis for open-source AV systems such as Baidu

Apollo [18] and Autoware [17].

Software control algorithm security. In smart, connected systems, optimization al-

gorithms and machine learning models are used popularly to enable various smart control

capabilities, e.g., the smart traffic signal control studied in this dissertation research (§VI)

and machine learning based autonomous driving [138, 49, 60]. Such algorithm-based con-

trol in smart, connected systems introduces two new challenges in software security anal-

ysis. First, it is unclear how to ensure soundness in the software analysis on algorithm

implementations. Current security analysis of optimization algorithm and machine learn-

ing model implementations mainly uses dynamic program analysis [176, 249]. However,

dynamic analysis cannot fully eliminate false negatives and thus cannot provide soundness

guarantee of the absence of a particular security vulnerability, which is highly desired for

190

smart, connected systems in safety critical domains. However, classic sound software anal-

ysis methods, e.g., static program analysis, cannot be directly applied since in algorithm

implementations control decisions are made based on numerical computations in data flows

instead of explicit logics in control flows. To address this challenge, two directions may be

worth exploring: (1) design more fine-grained data flow analysis to directly analyze the im-

plicit control logic in data flows, and (2) design program analysis based approaches to first

extract a model from the algorithm implementations, and then use model-based security

analysis methods in algorithm analysis and machine learning fields.

Second, besides analyzing the security of the algorithm implementation itself, it is un-

clear how to incorporate its domain-specific usages into the security analysis. In smart,

connected systems, these domain-specific usages, e.g., the pre- and post-processing steps,

are also critical since (1) they have a direct impact on the end-to-end exploitability of po-

tential vulnerabilities in the algorithm implementations, e.g., the discovered vulnerability

in the EVLS algorithm in §VI of this dissertation, and (2) these usages themselves may

cause security problems, similar to the API misuse problem in TLS/SSL clients [184, 196].

The key challenge in this direction is how to effectively perform vulnerability analysis of

the whole model usage work flow, which is usually a complicated process involving vari-

ous types of data processing. For example, in autonomous driving, camera input is first in

a machine learning based perception module, and then in a dynamic programming based

path and speed planning module, and then in a rule-based control module. To address this

challenge, one potential direction is to first explore the possibility of modeling the data

processing steps before and after the machine learning model using program analysis tech-

niques, and then design an extension of the existing analysis methodology with the modeled

data processing steps plugged in.

Anomaly detection for IoT/CPS using physical properties. In IoT/CPS systems such

as smart home and smart transportation systems, the behaviors of the IoT/CPS devices

need to follow physical laws. For example, sensor input such as vehicle trajectory and

191

room temperature needs to have space/time continuity; otherwise, the input is physically

invalid, which may be a result of sensor spoofing attacks such as the ones studied in §VI.

Thus, physical properties can be a unique opportunity for anomaly detection in IoT/CPS

systems. One challenge in this direction is how to systematically map cyber events to their

corresponding physical properties. To address this challenge, two solution directions may

be worth exploring: (1) using well-established behavior models in specific domains, e.g.,

car following model and queuing model in the transportation field, and (2) using data-

driven modeling approach, e.g., using traces of normal behaviors to infer the mapping

between cyber and physical events.

Trusted computing hardware assisted security. The software stacks in modern com-

puter systems are large and complex, making it highly difficult, if not impossible, to fully

eliminate software vulnerability. However, in safety-critical systems such as autonomous

driving and smart transportation, certain functionality, e.g., safety-related features, needs a

much stronger security guarantee. To address the challenge, one potential solution direction

is to leverage the recent advances in hardware features for trusted computing, e.g., ARM

TrustZone [11], and Intel Software Guard Extensions (SGX) [70]. These features provide

processor-level isolation to ensure the confidentiality and integrity of security-critical code

and data even when the underlying operating systems or any runtime libraries are compro-

mised. One concrete use of such hardware features directly related to this dissertation is to

design a CV data integrity protection system, which may fundamentally prevent the data

spoofing attacks we identified in smart transportation systems in §VI.

192

BIBLIOGRAPHY

193

BIBLIOGRAPHY

[1] A DNS RR for specifying the location of services (DNS SRV). https://tools.

ietf.org/html/rfc2782.

[2] Adding DNS-SD Service Discovery Records. http://www.dns-sd.org/

serverstaticsetup.html.

[3] AFP File Server Security. https://developer.apple.com/

library/content/documentation/Networking/Conceptual/

AFP/AFPSecurity/AFPSecurity.html.

[4] Amazon Echo. www.amazon.com/echo.

[5] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.

[6] An Overview of XMPP. https://xmpp.org/about/

technology-overview.html.

[7] Analysis result website. http://tinyurl.com/

PacketInjectionVulnerability.

[8] Annual Day In The Life of the Internet (DITL) collection. https://www.

dns-oarc.net/oarc/data/ditl.

[9] Apple Filing Protocol Concepts. https://developer.apple.com/

library/content/documentation/Networking/Conceptual/

AFP/Concepts/Concepts.html.

[10] Apple HomeKit. https://www.apple.com/shop/accessories/

all-accessories/homekit.

[11] ARM TrustZone: SoC and CPU System-Wide Approach to Security. https://

www.arm.com/products/security-on-arm/trustzone.

[12] ASCII Table and Description. http://www.asciitable.com/.

[13] Asterisk custom communications for VoIP. http://www.asterisk.org/.

[14] August Smart Lock. https://august.com/.

[15] Autodiscover for Exchange. https://msdn.microsoft.com/en-us/

library/office/jj900169(v=exchg.150).aspx.

194

https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc2782
http://www.dns-sd.org/serverstaticsetup.html
http://www.dns-sd.org/serverstaticsetup.html
https://developer.apple.com/library/content/documentation/Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html
https://developer.apple.com/library/content/documentation/Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html
https://developer.apple.com/library/content/documentation/Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html
www.amazon.com/echo
http://lcamtuf.coredump.cx/afl
https://xmpp.org/about/technology-overview.html
https://xmpp.org/about/technology-overview.html
http://tinyurl.com/PacketInjectionVulnerability
https://www.dns-oarc.net/oarc/data/ditl
https://www.dns-oarc.net/oarc/data/ditl
https://developer.apple.com/library/content/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/content/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/content/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://www.apple.com/shop/accessories/all-accessories/homekit
https://www.apple.com/shop/accessories/all-accessories/homekit
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
http://www.asciitable.com/
http://www.asterisk.org/
https://august.com/
https://msdn.microsoft.com/en-us/library/office/jj900169(v=exchg.150).aspx
https://msdn.microsoft.com/en-us/library/office/jj900169(v=exchg.150).aspx

[16] Automount NFS in OS X. https://yourmacguy.wordpress.com/2012/

06/29/osx-automount/.

[17] Autoware: Open-source software for urban autonomous driving. https://

github.com/CPFL/Autoware.

[18] Baidu Apollo: An open autonomous driving platform. http://apollo.auto/.

[19] Baı̈kal: Cal and CardDAV server based on sabre/dav. http://sabre.io/

baikal/.

[20] BestWhois service. https://www.whoisxmlapi.com/

terms-of-service.php.

[21] Bonjour API Architecture. https://developer.apple.com/library/

content/documentation/Cocoa/Conceptual/NetServices/

Articles/programming.html.

[22] Bonjour: Apple’s implementation of zero-configuration networking protocols.

https://developer.apple.com/library/mac/documentation/

Cocoa/Conceptual/NetServices/Introduction.html.

[23] Bonjour service types used in Mac OS X. https://developer.apple.com/

library/content/qa/qa1312/_index.html.

[24] Building an Enterprise Root Certification Authority in Small and Medium Busi-

nesses. https://msdn.microsoft.com/en-us/library/cc875810.

aspx.

[25] Calendaring Extensions to WebDAV (CalDAV). https://tools.ietf.org/

html/rfc4791.

[26] CardDAV: vCard Extensions to Web Distributed Authoring and Versioning (Web-

DAV). https://tools.ietf.org/html/rfc6352.

[27] Chromes startup random DNS queries tracked in, and polluting users Google

Web History. https://bugs.chromium.org/p/chromium/issues/

detail?id=47262.

[28] Cohda Wireless OBU and RSU. http://cohdawireless.com/Products/

Hardware.aspx.

[29] Comcast’s IPv6 Information Center. http://www.comcast6.net/.

[30] Comparison between NTLM and Kerberos. https://highfromtea.

wordpress.com/tag/ntlmssp/.

[31] Configure Email Accounts with Outlook. https://

support.marcaria.com/hc/en-us/articles/

215526083-Configure-Email-Accounts-with-Outlook.

195

https://yourmacguy.wordpress.com/2012/06/29/osx-automount/
https://yourmacguy.wordpress.com/2012/06/29/osx-automount/
https://github.com/CPFL/Autoware
https://github.com/CPFL/Autoware
http://apollo.auto/
http://sabre.io/baikal/
http://sabre.io/baikal/
https://www.whoisxmlapi.com/terms-of-service.php
https://www.whoisxmlapi.com/terms-of-service.php
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/NetServices/Articles/programming.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/NetServices/Articles/programming.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/NetServices/Articles/programming.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/content/qa/qa1312/_index.html
https://developer.apple.com/library/content/qa/qa1312/_index.html
https://msdn.microsoft.com/en-us/library/cc875810.aspx
https://msdn.microsoft.com/en-us/library/cc875810.aspx
https://tools.ietf.org/html/rfc4791
https://tools.ietf.org/html/rfc4791
https://tools.ietf.org/html/rfc6352
https://bugs.chromium.org/p/chromium/issues/detail?id=47262
https://bugs.chromium.org/p/chromium/issues/detail?id=47262
http://cohdawireless.com/Products/Hardware.aspx
http://cohdawireless.com/Products/Hardware.aspx
http://www.comcast6.net/
https://highfromtea.wordpress.com/tag/ntlmssp/
https://highfromtea.wordpress.com/tag/ntlmssp/
https://support.marcaria.com/hc/en-us/articles/215526083-Configure-Email-Accounts-with-Outlook
https://support.marcaria.com/hc/en-us/articles/215526083-Configure-Email-Accounts-with-Outlook
https://support.marcaria.com/hc/en-us/articles/215526083-Configure-Email-Accounts-with-Outlook

[32] Configure web-site for access with and without the ’www’ domain name prefix.

http://support.simpledns.com/kb/a87/configure-web-site-

for-access-with-and-without-the-www-domain-name-prefix.

aspx.

[33] Configuring Pivotal Cloud Foundry SSL Termination for vSphere Deploy-

ments. https://docs.pivotal.io/pivotalcf/1-7/opsguide/

ssl-term.html.

[34] Configuring the Commerce Server Network. https://msdn.microsoft.

com/en-us/library/aa545742(v=cs.70).aspx.

[35] Connected Vehicle Applications. https://www.its.dot.gov/pilots/

cv_pilot_apps.htm.

[36] Connected Vehicle Pilot Deployment Program Phase 1, Concept of Operations

(ConOps) Tampa (THEA). https://ntl.bts.gov/lib/57000/57000/

57032/FHWA-JPO-16-311.pdf.

[37] CV application: MMITSS-AZ 1.0. https://www.itsforge.net/index.

php/community/explore-applications/for-search-results#/

30/63.

[38] Demystifying Driving’s Dilemma Zone. https://www.insidescience.

org/news/demystifying-drivings-dilemma-zone.

[39] DNS-Based Authentication of Named Entities (DANE). https://tools.

ietf.org/html/rfc6698.

[40] DNS-Based Service Discovery. https://tools.ietf.org/html/

rfc6763.

[41] DNS Long-Lived Queries. https://tools.ietf.org/html/

draft-sekar-dns-llq-01.

[42] Download RubyGems. https://rubygems.org/pages/download.

[43] DSRC: The Future of Safer Driving. https://www.its.dot.gov/

factsheets/dsrc_factsheet.htm.

[44] DuerOS for Apollo. http://apollo.auto/platform/dueros.html.

[45] Dynamic Updates in the Domain Name System (DNS UPDATE). https://

tools.ietf.org/html/rfc2136.

[46] Econolite NEMA Traffic Control. https://www.econolite.com/

products/traffic-cabinets/nema.

196

http://support.simpledns.com/kb/a87/configure-web-site-for-access-with-and-without-the-www-domain-name-prefix.aspx
https://docs.pivotal.io/pivotalcf/1-7/opsguide/ssl-term.html
https://docs.pivotal.io/pivotalcf/1-7/opsguide/ssl-term.html
https://msdn.microsoft.com/en-us/library/aa545742(v=cs.70).aspx
https://msdn.microsoft.com/en-us/library/aa545742(v=cs.70).aspx
https://www.its.dot.gov/pilots/cv_pilot_apps.htm
https://www.its.dot.gov/pilots/cv_pilot_apps.htm
https://ntl.bts.gov/lib/57000/57000/57032/FHWA-JPO-16-311.pdf
https://ntl.bts.gov/lib/57000/57000/57032/FHWA-JPO-16-311.pdf
https://www.itsforge.net/index.php/community/explore-applications/for-search-results#/30/63
https://www.itsforge.net/index.php/community/explore-applications/for-search-results#/30/63
https://www.itsforge.net/index.php/community/explore-applications/for-search-results#/30/63
https://www.insidescience.org/news/demystifying-drivings-dilemma-zone
https://www.insidescience.org/news/demystifying-drivings-dilemma-zone
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/draft-sekar-dns-llq-01
https://tools.ietf.org/html/draft-sekar-dns-llq-01
https://rubygems.org/pages/download
https://www.its.dot.gov/factsheets/dsrc_factsheet.htm
https://www.its.dot.gov/factsheets/dsrc_factsheet.htm
http://apollo.auto/platform/dueros.html
https://tools.ietf.org/html/rfc2136
https://tools.ietf.org/html/rfc2136
https://www.econolite.com/products/traffic-cabinets/nema
https://www.econolite.com/products/traffic-cabinets/nema

[47] Edge Server environmental requirements in Skype for Business Server 2015.

https://technet.microsoft.com/en-us/library/mt346415.

aspx.

[48] ejabberd: robust, massively scalable and extensible XMPP server. https://www.

ejabberd.im/.

[49] End-to-End Deep Learning for Self-Driving Cars. https://devblogs.

nvidia.com/deep-learning-self-driving-cars.

[50] File Transfer Protocol (FTP). https://tools.ietf.org/html/rfc959.

[51] FTP Security Extensions. https://tools.ietf.org/html/rfc2228.

[52] General Motors: OnStar In-Vehicle Safety and Security. https://www.

onstar.com/us/en/home/.

[53] Google Assistant. https://assistant.google.com.

[54] Google open resolver IP addresses. https://developers.google.com/

speed/public-dns/docs/using.

[55] Growing Number of ECUs Forces New Approach to Cars Electrical Architecture.

http://www.newelectronics.co.uk/electronics-technology/

growing-number-of-ecus-forces-new-approach-to-car-

electrical-architecture/45039.

[56] Hackers Create ’Ghost’ Traffic Jam to Confound Smart Traffic Systems. https://

www.theregister.co.uk/2018/03/07/hackers_create_ghost_

traffic_jam_to_confound_smart_traffic_systems/.

[57] Hacking Time Machine. https://dreness.com/blog/archives/48.

[58] Half the Web Is Now Encrypted. That Makes Everyone Safer.

https://www.wired.com/2017/01/half-web-now-encrypted-

makes-everyone-safer/.

[59] Home routers come under attack from new DNS redirection tool. http://www.

enyo.de/fw/notes/the-great-corp-renaming.html.

[60] How Drive.ai Is Mastering Autonomous Driving With Deep Learning.

https://spectrum.ieee.org/cars-that-think/transportation

/self-driving/how-driveai-is-mastering-autonomous-

driving-with-deep-learning.

[61] HTTP Authentication: Basic and Digest Access Authentication. https://

tools.ietf.org/html/rfc2617.

[62] HTTP Extensions for Distributed Authoring – WEBDAV. https://tools.

ietf.org/html/rfc2518.

197

https://technet.microsoft.com/en-us/library/mt346415.aspx
https://technet.microsoft.com/en-us/library/mt346415.aspx
https://www.ejabberd.im/
https://www.ejabberd.im/
https://devblogs.nvidia.com/deep-learning-self-driving-cars
https://devblogs.nvidia.com/deep-learning-self-driving-cars
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc2228
https://www.onstar.com/us/en/home/
https://www.onstar.com/us/en/home/
https://assistant.google.com
https://developers.google.com/speed/public-dns/docs/using
https://developers.google.com/speed/public-dns/docs/using
http://www.newelectronics.co.uk/electronics-technology/growing-number-of-ecus-forces-new-approach-to-car-electrical-architecture/45039
https://www.theregister.co.uk/2018/03/07/hackers_create_ghost_traffic_jam_to_confound_smart_traffic_systems/
https://www.theregister.co.uk/2018/03/07/hackers_create_ghost_traffic_jam_to_confound_smart_traffic_systems/
https://www.theregister.co.uk/2018/03/07/hackers_create_ghost_traffic_jam_to_confound_smart_traffic_systems/
https://dreness.com/blog/archives/48
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
http://www.enyo.de/fw/notes/the-great-corp-renaming.html
http://www.enyo.de/fw/notes/the-great-corp-renaming.html
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/how-driveai-is-mastering-autonomous-driving-with-deep-learning
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2518
https://tools.ietf.org/html/rfc2518

[63] HTTP Over TLS. https://tools.ietf.org/html/rfc2818.

[64] Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/

rfc2616.

[65] IANA Service Name and Transport Protocol Port Number Registry. http://

www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xml.

[66] IBM Knowledge Center: LDAP and SSL configuration example. http://www.

ibm.com/support/knowledgecenter/SSPFMY_1.3.3/com.ibm.

scala.doc/config/iwa_config_ldap_exmpl_c.html.

[67] ICANN: Mitigating the Risk of DNS Namespace Collisions Phase One. https://

www.icann.org/news/announcement-2-2014-06-10-en.

[68] ICANN: Proposal to Mitigate Name Collision Risks. https://www.icann.

org/public-comments/name-collision-2013-08-05-en.

[69] ICANN Study: Name Collision in the DNS. https://www.icann.org/en/

system/files/files/name-collision-02aug13-en.pdf.

[70] Intel Software Guard Extensions (Intel SGX). https://software.intel.

com/en-us/sgx.

[71] Internet Printing Protocol/1.1: Encoding and Transport. https://tools.

ietf.org/html/rfc2910.

[72] Intra-Site Automatic Tunnel Addressing Protocol (ISATAP). https://tools.

ietf.org/html/rfc5214.

[73] Kerberos: The Network Authentication Protocol. http://web.mit.edu/

kerberos/.

[74] kpasswd MIT Kerberos Documentation. https://web.mit.edu/

kerberos/krb5-1.13/doc/user/user_commands/kpasswd.html.

[75] Let’s Encrypt Certificate Authority. https://letsencrypt.org/.

[76] Lightweight Directory Access Protocol (LDAP): The Protocol. https://tools.

ietf.org/html/rfc4511.

[77] Linux ISATAP Setup. http://www.litech.org/isatap/.

[78] Max OS X Xgrid. http://www.apple.com/server/macosx/

technology/xgrid.html.

[79] Microsoft Key Management Services (KMS). http://help.unc.edu/help/

microsoft-key-management-services-kms/.

198

https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.ibm.com/support/knowledgecenter/SSPFMY_1.3.3/com.ibm.scala.doc/config/iwa_config_ldap_exmpl_c.html
http://www.ibm.com/support/knowledgecenter/SSPFMY_1.3.3/com.ibm.scala.doc/config/iwa_config_ldap_exmpl_c.html
http://www.ibm.com/support/knowledgecenter/SSPFMY_1.3.3/com.ibm.scala.doc/config/iwa_config_ldap_exmpl_c.html
https://www.icann.org/news/announcement-2-2014-06-10-en
https://www.icann.org/news/announcement-2-2014-06-10-en
https://www.icann.org/public-comments/name-collision-2013-08-05-en
https://www.icann.org/public-comments/name-collision-2013-08-05-en
https://www.icann.org/en/system/files/files/name-collision-02aug13-en.pdf
https://www.icann.org/en/system/files/files/name-collision-02aug13-en.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://tools.ietf.org/html/rfc2910
https://tools.ietf.org/html/rfc2910
https://tools.ietf.org/html/rfc5214
https://tools.ietf.org/html/rfc5214
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/krb5-1.13/doc/user/user_commands/kpasswd.html
https://web.mit.edu/kerberos/krb5-1.13/doc/user/user_commands/kpasswd.html
https://letsencrypt.org/
https://tools.ietf.org/html/rfc4511
https://tools.ietf.org/html/rfc4511
http://www.litech.org/isatap/
http://www.apple.com/server/macosx/technology/xgrid.html
http://www.apple.com/server/macosx/technology/xgrid.html
http://help.unc.edu/help/microsoft-key-management-services-kms/
http://help.unc.edu/help/microsoft-key-management-services-kms/

[80] Microsoft TechNet: SRV Resource Records. https://technet.microsoft.

com/en-us/library/cc961719.aspx.

[81] Mirai: What you need to know about the botnet behind recent major DDoS attacks.

https://www.symantec.com/connect/blogs/mirai-what-you-

need-know-about-botnet-behind-recent-major-ddos-attacks.

[82] MMITSS Final ConOps: Concept of Operations. http://www.cts.

virginia.edu/wp-content/uploads/2014/05/Task2.3._

CONOPS_6_Final_Revised.pdf.

[83] Name Server API? https://developer.dnsimple.com/v1/

nameservers/.

[84] Naming an internal (private) Active Directory LAN. http://arstechnica.

com/civis/viewtopic.php?f=17&t=394734.

[85] Network Time Protocol Version 4: Protocol and Algorithms Specification.

https://tools.ietf.org/html/rfc5905.

[86] Number of Smartphone Users Worldwide from 2014 to 2020 (in Bil-

lions). https://www.statista.com/statistics/330695/

number-of-smartphone-users-worldwide/.

[87] Off-path Packet Injection Vulnerability Detection Results. http://tinyurl.

com/PacketInjectionVulnerability.

[88] One Single Malicious Vehicle Can Block ”Smart” Street Intersections in the US.

https://www.bleepingcomputer.com/news/technology/one-

single-malicious-vehicle-can-block-smart-street-

intersections-in-the-us/.

[89] Open Source Application Development Portal (OSADP). https://itsforge.

net/.

[90] OpenAFS. http://www.openafs.org/.

[91] Openssl: How to generate a CSR with interactively requested alternative theme

names? https://www.enmimaquinafunciona.com/pregunta/13352/openssl-como-

generar-un-csr-con-nombres-de-alternativa-tema-solicitados-interactivamente-sans.

[92] Page Description Language. http://printwiki.org/Page_

Description_Language.

[93] Picture Transfer Protocol (PTP). http://www.imaging.org/ist/

resources/standards/ptp-standards.cfm.

[94] Post Office Protocol - Version 3. https://tools.ietf.org/html/

rfc1939.

199

https://technet.microsoft.com/en-us/library/cc961719.aspx
https://technet.microsoft.com/en-us/library/cc961719.aspx
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf
http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf
http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf
https://developer.dnsimple.com/v1/nameservers/
https://developer.dnsimple.com/v1/nameservers/
http://arstechnica.com/civis/viewtopic.php?f=17&t=394734
http://arstechnica.com/civis/viewtopic.php?f=17&t=394734
https://tools.ietf.org/html/rfc5905
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://tinyurl.com/PacketInjectionVulnerability
http://tinyurl.com/PacketInjectionVulnerability
https://www.bleepingcomputer.com/news/technology/one-single-malicious-vehicle-can-block-smart-street-intersections-in-the-us/
https://itsforge.net/
https://itsforge.net/
http://www.openafs.org/
http://printwiki.org/Page_Description_Language
http://printwiki.org/Page_Description_Language
http://www.imaging.org/ist/resources/standards/ptp-standards.cfm
http://www.imaging.org/ist/resources/standards/ptp-standards.cfm
https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc1939

[95] PTV Vissim. http://vision-traffic.ptvgroup.com/en-us/

products/ptv-vissim.

[96] Required DNS Records for Automatic Client Sign-In. https://technet.

microsoft.com/en-us/library/bb663700(v=office.12).aspx.

[97] REST Resource Naming Guide. http://restfulapi.net/

resource-naming/.

[98] RFC 5214. https://tools.ietf.org/html/rfc5214.

[99] RFC 5424. https://tools.ietf.org/html/rfc5424.

[100] RIPE 72 discussion, 05/23/2016: Alert (TA16144A) WPAD Name Col-

lision Vulnerability. https://ripe72.ripe.net/presentations/

49-wpad-vulnerability-RIPE-CPH.pdf.

[101] Root server distribution. http://root-servers.org.

[102] Samsung SmartThings. https://www.smartthings.com.

[103] Savari StreetWAVE RSU. http://savari.net/technology/

road-side-unit.

[104] Second Level Domain (SLD). http://icannwiki.com/SLD.

[105] Security Mechanism Agreement for the Session Initiation Protocol (SIP).

https://tools.ietf.org/html/rfc3329.

[106] Server Message Block Overview. https://technet.microsoft.com/

en-us/library/hh831795(v=ws.11).aspx.

[107] Session Traversal Utilities for NAT (STUN). http://www.voip-info.org/

wiki/view/STUN.

[108] SFTP - The Modern FTP. https://www.ssh.com/ssh/sftp/.

[109] Simple Mail Transfer Protocol. https://tools.ietf.org/html/

rfc2821.

[110] SIP: Session Initiation Protocol. https://tools.ietf.org/html/

rfc3261.

[111] Smart Traffic Lights Cause Jams When Fed Spoofed Data.

https://nakedsecurity.sophos.com/2018/03/08/

smart-traffic-lights-cause-jams-when-fed-spoofed-data/.

[112] Special Interest Group of BA – BAAAAA! (Foosball) and Bug. https://

sites.google.com/site/sigbaaaaa.

200

http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim
https://technet.microsoft.com/en-us/library/bb663700(v=office.12).aspx
https://technet.microsoft.com/en-us/library/bb663700(v=office.12).aspx
http://restfulapi.net/resource-naming/
http://restfulapi.net/resource-naming/
https://tools.ietf.org/html/rfc5214
https://tools.ietf.org/html/rfc5424
https://ripe72.ripe.net/presentations/49-wpad-vulnerability-RIPE-CPH.pdf
https://ripe72.ripe.net/presentations/49-wpad-vulnerability-RIPE-CPH.pdf
http://root-servers.org
https://www.smartthings.com
http://savari.net/technology/road-side-unit
http://savari.net/technology/road-side-unit
http://icannwiki.com/SLD
https://tools.ietf.org/html/rfc3329
https://technet.microsoft.com/en-us/library/hh831795(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831795(v=ws.11).aspx
http://www.voip-info.org/wiki/view/STUN
http://www.voip-info.org/wiki/view/STUN
https://www.ssh.com/ssh/sftp/
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://nakedsecurity.sophos.com/2018/03/08/smart-traffic-lights-cause-jams-when-fed-spoofed-data/
https://nakedsecurity.sophos.com/2018/03/08/smart-traffic-lights-cause-jams-when-fed-spoofed-data/
https://sites.google.com/site/sigbaaaaa
https://sites.google.com/site/sigbaaaaa

[113] SSLsplit: Transparent SSL/TLS Interception.

https://www.roe.ch/SSLsplit.

[114] STAC: Static Taint Analysis for C. http://code.google.com/p/

tanalysis.

[115] Static Analysis vs Dynamic Analysis in Software Test-

ing. http://www.testingexcellence.com/

static-analysis-vs-dynamic-analysis-software-testing.

[116] Static Content Subdomain. https://halfelf.org/2015/static-content-subdomain.

[117] Study: Single Connected Car Can Trick Smart

Traffic Lights Into Causing Intersection Clogging.

https://www.trendmicro.com/vinfo/ph/security/news/

internet-of-things/connected-car-can-trick-smart-

traffic-lights-causing-intersection-clogging.

[118] The BitTorrent Protocol. http://www.morehawes.co.uk/

the-bittorrent-protocol.

[119] The Case Against DNSSEC. http://www.circleid.com/posts/

070814_case_against_dnssec/.

[120] The DNS Operations, Analysis, and Research Center (DNS-OARC). https://

www.dns-oarc.net/.

[121] The Heartbleed Bug. http://heartbleed.com.

[122] The Remote Framebuffer Protocol. https://tools.ietf.org/html/

rfc6143.

[123] Top Level Domain (TLD). http://icannwiki.com/TLD.

[124] Tutorial: Run Your Own Gem Server. http://guides.rubygems.org/

run-your-own-gem-server/.

[125] US-CERT: Domain Name Collision Bug Could Result in MitM Attacks.

https://www.scmagazine.com/us-cert-domain-name-

collision-bug-could-result-in-mitm-attacks/article/

528184/.

[126] US-CERT: Leaked WPAD Queries Could Expose Corporate to MitM At-

tacks. https://securityaffairs.co/wordpress/47716/hacking/

wpad-queries-mitm.html.

[127] US-CERT Technical Alert (TA16-144A): WPAD Name Collision Vulnerability.

https://www.us-cert.gov/ncas/alerts/TA16-144A.

201

https://www.roe.ch/SSLsplit
http://code.google.com/p/tanalysis
http://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing
http://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing
https://www.trendmicro.com/vinfo/ph/security/news/internet-of-things/connected-car-can-trick-smart-traffic-lights-causing-intersection-clogging
http://www.morehawes.co.uk/the-bittorrent-protocol
http://www.morehawes.co.uk/the-bittorrent-protocol
http://www.circleid.com/posts/070814_case_against_dnssec/
http://www.circleid.com/posts/070814_case_against_dnssec/
https://www.dns-oarc.net/
https://www.dns-oarc.net/
http://heartbleed.com
https://tools.ietf.org/html/rfc6143
https://tools.ietf.org/html/rfc6143
http://icannwiki.com/TLD
http://guides.rubygems.org/run-your-own-gem-server/
http://guides.rubygems.org/run-your-own-gem-server/
https://www.scmagazine.com/us-cert-domain-name-collision-bug-could-result-in-mitm-attacks/article/528184/
https://securityaffairs.co/wordpress/47716/hacking/wpad-queries-mitm.html
https://securityaffairs.co/wordpress/47716/hacking/wpad-queries-mitm.html
https://www.us-cert.gov/ncas/alerts/TA16-144A

[128] US Department of Transportation hopes to mandate V2V communications.

https://www.cnet.com/roadshow/news/us-department-of-

transportation-hopes-to-mandate-v2v-communications.

[129] U.S. DoT Connected Vehicle Pilot Deployment Program. https://www.its.

dot.gov/pilots/.

[130] USDOT: 20 Questions About Connected Vehicles. https://www.its.dot.

gov/cv_basics/cv_basics_20qs.htm.

[131] USDOT: Connected Vehicles. https://www.its.dot.gov/cv_basics/

index.htm.

[132] USDOT: Multi-Modal Intelligent Traffic Safety System (MMITSS). https://

www.its.dot.gov/research_archives/dma/bundle/mmitss_

plan.htm.

[133] USDOT: Security Credential Management System (SCMS). https://www.

its.dot.gov/factsheets/pdf/CV_SCMS.pdf.

[134] Using Digest Authentication as a SASL Mechanism. https://tools.ietf.

org/html/rfc2831.

[135] Vehicle-Infrastructure Integration (VII) Initiative: Benefit-Cost Analysis.

https://www.pcb.its.dot.gov/connected_vehicle/508/

Library/Library-RRs-Institutional/VII%20BCA%20Report

%20Ver2-3.htm.

[136] Verisign White Paper: Enterprise Remediation for WPAD Name Colli-

sion Vulnerability. https://www.verisign.com/assets/Enterprise_

Remediation_for_WPAD_Name_Collision_Vulnerability.pdf.

[137] WannaCry: What you need to know about the WannaCry Ransomware.

https://www.symantec.com/blogs/threat-intelligence/

wannacry-ransomware-attack.

[138] Waymo Uses Machine Learning to Help Self-Driving Cars See

Through Snow. https://www.cnet.com/roadshow/news/

waymo-machine-learning-self-driving-cars-snow/.

[139] Web Authentication Proxy Configuration Example. http://www.cisco.com/

c/en/us/support/docs/wireless-mobility/wlan-security/

116052-config-webauth-proxy-00.html.

[140] When Domain Names Attack: the WPAD Name Collision Vulnerability.

http://nakedsecurity.sophos.com/2016/05/25/when-domain-

names-attack-the-wpad-name-collision-vulnerability.

[141] WHOIS database. http://whois.icann.org/en.

202

https://www.cnet.com/roadshow/news/us-department-of-transportation-hopes-to-mandate-v2v-communications
https://www.its.dot.gov/pilots/
https://www.its.dot.gov/pilots/
https://www.its.dot.gov/cv_basics/cv_basics_20qs.htm
https://www.its.dot.gov/cv_basics/cv_basics_20qs.htm
https://www.its.dot.gov/cv_basics/index.htm
https://www.its.dot.gov/cv_basics/index.htm
https://www.its.dot.gov/research_archives/dma/bundle/mmitss_plan.htm
https://www.its.dot.gov/research_archives/dma/bundle/mmitss_plan.htm
https://www.its.dot.gov/research_archives/dma/bundle/mmitss_plan.htm
https://www.its.dot.gov/factsheets/pdf/CV_SCMS.pdf
https://www.its.dot.gov/factsheets/pdf/CV_SCMS.pdf
https://tools.ietf.org/html/rfc2831
https://tools.ietf.org/html/rfc2831
https://www.pcb.its.dot.gov/connected_vehicle/508/Library/Library-RRs-Institutional/VII%20BCA %20Report%20Ver2-3.htm
https://www.pcb.its.dot.gov/connected_vehicle/508/Library/Library-RRs-Institutional/VII%20BCA %20Report%20Ver2-3.htm
https://www.pcb.its.dot.gov/connected_vehicle/508/Library/Library-RRs-Institutional/VII%20BCA %20Report%20Ver2-3.htm
https://www.verisign.com/assets/Enterprise_Remediation_for_WPAD_Name_Collision_Vulnerability.pdf
https://www.verisign.com/assets/Enterprise_Remediation_for_WPAD_Name_Collision_Vulnerability.pdf
https://www.symantec.com/blogs/threat-intelligence/wannacry-ransomware-attack
https://www.symantec.com/blogs/threat-intelligence/wannacry-ransomware-attack
https://www.cnet.com/roadshow/news/waymo-machine-learning-self-driving-cars-snow/
https://www.cnet.com/roadshow/news/waymo-machine-learning-self-driving-cars-snow/
http://www.cisco.com/c/en/us/support/docs/wireless-mobility/wlan-security/116052-config-webauth-proxy-00.html
http://www.cisco.com/c/en/us/support/docs/wireless-mobility/wlan-security/116052-config-webauth-proxy-00.html
http://www.cisco.com/c/en/us/support/docs/wireless-mobility/wlan-security/116052-config-webauth-proxy-00.html
https://nakedsecurity.sophos.com/2016/05/25/when-domain-names-attack-the-wpad-name-collision-vulnerability/
http://whois.icann.org/en

[142] WPAD Name Collision Bug Opens Door for MitM Attackers. https://www.

helpnetsecurity.com/2016/05/24/wpad-name-collision-bug.

[143] WPAD Name Collision Flaw Allows MitM At-

tacks. https://www.securityweek.com/

wpad-name-collision-flaw-allows-mitm-attacks.

[144] Zero Configuration Networking (Zeroconf). http://www.zeroconf.org.

[145] Setting up Web Proxy Autodiscovery Protocol (WPAD) using DNS.

http://tektab.com/2012/09/26/setting-up-web-proxy-

autodiscovery-protocol-wpad-using-dns, 2012.

[146] The New gTLD Program. https://newgtlds.icann.org/en/about/

program, 2013.

[147] Use a Custom TLD for Local Development.

http://blog.bfontaine.net/2013/08/26/use-a-custom-tld-

for-local-development, 2013.

[148] What is a Windows Domain and How Does It Af-

fect My PC? http://www.howtogeek.com/194069/

what-is-a-windows-domain-and-how-does-it-affect-my-pc,

2014.

[149] Centralized Zone Data Service. https://czds.icann.org/en, 2015.

[150] Root Zone Database. http://www.iana.org/domains/root/db, 2015.

[151] New delegated TLD strings. http://newgtlds.icann.org/en/

program-status/delegated-strings, 2017.

[152] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,

N. Heninger, D. Springall, E. Thomé, L. Valenta, et al. Imperfect Forward Secrecy:

How Diffie-Hellman Fails in Practice. In ACM CCS, 2015.

[153] M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M. Zhang, J. Rowe, and

K. Levitt. Security Vulnerabilities of Connected Vehicle Streams and Their Impact

on Cooperative Driving. In IEEE Communications Magazine, 2015.

[154] R. Anderson and S. Fuloria. Who Controls the Off Switch? In IEEE Smart Grid

Communications (SmartGridComm), 2010.

[155] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. On

Subnormal Floating Point and Abnormal Timing. In IEEE Symposium on Security

and Privacy, 2015.

[156] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modifications

for the DNS Security Extensions. RFC4035, 2005.

203

https://www.helpnetsecurity.com/2016/05/24/wpad-name-collision-bug
https://www.helpnetsecurity.com/2016/05/24/wpad-name-collision-bug
https://www.securityweek.com/wpad-name-collision-flaw-allows-mitm-attacks
https://www.securityweek.com/wpad-name-collision-flaw-allows-mitm-attacks
http://www.zeroconf.org
http://tektab.com/2012/09/26/setting-up-web-proxy-autodiscovery-protocol-wpad-using-dns
https://newgtlds.icann.org/en/about/program
https://newgtlds.icann.org/en/about/program
http://blog.bfontaine.net/2013/08/26/use-a-custom-tld-for-local-development
http://www.howtogeek.com/194069/what-is-a-windows-domain-and-how-does-it-affect-my-pc
http://www.howtogeek.com/194069/what-is-a-windows-domain-and-how-does-it-affect-my-pc
https://czds.icann.org/en
http://www.iana.org/domains/root/db
http://newgtlds.icann.org/en/program-status/delegated-strings
http://newgtlds.icann.org/en/program-status/delegated-strings

[157] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource Records for

the DNS Security Extensions. RFC4034, 2005.

[158] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel. Flowdroid: Precise Context, Flow, Field, Object-sensitive and

Lifecycle-aware Taint Analysis for Android Apps. In PLDI, 2014.

[159] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-M. Hu. Staying Se-

cure and Unprepared: Understanding and Mitigating the Security Risks of Apple

ZeroConf. In IEEE Symposium on Security and Privacy, 2016.

[160] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate Sanitization

in Web Applications. In IEEE Symposium on Security and Privacy, 2008.

[161] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict Control Dependence and its

Effect on Dynamic Information Flow Analyses. In ACM ISSTA, 2010.

[162] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal Verification of Standards for

Distance Vector Routing Protocols. Journal of the ACM, 2002.

[163] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough.

Rigorous Specification and Conformance Testing Techniques for Network Protocols,

as Applied to TCP, UDP, and Sockets. SIGCOMM, 2005.

[164] W. Burghout and J. Wahlstedt. Hybrid Traffic Simulation With Adaptive Signal Con-

trol. In Transportation Research Record: Journal of the Transportation Research

Board, 2007.

[165] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and

W. Zhou. Hidden Voice Commands. In USENIX Security Symposium, 2016.

[166] N. Carlini and D. Wagner. Adversarial Examples Are Not Easily Detected: By-

passing Ten Detection Methods. In ACM Workshop on Artificial Intelligence and

Security, 2017.

[167] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Networks.

In IEEE Symposium on Security and Privacy, 2017.

[168] S. Castro, D. Wessels, M. Fomenkov, and K. Claffy. A Day at the Root of the

Internet. In ACM SIGCOMM Computer Communication Review, 2008.

[169] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and V. Shmatikov. Inputs of

Coma: Static Detection of Denial-of-Service Vulnerabilities. In CSF, 2009.

[170] P. Chapman and D. Evans. Automated Black-box Detection of Side-channel Vulner-

abilities in Web Applications. In ACM CCS, 2011.

204

[171] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,

K. Koscher, A. Czeskis, F. Roesner, et al. Comprehensive Experimental Analyses of

Automotive Attack Surfaces. In USENIX Security, 2011.

[172] Q. A. Chen, E. Osterweil, M. Thomas, and Z. M. Mao. MitM Attack by Name

Collision: Cause Analysis and Vulnerability Assessment in the New gTLD Era. In

IEEE Symposium on Security and Privacy, 2016.

[173] Q. A. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. M. Mao. Static Detection of Packet

Injection Vulnerabilities – A Case for Identifying Attacker-controlled Implicit Infor-

mation Leaks. In ACM CCS, 2015.

[174] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App without Actually

Seeing It: UI State Inference and Novel Android Attacks. In USENIX Security,

2014.

[175] Q. A. Chen, M. Thomas, E. Osterweil, Y. Cao, J. You, and Z. M. Mao. Client-side

Name Collision Vulnerability in the New gTLD Era: A Systematic Study. In Pro-

ceedings of the 24th ACM Conference on Computer and Communications Security

(CCS), 2017.

[176] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu. Exposing Congestion Attack

on Emerging Connected Vehicle based Traffic Signal Control. In Proceedings of the

25th Network and Distributed System Security Symposium (NDSS), 2018.

[177] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel Leaks in Web Applica-

tions: A Reality Today, a Challenge Tomorrow. In IEEE Symposium on Security and

Privacy, 2010.

[178] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel Leaks in Web Applica-

tions: A Reality Today, a Challenge Tomorrow. In IEEE Symposium on Security and

Privacy, 2010.

[179] S. Cheshire and M. Krochmal. Multicast DNS. RFC6762, 2013.

[180] K.-T. Cho and K. G. Shin. Fingerprinting Electronic Control Units for Vehicle In-

trusion Detection. In USENIX Security Symposium, 2016.

[181] D. Clark, S. Hunt, and P. Malacaria. A Static Analysis for Quantifying Information

Flow in a Simple Imperative Language. In Journal of Computer Security, 2007.

[182] C. Cowan, C. Pu, D. Maier, J. Walpole, and P. Bakke. StackGuard: Automatic

Adaptive Detection and Prevention of Buffer-Overflow Attacks. In USENIX Secu-

rity, 1998.

[183] A. Cui and S. J. Stolfo. A Quantitative Analysis of the Insecurity of Embedded

Network Devices: Results of a Wide-area Scan. In ACM ACSAC, 2010.

205

[184] X. d. C. de Carnavalet and M. Mannan. Killed by Proxy: Analyzing Client-end TLS

Interception Software. In ISOC NDSS, 2016.

[185] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, 2008.

[186] C. Deccio. Whats in a Name (Collision)? Modeling and Quantifying Collision

Potential. In Workshop and Prize on Root Causes and Mitigation of Name Collisions

(WPNC), 2014.

[187] D. Dominic, S. Chhawri, R. M. Eustice, D. Ma, and A. Weimerskirch. Risk Assess-

ment for Cooperative Automated Driving. In ACM CPS-SP Workshop, 2016.

[188] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. CacheAudit: A Tool

for the Static Analysis of Cache Side Channels. In Usenix Security, 2013.

[189] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke. Cacheaudit: A Tool for the

Static Analysis of Cache Side Channels. In USENIX Security, 2013.

[190] H. Duan, N. Weaver, Z. Zhao, M. Hu, J. Liang, J. Jiang, K. Li, and V. Paxson.

Hold-on: Protecting Against On-path DNS Poisoning. In Workshop on Securing

and Trusting Internet Names, 2012.

[191] E. Dumazet. Kernel discussion on ACK flag set.

http://comments.gmane.org/gmane.linux.

network/253369, 2012.

[192] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver,

J. Amann, J. Beekman, M. Payer, et al. The Matter of Heartbleed. In ACM Internet

measurement conference, 2014.

[193] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of the HTTPS

Certificate Ecosystem. In ACM Internet measurement conference, 2013.

[194] D. Eastlake 3rd and A. Panitz. Reserved Top Level DNS Names. RFC2606, 1999.

[195] M. Emmelmann, B. Bochow, and C. Kellum. Vehicular Networking: Automotive

Applications and Beyond. John Wiley & Son, 2010.

[196] S. Fahl, M. Harbach, T. Muders, and M. Smith. Why Eve and Mallory love Android:

An analysis of SSl (in) security on Android. In ACM CCS, 2012.

[197] Y. Feng, K. L. Head, S. Khoshmagham, and M. Zamanipour. A Real-time Adaptive

Signal Control In A Connected Vehicle Environment. In Elsevier Transportation

Research Part C: Emerging Technologies, 2015.

[198] P. Gauthier, J. Cohen, M. Dunsmuir, and C. Perkins. The Web Proxy Auto-Discovery

Protocol. Internet draft, IETF, 1999.

[199] Gavron, Ehud. A Security Problem and Proposed Correction With Widely Deployed

DNS Software. RFC1535, 1993.

206

http://comments.gmane.org/gmane.linux.network/253369

[200] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The

Most Dangerous Code in the World: Validating SSL Certificates in Non-browser

Software. In ACM CCS, 2012.

[201] A. Ghafouri, W. Abbas, Y. Vorobeychik, and X. Koutsoukos. Vulnerability of Fixed-

time Control of Signalized Intersections to Cyber-tampering. In IEEE Resilience

Week (RWS), 2016.

[202] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J. A. Halderman. Green Lights

Forever: Analyzing the Security of Traffic Infrastructure. In Usenix WOOT, 2014.

[203] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: Automatically

Detecting Potential Privacy Leaks in Android Applications on a Large Scale. In

TRUST, 2012.

[204] Y. Gilad and A. Herzberg. Off-Path Attacking the Web. In USENIX WOOT, 2012.

[205] Y. Gilad and A. Herzberg. When Tolerance Causes Weakness: The Case of Injection-

Friendly Browsers. In WWW, 2013.

[206] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE

Symposium on Security and Privacy, 1982.

[207] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv. NSEC5:

Provably Preventing DNSSEC Zone Enumeration. In ISOC NDSS, 2015.

[208] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard.

Information-flow Analysis of Android Applications in DroidSafe. In NDSS, 2015.

[209] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games–Bringing Access-based

Cache Attacks on AES to Practice. In IEEE Symposium on Security and Privacy,

2011.

[210] Y. Guo. Improving Application QoE with Flow-Level, Interface-Level, and Device-

Level Parallelism. PhD thesis, University of Michigan, 2017.

[211] T. Halvorson, M. F. Der, I. Foster, S. Savage, L. K. Saul, and G. M. Voelker. From

.academy to .zone: An Analysis of the New TLD Land Rush. In ACM IMC, 2015.

[212] T. Halvorson, K. Levchenko, S. Savage, and G. M. Voelker. XXXtortion? Inferring

Registration Intent in the .XXX TLD. In ACM WWW, 2014.

[213] T. Halvorson, J. Szurdi, G. Maier, M. Felegyhazi, C. Kreibich, N. Weaver,

K. Levchenko, and V. Paxson. The BIZ Top-Level Domain: Ten Years Later. In

Passive and Active Measurement, 2012.

[214] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural Pointer Alias Analy-

sis. TOPLAS, 21(4):848–894, 1999.

207

[215] S. Jana and V. Shmatikov. Memento: Learning Secrets from Process Footprints. In

IEEE Symposium on Security and Privacy, 2012.

[216] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detect-

ing Web Application Vulnerabilities. In IEEE Symposium on Security and Privacy,

2006.

[217] B. S. Kaliski Jr. and A. Mankin. US Patent Application 20150256424: Name

Collision Risk Manager. http://www.freepatentsonline.com/y2015/

0256424.html.

[218] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic Taint

Analysis with Targeted Control-Flow Propagation. In NDSS, 2011.

[219] J. B. Kenney. Dedicated short-range communications (DSRC) standards in the

United States. In Proceedings of the IEEE, 2011.

[220] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of SQL

injection and cross-site scripting attacks. In ICSE, 2009.

[221] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t Live with ’em,

Can’t Live Without ’em. Information Systems Security, Lecture Notes in Computer

Science, 5352:56–70, 2008.

[222] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In CRYPTO, 1996.

[223] B. Könings, C. Bachmaier, F. Schaub, and M. Weber. Device Names in the Wild: In-

vestigating Privacy Risks of Zero Configuration Networking. In IEEE International

Conference on Mobile Data Management, 2013.

[224] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,

B. Kantor, D. Anderson, H. Shacham, et al. Experimental Security Analysis of a

Modern Automobile. In IEEE Symposium on Security and Privacy, 2010.

[225] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi. Finding

Protocol Manipulation Attacks. In SIGCOMM, 2011.

[226] A. Laszka, B. Potteiger, Y. Vorobeychik, S. Amin, and X. Koutsoukos. Vulnerability

of Transportation Networks to Traffic-signal Tampering. In ACM ICCPS, 2016.

[227] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Antonakakis. Domain-

Z: 28 Registrations Later. In IEEE Symposium on Security and Privacy, 2016.

[228] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache Side-Channel

Attacks are Practical. In IEEE Symposium on Security and Privacy, 2015.

[229] J. Liu, Y. Xiao, S. Li, W. Liang, and C. P. Chen. Cyber Security and Privacy Issues

in Smart Grids. In IEEE Communications Surveys & Tutorials, 2012.

208

http://www.freepatentsonline.com/y2015/0256424.html
http://www.freepatentsonline.com/y2015/0256424.html

[230] G. Lowe. Quantifying Information Flow. In IEEE Workshop on Computer Security

Foundations, 2002.

[231] C. Lozoya, P. Martı́, M. Velasco, J. M. Fuertes, and E. X. Martin. Resource and

Performance Trade-offs in Real-time Embedded Control Systems. In Real-Time

Systems, 2013.

[232] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and R. Perdisci. HTTPOS:

Sealing Information Leaks with Browser-side Obfuscation of Encrypted Flows. In

NDSS, 2011.

[233] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards Deep Learn-

ing Models Resistant to Adversarial Attacks. In arXiv preprint arXiv:1706.06083,

2017.

[234] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg. Attacking the Network Time

Protocol. In NDSS, 2016.

[235] H. C. Manual. Highway Capacity Manual. In Transportation Research Board, 2000.

[236] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy. A Security Analysis of an

In-Vehicle Infotainment and App Platform. In Usenix WOOT, 2016.

[237] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and E. Tews. Revisiting

SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks. In

USENIX Security, 2014.

[238] P. Mockapetris and K. J. Dunlap. Development of the Domain Name System. In

ACM SIGCOMM, 1988.

[239] Mockapetris, Paul. Domain Names - Implementation and Specification. rfc1035,

2004.

[240] B. Muller. Whitepaper: Improved DNS Spoofing Using Node Re-delegation.

https://www.sec-consult.com/

fxdata/seccons/prod/downloads/whitepaper

-dns-node-redelegation.pdf.

[241] V. Narayanan and Y. Xie. Reliability Concerns in Embedded System Designs. In

IEEE Computer, 2006.

[242] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: In-

termediate Language and Tools for Analysis and Transformation of C

prhttps://www.readcube.com/homeograms. In CC, 2002.

[243] E. Osterweil and D. McPherson. New gTLD Security and Stability Considera-

tions. Technical Report 1130007 version 1, 2013. http://techreports.

verisignlabs.com/docs/tr-1160018-1.pdf.

209

http://techreports.verisignlabs.com/docs/tr-1160018-1.pdf
http://techreports.verisignlabs.com/docs/tr-1160018-1.pdf

[244] E. Osterweil, D. McPherson, and L. Zhang. The Shape and Size of Threats: Defining

a Networked System’s Attack Surface. In IEEE ICNP, 2014.

[245] E. Osterweil, M. Thomas, A. Simpson, and D. McPherson. New gTLD Secu-

rity, Stability, Resiliency Update: Exploratory Consumer Impact Analysis. Tech-

nical report, 2013. http://techreports.verisignlabs.com/docs/

tr-1130008-1.pdf.

[246] E. Osterweil and L. Zhang. Interadministrative Challenges in Managing DNSKEYs.

IEEE Security and Privacy, 7(5):44–51, 2009.

[247] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a Defense to

Adversarial Perturbations Against Deep Neural Networks. In IEEE Symposium on

Security and Privacy, 2016.

[248] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and T. Millstein. Ana-

lyzing protocol implementations for interoperability. In NSDI, 2015.

[249] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated Whitebox Testing

of Deep Learning Systems. In ACM Symposium on Operating Systems Principles

(SOSP), 2017.

[250] Z. Qian and Z. M. Mao. Off-Path TCP Sequence Number Inference Attack – How

Firewall Middleboxes Reduce Security. In IEEE Symposium on Security and Pri-

vacy, 2012.

[251] Z. Qian, Z. M. Mao, and Y. Xie. Collaborative TCP Sequence Number Inference

Attack: How to Crack Sequence Number Under A Second. In ACM CCS, 2012.

[252] A. Quach, Z. Wang, and Z. Qian. Investigation of the 2016 Linux TCP Stack Vul-

nerability at Scale. In ACM SIGMETRICS, 2017.

[253] Ramaiah, Anantha and Stewart, R and Dalal, Mitesh. Improving TCP’s Robustness

to Blind In-Window Attacks. RFC5961, 2010.

[254] D. A. Ramos and D. R. Engler. Under-Constrained Symbolic Execution: Correctness

Checking for Real Code. In USENIX Security, 2015.

[255] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Digital Side-Channels through

Obfuscated Execution. In USENIX Security, 2015.

[256] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning Approach for Classifying

and Categorizing Android Sources and Sinks. In NDSS, 2014.

[257] T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow Analysis via

Graph Reachability. In POPL, 1995.

[258] A. Rountev, M. Sharp, and G. Xu. IDE Dataflow Analysis in the Presence of Large

Object-oriented Libraries. In CC, 2008.

210

http://techreports.verisignlabs.com/docs/tr-1130008-1.pdf
http://techreports.verisignlabs.com/docs/tr-1130008-1.pdf

[259] M. Sagiv, T. Reps, and S. Horwitz. Precise Interprocedural Dataflow Analysis with

Applications to Constant Propagation. Theoretical Computer Science, 167(1):131–

170, 1996.

[260] S. Sen and K. L. Head. Controlled Optimization of Phases at an Intersection. In

Transportation science, 1997.

[261] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting Format String Vulner-

abilities with Type Qualifiers. In USENIX Security, 2001.

[262] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao. Kratos: Discovering Inconsis-

tent Security Policy Enforcement in the Android Framework. In Proceedings of the

23rd Network and Distributed System Security Symposium (NDSS), 2016.

[263] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Accessorize to a Crime: Real

and Stealthy Attacks on State-of-the-art Face Recognition. In ACM CCS, 2016.

[264] A. Sharma, D. Bullock, and S. Peeta. Estimating Dilemma Zone Hazard Function

at High Speed Isolated Intersection. In Elsevier Transportation research part C:

emerging technologies, 2011.

[265] A. Simpson. Detecting Search Lists in Authoritative DNS. In Workshop and Prize

on Root Causes and Mitigation of Name Collisions (WPNC), 2014.

[266] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana. HVLearn: Auto-

mated Black-box Analysis of Hostname Verification in SSL/TLS Implementations.

In IEEE Symposium on Security and Privacy, 2017.

[267] S. Son and V. Shmatikov. The Hitchhiker’s Guide to DNS Cache Poisoning. In

Security and Privacy in Communication Networks. Springer, 2010.

[268] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. Newsome,

P. Poosankam, and P. Saxena. BitBlaze: A New Approach to Computer Security via

Binary Analysis. In Information systems security, 2008.

[269] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by pharming. In Information and

Communications Security, pages 495–506, 2007.

[270] M. Thomas, Y. Labrou, and A. Simpson. The Effectiveness of Block Lists to Pre-

vent Collisions. In Workshop and Prize on Root Causes and Mitigation of Name

Collisions (WPNC), 2014.

[271] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ: Effective Taint

Analysis of Web Applications. In PLDI, 2009.

[272] T. Urbanik, A. Tanaka, B. Lozner, E. Lindstrom, K. Lee, S. Quayle, S. Beaird,

S. Tsoi, P. Ryus, D. Gettman, et al. Signal Timing Manual. In Transportation

Research Board, 2015.

211

[273] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, And Tools

(2nd Edition). Addison Wesley, 2006.

[274] V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-based Defenses Against

Cross-VM Side-channels. In Usenix Security, 2014.

[275] G. Wassermann and Z. Su. Static Detection of Cross-site Scripting Vulnerabilities.

In Proceedings of the 30th international conference on Software engineering, 2008.

[276] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. A Security Credential Manage-

ment System for V2V Communications. In IEEE Vehicular Networking Conference

(VNC), 2013.

[277] R. P. Wilson and M. S. Lam. Efficient Context-sensitive Pointer Analysis for C

Programs. In PLDI, 1995.

[278] M. Y. Wong and D. Lie. IntelliDroid: A Targeted Input Generator for the Dynamic

Analysis of Android Malware. In NDSS, 2016.

[279] M. Wu, W. Ma, and L. Li. Characterize Dilemma Zone and Minimize Its Effect at

Coordinated Signalized Intersections. In Elsevier Procedia-Social and Behavioral

Sciences, 2013.

[280] Y. Xie and A. Aiken. Saturn: A Scalable Framework for Error Detection using

Boolean Satisfiability. TOPLAS, 2007.

[281] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and Discovering Vulner-

abilities with Code Property Graphs. In IEEE Symposium on Security and Privacy,

2014.

[282] Y. Yarom and K. E. Falkner. FLUSH+RELOAD: A High Resolution, Low Noise,

L3 Cache Side-Channel Attack. USENIX Security, 2014.

[283] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. DolphinAttack: Inaudible

Voice Commands. In ACM CCS, 2017.

[284] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Sidebuster: Automated Detection

and Quantification of Side-channel Leaks in Web Application Development. In ACM

CCS, 2010.

[285] K. Zhang and X. Wang. Peeping Tom in the Neighborhood: Keystroke Eavesdrop-

ping on Multi-User Systems. In USENIX Security, 2009.

[286] Y. Zhang, C. Fu, and L. Hu. Yellow Light Dilemma Zone Researches: A Review. In

Journal of traffic and transportation engineering, 2014.

[287] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side channels and

their use to extract private keys. In ACM CCS, 2012.

212

[288] Y. Zhang and M. K. Reiter. Düppel: Retrofitting commodity operating systems to

mitigate cache side channels in the cloud. In ACM CCS, 2013.

[289] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. Smartdroid: An

Automatic System for Revealing UI-based Trigger Conditions in Android Appli-

cations. In ACM Workshop on Security and Privacy in Smartphones and Mobile

Devices, 2012.

[290] Y. Zheng and X. Zhang. Path Sensitive Static Analysis of Web Applications for

Remote Code Execution Vulnerability Detection. In ICSE, 2013.

[291] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter, and

K. Nahrstedt. Identity, Location, Disease and More: Inferring Your Secrets from

Android Public Resources. In ACM CCS, 2013.

[292] Z. Zhou, Z. Qian, M. K. Reiter, and Y. Zhang. Static Evaluation of Noninterference

using Approximate Model Counting. In IEEE Symposium on Security and Privacy,

2018.

213

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	 I. Introduction
	1.1 Network Stack: Systematic Detection of Packet Injection Vulnerabilities in Network Communication
	1.2 Network Stack: Discovery and Systematic Analysis of Name Collision Vulnerabilities in Network Service Discovery
	1.3 Smart Control: Systematic Discovery and Analysis of Algorithm-level Vulnerabilities in Next-generation Smart Transportation
	1.4 Dissertation Organization

	 II. Background and Related Work
	2.1 Problem Domain 1: Network Communication Protocol Security
	2.1.1 Related Work

	2.2 Problem Domain 2: DNS System Security in the New gTLD Era
	2.2.1 Background: DNS Ecosystem
	2.2.2 Background: Internal DNS Namespace and iTLD Usage
	2.2.3 Background: DNS-based Service Discovery
	2.2.4 Background: Server Authentication Mechanisms
	2.2.5 Related Work

	2.3 Problem Domain 3: Software Security in Next-generation Smart Transportation
	2.3.1 Background: CV Technology and Recent Advances
	2.3.2 Related Work

	 III. Systematic Detection of Packet Injection Vulnerabilities
	3.1 Introduction
	3.2 Attack Threat Model
	3.3 Illustrative Example
	3.3.1 Packet Injection Attack for TCP
	3.3.2 Attacker-controlled Implicit Information Leaks

	3.4 PacketGuardian Overview
	3.4.1 Analysis Steps
	3.4.2 PacketGuardian Design

	3.5 Taint-based Summarizer
	3.5.1 Taint Analysis Engine
	3.5.2 Function Summary

	3.6 Path Construction and Vulnerability Analysis
	3.6.1 DFS Path Construction and Analysis Framework
	3.6.2 Accept Path Analysis
	3.6.3 Leakage Path Analysis

	3.7 Evaluation
	3.7.1 Tool Effectiveness and Accuracy
	3.7.2 Tool Efficiency
	3.7.3 Result analysis
	3.7.3.1 TCP-Kernel
	3.7.3.2 RTP
	3.7.3.3 SCTP-Kernel
	3.7.3.4 DCCP-Kernel

	3.8 Limitation and Future Work
	3.9 Summary

	 IV. Discovery and Systematic Analysis of WPAD Name Collision Attack
	4.1 Introduction
	4.2 The WPAD Service Discovery Protocol
	4.3 Threat Model and Attack Surface
	4.3.1 Threat Model
	4.3.2 Attack Surface
	4.3.3 Dataset

	4.4 WPAD Query Leakage Characterization
	4.4.1 Quantification of Leaked Queries
	4.4.2 Leak Cause Analysis
	4.4.2.1 Major Leak Source ASes
	4.4.2.2 Leak Domain Suffixes
	4.4.2.3 Device-side Causes

	4.4.3 Result Summary and Highly-vulnerable ASes

	4.5 Attack Surface Quantification
	4.5.1 Quantification Method
	4.5.2 Evaluation

	4.6 Attack Surface and Exploit Status Characterization
	4.6.1 Attack Surface Characterization
	4.6.2 Registration Status
	4.6.3 Exploit Status

	4.7 Remediation Strategy Discussion
	4.8 Summary

	 V. Systematic Analysis and Detection of Client-side Name Collision Vulnerability
	5.1 Introduction
	5.2 Client-side Name Collision Vulnerability
	5.2.1 Threat Model
	5.2.2 Vulnerability Definition

	5.3 Exposed Service Characterization
	5.3.1 Methodology
	5.3.2 Exposed Services

	5.4 Vulnerability Analysis
	5.4.1 Methodology
	5.4.2 Service Discovery Usage Scenarios
	5.4.3 Vulnerability Analysis
	5.4.4 Discussion

	5.5 Exploitation Case Study
	5.5.1 MitM Attack
	5.5.2 Malicious Library Injection
	5.5.3 Document Leakage
	5.5.4 Credential Theft
	5.5.5 Phishing Calls and Messages
	5.5.6 Phishing Contacts & Calendar Events

	5.6 Defense Discussion
	5.6.1 Service Level Defense Discussion
	5.6.2 DNS Ecosystem Level Defense Discussion

	5.7 Summary

	 VI. Systematic Discovery and Analysis of Algorithm-level Vulnerabilities in Next-generation Smart Transportation
	6.1 Introduction
	6.2 The I-SIG System
	6.2.0.1 Traffic Control Concepts
	6.2.0.2 System Design

	6.3 Threat Model
	6.4 Analysis Methodology Overview
	6.4.1 Attack Goals
	6.4.2 Analysis Methodology Overview

	6.5 Data Spoofing Strategy
	6.5.1 Attack Input Data Flow and Direct Spoofing Strategy
	6.5.2 Spoofing Strategy For The Transition Period Only

	6.6 Vulnerability Analysis
	6.6.1 Experiment Setup
	6.6.2 Attack Effectiveness Quantification
	6.6.3 Congestion Attack Analayis
	6.6.3.1 The Full Deployment Period
	6.6.3.2 The Transition Period

	6.6.4 Personal Gain and Safety Attacks
	6.6.4.1 Personal Gain Attack Analysis
	6.6.4.2 Safety Attack Analysis

	6.7 Exploitation Case Study: Congestion Attack
	6.7.1 Exploit Construction
	6.7.1.1 Attack Decision Process
	6.7.1.2 Exploitation Strategy

	6.7.2 Attack Evaluation
	6.7.2.1 Evaluation Setup
	6.7.2.2 Results

	6.8 Defense Discussions
	6.9 Summary

	 VII. Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	BIBLIOGRAPHY

