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Abstract—With the rapid proliferation of Wi-Fi technologies
in recent years, it has become possible to utilize the vehicular
wireless network to assist the route guidance for drivers in a co-
operative approach, aiming to mitigating heavy traffic congestion.
In this paper, we investigate into the route guidance problem in
vehicular wireless network, and then propose two efficient routing
algorithms, i.e., centralized route guidance and distributed route
guidance, according to different situations. A hybrid framework
is then proposed to provide optimized routing decisions in a
uniform way. Simulation results in Simulation of Urban MObility
(SUMO) indicate that, our route guidance schemes achieve much
better performance than traditional GPS-based navigation and
randomized routing.

Index Terms—Route Guidance; Vehicular Wireless Networks;
Energy-Efficiency; Optimization

I. INTRODUCTION

It is well known that traffic congestions can cause serious
problems, such as fuel consumption, air pollution and even
economic problems. From Urban mobility report [1], the
cost from traffic congestion now is more than $100 billion,
nearly $750 for every commuter in the U.S. To mitigate this
situation, effective route guidance system should be deployed,
helping vehicles choosing faster routes to avoid congestions.
Traditional route guidance schemes leverage GPS module in
vehicles to find the shortest path from the source to destination.
However, these methods offer limited help for the current
congestion situations, which is mainly because: first, they are
unaware of the real-time congestion situations; second, when
all vehicles with the same requests are guided to the same
shortest paths, this shortest path will face severe congestions
and become far from the fastest path. To better solve the
congestion problem, a new route guidance system which
overcomes these limitations should be designed.

Vehicular wireless network provides opportunities to design
a more effective vehicle routing scheme than before to avoid
traffic congestions. In this architecture, road-side access points
(AP) are widely deployed [2] [3], which can provide wireless
access to users in moving vehicles and support data sharing
among drivers. Therefore, by sharing dynamic traffic informa-
tion in this network, it is possible to mitigate the congestion
problems and further reduce the travel time of drivers.

In this paper we study the route guidance in vehicular net-
works, and propose two efficient routing algorithms according
to different conditions. The contributions of this paper are
summarized as follows,

1) Based on the single-source single-destination pattern of
the routing requests during peak time, we propose a
centralized algorithm, Minimum-Cost Maximum-Flow
based Routing (MCMF-R), for the route guidance prob-
lem, which can make routing decisions for a group of
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vehicles at one time instead of a single one. MCMF-R is
designed for heavy traffic such as situation in rush hours.
With a central control unit, the routing of MCMF-R can
make full use of global traffic information.

2) In order to mitigate the possibility of high communica-
tion and computation overhead, we propose a distributed
algorithm, Traffic Splitting (TS), for the route guidance
problem, which only uses local traffic information to
help make routing decisions. TS requires few computing
and communication resources, thus it can be processed
in parallel and more suitable for practical usage.

3) We propose a hybrid framework combining MCMF-R
and TS, which are mutually complementary to each
other. Using the realistic traffic generator Simulation
of Urban MObility (SUMO) [4], we evaluate our algo-
rithms in a real-world traffic map, and the result shows
that our solutions can reduce the average travel time by
40% than traditional ones.

II. RELATED WORK

Common vehicular wireless network architecture consists
of road side units (access point) which communicate with
travelling vehicles and provide information sharing service in
local area. Based on this basic design, current research work
mainly focus on the routing protocols [5], access association
control [6] and information sharing [7].

Traditional route guidance systems are based on GPS mod-
ule and shortest path algorithm [8]. Realizing their limitation
of lacking real-time traffic information, recent research work
focus on employing new architectures such as neural network
[9], Wireless Sensor Network (WSN) [10] to enhance the
information accuracy and routing efficiency. For vehicular
wireless network, the infrastructureless route guidance system
[11] have been studied in [12] [13], which mainly rely on the
inter-communication between vehicles to share information.
For infrastructure-based system, latest research work can be
found in problems such as travel time prediction [14], con-
gestion avoidance [15], etc. Different from previous work, in
this paper we focus on the problem of utilizing road-side APs
in the current vehicular wireless network architecture to find
the fastest routes at the presence of congestion, and propose
two algorithms according to different traffic conditions.

III. PROBLEM FORMULATION

In a typical traffic routing scenario, vehicles in need of route
guidance will send their routing requests including the sources
and destinations inside an area to the route guidance system,
and wait for the routing result. The area map can be denoted as
a directed graph G(V, E), where V and FE are respectively the
set of the intersections and the set of roads. We denote C' as the
set of vehicles with routing requests. For each vehicle ¢; € C,
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its routing request contains source s; and destination d;, where
si € V,d; € V. For road (u,v) € E, M(u,v) denotes the
capacity of (u,v), i.e.,maximum number of vehicles available
for travelling on it.

In regard to the routing result, the routing guidance system
will reply to vehicle ¢; with a route R; in the form of
(vo,v1,...,Ug), where v9 = s, vy = d; and v; € V,j =
0...k. If we use Ry, 4, to represent the set of all routes from
s; to d;, then R; should be in the set R, 4,

The routing target is to make the overall/average travel time
of all vehicles to be minimum. So the objective of the route
guidance problem can be represented as follows,

minimize Z N
c; eC
subject to
R; € Ry, a,, @)

V{u,v) € E,|{c; : ¢; € C,{u,v) € R;}| < M(u,v). (3)

where T'(-) is the time duration of route R;. The second
constraint requires that the traffic flow on each road (u,v)
should be no greater than its capacity.

In order to solve this route guidance problem, in this paper
we consider two situations based on the infrastructures in
vehicular network: centralized route guidance and distributed
route guidance. In the centralized solution, the routing decision
is made in a central control module and requires global
traffic information. In the distributed solution, there is no
central controlling and the algorithm only uses local traffic
information for route guidance.

IV. SoLUTION
A. System Architecture

Fig.1 shows an example of route guidance system architec-
ture in vehicular networks. In this figure, the components are
sinks, vehicle-side sensors and a central control unit. Sinks
are usually APs in vehicular network, and as discussed in [2],
these sinks keep communicating with sensors in the vehicles
such as GPS, cameras, mobile phones, etc. The central control
unit will exchange data with sinks, but it will only be used
in centralized routing. Within this infrastructure, the real-time
traffic data and route requests will be shared, and we can utilize
these resources to devise efficient route guidance algorithms.
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Fig. 1: An example of route guidance system architecture in
vehicular network

In centralized routing, the central control unit collects traffic
information globally. In this way, not only the static traffic
information such as the red light duration time, road length,
speed limit, etc., but also the dynamic traffic information
like real-time traffic movements can be used in the routing
decision for each vehicle. To handle such large amount of data,
the central control unit is expected to have abundant storage
resources along with powerful computing devices.

On the other hand, distributed routing makes decision
locally. There is no central control unit, so the routes are
computed locally in the nearby sinks. The dynamic traffic
information available is limited to a small range, e.g., adjacent
roads. For static traffic information, it can be pre-deployed and
thus be global. Therefore, distributed route guidance scheme
has a much smaller overhead in storage and computing, and
thus more deployable. However, since it lacks global traffic
information, its solution is more likely to be a local optimum
one. This architecture can also be applied to Vehicular Ad
hoc NETworks (VANET) since we can choose any point in
the ad-hoc network as the sink.

B. Analysis

Recall that T'(-) is the key parameter in Eq. (1), in order to
measure it, we first explore the travel time a vehicle spends
around an intersection. Assume that a vehicle is travelling on
road (u,v) and will turn to road (v,w), the time duration
has two parts: the driving time D(u,v) and the waiting time
W (u, v, w), which is represented as follows,

T((u,v,w)) = D(u,v) + W(u,v,w) “)
D(u,v) = —g‘)(i“’v? )

In Eq.(4), the driving time refers to the time the vehicle
spends on the road without being influenced by other vehicles
or traffic lights. As shown in Eq.(5), it can be calculated using
distance Dy (u,v) and speed limit S(u,v) of road (u,v).

In regard to the waiting time, we measure it from the number
of red lights the vehicle is expected to wait. According to the
assumption, the vehicle is on road (u, v) to (v, w), the number
of red lights it has to wait depends on both the set of current
vehicles before it, F(u,v,w), and the number of vehicles
which can leave the road during one green light, L(u,v,w).
We try to find the upper bound of the waiting time in our
measurement as shown in Eq.(6).

|F (u, v, w
L(u,v,w

W(u,v,w)q ;'J >-R(u,v,w) ©)
G0 500wy @)

In Eq.(6) and Eq.(7), R(u,v,w) and G(u,v,w) represent the
the time of one red light and one green light when turning from
road (u,v) to (v,w) at intersection v. [ is the sum of both
(average) vehicle length and the gap between two vehicles.
p(u,v,w) denotes the density of vehicles during one green
light, which is in the range of [0, 1].

With Eq.(4), T (R.) can be measured by adding up the travel
time of all road-to-road segments in R..

L(u,v,w) =

C. Baseline Routing Algorithm

To evaluate the route guidance systems, it is essential to
construct a baseline routing algorithm whose ability is similar
to the routing without any guidance. However, for vehicle set
C from s to d, simply randomly selecting routes from R, 4
uniformly is not reasonable, since by using experiences or
maps, the majority of drivers’ routing decisions without any
guidance are more likely to be around the shortest path.

Based on the above understanding, we propose an improved
random routing algorithm, IRR for short. In IRR, we first
choose the shortest path from s to d. From the second path, to
mimic the imperfection of human beings, we randomly delete



an edge in the previous path, then find the shortest path again
as a new path. This process will continue until the needed
number of paths is reached. In this way, these routes are very
close to the shortest path but not strictly the top |C| shortest
routes. IRR combines the proximity to the shortest path and
imperfection of human beings, which can be viewed as the
random routing decisions made by some local taxi drivers.

D. Centralized Solution

1) Motivation: When the traffic is not heavy, simply using
classical guidance techniques such as GPS can handle all
routing requests without any congestion. So the centralized
route guidance in this paper focuses on the situation when the
traffic is very heavy, where large number of vehicles needs
to travel on the main roads and severe traffic jams are likely
to take place. In these cases, the traffic condition takes on a
single-source single-destination pattern. In this way, the two
targets of our centralized solution are listed as follows,

1) Maximize the number of vehicles that can reach the
destination

2) Minimize the total time duration from source to desti-
nation (refer to the objective in problem formulation)

In this way, we can solve as many routing requests as possible,
while sufficiently reducing the overall travel time of vehicular
users at the same time.

For vehicle set C' to travel from s to d, the routing problem
can be represented as Fig.2. If we treat traffic as the flow and
the travel time as the cost, centralized route guidance problem
with single source and single destination can be solved as a
minimum-cost maximum-flow problem, which is the core idea
in the centralized solution.

Fig. 2: Centralized routing problem can be reduced to a routing
problem from source s to destination d

2) Minimum-Cost Maximum-Flow based Routing:

a) Minimum-Cost Maximum-Flow Problem: In the
minimum-cost maximum-flow problem, there is a directed
graph G(V, E) with source s € V and destination (sink) d €
V, edge (u,v) € F has capacity c¢(u,v) > 0, flow f(u,v) >0
and cost cost(u,v) > 0. The total flow is ) . f(s,v) and
the cost of sending this flow is -, vep f(u,v) - cost(u, v).

The objective of this problem is to find the cheapest possible
way of sending a certain amount of flow through a flow
network. The solution used in this paper [16] can be viewed as
a generalization of the maximum-flow algorithm called Ford-
Fulkerson algorithm. The main idea is that while the original
Ford-Fulkerson algorithm is seeking an augmenting path, this
solution aims to find the one with the minimum cost instead.

b) Minimum-Cost Maximum-Flow based Routing: Based
on the analysis in Section IV-D1, we propose Minimum-
Cost Maximum-Flow based Routing, MCMF-R for short, to
solve the centralized route guidance problem. The algorithm
is shown in Algorithm 1, where M C M F'(-) means calling the
minimum-cost maximum-flow problem solution [16].

o Flow and Capacity. In our routing problem, we re-
gard the traffic flow as f(u,v), so f(u,v) =
> (wwyeBwsu [ (W v, w)|. Capacity c(u,v) is similar
to M(-), and is calculated as the maximum number

of vehicles available on the road (shown in line 2 in
Algorithm 1, where D(-) and [ is introduced in Section
IV-B, Lo(u,v) is the number of lanes in road (u,v)).

o Cost. The cost(+) for minimum-cost maximum-flow prob-
lem is the travel time 7'(-) for route guidance problem.
As shown in Eq.(4), it will be a function of the traffic
flow. However, compared to cost(-), T'(-) has an extra
parameter w. To solve this problem, we can first replace
w with a new parameter, the former intersection ¢ before
entering edge (u,v). cost(-) will only be used when
calculating the shortest path in MCM F(+). So if using
popular shortest path algorithm such as Dijkstra, SPFA
and etc., t should be already known when in need of
value cost(u,v). In this way, value of T'((t, u, v)) can be
used as cost(u,v) in MCMF(-).

o Extracting Paths. From the result of MCMF(-), we
can execute graph traversals from source to destination,
and extract travel paths one by one until there is no
positive flow on any edges. These travel paths then will
be assigned to the vehicles with routing request as their
routing results.

Algorithm 1 MCMF-R Algorithm

Input: routing requests (s;,d;) for each ¢; € C
Output: R; for ¢;

L V<u,v>€E, f(u,v)=0;

22V <u,v>€ FE, c(u,v) = M - Lo(u,v);

3: partition set C' into Cj,j = 1,2, ..., where ¢; € C; share
the same routing request (s;,d;)
for all C; do

call MCMF(sj,d;,Cj,cost(-)) to update f(-);

end for
For each ¢; € C, extracting path R; from f(-);
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¢) Multi-Source Multi-Destination Routing: In the real
world, the routing requests will often have multiple sources
and multiple destinations. Since minimum-cost maximum-flow
algorithm is designed for single source and single destination,
before using it we need to first group the vehicles with
the same routing request (same s; and d;). By doing so,
the original vehicle set C' is partitioned into small subsets,
Cj,5 = 1,2,.... Vehicles in the same subset will have
the same source and destination (line 3 in Algorithm 1).
Then we can use minimum-cost maximum-flow algorithm for
each subset, as shown in line 4 to 6 in Algorithm 1. When
processing, larger subsets will have higher priority in the order.
Besides grouping same routing requests, if the sizes of the
groups are too small to have good routing performances, we
can also merge the sources/destinations which are near to each
other geographically into one common source/destination to
form larger subsets.

3) Analysis: The MCMF-R is meant to achieve the two
targets listed in Section IV-D1, which satisfies the objective in
Section III. So if the travel time estimation is accurate enough,
the routing result of MCMF-R will be exactly the same as the
theoretical optimal solution in problem definition. By using
MCMF algorithm, MCMF-R can make routing decisions for
a vehicle flow at one time instead of a single vehicle, which
increases the decision speed by the factor of the flow size.

In multi-source multi-destination routing part, the order of
processing vehicle subsets is critical for routing efficiency and
fairness. The earlier the subset is fed into MCMF(-), the
shorter path it will get. So the best way to minimize the overall
time duration is to process bigger size subset first. For fairness,
this also ensures that the majority of vehicles have the priority
to choose better routes.



E. Distributed Solution

1) Motivation: Centralized route guidance solution above
requires large storage space and powerful enough computing
devices for handling global traffic information and making
routing decisions for all requests. However, these resources are
sometimes rather limited. Therefore, a distributed solution is
essential to be proposed, which is able to make route decision
with limited traffic information. As discussed in Section IV-A,
the distributed solution can only obtain the dynamic traffic
information in adjacent roads collected in one AP.

In G(V, E), we denote the vehicles travelling on (u,v) to
be a vehicle set C,, .. For the vehicles in C, ), when the
sink at v processes thelr routing requests, v will be their
common start point. So single source shortest path (SSSP)
algorithms can be used in the sink at v for routing, serving
as a feasible distributed routing algorithm. Traditional GPS
route guidances are mainly based on this idea. However, if
every vehicle travel in their shortest paths, extremely heavy
traffic jams could take place, and the resulted solutions for
each vehicle are very likely to largely deviate from the optimal
one (shown in Section V-C).

This huge difference between the expected result and the
actual result is due to the missing information of dynamic
traffic. With the sinks’ dynamic traffic information about
adjacent roads, it will be a wise choice to split the traffic
to different roads around an intersection and thus avoid traffic
jams on one single road.

2) Traffic Splitting: For the intersection v, we assume that
there are p roads adjacent to it, denoted by {(v,w;)|i =
1...p}. Our target is to find a strategy to split the traffic
Cu,v) into vehicle sets f;,i = 1...p where Uf; = Cy ).
For each vehicle in set f;, the next intersection of their routing
result will be w;. In other words, after these vehicles pass road
(u,v), they will turn to road (v, w;).

For a vehicle ¢, which travels on (u,v) to dg, if it is
classified into set f;, setting w; as the next intersection of
the routing solution should be less time-consuming than any

other intersections in the set {w; : j € {1...p} — {i}}. This
can be described as follows,
T((u,v,w;,...,dg)) = min{T((u,v,w;,...,dg))} (8)
where 7,7 =1...p.
In Eq.(8), T((u v, W4, ... ,dg)) is equal to
T((u,v,w;)) + D(v,w;) + T({w;, . ..,dg)) 9)

where i = 1...p, and D(-) is the drive time.

In Eq.(9), the time duration from u to dj, through (u,v)
and (v, w;) consists of the travel time on road (u,v) and the
travel time from road (v, w;) to dj. With the dynamic traffic
information of adjacent roads F'(u,v,w;), we can calculate
T({u,v,w;)) using Eq.(4). For the travel time from road
(v, w;) to dy, we lack the dynamic information to get a better
estimation. So we calculate it using the sum of drive time,
D(v,w;) defined in Eq.(5), and the travel time of the shortest
path from w; to di, denoted as T'({w;, ..., dg)).

In the sink at v, for each ¢, € Cy, . and each intersection
wi,i = 1...p and w; # wu, we have T({(u,v,w;,...,dg)).
Then we choose the w; with the smallest T'({w, v, w;, . .., dk)
to be the next step of ¢y, and add ¢ to f;. After all vehicles
in Cy, ) have been processed, the traffic splitting of the sink
at v finishes. In the next intersection wj, sink at w; will carry
out the same traffic splitting process, and guide ¢ to the next
intersection. This routing will relay in each intersection, and
c, will finally reach dy,.

~—

The traffic splitting algorithm in v discussed above is shown
in Algorithm 2. In the algorithm, all edges adjacent to v should
be deleted temporarily. After this operation, it is ensured that
the shortest path generated in line 2 to 4 will not include
point v, so that the calculation result excludes the cases that
the vehicle travels back to v after leaving v.

Algorithm 2 Traffic Splitting (TS) Algorithm

Input: u, v, Ciy 4y, w1 ... wp
Qutput: vehlcle sets f1 fp

1 fi=0i=1.

2. fori=1...p do

3: calculate the shortest path from w; to all other inter-
sections using SSSP algorithm such as Dijkstra;

4: end for

s: while -, [fil <|Cuw| do

6: for all ¢, € C, do

7: m € argmin T ({(u, v, w;, ..., Dg));

i€l...p
8: fm:fm+{ck};
9: update T'((u, v, W, - .., Dk));

10: end for
11: end while

We name this algorithm Traffic Splitting Algorithm, TS for
short. Its complexity is in O(pn? + pn), where p and n are
the number of v’s adjacent roads and intersections respectively.
TS only requires two message exchanges between vehicles and
the sink, so the communication overhead is a linear function
of the vehicle number, which is quite lightweight.

3) Analysis: For the estimation of T'((w;,...,Dy)), TS
uses the shortest paths, which includes no dynamic traffic
information. This will lead to mistakes in choosing roads on
line 7 to 8 in Algorithm 2, and as we stated before, the
difference between the routing of shortest path and reality
can be very huge. However, this is actually the limitation
from the local information assumption in Section IV-El. Since
the limitation of shortest path estimation will increase with
the congestion condition, the performance of TS will degrade
when the traffic is heavy.

When splitting traffic in line 6 to 10, the vehicle ¢, which
is chosen at an earlier time is more possible to be designated
into a shorter path. Considering this, the order of choosing cy,
from C,, introduces some unfairness in our algorithm. To solve
it, we can use some metric such as distance to destination,
urgent level of the request, etc. to rank the vehicles in C',. For
simplification, in the paper all vehicles is considered to have
no difference with each other.

4) Example of Traffic Splitting Algorithm: For better illus-
tration of TS algorithm, Fig.3 gives an example of the traffic
splitting process in one intersection. In the figure, intersection
v has 4 adjacent roads. There are 4 vehicles travelling on road
(u,v) and requesting routing to common destination d, and
their next intersection can be wi, w2, or ws. Table T gives
the initial parameters for routing these vehicles. After the
calculation of SSSP algorithm for 3 times, we obtain all three

T({w,...,d)) values in table L.
aitin v aitin v aitin v aitin; w
I [ree [ree |2

P P P P
W — ) —, W e— ) —, ;e ) e——, W ) )e——

| | | |
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Fig. 3: Example of the Traffic Splitting (TS) algorithm process



As shown in Fig.3a, at the beginning 4 vehicles are
placed in the waiting area waiting for routing, an
f1, f2, f3 are all empty. Using Eq.(9), T'({u, v, w1, ...,d)) =
T({(u,v,wa,...,d) =9, which is the smallest among the 3
candidate roads. Thus we pick f; to add the first vehicle.
Since L(u,v,w1) = 2, the time of waiting red light will
increase R(u,v,w;) = 2 after adding 2 vehicles. So with
the same analysis as above, we can add another vehicle
into set f; (Fig.3b). Now f; has traffic volume 2 and
T({u,v,w1,...,d)) = 11, which is no longer the smallest.
Now T'({u,v,ws,...,d)) = 10 becomes the smallest, and we
can add 1 vehicle to f5 (Fig.3c) and after the value increases
to 12. Now T'({u,v, w1, ...,d)) = 11 is the smallest again, so
in Fig.3d the last vehicle in the waiting area is added to f;.

In this way, we obtain the routing solution: 3 vehicles travel
towards w; and 1 vehicle travels towards wo.

TABLE I: Parameters Related to the Routing Example in Fig.3

intersection w wq wa w3
T((u,v, w)) 2 1 1
T(w,...,d)) 6 7 12
D(v, w) 1 2 1
L(u,v,w) 2 1 1
R(u,v,w) 2 2 1

F. Comparison and Hybrid Route Guidance Framework

We summarize the performance of MCMF-R, TS, IRR and
traditional GPS routing in Table II. For the time efficiency
of the two solutions proposed in this paper, MCMF-R is
closer to the optimal solution, but imperfect measurement of
travel time makes it underestimate or overestimate the current
congestion situation to some extent. TS becomes much worse
than MCMF-R when heavy traffic take place. But since it’s
greedy, it is better than MCMF-R in light traffic condition,
where the latter overestimates the congestion. In fairness, TS
is better since MCMF-R considers more global optimization,
which needs some vehicles to sacrifice. MCMF-R needs global
dynamic traffic information and central control, so it has bigger
communication overhead compared to other algorithms.

TABLE II: Comparison of MCMF-R, TS, IRR and Traditional
GPS Routing

Algorithm Overhead | Fairness Time Efficiency
Light Traffic Heavy Tralfic
MCMF-R hard medium medium strong
TS medium high strong medium
IRR easy medium medium weak
GPS Routing easy Tow medium very weak

Algorithm 3 Hybrid Route Guidance Framework

Input: routing requests req, current traffic condition tc
1: if isRushHour(req, tc) then
use MCMF-R
else
use TS
end if

Considering that MCMF-R has high time efficiency for
heavy traffic and TS has low overhead and better fairness
for other traffic conditions, we combine them and propose
a hybrid framework for route guidance according to different
traffic pattern, which are shown in Algorithm 3. In normal
period, TS can serve most of the routing requests with high
efficiency and low overhead. When the system detects rush
hour pattern, the routing algorithm should then be switched to
MCMF-R. The hybrid framework balances routing overhead
and time efficiency, providing both better deployment and
routing decisions than IRR and traditional GPS under different
traffic intensity situations.
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V. PERFORMANCE EVALUATION
A. Evaluation Method

In order to test the routing performances of MCMF-R
and TS, we use the realistic traffic generator Simulation of
Urban MObility (SUMO) [4] to construct the large road
network and generate vehicle traffic. In the simulation, we
randomly generate routing requests as input, and then write
C++ programs of the route guidance algorithm to make routing
decisions for them. To test the performance in heavy traffic
condition, we add background traffic in some experiments.
After that, we use these routing decisions to generate vehicle
traffic in SUMO, and record the travel time for each vehicle.

With the travel time, our evaluation is in two dimensions:

o Time Efficiency: measured using the average travel time
of the vehicles.

o Fairness: measured using the standard deviation of the
travel time of the vehicles.

B. Simulation Parameter

For the road topologies, we construct the road network
based on the map of Nanjing city, China. We extract the
central part of Nanjing from openstreetmap [17], and convert
it to the map used in SUMO. For convenience, we assume
that vehicles can turn to any roads adjacent to the road they
travel on. For traffic light setting, since the extracted map
from openstreetmap does not have traffic light information,
we manually set the traffic lights at all intersections to be 30
seconds red light duration and 30 seconds green light duration.

TABLE III: Setting of the Vehicles in the Simulation

Parameter Value Description
accel 10(m/s?) acceleration ability of vehicle
decel 10(m/s?) deceleration ability of vehicle
sigma 0 driver imperfection (between 0 and 1)
length 3(m) The vehicle’s length
minGap 1 minimal gap between vehicles
maxSpeed 80(m/s) vehicle’s maximum velocity

The parameters about the vehicles are listed in table III.
For routing request generation, we first randomly generate 200
source and destination pairs, and then assign random vehicle
volumes to them. For background traffic, we use repeated
vehicles in SUMO, which have the repeat period to be 2.

C. Simulation Result and Analysis

N
(@]

Average Flow Size
N
o

o
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200

Number of Routing Requests
Fig. 5: Average flow size distribution of MCMEF-R algorithm
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In this section, we will evaluate the performance of cen-
tralized routing algorithm MCMF-R and distributed routing
algorithm TS. Besides IRR algorithm, we also use the tradi-
tional GPS routing as the comparison algorithm, which keeps
using shortest path algorithm in routing. Fig.5 shows the traffic
grouping performance of MCMF-R, and the simulation result
about time efficiency and fairness is shown in Fig.4.

Fig.5 shows the average vehicle flow size managed by
MCMEF-R for different routing request volumes of one source
and destination pair. Between volume 0 to 300, the average
flow size is around 15 and between 300 to 550, it increases to
25. This indicates that MCMF-R algorithm can achieve around
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Fig. 4: Time efficiency and fairness comparison among MCMF-R, TS, improved random routing and traditional GPS routing

20 x faster routing decision by considering a group of vehicles
at one time.

The first two figures in Fig.4 show the time efficiency
comparison result for these four algorithms. Fig.4a shows
the average travel time for different routing request volumes
with no background traffic flows on roads. In Fig.4b, heavy
background traffic is added on some most commonly chosen
roads when no background traffic exists, which simulates the
heavy traffic cases discussed in Section IV-D1.

The last two figures in Fig.4 show the fairness comparison
result. Fig.4c shows the standard deviation of the travel time
for different routing request volumes, and Fig.4d shows the
sorted travel time for each route request when the routing
request volume is 8 x 10%,

In both Fig.4a and Fig.4b, the average travel time of MCMF-
R and TS are at least 20% better than those of IRR and tradi-
tional GPS routing, especially when the traffic volume exceed
7 x 10%. For traditional GPS routing, this improvement can
achieve 40% on average. This improvement is even more in
Fig.4c and Fig.4d, when the vehicle volume approaches 8 x 10*
to 10 x 10%, the standard deviation and max-min difference
value of both MCMF-R and TS are about 50% of those of
IRR. This indicates that the time efficiency and fairness of both
MCMF-R and TS algorithm are improved largely compared
to traditional methods and the random routing of local taxi
drivers without any route guidance.

IRR is better than traditional GPS routing, especially in
routing ability. And this advantage is increasing with the traffic
volume. This shows that when the traffic is getting heavy, even
local taxi drivers outperform traditional route guidance.

For the time efficiency between MCMF-R and TS, they
are quite close, and no one can dominate the other in all
conditions. In Fig.4a, when the traffic volume is fewer than
3 x 10%, MCMF-R is worse than TS. This is mainly because
MCMF-R has more usage of the upper bound of travel time
(Section IV-B) than TS, and overestimates the congestion
condition. When the traffic volume is more than 3 x 10,
the lack of global information makes the performance of TS
degrading largely. When traffic volume is around 5 x 10%,
MCMF-R has a clear advantage over TS, which is about 28%
quicker. After that, TS catches up a little, but MCMF-R is still
stronger than it in time efficiency. In Fig.4b, TS is influenced
more by heavy background traffic than MCMF-R when traffic
volume is between 3 x 10% to 11 x 10%. This indicates that
MCMF-R is more time efficient under heavy traffic conditions.

In fairness shown in Fig.4c, TS and MCMF-R are compara-
ble to each other when the traffic volume is less than 4 x 10%.
Between 4 x 104 and 6 x 10%, TS is less fair than MCMF-R
since it lacks global information. But when the traffic volume
exceeds 6 x 10%, which is also shown in Fig.4d, TS surpasses
MCMEF-R and strictly dominates it. It is because in MCMF-R,
when the traffic is getting heavy, more vehicles will sacrifice

for the global optimization, causing loss of fairness.

VI. CONCLUSION

In this paper, we propose two efficient algorithms for route
guidance problem in vehicular network: MCMEF-R for central-
ized routing and TS for distributed routing. Experiment results
indicate that, both algorithms have better time efficiency and
fairness than traditional methods. Between MCMF-R and TS,
TS is more deployable, and more suitable in low traffic volume
routing than MCMF-R, and when the traffic is heavy, MCMF-
R is better in time efficiency but worse in fairness. A hybrid
framework is then proposed to provide better deployment and
routing decisions under different traffic intensity situations.
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