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DSP applications column

Many practical signal processing applications involve large, complex collections of hidden

variables and uncertain parameters. For example, modern communication systems typically

couple sophisticated error correcting codes with schemes for adaptive channel equalization.

Additionally, many computer vision algorithms use prior knowledge about the statistics of typ-

ical surfaces to infer the three–dimensional (3D) shape of a scene from ambiguous, local image

measurements. Probabilistic graphical models provide a powerful, general framework for de-

signing systems like these. In this approach, graphs are used to decompose joint distributions

into a set of local constraints and dependencies. Such modular structure provides an intu-

itive language for expressing domain–specific knowledge, and facilitates transfer of modeling

advances to new applications. Once a problem has been formulated using a graphical model,

a wide range of efficient algorithms for statistical learning and inference can then be directly

applied.

In this column, we review a particularly effective inference algorithm known as belief prop-

agation (BP). After describing its message–passing structure, we demonstrate the interplay of

statistical modeling and inference in two challenging applications: denoising discrete signals

transmitted over noisy channels, and dense 3D reconstruction from stereo images.

1 Graphical Models and Factor Graphs

Several different formalisms have been proposed that use graphs to represent probability dis-

tributions [1, 2]. For example, directed graphical models, or Bayesian networks, are widely

used in artificial intelligence to deduce causal, generative processes. Special cases of interest

in control and signal processing include hidden Markov models (HMMs) and continuous state

space models. Alternatively, undirected graphical models, or Markov random fields (MRFs),

provide popular models for the symmetric dependencies arising with spatial or image data.

In what follows, we focus on models defined by factor graphs [3, 4], which are often used

in communications and information theory. These bipartite graphs have two sets of nodes or

vertices. Each variable node s ∈ V is associated with a random variable xs, which for now we

assume takes values in some finite, discrete set Xs. These hidden variables could represent

signals, parameters, or other processes that influence the modeled system, but are not directly

observed. Each factor node f ∈ F is then uniquely indexed by a subset f ⊂ V of the hidden

variables that directly interact. In particular, the joint distribution of x , {xs | s ∈ V} is defined
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Figure 1: Factor graph representations of three probabilistic models. Circular nodes are random
variables, which interact via square factor nodes (shaded). (a) A hidden Markov model (HMM).
(b) A grid–structured Markov random field (MRF). (c) A low density parity check (LDPC) code.

as a normalized product of non–negative potentials or compatibility functions :

p(x) ∝
∏

s∈V

ψs(xs)
∏

f∈F

ψf (xf ) (1)

In this expression, xf , {xs | s ∈ f} are the hidden variables associated with factor node f ,

while the proportionality symbol represents division by a normalization constant chosen so

that
∑

x p(x) = 1. We graphically illustrate this factorization by drawing edges linking each

variable node to all dependent factors, as in the example graphs of Fig. 1. In cases where

factor nodes couple pairs of variable nodes s, t ∈ V, we denote the corresponding compatibility

function by ψst(xs, xt).

In many cases, factor graphs represent the hidden variables’ posterior distribution p(x | y)

given observed data y. For notational simplicity, however, we assume that such observations

have been implicitly encoded by appropriately redefining the local compatibilities ψs(xs).

1.1 Modeling Temporal and Spatial Dependencies

Many signal processing applications involve estimation of a temporal or spatial stochastic pro-

cess. As illustrated in Figs. 1(a-b), graphical models for these problems typically associate a

hidden variable with each discrete sample of the underlying signal. The simplest associated

factor graphs then combine two types of compatibility functions. Functions describing local

observations, as represented by degree one factor nodes, can model potentially non–linear or

inhomogeneous measurements. Neighboring samples are then connected by “pairwise” compat-

ibility functions encoding prior knowledge about the underlying process. In an oceanographic

remote sensing application, for example, xs could represent sea surface temperature at a partic-

ular site s, while Gaussian pairwise potentials ψst(xs, xt) ∝ exp{−(xs − xt)
2/2σ2} are matched

to the expected spatial scale of temperature fluctuations. Observation compatibilities ψs(xs)

might then encode knowledge about the accuracy of satellite–born instruments, and samples

corrupted by inclement weather. Our later results explore in greater detail an application of a
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related Markov random field to stereo reconstruction.

1.2 Designing Low Density Parity Check Codes

Graphical models also provide a unifying framework for the design and analysis of error cor-

recting codes. In most graphical code representations, each variable node is associated with

a bit xs ∈ {0, 1} in the transmitted codeword, and observation compatibilities are determined

by the noisy communication channel. For example, to model a binary symmetric channel with

error probability ǫ, we set ψs(xs) = 1− ǫ when xs equals the corresponding received bit, and

ψs(xs) = ǫ otherwise. Each factor node then constrains several bits via a parity check :

ψf (xs, xt, . . . , xv) =

{

1 xs ⊕ xt ⊕ · · · ⊕ xv = 0

0 otherwise
(2)

The ⊕ operator represents modulo–2 addition, so that all valid codewords have an even number

of “active” bits connected to each parity check node.

In contrast with most signal processing applications, where graph structure is determined

by physical and statistical relationships, graphical codes are engineered to have good error

correcting properties. Fig. 1(c) illustrates a regular low density parity check (LDPC) code [5],

in which each parity check or variable node has a small, fixed number of neighbors. The

neighborhood structure is chosen via a pseudo–random permutation, analogously to the random

code ensembles used in many information theoretic proofs. In addition to having desirable

asymptotic properties, the sparse graphical structure of LDPC codes makes them particularly

well suited to approximate inference algorithms like belief propagation.

2 Belief Propagation

The belief propagation algorithm propagates information throughout a graphical model via a

series of messages sent between neighboring nodes [2, 6]. Let Γ(s) denote the set of factor

nodes f that are directly connected to, or neighbor, variable node s. As summarized in Fig. 2,

factor graph implementations of BP alternate between the computation of messages m̄sf (xs)

from variables to factors, and messages mfs(xs) from factors to variables.

Variable nodes s fuse information via the product of local compatibilities ψs(xs) with incom-

ing messagesmgs(xs) from neighboring factor nodes. Each message is a |Xs|–dimensional vector,

whose non–negative entries encode likelihoods of xs given information from different parts of

the graph. To avoid double–counting, the equation used to update the message m̄sf (xs) sent

to factor node f excludes the incoming message mfs(xs) from that same factor.

To compute an outgoing message mfs(xs) from factor node f , we first rescale that factor’s

compatibility function ψf (xf ) by the incoming messages m̄tf (xt) from other neighbors t. We

then marginalize or sum this function over all possible neighboring states, and thus produce

a message function that depends only on xs ∈ Xs. For pairwise factors, this message update
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∏

t∈f\s

m̄tf (xt)

(a) (b)

Figure 2: Computation of new belief propagation messages (red arrows) given incoming messages
from neighboring nodes (blue arrows). (a) Message m̄sf (xs) is sent from variable node s to factor
node f . (b) Message mfs(xs) is sent from factor node f to variable node s.

operation is equivalent to a matrix–vector product. More generally, message updates are gener-

alized convolution operators that compress knowledge about xf , preserving only those summary

statistics that are informative about xs. Due to the form of the message update equations in

Fig. 2, BP is also known as the sum–product algorithm [4].

As messages are iteratively updated, the BP algorithm propagates information throughout

the graphical model. At any iteration, an estimate of the posterior marginal distribution of xs,

given information from all compatibilities, can be computed by multiplying together all of the

incoming messages from neighboring factor nodes:

p̂s(xs) ∝ ψs(xs)
∏

f∈Γ(s)

mfs(xs) (3)

As before, the normalization constant is chosen so that
∑

xs
p̂s(xs) = 1. The following sections

review statistical uses of marginal estimates, and survey cases in which the so–called belief

estimates of (3) well approximate the true marginals. Note that these beliefs are invariant to

rescalings mfs(xs)← αfsmfs(xs) of the messages by constants αfs > 0. For numerical stability,

most implementations normalize each message so that its entries sum to one.

2.1 Mapping Applications to Inference Problems

One widely used, decision theoretic approach to statistical inference begins by defining the cost

C(x, x̂) of selecting x̂ when the true, hidden state is x. Given observed data y, a decision x̂

is then made by minimizing the expected cost Ex|y[C(x, x̂) | y]. When this cost decomposes as

C(x, x̂) =
∑

sCs(xs, x̂s), the posterior marginals p(xs | y) provide sufficient statistics for this

decision. For example, if C(x, x̂) = ||x− x̂||2, the decision minimizing the mean squared error

is x̂s = Exs|y[xs | y]. Alternatively, setting x̂s to the mode of p(xs | y) minimizes the number

of misclassified variables (in coding, the “bit error” rate). For the many applications in which

decomposable costs are appropriate, the marginal estimates computed by the sum–product
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form of BP can thus be extremely effective.

In some applications, one would instead like to minimize the probability that any part of

the global state estimate x̂ is incorrect (in coding, the “word error” rate). In these situations,

a closely related max–product form of BP is more appropriate [1, 4].

2.2 Dynamic Programming in Trees

BP was first derived as an exact inference algorithm for tree–structured graphical models, in

which no sequence of edges forms a cycle or loop. To illustrate this interpretation, consider the

graphical model in Fig. 2. The marginal distribution of xs can be computed as follows:

p(xs) ∝
∑

xt,xu,xv ,xw

ψs(xs)ψst(xs, xt)ψsu(xs, xu)ψsvw(xs, xv, xw) (4)

∝ ψs(xs) ·

[

∑

xt

ψst(xs, xt)

]

·

[

∑

xu

ψsu(xs, xu)

]

·

[

∑

xv ,xw

ψsvw(xs, xv, xw)

]

(5)

Here, we have used the distributive law to change the order in which the summation is carried

out [4]. Note that the three summations in (5) are precisely equal to the messages computed by

the BP algorithm in this graph. Using an induction argument, this approach can be generalized

to show that BP computes exact marginals in any tree–structured model [6].

For trees, BP is essentially a distributed variant of dynamic programming. Its recursive,

local decomposition of summations can provide dramatic computational savings. Consider, for

example, a tree in which N variables taking one of K states are connected by pairwise compati-

bility functions. If ordered appropriately, each message must only be computed once, and exact

marginals can be determined in O(NK2) operations. In contrast, brute force enumeration of

all joint states (as in (4)) scales as O(KN).

2.3 Loopy Belief Propagation

The BP message update equations summarized in Fig. 2 only involve passing messages between

neighboring nodes. Computationally, it is thus straightforward to apply these same local mes-

sage updates in graphs with cycles. In most such models, however, this loopy BP algorithm will

not compute exact marginal distributions. Algebraically, it fails because the presence of cycles

eliminates the factorization underlying the dynamic programming derivation in (4) and (5).

Probabilistically, problems arise from the different Markov properties, or conditional indepen-

dencies, underlying graphs with cycles. In particular, the belief update of (3) implicitly assumes

that incoming messages are statistically independent. For graphs with cycles, however, loopy

message passing leads to feedback and unmodeled message dependencies.

Despite these potential shortcomings, in practice loopy BP is often remarkably effective. It

is probably best known as the decoding algorithm underlying LDPC and turbo codes [5], but

has also been used with success in such areas as image processing and computer vision [3, 7, 8].
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Intuitively, loopy BP seems to be most accurate when local regions of the graph have tree–

like properties, so that messages are approximately independent. Indeed, recent theoretical

results confirm that loopy BP has desirable properties when cycles are long or compatibilities

are sufficiently weak. However, it can also be effective in graphs with short cycles, like the

grid–structured MRFs arising in the dense stereo reconstruction application discussed later.

Motivated to explain the empirical success of loopy BP, the authors of [2] showed that when

BP converges, the resulting marginal probabilities are stationary points of a quantity from

statistical physics known as the Bethe approximation to the free energy. The true free energy is

an objective function whose global minimizers are exact marginal distributions, and is equivalent

to the Bethe free energy in tree–structured graphs. This work revealed connections between

BP and variational methods for approximate inference, which also minimize approximate free

energies. Further research has established local consistency properties of BP, as well as bounds

on the accuracy of its marginal estimates [1].

The preceding results assume that the BP message–passing updates have converged to

some fixed point. BP may fail to converge in graphs with cycles, and different message update

rules (which share the same fixed points) have been proposed to allow faster or more robust

convergence. One modification employs damped message updates, so that the transmitted

message is ρ times the message computed as in Fig. 2 plus (1− ρ) times the message from the

preceding iteration, for some 0 < ρ < 1. This can lead to convergence in graphs with cycles

for which BP’s message–passing dynamics would otherwise be unstable or oscillate. Another

approach updates messages sequentially along trees embedded within the graph [1], rather than

in parallel over all nodes, allowing local observations to propagate more quickly.

For graphical models with long cycles or relatively weak dependencies, the basic BP message

updates outlined in Fig. 2 typically perform quite well. For applications with more complex

statistical structure, there is a rich literature exploring alternative families of variational meth-

ods [1, 3], including a generalized BP algorithm based on higher–order extensions of the Bethe

free energy [2]. Typically, however, such improvements in inference accuracy come at the cost

of increased computation and implementation complexity.

3 Application: Error Correcting Codes

To demonstrate the practical behavior of loopy BP, we begin by decoding a simple binary

message transmitted over a binary symmetric channel. As outlined previously, we construct

a LDPC code by sparsely connecting parity checks to message bits in a random pattern. We

use a so–called (3,6) regular LDPC code, in which each variable node is connected to three

parity checks, and each factor node to six message bits as in Fig. 1(c). For this rate one–half

code, half of the message bits may be set arbitrarily to encode information, while the others

are determined by the parity checks, and thus create structured redundancy. Fig. 3 shows an
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Figure 3: Belief propagation decoding of a (3,6) regular LDPC code, given a binary input
message (top half) corrupted by noise with error probability ǫ = 0.08 (as set up in [5]). We
show the received codeword including parity bits (zero iterations, left), the bits that maximize
the posterior marginals after five and fifteen BP iterations, and the final, correctly decoded signal
after convergence to a loopy BP fixed point (the Stata center, home of the MIT Computer Science
& Artificial Intelligence Laboratory).

example systematic message encoding [5], in which the first half of the transmitted bits are the

uncoded message of interest. To aid visualization, we choose this message to be a simple binary

image, but the LDPC code does not model or exploit this spatial structure.

To decode a noise–corrupted message via loopy BP, we pass messages in a parallel fashion.

Each iteration begins by sending new messages from each variable node to all neighboring factor

nodes, and then updates the outgoing messages from each parity check. As illustrated in Fig. 3,

this allows information from un–violated parity checks to propagate throughout the message,

gradually correcting noisy bits. These BP message updates continue until the thresholded

marginal probabilities define a valid codeword, or until some maximum number of iterations

is reached. In practice, BP decoding typically fails due to oscillations in the message update

dynamics, rather than convergence to an incorrect codeword [5].

The outstanding empirical performance of message–passing decoders has inspired extensive

research on alternatives to regular LDPC codes [5]. One widely used trick removes all cycles of

length four from the factor graph, so that no two parity checks share a common pair of message

bits. This reduces over–counting that can otherwise hamper loopy BP. In applications where

transmitting million–bit blocks is feasible, extremely effective codes can be found by designing

random ensembles of sparse parity check matrices whose typical members are good. For more

moderate blocklengths, graphical code design is a topic of ongoing research.

4 Application: Dense Stereo Reconstruction

To further illustrate the practical behavior of loopy BP, we now consider an application in spatial

signal processing. Many low–level computer vision tasks have a common form: gather local

evidence, then propagate that evidence across space [8]. Belief propagation provides machinery

to solve such spatial inference problems in factor graphs. Binocular stereo reconstruction, in

which images captured at two offset locations are used to estimate scene depths, is typical of
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this type of inference problem. Textured regions often provide strong local evidence of the

amount of depth–induced parallax between a pair of images, while untextured regions do not.

For these areas, depths must be estimated using information from other image regions.

Camera calibration information is used in an initial stereo pre–processing step, called image

rectification [9], in which the two images are pre–warped and placed in row–by–row correspon-

dence. After rectification, each row of the left camera image corresponds to the same row of the

right image, with some unknown offset between matching pixels in the two images. Under the

assumption of perspective projection, with cameras offset from one another by △ and having

focal length f , the scene depth zs at pixel s is related to image displacement ds as follows:

zs =
f△

ds −△
(6)

We thus focus on inferring the image–based displacement, or disparity, between corresponding

pixels, and later translate these into the desired scene depths.

4.1 Modeling Disparities with Pairwise MRFs

Sophisticated graphical models relating image intensities to disparities can take many quantities

into account [10], including occlusion boundaries and non–Lambertian reflectances. A simpler

model, presented here, captures only the most basic features. Under the assumption of diffuse

reflectance, 3D scene locations produce the same intensities in different cameras. Let ds denote

a candidate disparity at location (is, js) in the left, or reference, image. In the simplest case, we

use a Gaussian noise process of variance σ2 to account for any deviations of the right camera

intensity, IR(is + ds, js), at the position of true disparity is + ds, from the intensity at the

corresponding position in the left camera, IL(is, js). We then define the likelihood of disparity

ds at image site s via the following observation potential:

ψs(ds) ∝ exp

{

−
1

2σ2

(

IL(is, js)− IR(is + ds, js)
)2

}

(7)

Note that even though the form of this potential is Gaussian, its dependence on image intensities

typically makes it a multi–modal, highly non–Gaussian function of the hidden disparity ds. To

improve the robustness of this matching process, our experiments extend the basic likelihood

of (7) to aggregate pixel distances over a 3× 3 window around each candidate disparity.

For realistic scenes, the local evidence for a match can be weak, particularly in textureless

regions. We thus need to make assumptions about probable surface shapes in order to recover

good depth estimates. Since many objects have smooth surfaces, it is reasonable to assume that

the differences between disparities at neighboring positions are Gaussian distributed with mean

zero. However, this fails to account for the very large disparity differences observed at object

contours. For this reason, researchers often place truncated Gaussian compatibility functions
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Figure 4: Belief propagation stereo reconstruction for the “Venus” image from the Middlebury
stereo database [9]. Left: Reference image (top) and ground truth disparities (bottom), where
darker intensities correspond to more distant scene points. Right: BP disparity estimates based
solely on local evidence (zero iterations), after one iteration, and at convergence. We compare a
pairwise MRF with Gaussian potentials (top) to one with robust, truncated potentials (bottom).

on the depth differences between neighboring pixels:

ψst(ds, dt) ∝ exp

{

−
1

2γ2
min

(

(ds − dt)
2, δ2

0

)

}

(8)

Here, γ encodes the expected smoothness of objects, while the threshold δ0 sets the maxi-

mum degree to which large disparities are penalized. A similar threshold can be added to the

observation potential of (7), to approximately account for specularities and occlusions.

In Fig. 4, we apply the BP algorithm to two pairwise MRFs with K = 50 candidate dis-

parities, estimating depths in a standard test scene [9]. We update messages by alternatively

passing them along rows of the nearest–neighbor grid, and then along columns. When using

truncated Gaussian potentials, BP very quickly converges to accurate disparity estimates. In-

deed, several of the top performing stereo algorithms are based upon belief propagation [9, 10].

In contrast, applying the same message updates to a model with non–truncated potentials leads

to significant blurring of the boundaries between this scene’s planar regions.

4.2 Learning Effective Signal Models

The stereo reconstruction example demonstrates the importance of coupling BP with an accu-

rate model for the underlying signal. While manual tuning of potential functions and parameters

is sometimes feasible, complex applications demand more sophisticated, data–driven learning

methods [8]. In graphical models, generalizations of the expectation maximization (EM) algo-

rithm are often effective, in which a variational method like loopy BP is used to approximately

infer summary statistics of hidden variables [1, 3].
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5 Extension: Belief Propagation with Continuous Variables

In many signal and image processing applications, hidden variables naturally take values in

continuous spaces. In principle, loopy BP is easily extendable to such graphical models: one

simply replaces the summations of Fig. 2 by integrals. However, the resulting message functions

typically lack tractable closed forms. A notable exception occurs when all variables are jointly

Gaussian, so that messages can be parameterized by their mean and covariance. Loopy BP

then becomes a generalized form of the Kalman filter [4].

For low–dimensional continuous variables, like the disparities needed for stereo reconstruc-

tion, a fixed discretization is often reasonable. For higher–dimensional spaces, care must be

taken to keep BP message updates computationally feasible. When variables are coupled by

regular, symmetric potentials, fast convolution methods like the FFT can be very effective [7].

Alternatively, strong local evidence cues can be used to fix a data–driven lineup of candidate

states for each variable [8]. More generally, Monte Carlo methods inspired by particle filters

can dynamically adapt computational resources as message–passing proceeds. Variants of this

nonparametric belief propagation (NBP) [11] approach have been used for visual recognition

and tracking, sensor network localization, and equalization of communication channels [12].
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